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ABSTRACT

In the recent years, Physics Informed Neural Networks (PINNs) have received strong interest as a
method to solve PDE driven systems, in particular for data assimilation purpose. This method is still
in its infancy, with many shortcomings and failures that remain not properly understood. In this paper
we propose a natural gradient approach to PINNs which contributes to speed-up and improve the
accuracy of the training. Based on an in depth analysis of the differential geometric structures of the
problem, we come up with two distinct contributions: (i) a new natural gradient algorithm that scales
as minpP 2S, S2P q, where P is the number of parameters, and S the batch size; (ii) a mathematically
principled reformulation of the PINNs problem that allows the extension of natural gradient to it,
with proved connections to Green’s function theory.

1 Introduction

Following the spectacular success of neural networks for over a decade [LeCun et al., 2015], intensive work has been
carried out to apply these methods to numerical analysis [Cuomo et al., 2022].In particular, following the pioneering
work of Dissanayake and Phan-Thien [1994] and Lagaris et al. [1998], Raissi et al. [2019a] have introduced Physics
Informed Neural Networks (PINNs), a method designed to approximate solutions of partial differential equations
(PDEs), using deep neural networks. Theoretically based on the universal approximation theorem of neural networks
[Leshno et al., 1993], and put into practice by automatic differentiation [Baydin et al., 2018] for the computation of
differential operators, this method has enjoyed a number of successes in fields as diverse as fluid mechanics [Raissi et al.,
2019b,c, Sun et al., 2020, Raissi et al., 2020, Jin et al., 2021, de Wolff et al., 2021], bio-engineering [Sahli Costabal
et al., 2020, Kissas et al., 2020] or free boundary problems [Wang and Perdikaris, 2021]. Nevertheless, many limitations
have been pointed out, notably the inability of these methods in their current formulation to obtain high-precision
approximations when no additional data is provided [Krishnapriyan et al., 2021, Wang et al., 2021, Karnakov et al.,
2022, Zeng et al., 2022]. Recent work by Müller and Zeinhofer [2023], however, has substantially altered this state of
affairs, proposing an algorithm similar to natural gradient methods in case of linear operator (cf. Appendix E), that
achieves accuracies several orders of magnitude above previous methods.
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Contributions: Müller and Zeinhofer [2024] argue for the need to take function-space geometry into account in order
to further understand and perfect scientific machine-learning methods. With this paper, we intend to support and extend
their approach by making several contributions:

• (i) We highlight a principled mathematical framework that restates natural gradient in an equivalent, yet simpler
way, leading us to propose ANaGRAM, a general-purpose natural gradient algorithm of reduced complexity
OpminpP 2S, S2P qq compared to OpP 3q, where P “ #parameters and S “ #batch samples.

• (ii) We reinterpret the PINNs framework from a functional analysis perspective in order to extend ANaGRAM
to the PINN’s context in a straightforward manner.

• (iii) We establish a direct correspondence between ANaGRAM for PINNs and the Green’s function of the
operator on the tangent space.

The rest of this article is organized as follows: in Section 2, after introducing neural networks and parametric models in
Section 2.1 from a functional analysis perspective, we review two concepts crucial to our work: PINNs framework in
Section 2.2, and natural gradient in Section 2.3. In Section 3, we introduce the notions of empirical tangent space and
an expression for the corresponding notion of empirical natural gradient leading to ANaGRAM 1. In Section 4, after
reinterpreting PINNs as a regression problem from the right functional perspective in Section 4.1, yielding ANaGRAM
algorithm 2 for PINNs, we state in Section 4.2 that natural gradient matches the Green’s function of the operator on the
tangent space and analyse the consequence of this on the interpretation of PINNs training process under ANaGRAM.
Finally, in Section 5, we show empirical evidences of the performance of ANaGRAM on a selected benchmark of
PDEs.

2 Position of the problem

2.1 Neural Networks and parametric model

Our starting point is the following functional definition of parametric models, of which neural networks are a non-linear
special case:
Definition 1 (Parametric model). Given a domain Ω of Rn, K P tR,Cu and a Hilbert space H compound of functions
Ω Ñ Km, a parametric model is a differentiable functional:

u :

"

RP Ñ H
θ ÞÑ

`

x P Ω ÞÑ upx;θq
˘ . (1)

To prevent confusion, we will write u|θpxq instead of u
`

θ
˘

pxq, for all x P Ω

Since a parametric model is differentiable by definition, we can define its differential:
Definition 2 (Differential of a parametric model). Let u : RP Ñ H be a parametric model and θ P RP . Then the
differential of the parametric model u in the parameter θ is:

du|θ :

#

RP Ñ H
h ÞÑ

řP
p“1 hp

Bu
Bθp

, (2)

To simplify notations, we will write for all 1 ď p ď P and for all θ P RP , Bpu|θ, instead of Bu
Bθp

.

Given a parametric model u, we can define the following two objects of interest:

The image set of u : this is the set of functions reached by u, i.e. :

M :“ Imu :“
␣

u|θ : θ P RP
(

(3)

Although not strictly rigorous1, M is often considered in deep-learning as a differential submanifold of H, so
we will keep this analogy in mind for pedagogical purposes.

The tangent space of u at θ : this is the image set of the differential of u at θ, i.e. the linear subspace of H compound
of functions reached by du|θ, i.e. :

TθM :“ Im du|θ “ Span
`

Bpu|θ : 1 ď p ď P
˘

(4)
Once again, this definition is made with reference to differential geometry.

We give several examples of Parametric models in Appendix B. We now introduce PINNs.
1In particular, because u may not be injective.
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2.2 Physics Informed Neural Networks (PINNs)

As in Definition 1, let us consider a domain Ω of Rn endowed with a probability measure µ, K P tR,Cu, BΩ its boundary
endowed with a probability measure σ, and H a Hilbert space compound of functions Ω Ñ Km. Then let us consider
two functional operators:

D :

"

H Ñ L2pΩ Ñ R, µq

u ÞÑ Drus
, B :

"

H Ñ L2pBΩ Ñ R, σq

u ÞÑ Brus
, (5)

that we will assume to be differentiable2. We can then consider the PDE:
"

Dpuq “ f P L2pΩ Ñ R, µq inΩ

Bpuq “ g P L2pBΩ Ñ R, σq on BΩ
. (6)

The PINNs framework, as introduced by Raissi et al. [2019a] consists then in approximating a solution to the PDE by
making the ansatz u “ u|θ , with u|θ a neural network, sampling points pxD

i q1ďiďSD
in Ω according to µ, pxB

i q1ďiďSB

in BΩ according to σ and then to optimize the loss:

ℓpθq :“
1

2SD

SD
ÿ

i“1

`

Dru|θspxD
i q ´ fpxD

i q
˘2

`
1

2SB

SB
ÿ

i“1

`

Bru|θspxB
i q ´ gpxB

i q
˘2

(7)

by classical gradient descent techniques, used in the context of deep learning, such as Adam [Kingma and Ba, 2014], or
L-BFGS [Liu and Nocedal, 1989]. One of the cornerstones of Raissi et al. [2019a] is also to use automatic differentiation
[Baydin et al., 2018] to calculate the operators D and B, thus obtaining quasi-exact calculations, whereas most classic
techniques require either approximating operators as for Finite Differences, or carrying out the calculations manually as
for Finite Elements.

Although appealing due to its simplicity and relative ease of implementation, this approach suffers from several well-
documented empirical pathologies [Krishnapriyan et al., 2021, Wang et al., 2021, Grossmann et al., 2024], which can be
understood as an ill conditioned problem [De Ryck et al., 2024, Liu et al., 2024] and for which several ad hoc procedures
has been proposed [Karnakov et al., 2022, Zeng et al., 2022, McClenny and Braga-Neto, 2022]. Following Müller and
Zeinhofer [2024], we argue in this work that the key point is rather to theoretically understand the geometry of the
problem and adapt PINNs training accordingly.

2.3 Natural Gradient

Natural gradient has been introduced, in the context of Information Geometry by Amari and Douglas [1998]. Given a
loss: ℓ : θ Ñ R`, the gradient descent:

θt`1 Ð θt ´ η∇ℓ,
is replaced by the update:

θt`1 Ð θt ´ η F :

θt
∇ℓ, (8)

with Fθt being the Gram-Matrix associated to a Fisher-Rao information metric [Amari, 2016] or equivalently, the
Hessian of some Kullback-Leibler divergence [Kullback and Leibler, 1951], and : the Moore-Penrose pseudo-inverse.
This notion has been later further extended to the more abstract setting of Riemannian metrics in the context of
neural-networks by Ollivier [2015]. In this case, given a Riemannian-(pseudo) metric Gθ , the gradient-descent update is
replaced by:

θt`1 Ð θt ´ ηG:

θt
∇ℓ, (9)

where Gθtp,q :“ GθtpBpu|θt
, Bqu|θt

q is the Gram matrix of partial derivatives relative to Gθt . Despite its mathematically
principled advantage, natural gradient suffers from its computational cost, which makes it prohibitive, if not untractable
for real world applications. Indeed:

• Computation of the Gram matrix Gθt
is quadratic in the number of parameters.

• Inversion of Gθt
is cubic in the number of parameters.

Different approaches have been proposed to circumvent this limitations. The most prominent one is K-FAC introduced
by Heskes [2000] and further extended by Martens and Grosse [2015], Grosse and Martens [2016], which approximates
the Gram matrix by block-diagonal matrices. This approximation can be understood as making the ansatz that the partial
derivatives of weights belonging to different layers are orthogonal. A refinement of this method has been proposed by
George et al. [2018], in which the eigen-structure of the block-diagonal matrices are carefully taken into account in
order to provide a better approximation of the diagonal rescaling induced by the inversion of the Gram matrix. In a

2It can be shown that, if D and B are defined and differentiable on C8
pΩ Ñ Rm

q then such a H always exists; cf. chapter 12 of
Berezansky et al. [1996].
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completely different vein, Ollivier [2017] has proposed a statistical approach that has been proved to converge to the
natural gradient update in the 0 learning rate limit.

To conclude this section, let us give a more geometric interpretation of natural gradient. To this end, let us consider the
classical quadratic regression problem :

ℓpθq :“
1

2S

S
ÿ

i“1

`

u|θpxiq ´ fpxiq
˘2

, (10)

with u|θ a parametric model, for instance a neural-network, pxiq sampled from some probability measure µ on some
domain Ω of RN . In the limit S Ñ 8 (population limit), this loss can be reinterpreted as the evaluation at u|θ of the
functional loss:

L : v P L2pΩ, µq ÞÑ
1

2
}v ´ f}

2
L2pΩ,µq . (11)

Taking the Fréchet derivative, one gets: for all v, h P L2pΩ, µq

dL|vphq “ xv ´ f , hyL2pΩ,µq ,

i.e. the functional gradient of L is ∇L|v :“ v ´ f . As noted for instance in Verbockhaven et al. [2024], Natural
gradient has then to be interpreted from the functional point of view as the projection of ∇L|u|θ

onto the tangent space
TθM from Equation (4) with respect to the L2pΩ, µq metric. However, this functional update must be converted into a
parameter space update. Since the parameter space RP is somehow identified with TθM via the differential application
du|θ , it would be sufficient to take the inverse of this application to obtain the parametric update. In general du|θ is not
invertible but at least it admits a pseudo-inverse du:

|θ. Moreover, since TθM “ Im du|θ by definition, du:

|θ is defined
on all TθM. Thus, we have that the natural gradient in the population limits corresponds to the update:

θt`1 Ð θt ´ η du:

|θt

´

ΠK
TθtM

´

∇L|u|θt

¯¯

. (12)

Note that the use of the pseudo-inverse implies that the update in the parameter space happens in the subspace
pKer du|θqK Ă RP .

