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A chain-level model for Chas-Sullivan products in Morse
homology with differential graded coefficients

Robin Riegel
IRMA, Université de Strasbourg

Abstract

We use the framework of Morse theory with differential graded coefficients to study certain operations on the
total space of a fibration. More particularly, we focus in this paper on a chain-level description of the Chas-
Sullivan product on the homology of the free loop space of an oriented, closed and connected manifold. The
idea of "intersecting on the base" and "concatenating on the fiber" are well-adapted to this framework. We
also give a Morse theoretical description of other products that follow the same principle. For this purpose,
we develop functorial properties with respect to the coefficient in terms of morphisms of A..-modules and
morphisms of fibrations. We also build a differential graded version of the Kiinneth formula and of the

Pontryagin-Thom construction.
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1 Introduction and main results

Given an oriented n-dimensional closed manifold X, Chas and Sullivan described in [CS99| a degree —n
product

on the homology of the free loop space LX = C°(S!, X) of X as an intersection product on H,(X) combined
with the Pontryagin product on based loops. This multiplication is now a fundamental operation in string
topology, the study of the homology of loop spaces.

State of the art.

A geometric realisation of this product has been described by Cohen-Jones [CJ02] in terms of the Thom
spectrum £LX ~TX = 2-N=dTh(ev*vN) where ev : LX — X is the evaluation at the basepoint and vV — X
is the N-dimensional normal bundle of a fixed embedding X — R¥*™. This approach has been generalized
by Gruher-Salvatore [GS08| to define a product on the homology of any total space of a fiber bundle E 2 X
equipped with a "multiplication map" m : E ,x, E — E and a "unit section" s : X — E. A chain-level
description of the Chas-Sullivan product on the singular complex of £X has been given by Hingston-Wahl
in [HW23]. This description consists in intersecting two chains A, B € C.(LX) by considering a tubular
neighborhood U of the diagonal AX C X? and taking the cap-product with A x B of the pullback of a
representative 7 of the Thom-class of  — AX to obtain (ev x ev)*T N (A x B) € Cy((ev x ev) *U) and
then retracting into the figure-eight space £X ., X, £LX using "geodesic sticks" before concatenating.
Abbondandolo-Schwarz constructed in [ASIO0| a loop product using the fact that the figure-eight space
has a smooth tubular neighborhood in £X x £X and thus use an "Umkehr map" e : H,(LX x LX) —
H, n(LX ¢y Xep LX). Laudenbach defines in [Laull] a loop-product in terms of "transverse bi-simplices"
u X vin LX X LX), seeing LX as a simplicial set instead of a topological space. Chataur introduced in
[Cha05] a geometric way to define the loop product from the point of view of geometric homology theory.
Abouzaid took in [Abol5] the approach of approximating the loop space £X by finite dimensional spaces of
piecewise geodesic loops in order to use Morse theory.

Most of these constructions either use the Hilbert space of H'-loops to represent the loop space £X and use
infinite dimensional considerations, or define the loop product only at the homology level. We construct in
this paper a chain-level model for Chas-Sullivan products using finite dimensional arguments.

Our construction.

Let (X™, %) be a smooth pointed, oriented, closed, connected manifold. The first goal of this paper is to give
a finite dimensional Morse theoretic chain-level model for the Chas-Sullivan product and generalize it to any
Hurewicz fibration F — E 5 X equipped with a morphism of fibrations m : F . x, E — E i.e, m is
continuous and preserves the fibrations 7 om = 7.

Our construction relies on the fact that there exists a notion of intersecting on the base and multipling on
the fiber in the setting of enriched Morse homology defined and studied by Barraud-Damian-Humiliére-
Oancea [BDHO24| using the original idea of Barraud and Cornea [BC07]. The authors define a Morse
homology theory with coefficients in any differential graded (DG) right-module (Fi,dr) over C.(QX),
the cubical chains on the Moore based loop space over X with algebra structure given by the Pontrya-
gin product. Such a DG-module F is called a DG local system. Given a Morse-Smale pair (f,¢), they
build following [BC07| a Maurer-Cartan element referred to as the Barraud-Cornea twisting cocycle
{may € Clg—jy|-1(QX), z,y € Crit(f)} satisfying

oMy, = Z (~D)l=hn, L ome, (1)
z€Crit(f)

and use it to define the enriched Morse complex or Morse complex with DG coefficients
C(X, Fi) = Fi @z ZCrit(f)
with the twisted differential

da®zr)=0ra®x+ (—1)'0“‘ Za Mgy QY.
y



One of their main results is what we will refer to as the Fibration Theorem.