3 Empirical Natural Gradient and ANaGRAM

In practice, one cannot reach the population limit and thus Equation (12) is only an asymptotic update. Nevertheless,
we can derive a more accurate update, when we can rely only on a finite set of points pxiq

S
i“1 that is usually called a

batch. Following Jacot et al. [2018], we know that quadratic classical gradient descent update with respect to a batch in
the vanishing learning rate limit η Ñ 0, rewrites in the functional space as:

du|θt

dt
pxq “ ´

S
ÿ

i“1

NTKθt
px, xiqpu|θt

pxiq ´ yiq, NTKθpx, yq :“
P
ÿ

p“1

`

Bpu|θpxq
˘

pBpu|θpyqqt. (13)

Furthermore, Rudner et al. [2019], Bai et al. [2022] show that under natural gradient descent, the Neural Tangent
Kernel NTKθt should be replaced in Equation (13) by the Natural NTK:

NNTKθpx, yq :“
ÿ

1ďp,qďP

`

Bpu|θpxq
˘

G:

θpq
pBpu|θpyqqt, Gθp,q :“

@

Bpu|θ , Bqu|θ

D

H . (14)

As a consequence, one may see that the update under natural gradient descent with respect to a batch pxiq
S
i“1 happens

in a subspace of the tangent space, namely the empirical Tangent Space:

pTNNTK
θ,pxiq M :“ SpanpNNTKθp¨, xiq : pxiq1ďiďSq Ă TθM. (15)

Subsequently, Equation (12) can then be adapted to define the empirical Natural Gradient update:

θt`1 Ð θt ´ η du:

|θt

ˆ

ΠK
pTNNTK
θ,pxiq

M

´

∇L|u|θt

¯

˙

. (16)

Note that this update can be understood from the functional perspective as the standard Nyström method [Sun et al.,
2015], bridging the gap between our work and the many methods developed in this field. Nevertheless, the NNTKθ

kernel cannot be computed explicitly in our case, since it requires a priori inverting the Gram matrix, which adds further
challenge. With this in mind, we present a first result, encapsulated in the following theorem, which is one of our main
contributions:

4
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Theorem 1 (ANaGRAM). Let us be for all 1 ď i ď S and for all 1 ď p ď P :

pϕθi,p :“ Bpu|θpxiq ; y∇L|u|θ i
:“ ∇L|u|θ

pxiq “ u|θpxiq ´ fpxiq.

Then: du:

|θ

ˆ

ΠK
pTNNTK
θ,pxiq

M∇L|u|θ

˙

“

´

pϕ:

θ ` Emetric
θ

¯´

y∇L|u|θ
` EK

θ

¯

, (17)

where Emetric
θ and EK

θ are correction terms specified in Equations (49) and (50) in Appendix C.3, respectively accounting
for the metric’s impact on empirical tangent space defintion, and the substraction of the evaluation of the orthogonal
part3 of the functionnal gradient.

A proof of this theorem, as well as a more comprehensive introduction to empirical natural gradient, encompassing a
détour through RKHS theory, can be found in Appendix C.
Remark 1. In some important cases the correction terms Emetric

θ and EK
θ vanishes. This happens for instance for EK

θ
when solving Drus “ 0 with D linear and u an MLP (see Appendix B.2). We refer to Proposition 2 and Remark 7 at
the end of Appendix C.3. Emetric

θ cancels out in the following case:

Proposition 1. There exist P points px̂iq such that pTNNTK
θ,pxiq

M “ TθM. Then notably Emetric
θ “ 0.

As a first approximation, we can neglect those two terms, yielding the following vanilla algorithm:

Algorithm 1: vanilla ANaGRAM
Input:• u : RP Ñ L2pΩ, µq // neural network architecture

• θ0 P RP // initialization of the neural network

• f P L2pΩ, µq // target function of the quadratic regression

• pxiq P ΩS // a batch in Ω

• ϵ ą 0 // cutoff level to compute the pseudo inverse
1 repeat
2 pϕθt Ð

`

Bpu|θt
pxiq

˘

1ďiďS, 1ďpďP
// Computed via auto-differentiation

3 pUθt ,
p∆θt ,

pV t
θt

Ð SV Dppϕθtq

4 p∆θt Ð

´

p∆θtp if p∆θtp ą ϵ else 0
¯

1ďpďP

5 y∇L Ð
`

u|θt
pxiq ´ fpxiq

˘

1ďiďS

6 dθt
Ð pVθt

p∆:

θt

pU t
θt

y∇L

7 ηt Ð argmin
ηPR`

ř

1ďiďS

´

fpxiq ´ u|θt´ηdθt
pxiq

¯2

// Using e.g. line search

8 θt`1 Ð θt ´ ηt dθt

9 until stop criterion met

Note that algorithm 1 is equivalent to Gauss-Newton algorithm applied to the empirical loss in Equation (10) also
considered recently in Jnini et al. [2024] with a different setting. Nevertheless, our work aims at a more general
approach, giving rise to different algorithms depending on the approximations of Emetric

θ and EK
θ . One of the pleasant

byproducts of the ANaGRAM framework is also that it leads to a straightforward criterion to choose points in the batch,
namely:

px˚
i q :“ argmin

pxiqPΩS

}ΠK
SpanpNNTKθpxi,¨q:1ďiďSq p∇Lq ´ ∇L}H, (18)

which is amenable to various approximations, subject to further investigations. Taking the best advantage of this
criterion should eventually allow us to use natural gradient in a stochastic setting while staying close to the convergence
rate of the full batch natural gradient as characterized in Xu et al. [2024]. We will now show how ANaGRAM can be
applied to the PINNs framework.

4 ANaGRAM for PINNs

Generalizing ANaGRAM to PINNs only requires to change the problem perspective.

3orthogonal to the whole tangent space TθM.
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4.1 PINNs as a least-square regression problem

The only difference between the losses of Equation (7) and Equation (10) is the use of the differential operator D
and the boundary operator B in Equation (7). More precisely, PINNs and classical quadratic regression problems are
essentially similar, except that in the case of PINNs we use the compound model pD,Bq ˝u instead of u directly, where,
using the definitions of Equation (5):

pD,Bq ˝ u :

"

RP Ñ H Ñ L2 pΩ, BΩq :“ L2pΩ Ñ R, µq ˆ L2pBΩ Ñ R, σq

θ ÞÑ u|θ ÞÑ pDru|θs, Bru|θsq
. (19)

The derivation of vanilla ANaGRAM in PINNs context is then straightforward:

Algorithm 2: vanilla ANaGRAM for PINNs
Input:• u : RP Ñ H // neural network architecture

• θ0 P RP // initialization of the neural network

• D : H Ñ L2pΩ Ñ R, µq // differential operator

• B : H Ñ L2pBΩ Ñ R, σq // boundary operator

• f P L2pΩ Ñ R, µq // source term

• g P L2pBΩ Ñ R, σq // boundary value

• pxD
i q P ΩSD // a batch in Ω

• pxB
i q P ΩSB // a batch in BΩ

• ϵ ą 0 // cutoff level to compute the pseudo inverse
1 repeat

2 pϕθt
Ð

´

`

BpDru|θt
spxD

i q
˘SD

i“1
,

`

BpBru|θt
spxB

i q
˘SB

i“1

¯P

p“1
// via autodiff

3 pVθt
, p∆θt

, pU t
θt

Ð SV Dppϕθt
q

4 p∆θt
Ð

´

p∆θtr if p∆θtr ą ϵ else 0
¯

1ďrďP

5 y∇L Ð

˜

`

Dru|θt
spxD

i q ´ fpxD
i q

˘

1ďiďSD
`

Bru|θt
spxB

i q ´ gpxB
i q

˘

1ďiďSB

¸

6 dθt
Ð pVθt

p∆:

θt

pU t
θt

y∇L

7 ηt Ð argmin
ηPR`

1
2SD

ř

1ďiďSD

´

fpxD
i q ´ Dru|θt´ηdθt

spxD
i q

¯2

` 1
2SB

ř

1ďiďSB

´

gpxB
i q ´ Bru|θt´ηdθt

spxB
i q

¯2

// Using e.g. line search
8 θt`1 Ð θt ´ ηt dθt

9 until stop criterion met

More precisely, this comes from the adaptation of definitions of Section 2.3 as follows:

The image set of the model Γ :“ Im
`

pD,Bq ˝ u
˘

“
␣`

Dru|θs, Bru|θs
˘

: θ P RP
(

Ă L2 pΩ, BΩq

The model differential d
`

pD,Bq ˝ u
˘

|θ
:

#

RP Ñ L2 pΩ, BΩq

h ÞÑ
řP

p“1 hpBp
`

pD,Bq ˝ u
˘

|θ

.

The tangent space TθΓ :“ Im d
`

pD,Bq ˝ u
˘

|θ
“

!

řP
p“1 hp

`

BpDru|θs, BpBru|θs
˘

: h P RP
)

The functional loss L : v P L2pΩ, BΩq ÞÑ 1
2 }v ´ pf, gq}

2
L2pΩ,BΩq

The functional gradient ∇Lθ :“ ∇L|ppD,Bq˝uq|θ
“

´

`

pD,Bq ˝ u
˘

|θ
´ pf, gq

¯

P L2 pΩ, BΩq.

PINN’s natural gradient θt`1 Ð θt ´ η d
`

pD,Bq ˝ u
˘:

|θt

´

ΠK
TθtΓ

p∇Lθt
q

¯

Appendix C.4 details the slightly more technical definitions of NNTK and empirical Tangent Space. We now present
the link between PINN’s natural gradient and the operator’s Green’s function.

6
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4.2 PINNs Natural Gradient is a Green’s Function

Knowing the Green’s function of a linear operator is one of the most optimal ways of solving the associated PDE,
since it then suffices to estimate an integral to approximate a solution [Duffy, 2015]. However, this requires prior
knowledge of the Green’s function, which is not always possible. Here, we show that using the natural gradient for
PINNs implicitly uses the operator’s Green’s function. In Appendix D, we briefly recall the main definitions required to
state and prove the following theorem:

Theorem 2. Let D : H Ñ L2pΩ Ñ R, µq be a linear differential operator and u : RP Ñ H a parametric model. Then
for all θ P RP , the generalized Green’s function of D on TθM “ Im du|θ is given by: for all x, y P Ω

gTθMpx, yq :“
ÿ

1ďp,qďP

Bpu|θpxqG:
p,qBqDru|θspyq, (20)

with: for all 1 ď p, q ď P
Gpq :“

@

BpDru|θs , BqDru|θs
D

L2pΩÑR,µq
. (21)

In particular, the natural gradient of PINNs defined at the end of Section 4.1 can be rewritten:

θt`1 Ð θt ´ η du:

|θt

ˆ

x P Ω ÞÑ

ż

Ω

gTθtMpx, yq∇L|θt
pyqµpdyq

˙

, (22)

A few comments should be made about Equation (22). First, if η “ 1, then the natural gradient can be understood as
the least-square’s solution of Drus “ f at order 1, i.e. in the affine space u|θt

` Tθt
M. However, it does not hold a

priori that:
• Dru|θt

` Tθt
Ms correctly approximates f P L2pΩ Ñ R, µq.

• u|θt
` Tθt

M correctly approximates the image space M “
␣

u|θ : θ P RP
(

.
Multiplying by a learning rate η ! 1 is then essential. In this way, natural gradient can be understood as moving in the
direction of the solution of Drus “ f in the affine space u|θt

` Tθt
M, and thus getting closer to the solution, while

expecting that the change induced by this update will improve the approximation space u|θt`1
` Tθt`1

M4. On the
other hand, when we approach the end of the optimization, i.e. when the space Dru|θt

` TθtMs approximates f “well
enough”, while du|θt

approximates “well enough” M, then it is in our best interest to solve the equation completely,
i.e. to take learning rates η close to 1. This is why the use of line search in ANaGRAM (cf. line 6 in Algorithm 2) is
essential. We should then conclude that the quality of the solution found by the parametric model u depends only on:

• How well Γ “ tDru|θs : θ P RP u can approximate the source f P L2pΩ Ñ R, µq.

• The curvature of Γ. More precisely, if its non-linear structure induces convergence to a Dru|θs such that
f ´ Dru|θs is non-negligible, while being orthogonal to the tangent space DrTθt

Ms.
If we assume now that D is also nonlinear, then all the above analysis also holds for the linear operators dD|u|θt

, the
difference being that the operator changes at each step. This means that in the case of non-linear operators, we have to
deal with both the non-linearity of D and u, but that does not change the overall dynamic.

Finally, assuming that both D and u are linear (this is for instance the case when we assume u to be a linear combination
of basis functions, like in Finite Elements, or Fourier Series). Then “learning” u|θ with natural gradient (and learning
rate 1) corresponds to solve the equation in the least-squares sense with a generalized Green’s function.

5 Experiments

We test ANaGRAM on four problems: 2 D Laplace equation ; 1+1 D heat equation ; 5 D Laplace equation ; and 1+1 D
Allen-Cahn equation. The first three problems comes from Müller and Zeinhofer [2023], while the last one is proposed
in Lu et al. [2021].

For training, we use multilayer perceptrons with varying layer sizes and tanh activations, along with fixed batches of
points: a batch of size SD to discretize Ω and a batch of size SB to discretize BΩ. The layer size specifications, cutoff
factor ϵ, values of SD and SB , and discretization procedures are specified separately for each problem. Currently, the
cutoff factor is chosen manually and warrants further investigation.

4To our best knowledge, rigorous proof of this phenomenon has yet to be provided. We can therefore only rely on empirical
evidence, which we will detail in Section 5.
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For these various problems, we display as a function of gradient descent steps, the medians over 10 different initializa-
tions, of L2 error EL2 and test loss Etest, with shaded area indicating the range between the first and third quartiles. EL2

is defined as: given test points pxiq
S
i“1, EL2pθq :“

b

1
SL2

řSL2

i“1

ˇ

ˇu|θpxiq ´ u˚pxiq
ˇ

ˇ

2
, where u˚ is a known solution

to the PDE and S is taken 10 times bigger than the Ω batch size SD, while Etest is the empirical PINNs loss ℓ of
Equation (7), computed with a distinct set of points, of size 5 times bigger than the Ω batch size SD. We compare
ANaGRAM to Energy Natural Gradient descent (E-NGD) [Müller and Zeinhofer, 2023], vanilla gradient descent (GD)
with line-search, Adam [Kingma and Ba, 2014] with exponentially decaying learning-rate after 1015 steps as in Müller
and Zeinhofer [2023] as well as L-BFGS [Liu and Nocedal, 1989]. The corresponding CPU times are also provided
in tables for reference. The code is made avaible at https://anonymous.4open.science/r/ANaGRAM-3815/ and
further implementation and computation details are provided in Appendix A.1.

2 D Laplace equation : We consider the two dimensional Laplace equation and its solution:
"

∆u “ ´2π2 sinpπx1q sinpπx2q in Ω “ r0, 1s2

u “ 0 on BΩ
; u˚px1, x2q “ sinpπx1q sinpπx2q. (23)

Figure 1: Median absolute L2 errors and Test losses for the 2 D Laplace equation.

CPU time (s) Per step Full

ANaGRAM 7.16e-02 1.25e+02
Adam 1.23e-02 2.44e+02
E-NGD 1.94e-01 1.88e+02
GD 2.07e-02 4.13e+02
L-BFGS 1.95e-01 1.95e+02

We choose SD “ 900 equi-distantly spaced points in the interior
of Ω and SB “ 120 equally spaced points on the boundary BΩ (30
on each side). ANaGRAM, E-NGD and L-BFGS are applied for
2000 iterations each, while GD and Adam are trained for 20ˆ103

iterations. The network consists of a single hidden layer with
a width of 32, resulting in a total of P “ 129 parameters. The
cutoff factor is set to ϵ “ 1 ˆ 10´6.

1+1 D Heat equation : We consider the p1 ` 1q dimensional
Heat equation and its solution:

$

&

%

Btu ´ 1
4Bxxu “ 0 in Ω “ r0, 1s2

u “ 0 on BΩborder “ r0, 1s ˆ t0, 1u

up0, xq “ sinpπxq on BΩ0 “ t0u ˆ r0, 1s

; u˚pt, xq “ exp

ˆ

´
π2t

4

˙

sinpπxq. (24)

Figure 2: Median absolute L2 errors and Test losses for the Heat equation.
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CPU time (s) Per step Full

ANaGRAM 1.29e-01 3.78e+02
Adam 2.12e-02 4.15e+02
E-NGD 1.78e-01 4.04e+02
GD 3.87e-02 7.68e+02
L-BFGS 1.30e-01 3.91e+02

We choose SD “ 900 equi-distantly spaced points in the interior
of Ω and SB “ 90 equally spaced points on the boundary BΩ (30
on BΩ0 and 30 on each side of BΩborder). ANaGRAM, E-NGD
and L-BFGS are applied for 2000 iterations each, while GD and
Adam are trained for 20 ˆ 103 iterations. The network consists
of a single hidden layer with a width of 64, resulting in a total of
P “ 257 parameters. The cutoff factor is set to ϵ “ 1 ˆ 10´5.

5 D Laplace equation : We consider the five dimensional
Laplace equation and its solution:

#

∆u “ π2
ř5

k“1 sinpπxkq in Ω “ r0, 1s5

u “
ř5

k“1 sinpπxkq on BΩ
; u˚pxq “

5
ÿ

k“1

sinpπxkq, (25)

Figure 3: Median absolute L2 errors and Test losses for the 5 D Laplace equation.

CPU time (s) Per step Full

ANaGRAM 7.18e-01 4.88e+02
Adam 6.65e-02 1.29e+03
E-NGD 6.52e+00 4.96e+03
GD 2.69e-01 5.38e+03
L-BFGS 2.96e-01 2.96e+02

We choose SD “ 4000 uniformly drawn points in the interior of
Ω and SB “ 500 uniformly drawn points on the boundary BΩ.
ANaGRAM, E-NGD and L-BFGS are applied for 1000 iterations
each, while GD and Adam are trained for 20 ˆ 103 iterations.
The network consists of a single hidden layer with a width of 64,
resulting in a total of P “ 449 parameters. The cutoff factor is set
to ϵ “ 5.10´7 ˆ∆θmax, where ∆θmax is the maximal eigenvalue
of pϕθ (cf. line 1 of algorithm 2).

1+1 D Allen-Cahn equation We consider the p1 ` 1q dimen-
sional Allen-Cahn equation:

$

&

%

Btu ´ 10´3 Bxxu ´ 5pu ´ u3q “ 0 in Ω “ r0, 1s ˆ r´1, 1s

u “ ´1 on BΩborder “ r0, 1s ˆ t´1, 1u

up0, xq “ x2 cospπxq on BΩ0 “ t0u ˆ r´1, 1s

(26)

Figure 4: Median absolute L2 errors and Test losses for the Allen-Cahn equation.
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CPU time (s) Per step Full

ANaGRAM 6.01e-01 2.16e+03
Adam 2.82e-02 1.18e+03
E-NGD 1.30e+00 6.52e+03
GD 8.59e-02 4.28e+03
L-BFGS 4.07e-01 1.60e+03

We choose SD “ 900 equi-distantly spaced points in the interior
of Ω and SB “ 90 equally spaced points on the boundary BΩ
(30 on BΩ0 and 30 on each side of BΩborder). ANaGRAM and
L-BFGS are applied for 4000 iterations each, E-NGD for 1000
iterations, while classical gradient descent (GD) and Adam are
trained for 50 ˆ 103 iterations. The network consists of three
hidden layers with a width of 20, resulting in a total of P “ 921
parameters. The cutoff factor is set to ϵ “ 5.10´7ˆ∆θmax, where
∆θmax is the maximal eigenvalue of pϕθ (cf. line 1 of algorithm 2).

Results summary : We demonstrated that our approach can achieve comparable accuracy to Müller and Zeinhofer
[2023] on linear problems, consistent with the equivalence established in Appendix E, while maintaining a per-step
computational cost at most, reasonably higher than that of Adam. Excluding Adam and GD, which consistently get
stuck at high error levels, the bottom line is that ANaGRAM consistently outperforms both E-NGD and L-BFGS—often
by a significant margin—on at least one or even both criteria: precision and computation time. The cases where the
computation times of E-NGD and ANaGRAM are similar occur when small-sized architectures are sufficient for the
problem.

6 Conclusion and Perspectives

We introduce empirical Natural Gradient, a new kind of natural gradient that scales linearly with respect to the number
of parameters and extend it to PINNs framework through a mathematically principled reformulation. We show that
this update implicitly corresponds to the use of the Green’s function of the operator. We give empirical evidences that
this optimization in its simplest form (vanilla ANaGRAM) already achieves highly accurate solutions, comparable to
Müller and Zeinhofer [2023] for linear PDEs at a fraction of the computational cost, and with significant improvements
for non-linear equations, for which equivalence of the two algorithms does not hold anymore.

Still, the present formulation of the algorithm has two limitations: one concerns the chosing procedure of the batch
points, which is so far limited to simple heuristics; the second is the hyperparameter tunning, more specifically the
cutoff factor, which is so far chosen by hand, while it may probably be automatically chosen based on the spectrum of
the pϕθ.

Important perspectives include exploring approximations schemes for terms Emetric
θ (e.g. using Nyström’s methods,

cf. Sun et al. [2015]) and EK
θ (e.g. using Cohen and Migliorati [2017]), introduced in Theorem 1, the design of an

optimal collocation points procedure, coupled with SVD cut-off factor adaptation strategy for ANaGRAM, as well
as incorporation of common optimization techniques, such as momentum. From a theoretical point of view, it seems
particularly important to us to include data assimilation in this theoretical setting, and understand its regularizing effect,
while establishing connections to classical solvers such as FEMs.
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A Complementary material for the Experiments

A.1 Description of the experimental setting

Description of the Method We base our code on Müller and Zeinhofer [2023]. For our 4 numerical experiments, we
apply ANaGRAM gradient steps as defined in the Algorithm 2. As in Müller and Zeinhofer [2023], we choose the
interval r0, 1s for the line search determining the learning rate, 1 corresponding to solving the (linearized PDE) with the
Green’s function (cf. Section 4.2). The neural network weights are initialized using the Glorot normal initialization
[Glorot and Bengio, 2010].

Computation Details As in Müller and Zeinhofer [2023], our implementation relies on JAX Bradbury et al. [2018],
where all derivatives are computed using JAX automatic differentiation, and the singular value decomposition compu-
tation is carried out by the scipy [Virtanen et al., 2020] implementation of JAX. Stochastic gradient descent, Adam,
as well as L-BFGS relies on the implementation of DeepMind et al. [2020]. All experiments were run on a 11th Gen
Intel® Core™ i7-1185G7 @ 3.00GHz Laptop CPU in double precision (float64).

A.2 Figures relative to computation time

A.2.1 2 D Laplace

Figure 5: Median absolute L2 errors and Test losses for the 2 D Laplace equation across 10 different initializations
for the five optimizers, relative to computation time. The shaded area indicates the range between the first and third
quartiles.
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A.2.2 Heat

Figure 6: Median absolute L2 errors and Test losses for the Heat equation across 10 different initializations for the five
optimizers, relative to computation time. The shaded area indicates the range between the first and third quartiles.

A.2.3 5 D Laplace

Figure 7: Median absolute L2 errors and Test losses for the 5 D Laplace equation across 10 different initializations
for the five optimizers, relative to computation time (except for ENGD for which we only took 3 initializations). The
shaded area indicates the range between the first and third quartiles.
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A.2.4 Allen-Cahn

Figure 8: Median absolute L2 errors and Test losses for the Allen-Cahn equation across 10 different initializations
for the five optimizers, relative to computation time (except for ENGD for which we only took 3 initializations). The
shaded area indicates the range between the first and third quartiles.

A.3 Statistical tables of results

A.3.1 2 D Laplace

Table 1: Median, Maximum and Minimum L2-errors of the optimizers for the 2 D Laplace equation.

Median Minimum Maximum

ANaGRAM 2.42e-09 1.70e-10 1.19e-08
Adam 2.05e-03 1.67e-03 2.86e-03
E-NGD 1.31e-06 8.43e-07 3.87e-05
GD 4.25e-02 1.01e-02 1.25e-01
L-BFGS 1.15e-02 3.08e-03 1.55e-02

Table 2: Median, Maximum and Minimum of the test loss of the optimizers for the 2 D Laplace equation.