Given a fibration F — E 5 X, a transitive lifting function ® : E Xevo, PX — E is map that lifts all
paths in X and respects concatenation in the sense that lifting a concatenation of two paths is the same as
lifting them one after the other : ®(®(e,v),0) = ®(e, y#9).

Fibration Theorem ([BDHO24| Theorem 7.2.1) : Let F — E — X be a Hurewicz fibration and equip
C(F) with the C.(2X)-module structure induced by a transitive lifting function associated to this fibration
(see [BDHOZ), Section 7.1]). Then, there exists a quasi-isomorphism denoted

Uy : Cu(X, Cu(F)) — Cu(E).

We will prove in Corollarythat the complex C, (X, C(F)) does not depend, up to homotopy equivalence,
on the choice of transitive lifting function.

This setting therefore provides a description of a chain complex on X that computes the homology of the
total space E of a fibration in terms of Morse data on the base X twisted by the cubical chain complex of
the fiber F'. It is particularly adapted to operations such as the Chas-Sullivan product. This setting also
provides an operation that is a model for the intersection on the base which is the shriek map

O (X2, 0L (F2)) —2 O, (X, A*CL(F?))

i‘I’Ez i\l’E aXnE

C(EXE)-———->Cin(E % E)
induced by the diagonal A : X — X? (see sections 9 and 10 of [BDHO24]).

We now state our generalization of the Chas-Sullivan product.

Theorem A (7.1) : Let F — E 5 X be a fibration and denote F = C,(F) with the DG-module structure
over C(QX) induced by a transitive lifting function ® : E ;X e, PX — E associated to the fibration. Let
m: E X E — E be a morphism of fibrations over X (see definition . This morphism induces a degree

—n product
CSpg : Ho(X,F)®?* - H. (X, F).

The following properties hold :

— Associativity (7.2)) : If m, is associative in homology, then so is CSpg.

— Commutativit 2 If my is commutative in homology, then CSpg is commutative up to sign
in homology i.e, CSpa(y ® 7) = (—=1)=1D=I"DCSph (1 @ 7).

— Neutral element : If m admits a section s : X — E such that m(s(w(e)),e) = m(e,s(n(e))) =e
for all e € E, then CSpg admits a neutral element.

— Functoriality :
e For any pointed, oriented, closed and connected manifold Y*, any continuous map g : ¥ — X
induces a degree —k product for the fibration F — g*E —'Y

CShe: Hy(Y,g"F) @ Hy(Y,g"F) = Hirj—1(Y,g"F)

such that g1 : Ho(X, F) = Hyuyn—r(Y,g*F) is a morphism of rings up to sign.
e If g is an orientation-preserving homotopy equivalence then, g and g. : H. (Y, g*F) — H.(X,F)
are isomorphisms of rings inverses of each other.

— Spectral sequence ([7.10)) : The canonical filtration

Fy(Cu(X,F)) = P Fj ® ZCriti(f)
i+j=k
1<p
induces a spectral sequence E} , that is endowed with an algebra structure

s T s
Ep,q ® El,m - Ep+l—n,q+m



induced by a chain description CSpg : Ci(X,E, F)®? — C.(X,E,F) and converges towards H. (X, F)
as algebras. For s,t > 0, E2, = Hy (X, Hi(F)) and the algebra structure is given up to sign by the
intersection product on X with coefficients in Hy(F).

Moreover, this product corresponds in homology, via the Fibration Theorem, to the product p. : H;(E) ®
H;(E) = Hiyj_n(E) defined in [GS08] (see Proposition . In particular, if the fibration is the loop-loop
fibration QX — LX — X, then CSpg corresponds to the Chas-Sullivan product.