Median Minimum Maximum

ANaGRAM 3.85e-13 8.49e-15 1.43e-12
Adam 3.51e-04 2.29e-04 4.31e-04
E-NGD 2.91e-09 1.01e-10 3.57e-08
GD 3.42e-02 4.32e-03 1.76e-01
L-BFGS 2.37e-03 8.91e-04 9.09e-03

Table 3: Mean and Standard deviation of L2-errors of the optimizers for the 2 D Laplace equation.

mean std

ANaGRAM 3.49e-09 3.58e-09
Adam 2.19e-03 4.18e-04
E-NGD 5.37e-06 1.18e-05
GD 5.41e-02 1.57e-02
L-BFGS 1.13e-02 2.94e-03
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Table 4: Mean and Standard deviation of of the test loss of the optimizers for the 2 D Laplace equation.

mean std

ANaGRAM 4.27e-13 4.66e-13
Adam 3.37e-04 7.66e-05
E-NGD 7.00e-09 1.11e-08
GD 5.39e-02 5.39e-02
L-BFGS 3.04e-03 2.23e-03

A.3.2 Heat

Table 5: Median, Maximum and Minimum L2-errors of the optimizers for the Heat equation.

Median Minimum Maximum

ANaGRAM 6.48e-07 3.67e-07 6.15e-06
Adam 1.07e-03 5.96e-04 3.94e-03
E-NGD 2.50e-06 1.02e-06 6.38e-06
GD 2.02e-02 1.04e-02 2.39e-02
L-BFGS 2.97e-03 5.14e-04 6.73e-03

Table 6: Median, Maximum and Minimum test loss of the optimizers for the Heat equation.

Median Minimum Maximum

ANaGRAM 6.82e-11 1.90e-11 2.50e-10
Adam 2.37e-04 1.11e-04 1.41e-03
E-NGD 2.18e-09 5.62e-10 1.35e-08
GD 1.01e-02 4.70e-03 1.93e-02
L-BFGS 6.84e-04 5.85e-05 3.34e-03

Table 7: Mean and Standard deviation of L2-errors of the optimizers for the Heat equation.

mean std

ANaGRAM 1.28e-06 1.75e-06
Adam 1.55e-03 5.19e-04
E-NGD 2.89e-06 1.77e-06
GD 1.92e-02 9.60e-04
L-BFGS 3.09e-03 1.74e-03

Table 8: Mean and Standard deviation of test loss of the optimizers for the Heat equation.

mean std

ANaGRAM 8.56e-11 7.05e-11
Adam 3.63e-04 3.93e-04
E-NGD 3.53e-09 3.83e-09
GD 1.20e-02 1.05e-03
L-BFGS 8.54e-04 9.16e-04
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A.3.3 5 D Laplace

Table 9: Median, Maximum and Minimum L2-errors of the optimizers for the 5 D Laplace equation.

Median Minimum Maximum

ANaGRAM 3.76e-05 6.99e-06 8.23e-05
Adam 4.86e-02 3.41e-02 6.08e-02
E-NGD 1.40e-05 1.18e-05 1.64e-05
GD 8.44e-02 1.50e-02 1.28e-01
L-BFGS 9.08e-02 1.55e-02 1.71e-01

Table 10: Median, Maximum and Minimum test loss of the optimizers for the 5 D Laplace equation.

Median Minimum Maximum

ANaGRAM 3.68e-08 1.03e-08 2.20e-07
Adam 1.53e-02 1.02e-02 2.54e-02
E-NGD 1.51e-08 1.50e-08 2.51e-08
GD 6.00e-02 6.37e-03 1.11e-01
L-BFGS 7.65e-02 5.34e-03 2.25e-01

Table 11: Mean and Standard deviation of L2-errors of the optimizers for the 5 D Laplace equation.

mean std

ANaGRAM 4.00e-05 2.93e-05
Adam 4.83e-02 8.06e-03
E-NGD 1.41e-05 2.29e-06
GD 7.64e-02 1.75e-02
L-BFGS 1.00e-01 2.19e-02

Table 12: Mean and Standard deviation of test loss of the optimizers for the 5 D Laplace equation.

mean std

ANaGRAM 6.37e-08 7.01e-08
Adam 1.63e-02 4.19e-03
E-NGD 1.84e-08 5.55e-09
GD 5.64e-02 3.60e-02
L-BFGS 8.20e-02 6.80e-02
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A.3.4 Allen-Cahn

Table 13: Median, Maximum and Minimum L2-errors of the optimizers for the Allen-Cahn equation.

Median Minimum Maximum

ANaGRAM 2.51e-03 6.14e-04 2.04e-02
Adam 3.90e-01 3.78e-01 4.80e-01
E-NGD 7.39e-01 7.32e-01 8.10e-01
GD 5.86e-01 5.43e-01 8.37e-01
L-BFGS 5.40e-01 4.33e-01 7.45e-01

Table 14: Median, Maximum and Minimum test loss of the optimizers for the Allen-Cahn equation.

Median Minimum Maximum

ANaGRAM 6.22e-05 1.45e-05 1.38e-03
Adam 7.10e-04 6.29e-04 1.18e-03
E-NGD 2.74e+00 2.58e+00 3.43e+00
GD 2.41e-03 1.70e-03 1.93e-02
L-BFGS 1.48e-03 9.08e-04 5.09e-03

Table 15: Mean and Standard deviation of L2-errors of the optimizers for the Allen-Cahn equation.

mean std

ANaGRAM 4.32e-03 5.93e-03
Adam 4.02e-01 5.19e-04
E-NGD 7.60e-01 4.24e-02
GD 6.06e-01 5.99e-02
L-BFGS 5.49e-01 6.85e-02

Table 16: Mean and Standard deviation of test loss of the optimizers for the Allen-Cahn equation.

mean std

ANaGRAM 2.19e-04 4.16e-04
Adam 7.81e-04 1.01e-04
E-NGD 2.92e+00 4.51e-01
GD 3.95e-03 5.41e-03
L-BFGS 1.77e-03 1.19e-03

A.4 Additional experiment : Burgers equation

We consider the p1 ` 1q dimensional Burger equation:
$

&

%

Btu ` u Bxu ´ νBxxu “ 0 in Ω “ r0, 1s ˆ r´1, 1s

u “ 0 on BΩborder “ r0, 1s ˆ t´1, 1u

up0, xq “ ´ sinpπxq on BΩ0 “ t0u ˆ r´1, 1s

(27)
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Figure 9: Test and train losses for the Burgers equation for various viscosities ν.

(a) ν “ 1 (b) ν “ 10´1

(c) ν “ 10´2 (d) ν “ 10´3

Figure 10: PINN solution profiles for the Burgers equation for various viscosities ν
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We considered the burger with 4 viscosities ν P t1, 10´1, 10´2, 10´3u. Since a shock develops in finite time as ν Ñ 0,
using a regular grid did not yield sufficiently accurate results. Consequently, we manually adjusted the grid. Specifically,
we defined two discretizations Dt, Dx, corresponding to r0, 1s and r´1, 1s, respectively, as follows:

• Dt: A regular grid discretization with 240 points.
• Dx: A non-regular grid discretization constructed as:

– A regular-grid of 60 “ 240
4 points on r´1,´0.25q,

– A grid defined as ´2´Dlog on r´0.25, 0q, where Dlog is a regular grid of 60 “ 240
4 point on r2, 32s,

– The point 0,
– A grid defined as 2´Dlog on p0, 0.25s, where Dlog is a regular grid of 60 “ 240

4 point on r2, 32s,
– A regular grid of 60 “ 240

4 points on p0.25, 1s.

With these definitions, the following grids were constructed:

• GΩ “ Dt ˆ Dx: The grid for the domain Ω “ r0, 1s ˆ r´1, 1s,
• GBΩborder “ Dt ˆ t´1, 1u: The grid for the boundary BΩborder “ r0, 1s ˆ t´1, 1u,
• GBΩ0

“ t0u ˆ Dx: The grid for the boundary BΩ0 “ t0u ˆ r´1, 1s.

We applied ANaGRAM for 1000 iterations, using a neural network with three hidden layers, each containing 32 neurons,
resulting in a total of P “ 2241 parameters. The cutoff factor is set to ϵ “ 5.10´7 ˆ ∆θmax, where ∆θmax represents
the largest eigenvalue of pϕθ (see line 1 of Algorithm 2). In Figure 9, we present the training and test losses for the
different viscosities. The test loss was calculated using a grid constructed similarly to the training grid but with five
times as many points.

For a viscosity of ν “ 10´3, the test loss does not appear to converge, whereas the train loss does. This behavior can be
attributed to the grid computation method, which disproportionately emphasizes points near the shock. This explanation
is supported by the solution profile shown in Figure 10, where, for ν “ 10´3, the shock in the learned solution is
slightly shifted from x “ 0 toward x ą 0.

B Examples of parametric models

B.1 Partial Fourier’s series

Let us fix a dimension d P N. We then define the N -partial Fourier’s Serie in r0, 1sd as:

SN :

$

’

&

’

%

Rrr´N,Nss
d

Ñ L2pr0, 1sd Ñ Cq

pαk1,...,kd
q ÞÑ

˜

x P r0, 1sd ÞÑ
N
ř

k1“´N

¨ ¨ ¨
N
ř

kd“´N

αk1,...,kd
e2iπp

řd
l“1 klxlq

¸

. (28)

We see that for all k P rr´N,N ssd and θ P Rrr´N,Nss
d

, BkSN |θ “

´

x P Ω ÞÑ e2iπp
řd

l“1 klxlq
¯

. As a consequence:

for all θ P Rrr´N,Nss
d

dSN |θ “ SN ,

an thus: for all θ P Rrr´N,Nss
d

M “ TθM “ Span
´

x P r0, 1sd ÞÑ e2iπp
řd

l“1 klxlq : k P rr´N,N ssd
¯

(29)

This precisely means that SN is a linear parametric model.

B.2 Multilayer perceptron

Historically, Multilayer perceptrons (MLPs) were the first neural network models to be proposed [Rosenblatt, 1958].
Without going into an unnecessarily formal description, we will define MLPs of depth L P N as a function Rn Ñ Rm

defined by induction:

Initialization (Input Layer) : n0 “ n, and
ap0q :“ x P Rn0
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Inductive Step (Hidden Layers) : for all 1 ď l ď L ´ 1, nl P N, σplq : R Ñ R, and

zplq :“ Wplq

PRnl,nl´1

apl´1q ` bplq

PRnl

; aplq :“ σplq

componentwise

pzplqq,

Final Step (Output Layer) :
f
pWplq,bplqq

L

l“1

pxq :“ WpLq

PRm,nL´1

apL´1q ` bpLq

PRm

, (30)

Equipped with this definition, we define a parametric model u associated to f
pWplq,bplqq

L

l“1

by considering any

differentiable parametrization φ : RP Ñ ΠL
l“1Rwl´1ˆwl ˆ Rwl , and then defining:

u :

"

RP Ñ H
θ ÞÑ fφpθq

, (31)

i.e. using φ to encode the coefficients of the weights Wplq and biases bplq in the coordinates of a vector in RP . Note
that if φ is bijective, then P “

řL
l“1pwl´1 ` 1qwl.

Remark 2. A parametric model u associated to an MLP, as defined in Equation (31), is not linear, if activations
pσplqq1ďlďL are not and D ě 2 (from which the qualifier “deep” is derived, in “deep learning”.). Nevertheless, if φ is
linear, we may note that u is still linear with respect to the parameters associated to weight WpLq and bias bpLq. In
particular, for all θ P RP , u|θ P Im du|θ.

C Comprehensive introduction to Empirical Natural Gradient and ANaGRAM framework

In this section, we propose a more comprehensive introduction to the concepts introduced in Section 3, as well as
proofs for Proposition 1, Theorem 1 and Proposition 2, stated in it. To this end, we need to review the notions of Neural
Tangent Kernel (NTK) in Appendix C.1 and Reproducing Kernel Hilbert Space (RKHS) in Appendix C.2, before
introducing empirical Natural Gradient in Appendix C.3, which is the key theoretical concept behind ANaGRAM.

C.1 Neural Tangent Kernel (NTK)

Neural Tangent Kernel (NTK) has been introduced by Jacot et al. [2018] as a fundamental tool connecting neural
networks to kernel methods, another very popular tool in Machine-learning [Schölkopf et al., 2002]. More precisely, it
shows that for an empirical quadratic loss, defined in Equation (10):

ℓpθq :“
1

2S

S
ÿ

i“1

`

u|θpxiq ´ fpxiq
˘2

,

the gradient descent:
θt`1 :“ θt ´ η∇ℓ,

can be reinterpreted in the functional space, in the limit η Ñ 0, as the the differential equation of equation Equation (13),
namely: for all θ P RP

du|θt

dt
pxq “ ´

S
ÿ

i“1

NTKθtpx, xiqpu|θt
pxiq ´ yiq, NTKθpx, yq :“

P
ÿ

p“1

`

Bpu|θpxq
˘

pBpu|θpyqqt.

By the same observations as for Equation (12), we observe that Equation (13) induces the following differential equation
in the unknown θ : R` Ñ RP :

dθ
dt

“ du:

|θt

˜

´

N
ÿ

i“1

NTKθtpx, xiqpu|θt
pxiq ´ yiq

¸

“ ´

N
ÿ

i“1

du:

|θt

´

NTKθt
px, xiq

¯

pu|θt
pxiq ´ yiq, (32)

Using Euler’s approximation method, this can of course be rewritten as the discrete upate:

θt`1 “ θt ´ η
N
ÿ

i“1

du:

|θt

´

NTKθtpx, xiq

¯

pu|θt
pxiq ´ yiq, (33)
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Note that if we assume du|θt
to be inversible, we can then implicitly inverse, yielding:

du:

|θt

´

NTKθt
px, xiq

¯

“

P
ÿ

p“1

Bpu|θt
pxiq e

ppq, (34)

making Equation (33) effectively correspond to the usual gradient descent. Rudner et al. [2019] further extended this
framework to the case of natural gradient descent in the context of information geometry. They show that in this context
the learning dynamic is given by a new kernel, named the Natural Neural Tangent Kernel (NNTK), which is defined as:
for all θ P RP

NNTKθpx, yq :“
ÿ

1ďp,qďP

`

Bpu|θpxq
˘

F :

θpq
pBpu|θpyqqt, (35)

where Fθ is the Fisher information matrix. In the more general context of Riemannian Geometry, Bai et al. [2022]
showed that the NNTK is given by: for all θ P RP

NNTKθpx, yq :“
ÿ

1ďp,qďP

`

Bpu|θpxq
˘

G:

θpq
pBpu|θpyqqt, (36)

with Gθ being the Gram matrix relative to a Riemannian metric Gθ as introduced in Section 2.3:

Gθtp,q :“ Gθt
pBpu|θt

, Bqu|θt
q. (37)

In particular, when Gθt
is given by the metric of an ambient Hilbert space H, this yields Equation (14), namely:

NNTKθpx, yq :“
ÿ

1ďp,qďP

`

Bpu|θpxq
˘

G:

θpq
pBpu|θpyqqt, Gθp,q :“

@

Bpu|θ , Bqu|θ

D

H .

For the quadratic problem of Equation (10), natural gradient then yields the functional dynamics:

du|θt

dt
pxq “ ´

N
ÿ

i“1

NNTKθt
px, xiqpu|θt

pxiq ´ yiq (38)

In the following, we will further explore the (N)NTK and its connection to the natural gradient in the context of
Reproducing Kernel Hilbert Space (RKHS) theory.

C.2 A perspective on Reproducing Kernel Hilbert Spaces (RKHS)

In this subsection we will carefully review the intimate link between neural tangent kernels, projections and reproducing
kernels. First of all, let us state the following theorem that bind together differents perspectives on RKHS.
Theorem 3. An Hilbert space H of functions defined on a set Ω Ñ K, K P tR,Cu, is a Reproducing Kernel Hilbert
Space if and only if one of the following equivalent conditions are met:

1. There exist a function k : L2pΩ ˆ Ω Ñ Rq such that H “ Span pkpx, ¨q : x P Ωq and for all x, y P Ω,
xkpx, ¨q , kpy, ¨qyH “ kpx, yq.

2. for all x P Ω, the evaluation form ex : f P H ÞÑ fpxq is continuous.

A proof of this theorem can be found, e.g. in Paulsen and Raghupathi [2016]. We now draw some easy but essential
consequences from Theorem 3:
Corollary 1. Any finite dimensional Hilbert space H is a RKHS

Proof. Since H is finite dimensional, all norms are equivalent. In particular }¨}8 : f P H ÞÑ supxPΩ |fpxq| is
equivalent to }¨}H. Then by point 2 in Theorem 3, H is a RKHS, since for all x P Ω, ex is continuous for }¨}8.

Let us now set out an another important theorem that highlights the link between RKHS and projections:
Theorem 4 (Mercer’s Theorem). If H0 Ă H is a RKHS, then the kernel of ΠH0

is:

kpx, yq “
ÿ

iPN

uipxquipyq (39)

where puiqiPN is any orthonormal basis of H0.
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A proof can be found again in Paulsen and Raghupathi [2016].
Remark 3. The kernel k in Theorem 4 is, in fact, the reproducing kernel of H0. This follows because the restriction of
the projection ΠH0

to H0 is simply the identity on H0. Consequently we have: for all v P H0, for all x P Ω

ΠH0

`

v
˘

pxq “ vpxq “ xkpx, ¨q , vyH , (40)

which precisely indicates that k is the reproducing kernel of H0.
Remark 4. Theorem 4 encapsulates finite dimensional case, since one may take ui “ 0 for i greater than D P N,
yielding dimpH0q ď D, which implies in particular that H0 is an RKHS by Corollary 1.
Remark 5. The assumption H0 is an RKHS is essential, since there is no guaranty that such a space (finite dimension
aside) is indeed a RKHS. One may think for instance to the case ui are the Fourier’s polynomials defined in Appendix B.1.
In this case the associated kernel is the Dirichlet kernel, which is well known to be non convergent in L2pr0, 2πsq.

Theorem 4 prompts the question of how to construct such an orthogonal basis. Assume that we already have a basis for
H0, i.e., H0 “ Spanpup : p P Nq Ă H. While a Gram-Schmidt procedure could be used, there is another approach
that, in a certain sense, is far more optimal. For the sake of simplicity, let us use suppose that H0 is finite dimensional5.
Then:

Lemma 1. If H0 :“ Spanpup : 1 ď p ď P q Ă H, then:

Lp :“
ÿ

1ďqďP

uqUq,p∆
:
p, (41)

is a orthonormal basis of H0, where U∆2U t “ G is the eigen-decomposition of the Gram matrix Gpq :“ xup , uqyH
of pupq1ďpďP . In particular, the kernel defining ΠH0 is:

kpx, yq “
ÿ

1ďp,qďP

uppxqG:
p,quqpyq. (42)

Furthermore Lp are the left-singular vector of:

Spanning :

#

RP Ñ H0

α ÞÑ
ř

1ďpďP

αpup , (43)

Proof. Since H0 is generated by the finite frame pupq1ďpďP , it is an RKHS by Corollary 1 and there exist (for instance
by the Gram-Schmidt procedure), an orthonormal basis pVpq1ďpďP of H0. Then by Theorem 4, the operator Π defined
by: for all f P H

Πpfq :“
ÿ

1ďpďP

Vp xf , Vpy (44)

is the orthogonal projection on H0. But the basis pLpqďpďP of Equation (41) is precisely orthonormal. Indeed:

xLp , Lqy “

C

ÿ

1ďkďP

ukUk,p∆
:
p ,

ÿ

1ďlďP

ulUl,q∆
:
q

G

“
ÿ

1ďkďP

ÿ

1ďlďP

∆:
pUp,k xuk , ulyUl,q∆

:
q “ eppqt∆:U tGU∆:epqq

“ eppqt∆:U tU∆2U tU∆:epqq “ δpq.

Now building Π upon this basis yields: for all f P H

Πpfq “
ÿ

1ďpďP

Lp xLp , fy “
ÿ

1ďpďP

ÿ

1ďkďP

ÿ

1ďlďP

ukUk,p∆
:
p

@

ulUl,p∆
:
p , f

D

“
ÿ

1ďkďP

ÿ

1ďlďP

uk

˜

ÿ

1ďpďP

Uk,p∆
2
p

:
Up,l

¸

xul , fy “
ÿ

1ďk,lďP

ukG
:

k,l xul , fy

5The infinite-dimensional case is more technical, as we have to be careful with the continuity of linear applications. As we are
only considering a finitely-parameterized model, this is beyond the scope of our present work.
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Thus, the kernel of the projection ΠH0 onto H0 is precisely:

kpx, yq “
ÿ

i,jPN

uipxqG:

i,jujpyq.

Finally, let us write the SVD of Spanning: @α P RP

Spanningpαq “
ÿ

1ďpďP

vpΛpW
t
pα P H0. (45)

Then in particular, we have: for all 1 ď p ď P

vp “ SpanningpWpΛ
:
pq,

and: for all 1 ď p ď P
up “ Spanningpeppqq.

This implies that: for all 1 ď p, q ď P

Gp,q “ xup , uqy “

A

Spanningpeppqq , Spanningpepqqq

E

p45q
“

ÿ

1ďk,lďP

eppqtWkΛk xvk , vly

“δkl

ΛlW
t
l e

pqq “ eppqtWΛ2W tepqq.

This means that pWpq and pΛ2
pq are respectively the eigenvectors and eigenvalues of G. The result follows by unicity of

eigen-decompisition and respective identification of pWpq to pUpq and pΛpq to p∆pq in Equation (41).

This observation will enable us to establish the main result of this section, linking RKHS theory, NTK and natural
gradient, in the following corollary.
Corollary 2. The NNTKθ defined in Equation (14) is the kernel of the projection ΠTθM : H Ñ H into TθM.

Proof. This a direct consequence of Lemma 1, since TθM “ SpanpBpu|θ : 1 ď p ď P q.

In the following, we will derive some consequences from NNTK theory, leading to the concept of the empirical Natural
Gradient (eNG).

C.3 empirical Natural Gradient (eNG)

To begin, we need to make a key observation:

• Equation (13) shows that the empirical dynamics under gradient descent happens in the space:

pTNTK
θ,pxiqM :“ SpanpNTKθp¨, xiq : pxiq1ďiďN q Ă TθM, (46)

• Likewise, Equation (38) shows that the empirical dynamics under natural gradient descent happens in the
space introduced in Equation (15), namely:

pTNNTK
θ,pxiq M :“ SpanpNNTKθp¨, xiq : pxiq1ďiďSq Ă TθM.

Both spaces, pTNTK
θ,pxiq

M and pTNNTK
θ,pxiq

M, are subspaces of the tangent space TθM :“ Im du|θ. Therefore, it remains

true that the empirical functional dynamics occurs within TθM. However, pTNTK
θ,pxiq

M and pTNNTK
θ,pxiq

M are, the smallest
subspaces in which the empirical functional dynamics take place, respectively for classical and natural gradient descent.
We encapsulate it in a defintion:
Definition 3 (empirical tangent space). Given a parametric model u : RP Ñ H, and a batch of points pxiq1ďiďN , the
empirical tangent space relative to the points pxiq1ďiďN , is the space:

SpanpNNTKθp¨, xiq : pxiq1ďiďN q Ă TθM.

When the context is clear, its name will be abbreviated empirical tangent space and it will be denoted:

pTθM :“ SpanpNNTKθp¨, xiq : pxiq1ďiďN q (47)
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The second key observation is the following : since natural gradient descent, in the limit N Ñ 8 (population limit), is
given by the update (cf. Equation (12) in Section 2.3):

θt`1 Ð θt ´ η du:

|θt

´

ΠK
TθtM

´

∇L|u|θt

¯¯

.

one may also define a similar update in the empirical tangent space pTθM. This observation motivates the following
definition, already introduced in Equation (16):
Definition 4 (empirical Natural Gradient (eNG)). The empirical Natural Gradient (eNG) update is the update given
by the projection of the functional gradient on the empirical tangent space pTθM, i.e. :

θt`1 Ð θt ´ η du:

|θt

´

ΠK
pTθtM

∇L|u|θt

¯

. (48)

The problem now is to find a tractable procedure for calculating the update of Equation (48). This is the aim of
Theorem 1 stated in Section 3, that we restate here and that we will now prove:
Theorem 1 (ANaGRAM). Let us be for all 1 ď i ď S and for all 1 ď p ď P :

pϕθi,p :“ Bpu|θpxiq ; y∇L|u|θ i
:“ ∇L|u|θ

pxiq “ u|θpxiq ´ fpxiq.