This (re)proves that the product pu., and in particular the Chas-Sullivan product, has the properties of
Associativity, Commutativity, Neutral element, Functoriality and Spectral sequence.

We will define CSpg : H.(X,C.(F))®? — H,(X,C.(F)) as the composition
H;(X,C\(F)) ® Hj(X,C.(F)) Iioz; H;j(X? C.(F?)) N Hiyin(X,A*C.(F?))
= Higjon(X, Cu(F))

with the Dold sign, i.e, CSpg(y®7) = (—=1)""~1"Dim o Ayo K(y @ 7).

The Dold sign has been first introduced in [Dol95, Chapter VIII, §13.3] in order to make the intersection
product in homology Poincaré dual to the unsigned cup-product, and used in [Laull] in order to make the
Chas-Sullivan product graded commutative. It also serves such purposes in our setting.

The map K : C,.(X,C.(F))®? — C.(X?%,C.(F?)) is a version of the cross product in the enriched Morse
homology setting. The construction of this map is the object of Section [6]

The map m : Ci(X, A*Ci(F?)) — C.(X,Ci(F)) is the morphism of complexes induced by the morphism of
fibrations m. This will be constructed and studied in Section[5] In particular, we will prove that this map
is a good notion of multiplication on the fiber in our model.

Occurence of As-modules and morphisms.

Let us give an intuition and a motivation behind the use of A.-modules and morphisms in the case of
the loop-loop fibration QX — £LX = X. Tt is quite clear from that if ¢ : F — G is a morphism of
DG-modules, then ¢ : C.(X,F) — C.(X,G) defined by ¢(a ® z) = ¢p(a) ® = is a morphism of complexes.
However, the map m, : C,(Q2X?)% — C,(2X)% induced by the concatenation m : 2X? — QX is not a
morphism of DG-modules over C,(Q2X). The notation "ad" indicates that the module structures are induced
by the conjugation at the topological level. Indeed,

Vo, B € QX,Vy € QX, m((a, B) - 7) = m(y ray,y ' By) =7 tayy 1By v TaBy = m(a, B) 7.

However, we will prove that there exists a sequence of maps {m, : [0,1]"7! x QX? x QX""1 — QX},>1
that successively compensate (as more precisely defined in Definition for the fact that the concatenation
m1 := m commutes with the topological module structure induced by the fibrations only up to homotopy.
We will refer to such a sequence (m,) as an A,-morphism of topological modules. This yields a
morphism of A.-modules {m,, .} : C,(2X?)* — C,(Q2X)* over C,(Q2X) (see Proposition . The con-
catenation being a core operation for the Chas-Sullivan product, we needed to prove that one is still able to
extract a morphism of complexes C, (X, C, (2X?2)*) — C,(X, C,(2X)%) out of it. That is why we will prove

Proposition B : Let A, B be DG-modules over C,(QX). Any morphism of As-modules v : A — B
induces a morphism of complexes denoted v : C (X, A) — C(X, B).



In the context of a fibration, we will prove the following succession of result in Section
¢ : By — FE5 is a morphism of fibrations.

g There exists a coherent homotopy {¢,11: I" X F} X QX" I x P x X — Es}

that induces an A..-morphism of topological modules {¢X% : I" x F x QX" — Fy}.
B3 The map ¢ induces a morphism C,(Fy) — C.(F3) of As-modules over C,(2X).
EI rhe map ¢ induces a morphism ¢ : Cy (X, Ci(F1)) — Cu(X, C(F2)).

and A coherent homotopy induces a chain homotopy between U5 o ¢ and ¢, o Uy.

This constitutes the outline of a proof for the following theorem :

Theorem B (5.8)): Let Fy — E7; — X and Fy — Ey — X be two fibrations. If ¢ : Ey — Es is a morphism
of fibrations, then there exists a morphism of complexzes ¢ : Cy.(X,Cx(F1)) — Cu(X, Ci(F2)) such that the
following diagram commutes up to chain homotopy

Cu(X, Cu(F1)) —> Cu(X, Cu(F))

b

Cu(By) ————> Cu(E),

where the morphisms V1 and Wy are the quasi-isomorphisms given by the Fibration Theorem.