Then: du:

|θ

ˆ

ΠK
pTNNTK
θ,pxiq

M∇L|u|θ

˙

“

´

pϕ:

θ ` Emetric
θ

¯´

y∇L|u|θ
` EK

θ

¯

, (17)

where Emetric
θ and EK

θ are correction terms specified in Equations (49) and (50) in Appendix C.3, respectively accounting
for the metric’s impact on empirical tangent space defintion, and the substraction of the evaluation of the orthogonal
part6 of the functionnal gradient.

Theorem 1 specifications The corrections terms Emetric
θ and EK

θ are given by:

Emetric
θ “ pVθ pIP ´ Πrq pV t

θG
:

θ
pVθ Πr

´

Πr
pV t
θG

:

θ
pVθ Πr

¯:
p∆:

θ
pU t
θ, (49)

with:

• Πr “
řr

p“1 e
ppqeppqt, the projection onto the r first coordinates of RP .

• IP , the identity of RP

• pUθ
p∆θ

pV t
θ “ SV Dppϕθq

• for all 1 ď p, q ď P, Gθp,q “
@

Bpu|θ , Bqu|θ

D

H

EK
θ “

´

xNNTKθpxi, ¨q , ∇LyH ´ ∇Lpxiq

¯

1ďiďS
“

´

´

´

ΠK
TK
θ M∇L

¯

pxiq

¯

1ďiďS
(50)

Proof. First of all, following Lemma 1, we see that the projection kernel into pTθM is given by: for all x, y P Ω

k̂px, yq “
ÿ

1ďi,jďS

NNTKθpxi, xq pG:

θi,j
NNTKθpxj , yq, (51)

with: for all 1 ď i, j ď S, for all θ P RP

pGθi,j “ xNNTKθpxi, ¨q , NNTKθpxj , ¨qyH “ NNTKθpxi, xjq, (52)
where last equality comes from the fact that NNTKθ is the reproducing kernel of TθM. We can then simplify
Equation (16):

du:

|θt

´

ΠK
pTθtM

∇L|u|θt

¯

“ du:

|θt

´

x P Ω ÞÑ

A

k̂px, ¨q , ∇L|u|θt

E

H

¯

(53)

“
ÿ

1ďi,jďS

du:

|θt
pNNTKθt

pxi, ¨qq pGθt

:

i,j

A

NNTKθt
pxj , ¨q , ∇L|u|θt

E

H
(54)

“
ÿ

1ďp,qďP
1ďi,jďS

du:

|θt

`

Bpu|θt
G:

p,q

˘

Bqu|θt
pxiq pGθt

:

i,j

A

NNTKθt
pxj , ¨q , ∇L|u|θt

E

H
(55)

“
ÿ

1ďp,qďP
1ďi,jďS

Gθt

:
p,qBqu|θt

pxiq pGθt

:

i,j

A

NNTKθt
pxj , ¨q , ∇L|u|θt

E

H
, (56)

6orthogonal to the whole tangent space TθM.
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Using the empirical features matrix introduced in the statement of Theorem 1, namely: for all θ P RP and for all 1 ď

i ď S, for all 1 ď p ď P
pϕθi,p :“ Bpu|θpxiq. (57)

Equation (52) rewrites: for all θ P RP

pGθ “ pϕθG
:

θ
pϕt
θ. (58)

Introducing also: for all θ P RP and for all 1 ď i ď S

y∇L
∥
θi :“

A

NNTKθpxi, ¨q , ∇L|u|θ

E

H
. (59)

Equation (56) then rewrites:

du:

|θt

´

ΠK
pTθtM

∇L|u|θt

¯

“ G:

θt

pϕt
θt

´

pϕθtG
:

θt

pϕt
θt

¯:
y∇L

∥
θt
. (60)

Using now the SVD of pϕθ, also introduced in the statement of Theorem 1, namely: for all θ P RP

pϕθ “ pUθ
p∆θ

pV t
θ , (61)

we may express the pseudo-inverse of pϕθ as:
pϕ:

θ “ Uθ∆
:

θV
t
θ , (62)

and rewrite Equation (58) as:
pGθ “ pUθ

p∆θ
pV t
θG

:

θ
pVθ

p∆θ
pU t
θ. (63)

Let use denote r ď S the rank of pϕθ , and introduce Πr :“
řr

p“1 e
ppqeppqt the projection onto the first r coordinates of

the canonical basis
`

eppq
˘P

p“1
of RP . Then, noting that pUθ is orthogonal, and p∆θ diagonal:

pG:

θ “ pUθ
p∆:

θ

´

Πr
pV t
θG

:

θ
pVθΠr

¯:
p∆:

θ
pU t
θ “ pUθ

p∆:

θΣ
:

θ
p∆:

θ
pU t
θ, (64)

where
Σθ :“ Πr

pV t
θG

:

θ
pVθΠr. (65)

Inserting Equation (64) and Equation (61) in Equation (60), we get:

du:

|θt

´

ΠK
pTθtM

∇L|u|θt

¯

“G:

θ
pVθ

p∆θ
pU t
θ
pUθ

p∆:

θΣ
:

θ
p∆:

θ
pU t
θ
y∇L

∥
θ (66)

“pVθ
pV t
θG

:

θ
pVθ Πr Σ

:

θ
p∆:

θ
pU t
θ
y∇L

∥
θ (67)

“pVθ

`

pIP ´ Πrq ` Πr

˘

pV t
θG

:

θ
pVθ Πr Σ

:

θ
p∆:

θ
pU t
θ
y∇L

∥
θ (68)

“

´

pVθΣθΣ
:

θ
p∆:

θ
pU t
θ (69)

` pVθ pIP ´ Πrq pV t
θG

:

θ
pVθ Πr Σ

:

θ
p∆:

θ
pU t
θ

Emetric
θ

¯

y∇L
∥
θ (70)

“

´

pVθ
p∆:

θ
pU t
θ ` Emetric

θ

¯

y∇L
∥
θ “

´

pϕ:

θ ` Emetric
θ

¯

y∇L
∥
θ. (71)

Finally, by decomposing ∇L|u|θ
into its collinear and orthogonal components to TθM, i.e. : for all θ P RP

∇L|u|θ
“ ΠK

TθM

´

∇L|u|θ

¯

` ΠK
TK
θ M

´

∇L|u|θ

¯

, (72)

and using the notation y∇L|u|θ
introduced in Theorem 1 statement, we have: for all θ P RP , for all 1 ď i ď S

y∇L|u|θ i
“ ∇L|u|θ

pxiq “ ΠK
TθM

´

∇L|u|θ

¯

pxiq ` ΠK
TK
θ M

´

∇L|u|θ

¯

pxiq (73)

“

A

NNTKθpxi, ¨q , ∇L|u|θ

E

H
` ΠK

TK
θ M

´

∇L|u|θ

¯

pxiq (74)

“ y∇L
∥
θi ´ EK

θ i, (75)

where Equation (74) comes from the fact that NNTKθ is the kernel defining ΠK
TθM, and Equation (75) uses the

defintion given by Equation (59) and the notation EK
θ introduced in Theorem 1 statement, specified in Equation (50).

Thus y∇L
∥
θ “ y∇L|u|θ

` EK
θ , which concludes.
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Remark 6. Note that the implicit inversion made in order to obtain Equation (56) is now exact, in the sense that we do
not need to assume that du|θt

is inversible anymore as in Equation (34), since the eigenvectors and eigenvalues of Gθt

respectively match singular vectors and singular values of du|θt
, as stated in Lemma 1. We call this the exact implicit

inversion trick.

For the sake of understanding, let us suppose, that pϕθ is of rank P . Then in particular S ě P and Equation (64)
rewrites:

´

pϕθG
:

θ
pϕt
θ

¯:

“

´

pϕt
θ

¯:

Gθ
pϕ:

θ. (76)

Since S ě P , we also have pϕt
θ

´

pϕt
θ

¯:

“ IP and thus, Equation (60) simplifies to:

du:

|θt

´

ΠK
pTθtM

∇L|u|θt

¯

“ G:

θ
pϕt
θ

´

pϕt
θ

¯:

Gθ
pϕ:

θ
y∇L

∥
θ “ G:

θGθ
pϕ:

θ
y∇Lθ “ pϕ:

θ
y∇L

∥
θ, (77)

where last equality comes from the fact that y∇L
∥
θ P ImGθ by its own definition and the one of NNTKθ . This means

that under those conditions, the term Emetric
θ of Theorem 1 vanishes. Unexpectedly, the assumption pϕθ has rank P can

be satisfied for a specific subset of points : those guaranteed by Proposition 1, restated below, which we will now prove:

Proposition 1. There exist P points px̂iq such that pTNNTK
θ,pxiq

M “ TθM. Then notably Emetric
θ “ 0.

Proof. Let us be d :“ dimpTθMq ď P . By definition of NNTKθ (cf. Equation (14)), we have for all x P Ω:

NNTKθp¨, xq “

P
ÿ

p“1

αpBpu|θ P TθM, (78)

with for all 1 ď p ď P , αp “
řP

q“1

´

G:

θ

¯

p,q
Bqu|θpxq P R. Therefore pTθM Ă TθM. We will start by showing

that SpanpNNTKθp¨, xq : x P Ωq “ TθM. SpanpNNTKθp¨, xq : x P Ωq Ă TθM is clear from Equation (78).

Let us now be u P TθM
Ş

SpanpNNTKθp¨, xq : x P Ωq
K

. Since u P SpanpNNTKθp¨, xq : x P Ωq
K

, we have:
for all x P Ω

0 “ xNNTKθp¨, xq , uy “ upxq,

where last equality comes from the fact that NNTKθ is the reproducing kernel of TθM (cf. Remark 3). Therefore
u “ 0 and thus:

TθM
č

SpanpNNTKθp¨, xq : x P Ωq
K

“ t0u,

i.e. TθM Ă SpanpNNTKθp¨, xq : x P Ωq
KK

“ SpanpNNTKθp¨, xq : x P Ωq, which conludes. Now, since TθM
is of finite dimension d ď P , so is SpanpNNTKθp¨, xq : x P Ωq, and since pNNTKθp¨, xqqxPΩ is a generating
family, one may extract a free subfamily of it, which will be of cardinal d ď P , i.e. there exist d ď P points px̂iq1ďiďd

such that pTθM “ Span pNNTKθp¨, x̂iq : 1 ď i ď dq “ TθM and thus:

ΠK
pTθM

∇L “ ΠK
TθM∇L.

If d ă P , the sequence px̂iq1ďiďd can be extended with an additional P ´ d arbitrary points.

Finally, in some cases, we have ΠK
TK
θ M

´

∇L|u|θ

¯

“ 0 and thus y∇L
K

θ “ 0, i.e. y∇L
∥
θ “ y∇Lθ. This is the focus of

Proposition 2, recalled hereafter, that we will now prove:
Proposition 2. If u can be factorized as u|θ “ L|θ1

˝ C|θ2
, with θ “ pθ1,θ2q P RP1`P2 , C : RP2 Ñ H1,

L : RP1 Ñ FpH1 Ñ Hq linear in θ1, and , and f “ 0, then EK
θ “ 0.

Proof. From the discussion of Section 2.3, more precisely the identification of the Fréchet derivative of the functional
loss in Equation (11), we have that the functionnal gradient for quadratic regression is:

∇Luθ
“ u|θ ´ f. (79)

Assuming that f “ 0, this reduces to:
∇Luθ

“ u|θ.
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Now using the assumption and notations of Proposition 2, we see that:

Bθ1u|θ “ L|θ1
˝ C|θ2

“ u|pθ1,θ2q “ u|θ,

due to the linearity of L with respect to θ1. In particular this implies that u|θ P TθM, which conludes.

Remark 7. The question arises as to whether Proposition 2 has any concrete application, i.e. whether this situation
occurs in real applications. As it happens, the hypothesis of Proposition 2 is verified in particular when solving the
functional equation:

Drus “ 0, (80)
using an MLP as parametric model u, with D linear. Indeed, refering to the definition of an MLP in Appendix B.2, and
specifically to the definition of the last layer in Equation (30), we see that MLP can be decomposed into u|pθ1,θ2q “

L|θ1
˝ C|θ2

, with θ1 being the parameters encoding the last layer. Now, forming the coumpound model defined in
Equation (19) of Section 4.1 with the operator D yields:

D ˝ u “ D ˝ L
“:LD

|θ1
˝ C|θ2

“ LD
|θ1

˝ C|θ2
, (81)

and thus the coumpound model is still verifying the assumption of Proposition 2. f being null according to Equation (80),
we have that all the hypotheses of the proposition are verified. In real-life applications, boundary conditions also need
to be taken into account, as mentionned in Equation (19). However, these are a simple L2 regression problem when the
boundary conditions are Dirichlet, and therefore do not present the same conditioning difficulties as for regression with
respect to the differential operator. This last fact, combined with Proposition 2, in our view partly explains the strong
discrepancy between results for linear and non-linear problems.

In future work, we plan to carry out an in-depth analysis of the estimation of the Emetric
θ and EK

θ terms, and their impact
on both the overall theoretical framework and the training dynamics.We also aim to develop a more accurate method for
approximating them.

C.4 Natural Neural Tangent Kernel and empirical Tangent Space of PINNs

Seeing PINNs as a quadratic regression problem with respect to the coumpound model of Equation (19), as established
in Section 4.1, we see that the “natural” defintion of NNTK that arises from Lemma 1 is: for all θ P RP , for all x, y P

pΩ ˆ BΩq

NNTKθpx, yq “
ÿ

1ďp,qďP

Bp ppD,Bq ˝ uq|θ pxqGθ
:
p,qBq ppD,Bq ˝ uq|θ pyqt.

with:
Gθ :“

A

Bp ppD,Bq ˝ uq|θ , Bq ppD,Bq ˝ uq|θ

E

L2pΩ,BΩq
(82)

The problem lies in the fact, that in order to define the empirical Tangent Space, we would like to be able to separate
Ω and BΩ contributions. To do this, we have to remark that the coumpound model defined in Equation (19) outputs
functions that have a two-dimensional output, i.e. the function is vector-valuated and not scalar-valuated anymore.
More precisely, we have that for all f P ImppD,Bq ˝ uq “ Γ Ă L2pΩ, BΩq “ L2pΩ Ñ Rq ˆ L2pBΩ Ñ Rq, there exist
fΩ P L2pΩ Ñ Rq and fBΩ P L2pBΩ Ñ Rq such that f “ pfΩ, fBΩq. Thus for all x “ pxΩ, xBΩq P Ω ˆ BΩ

fpxq “ pfΩpxΩq, fBΩpxBΩqq P R2. (83)

Hence, the associated reproducing kernel should be a bit revisited. In particular the reproducing property rewrites
[Alvarez et al., 2012, Section 3.2]: for all f “ pfΩ, fBΩq P TθΓ Ă L2pΩ, BΩq, for all x “ pxΩ, xBΩq P Ω ˆ BΩ and
for all c P R2,

xf , NNTKθp¨, xqcy “ fpxqT c “ fΩpxΩqc1 ` fBΩpxBΩqc2. (84)

In particular, we have: fΩpxΩq “
@

f , NNTK|θp¨, xqep1q
D

; fBΩpxBΩq “
@

f , NNTK|θp¨, xqep2q
D

. This means that
the contributions coming from Ω and BΩ are linearly independent and can therefore be separated. More precisely:
defining the partial NNTKs:

• for all y P Ω ˆ BΩ, for all xΩ P Ω, for all xBΩ P BΩ:

NNTKΩ
|θpy, xΩq :“ NNTK|θpy, pxΩ, xBΩqqep1q (85)

“
ÿ

1ďp,qďP

BpppD,Bq ˝ uq|θpyqGθ
:
p,qBqpD ˝ uq|θpxΩq, (86)
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• for all y P Ω ˆ BΩ, for all xBΩ P BΩ, for all xΩ P Ω:

NNTKBΩ
|θ py, xBΩq :“ NNTK|θpy, pxΩ, xBΩqqep2q (87)

“
ÿ

1ďp,qďP

BpppD,Bq ˝ uq|θpyqGθ
:
p,qBqpB ˝ uq|θpxBΩq, (88)

Then in particular: for all x “ pxΩ, xBΩq P Ω ˆ BΩ, for all f P TθΓ

• fΩpxΩq “

A

f , NNTKΩ
|θp¨, xΩq

E

“
@

f , NNTK|θp¨, xqep1q
D

.

• fBΩpxBΩq “

A

f , NNTKBΩ
|θ p¨, xBΩq

E

“
@

f , NNTK|θp¨, xqep2q
D

.

This allows us to define an empirical tangent space for PINNs in the same way as in Equation (15), namely: Given two
batches pxΩ

i q P ΩSΩ and pxBΩ
i q P BΩSBΩ , we define the associated empirical tangent space:

pTNNTK
θ,pxΩ

i q,pxBΩ
j q

:“ Span
´

NNTKΩ
|θp¨, xΩ

i q, NNTKBΩ
|θ p¨, xBΩ

j q : 1 ď i ď SΩ, 1 ď j ď SBΩ

¯

(89)

Empirical Natural Gradient and associated ANaGRAM derivation poses then no particular difficulty and are derived
in a similar way to Appendix C.3. To make this more concrete, we plot below some NTK and NNTK for the heat
equation and the 2D Laplace equation. What we observe is that the NNTK yields a much more specialized kernel that
NTK, in the sense that is is much more localized and also perfectly centered on the reference points. This localization
property is expected to be more pronounced as the complexity of the model is increased. The drastic discrepancy
observed between NTK and NNTK explain why PINNs fail to train under classical descent while empirical natural
gradient solves this issue. The excellent locality of the NNTK kernel leads indeed to a much better optimization schema
because the residues are in effect arbitrarily shrunk in small regions around each sample batch points by independent
modification of the function which is obviously impossible with the NTK. When increasing the complexity of the model
the spatial range of the NNTK is expected to decrease accordingly and then more points will be needed to "percolate"
the optimization over the domain. In such case if the batch size increases too much various principled strategies can be
considered to control the complexity of the empirical natural gradient, precisely because the NNTK defines a natural
distance between points which can be leverage to define an approximate block Gram matrix. In our point of view this is
one of the great advantages of the empirical tangent space over the "parameter" tangent space, because no such good
metric is given for free in parameter space.
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C.4.1 NTK and NNTK plots of Laplace 2 D equation

Figure 11: NTK at initialization for Laplace equation in 2 D. Reading: the red cross on each subfigure representing a
point xi, the plot represents the function NTKθ0p¨, xiq

Figure 12: NNTK at initialization for Laplace equation in 2 D. Reading: the red cross on each subfigure representing a
point xi, the plot represents the function NNTKθ0

p¨, xiq
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Figure 13: NTK at the end of optimization for Laplace equation in 2 D. Reading: the red cross on each subfigure
representing a point xi, the plot represents the function NTKθend

p¨, xiq

Figure 14: NNTK at the end of optimization for Laplace equation in 2 D. Reading: the red cross on each subfigure
representing a point xi, the plot represents the function NNTKθend

p¨, xiq
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C.4.2 NTK and NNTK plots of 1+1 D Heat equation

Figure 15: NTK at initialization for Heat equation in 1+1 D. Reading: the red cross on each subfigure representing a
point xi, the plot represents the function NTKθ0p¨, xiq

Figure 16: NNTK at initialization for Heat equation in 1+1 D. Reading: the red cross on each subfigure representing a
point xi, the plot represents the function NNTKθ0

p¨, xiq
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Figure 17: NTK at the end of optimization for Heat equation in 1+1 D. Reading: the red cross on each subfigure
representing a point xi, the plot represents the function NTKθend

p¨, xiq

Figure 18: NNTK at the end of optimization for Heat equation in 1+1 D. Reading: the red cross on each subfigure
representing a point xi, the plot represents the function NNTKθend

p¨, xiq
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D Connection of Natural Gradient of PINNs to Green’s function

In this section, we will establish the relationship between the Natural Gradient and Green’s function. To set the stage,
let us first introduce some definitions.

D.1 Preliminary definitions

Definition 5 (Green’s function). Let D : H Ñ L2pΩ Ñ R, µq be a linear differential operator. A Green’s function of
D is then any kernel function g : Ω ˆ Ω Ñ R such that the operator:

R :

#

DrHs Ñ H
f ÞÑ

´

x P Ω ÞÑ
ş

Ω
gpx, sqfpsqµpdsq

¯

, (90)

is a right-inverse to D, i.e. such that D ˝ R “ IH.
Remark 8. We can rephrase Definition 5, by saying that g is a Green’s function if: for all x, s P Ω

Drgp¨, sqspxq “ δxpsq,

where δx is the Dirac’s distribution centered in x.
Remark 9. Definition 5 implies that, Drus “ f P DrHs is solved by upxq :“

ş

Ω
gpx, sqfpsqµpdsq.

In order to obtain more meaningful results, we will need the following generalizations:
Definition 6 (Solution in the least-squares sense). Let D : H Ñ L2pΩ Ñ R, µq be a linear differential operator,
H0 Ă H a subspace isometrically embedded in H and f P L2pΩ Ñ R, µq. We call u0 P H0 a solution of the equation
Drus “ f in the least-squares sense if u0 verifies:

}Dru0s ´ f}
2
L2pΩÑR,µq “ inf

uPH0

}Drus ´ f}
2
L2pΩÑR,µq (91)

Remark 10. If f P DrH0s, then inf
uPH0

}Drus ´ f}
2
L2pΩÑR,µq “ 0 and thus u0 is a classical solution.

Definition 7 (generalized Green’s function). Let D,H0 and f be as in Definition 6. A generalized Green’s function of
D on H0 is then any kernel function g : Ω ˆ Ω Ñ R such that the operator:

RH0
:

#

L2pΩ Ñ R, µq Ñ H
f ÞÑ

´

x P Ω ÞÑ
ş

Ω
gpx, sqfpsqµpdsq

¯

,

verifies the equation:
D ˝ RH0

“ ΠK
DrH0s (92)

Remark 11. Due to the identity ΠK
DrH0s|DrH0s

“ IH0
, Definition 7 is indeed a generalization of Definition 5.

We will now state and prove a result required to prove Theorem 2.

D.2 Proof of Theorem 2

Proposition 3. Let D : H Ñ L2pΩ Ñ R, µq be a linear differential operator, and H0 :“ Spanpui : 1 ď i Pď P q Ă H
a subspace isometrically embedded in H. Then the generalized Green’s function of D on H0 is given by: for all x, y P Ω

gH0px, yq :“
ÿ

1ďi,jďP

uipxqG:

i,jDrujspyq, (93)

with: for all 1 ď i, j ď P ,
Gij :“ xDruis , DrujsyL2pΩÑR,µq

. (94)

Proof. By definition:
DrH0s “ tDrus : u P H0u “ Span pDruis : 1 ď i ď P q ,

Thus Lemma 1 applies and yields that: for all x, y P Ω

kpx, yq :“
ÿ

i,jPN

DruispxqG:

i,jDrujspyq, (95)
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with: for all 1 ď i, j ď P ,
Gij :“ xDruis , DrujsyH2

, (96)

is the kernel of the projection ΠK
DrH0s

: L2pΩ Ñ R, µq Ñ L2pΩ Ñ R, µq into the RKHS DrH0s. This means that:
@f P L2pΩ Ñ R, µq

ΠK
DrH0spfqpxq “

ż

Ω

kpx, yqfpyqµpdyq “

ż

Ω

ÿ

1ďi,jďP

DruispxqG:

i,jDrujspyqfpyqµpdyq (97)

“
ÿ

1ďi,jďP

DruispxqG:

i,j

ż

Ω

Drujspyqfpyqµpdyq (98)

“ D

«

ÿ

1ďi,jďP

uip¨qG:

i,j

ż

Ω

Drujspyqfpyqµpdyq

ff

pxq, (99)

where Equation (99) comes from the linearity of D. Refering to Definition 7, this exactly means that the kernel defined
by: for all x, y P Ω

gH0
px, yq :“

ÿ

i,jPN

uipxqG:

i,jDrujspyq

is the generalized Green’s function of the operator D on H0.

We are now in a position to present the proof of:

Theorem 2. Let D : H Ñ L2pΩ Ñ R, µq be a linear differential operator and u : RP Ñ H a parametric model. Then
for all θ P RP , the generalized Green’s function of D on TθM “ Im du|θ is given by: for all x, y P Ω

gTθMpx, yq :“
ÿ

1ďp,qďP

Bpu|θpxqG:
p,qBqDru|θspyq, (20)

with: for all 1 ď p, q ď P

Gpq :“
@

BpDru|θs , BqDru|θs
D

L2pΩÑR,µq
. (21)

In particular, the natural gradient of PINNs defined at the end of Section 4.1 can be rewritten:

θt`1 Ð θt ´ η du:

|θt

ˆ

x P Ω ÞÑ

ż

Ω

gTθtMpx, yq∇L|θt
pyqµpdyq

˙

, (22)

Proof. This a simple application of Proposition 3 to the space H0 “ Span
`

Bpu|θ : 1 ď p ď P
˘

“ Im du|θ “ TθM.
To conclude with the proof of Equation (22), let us note that Equation (92) can be rewritten as:

RH0
“ D:

|H0
˝ ΠK

DrH0s. (100)

Specifically, we have:

d
`

D ˝ u
˘:

|θ
˝ ΠK

DrH0s “ du:

|θ ˝ D: ˝ ΠK
DrH0s “ du:

|θ ˝ RH0
(101)

Since, by definition, RH0
is the operator associated with the Green’s function gH0

, this directly implies that the natural
gradient of PINNs:

θt`1 Ð θt ´ η d
`

pD,Bq ˝ u
˘:

|θt

´

ΠK
TθtΓ

p∇Lθt
q

¯

,

can be expressed as:

θt`1 Ð θt ´ η du:

|θt

ˆ

x P Ω ÞÑ

ż

Ω

gTθtMpx, yq∇L|θt
pyqµpdyq

˙

,

which concludes.

36



ANaGRAM : A Natural Gradient Relative to Adapted Model for efficient PINNs learning A PREPRINT

D.3 A practical example : Derivation of generalized Green’s function for Laplacian operator, based on PINN’s
natural gradient formulation on a Fourier’s basis

We will illustrate Theorem 2 on a parametric model given by partial Fourier’s series (cf. Appendix B.1) for the Laplace
operator on r0, 1sd:

∆ :

"

H2pr0, 1sd Ñ Cq Ñ L2pr0, 1sd Ñ Cq

v ÞÑ
řd

l“1 Bllv

For this purpose, let us then fix N P N and consider the associated partial Fourier’s Serie SN as defined in Equation (28):

SN :

$

’

&

’

%

Rrr´N,Nss
d

Ñ L2pr0, 1sd Ñ Cq

pαk1,...,kd
q ÞÑ

˜

x P r0, 1sd ÞÑ
N
ř

k1“´N

¨ ¨ ¨
N
ř

kd“´N

αk1,...,kd
e2iπp

řd
l“1 klxlq

¸

.

We will then derive according to Theorem 2 the generalized Green’s function of ∆ on the tangent space of SN defined
in Equation (29), namely:

M “ TθM “ Span
´

x P r0, 1sd ÞÑ e2iπp
řd

l“1 klxlq : k P rr´N,N ssd
¯

To this end, let define: for all k P rr´N,N ssd

ek :

"

r0, 1sd Ñ C

x ÞÑ e2iπp
řd

l“1 klxlq (102)

and compute: for all k P rr´N,N ssd, for all 1 ď m ď d

B2

Bx2
m

ek “ ´p2πq2k2mek,

then: for all k P rr´N,N ssd

∆ ek “ ´p2πq2

˜

d
ÿ

m“1

k2m

¸

ek,

and thus: for all k1, k2 P rr´N,N ssd

Gk1,k2
:“ x∆ ek1

, ∆ ek2
y “ p2πq4

˜

d
ÿ

m“1

k1
2
m

¸2

δk1,k2
,

where δk1,k2
is the Kronecker symbol such that δk1,k2

“ 1 if and only if k1 “ k2. This implies that:

G:

k1,k2
“ p2πq´4

˜

d
ÿ

m“1

k1
2
m

¸´2

p1 ´ δk1,0q δk1,k2 ,

yielding:

gTθMpx, yq “
ÿ

k1,k2Prr´N,Nssd

ek1pxqG:

k1,k2
∆ ek2pyq

“
ÿ

k1,k2Prr´N,Nssd

ek1
pxqp2πq´4

˜

d
ÿ

m“1

k1
2
m

¸´2

p1 ´ δk1,0q δk1,k2

˜

´p2πq2

˜

d
ÿ

m“1

k2
2
m

¸

ek2
pyq

¸

“
´1

p2πq2

ÿ

kPrr´N,Nssdzt0u

ekpxq ekpyq
řd

m“1 k
2
m

“
´1

p2πq2

ÿ

kPrr´N,Nssdzt0u

exp
´

2iπ
´

řd
l“1 klpxl ´ ylq

¯¯

řd
l“1 k

2
l

Finally, in order to add some consistency to our illustration, let us show for d “ 1 that in the limit N Ñ 8, we indeed
find the classical Green’s function of the Laplacian operator. In this case let us first remark, that we have:

gTθMpx, yq “
´1

p2πq2

ÿ

kPrr´N,Nsszt0u

exp p2iπkpx ´ yqq

k2
“

´1

2π2

N
ÿ

k“1

cosp2πkpx ´ yqq

k2
.
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Since | cosp2πkpx ´ yqq| ď 1, the serie is absolutly convergent and thus in the limit N Ñ 8, we have:

g8px, yq :“ lim
NÑ8

gTθMpx, yq “
´1

2π2
C2p2πpx ´ yqq, with C2pzq “

`8
ÿ

k“1

cospkzq

k2

From Abramowitz and Stegun [1968, page 1005], we know that for all z P p0, 2πq:

C2pzq “
π2

6
´

πz

2
`

z2

4
,

Thus, by thanks to the parity of C2 we have for all px ´ yq P p0, 1q:

g8px, yq “
´1

2π2

˜

π2

6
´

π2π|x ´ y|

2
`

p2πpx ´ yqq
2

4

¸

“ ´
1

12
`

|x ´ y|

2
´

px ´ yq2

2
.

which is indeed a Green function for the Laplacian in 1d.

D.4 Illustration of estimated Green’s function for PINNs

D.4.1 Green’s function plots of Laplace equation in 2 D

Figure 19: Green’s function of the operator on the tangent space at initialization for Laplace equation in 2 D. Reading:
the red cross on each subfigure representing a point xi, the plot represents the function gTθ0

Mp¨, xiq
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Figure 20: Green’s function of the operator on the tangent space at the end of optimization for Laplace equation in 2 D.
Reading: the red cross on each subfigure representing a point xi, the plot represents the function gTθend

Mp¨, xiq

D.4.2 Green’s function plots of Heat equation in 1+1 D

Figure 21: Green’s function of the operator on the tangent space at initialization for Heat equation in 1+1 D. Reading:
the red cross on each subfigure representing a point xi, the plot represents the function gTθ0

Mp¨, xiq
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Figure 22: Green’s function of the operator on the tangent space at the end of optimization for Heat equation in 1+1 D.
Reading: the red cross on each subfigure representing a point xi, the plot represents the function gTθend

Mp¨, xiq

E Mathematical equivalence of ANaGRAM and Energy Natural Gradient implementation
[Müller and Zeinhofer, 2023] for linear operators

Let us begin by briefly recalling the definition of Energy Natural Gradient, as introduced in Müller and Zeinhofer
[2023]. Given an Energy (Equation 2 in Müller and Zeinhofer [2023]):

Epuq “

ż

Ω

pDrus ´ fq2dx ` τ

ż

BΩ

pBrus ´ gq2ds, (103)

associated to operators D : H Ñ L2pΩ Ñ R, µq, B : H Ñ L2pBΩ Ñ R, σq, and a parametric model u : RP Ñ H, we
have the following definition (Definition 1 in Müller and Zeinhofer [2023]):
Definition 8 (Energy Natural Gradient). Consider the problem minθPRP Lpθq, where

Lpθq :“ Epu|θq. (104)

Denote the Euclidean gradient by ∇Lpθq. Then we call

∇ELpθq :“ G:

Epθq∇Lpθq, (105)
the energy natural gradient (E-NG), where GE is a Gram matrix defined by: for all 1 ď p, q ď P

GEpθqpq :“ D2EpuθqpBθp
uθ, Bθq

uθq, (106)

with D2E being the second derivative of E in the Fréchet sense.

As noted in Equation (9) of Müller and Zeinhofer [2023], in the case where D and B are linear, Equation (106) reduces
to:for all 1 ď p, q ď P

GEpθqpq “

ż

Ω

DrBθp
uθspxqDrBθq

uθspxqdx ` τ

ż

BΩ

BrBθp
uθspsqBrBθq

uθspsqds, (107)

Note that in this case, by setting τ “ 1 and taking µ and σ uniform, this corresponds exactly to the Gram
matrix:for all 1 ď p, q ď P

Gθpq :“
A

Bp
`

pD,Bq ˝ u
˘

|θ
, Bq

`

pD,Bq ˝ u
˘

|θ

E

L2pΩ,BΩq
, (108)

where the compound model pD,Bq ˝ u and the space L2pΩ, BΩq are those introduced in Equation (19). Now the key
element lies in the sentence quoted from page 6, section 4.1 of Müller and Zeinhofer [2023] (which is confirmed in
practice by the code):
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“The integrals in (15) are computed using the same collocation points as in the definition of the PINN
loss function L in (14).”

This means that the same set of collocation points is used to evaluate the integrals defining Lpθq in Equation (104) and
the integrals defining GEpθq in Equation (107).

Let us fix some collocations points pxD
i q

SD
i“1 in Ω, and pxB

i q
SB
i“1 in BΩ. Then Equation (104) discretization exactly

corresponds up to factor 1
2 , to the scalar loss of PINNs defined in Equation (7):

ℓpθq :“
1

2SD

SD
ÿ

i“1

`

Dru|θspxD
i q ´ fpxD

i q
˘2

`
1

2SB

SB
ÿ

i“1

`

Bru|θspxB
i q ´ gpxB

i q
˘2

.

The Euclidean gradient ∇Lpθq is then approximated by the Euclidean gradient ∇ℓpθq given by: for all 1 ď p ď P

p∇ℓpθqqp “
1

SD

SD
ÿ

i“1

BpDru|θspxD
i q

`

Dru|θspxD
i q ´ fpxD

i q
˘

`
1

SB

SB
ÿ

i“1

BpBru|θspxB
i q

`

Bru|θspxB
i q ´ gpxB

i q
˘

(109)

Let us define:

• for all 1 ď p ď P , for all 1 ď i ď SD, and for all 1 ď j ď SB :

pϕD
θ p,i :“ BpDru|θspxD

i q; pϕB
θ p,j :“ BpBru|θspxB

j q, (110)

• for all 1 ď i ď SD and for all 1 ď j ď SB :

y∇L
D

θ i :“ Dru|θspxD
i q ´ fpxD

i q; y∇L
B

θ j :“ Bru|θspxB
j q ´ gpxB

j q, (111)

and finally:

pϕθ :“
`

pϕD
θ , pϕB

θ

˘

; y∇Lθ :“

˜

y∇L
D

θ

y∇L
B

θ

¸

; pΛ :“

ˆ 1
SD

ISD
0

0 1
SB

ISB

˙

. (112)

Thus Equation (109) can be rewritten as:
∇ℓpθq “ pϕθ

pΛy∇Lθ. (113)
But since the same set of collocation points is used to evaluate the integrals defining GEpθq, we also have that
Equation (106) is discretized by:

GEpθq » ČGEpθq :“ pϕθ
pΛpϕt

θ. (114)
This implies that Equation (105) is approximated by:

∇ELpθq » Č∇ELpθq :“ ČGEpθq
:

∇ℓpθq “ pϕ:

θ
y∇Lθ, (115)

which corresponds indeed to the update direction in line 5 in ANaGRAM algorithm 2.

To conclude, it should be noted that when D or B are not linear, then the equivalence between Equation (107) and
Equation (108) not longer holds, with the result that E-NGD and ANaGRAM are no longer equivalent either.
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