We then prove compatibility properties of the morphisms of complexes given by Theorem B to ensure that
these morphisms are well-suited to translate operations on the total space of a fibration in an enriched Morse
theoretic approach.

This compatibility between A..-structures and DG Morse theory determined us to explore the relation be-
tween these theories. We define the enriched Morse complex with coefficients in an A.-module over C,(2X)
(Section |4)) and prove invariance properties using the canonical spectral sequences associated to such a com-
plex (section . We will moreover prove Proposition B for A and B any A.-modules over C,(2X).

Kiinneth formula.

Let (X,*x) and (Y,*y) be pointed, oriented, closed, connected and smooth manifolds with Morse-Smale
pairs (f,&x) and (g,&y). Let F and G be DG modules over C,(©2X) and C.(QY). We build in Section [6.1]
what we will refer to as the Kiinneth twisting cocycle {m%, € C|.|_|,-1(QX xQY), z,w € Crit(f +g)}

adapted to the Cartesian product (see Definition such that there exists a homotopy equivalence
Co(X x YV, H) = Cu(X x Y,mE , H)

for any DG-module H over C,(2X x QY) (see Proposition [6.5)).

From there, let us present two versions of cross products on enriched Morse complexes :
e We can use the Serre diagonal A : C,.(QX x QYY) — C.(QX) ® C.(QY) to define a C,.(2(X x Y))-module
structure on the tensor product F ®yz G such that

Ci(X,F)®C.(Y,G) — Cu.XxY,mK F&g)

Ko .
(a@z)@Bey) ~ ()P aep)e (z,y)

is an isomorphism of complexes.

eIf F— F — X and G — E’ — Y are two fibrations with respective transitive functions ®x and ®y,
then the fibration F' x G — F x E/ — X x Y is naturally endowed with the transitive lifting function
(®x, Py). Therefore, to study fibrations, if F = C,(F) and G = C(G), it is natural to consider the complex
Cu(X xY,mf,,,C.(F x G)) where the module structure is defined by (®x, Py ).



That is why if F and G are topological spaces each endowed with a topological module structure over
respectively QX and QY, we define

Cu(X,C.(F) ® Cu(Y,C.(G)) — Cu(X xY,mE,,C.(F x G))
(a®r)®(Bey) >

Ktor .
To summarize, we have the following theorem :
Theorem C (6.13)): Let F and G be DG modules over C,(QX) and C.(QY). There exists a Kinneth
twisting cocycle {mfw € Cl|—jw|-1(2X x QY), z,w € Crit(f + g)} which computes the same homology as
the Barraud-Cornea cocycle and such that :

K9 : C (X, F)® Cu(Y,G) = Co(X x Y,mE,, F®Q)
is an isomorphism of complexes.
If F = Cu(F) and G = C.(G) are complexes of cubical chains of topological spaces equipped with topological
module structures respectively over QX and QY , then
K" . C(X,C.(F)) @ C.(Y,C.(G)) = C(X x Y,mE  C.(F xQ))

ERTE

is a quasi-isomorphism of complexes.

In particular, this will prove that H.(X x Y,C.(F x G)) is isomorphic to H,(X X Y,C.(F) ® C,(G)). In
this paper, we will mainly use the cross product K := K*°P since we will heavily rely on considerations on
fibrations to define the product CSpg.

This result is not a consequence of the Kiinneth formula from the "classical" Morse theory. Consider a
Morse-Smale pair (f,£x) on X and a Morse-Smale pair (¢,éy) on Y. Then F = f®g: X xY - Risa
Morse function and £ = ({x @ &y) is an adapted pseudo-gradient. The identification between the moduli
spaces of Morse trajectories
LF((J:’ y)v (xla y/)) = [’f(x’ .13/) X Lg(y7 y/)

is only true if either the moduli spaces are empty, £ = 2’ or y = ¢’. In "classical" Morse theory, this is all we
have to consider since the differential only counts trajectories between critical points of consecutive indexes
and, if |z| + |y| = |2'| + |¢'| + 1, then one of the conditions above is true. However, in DG Morse theory, we
have to consider all pairs of critical points in order to construct the twisting cocycle my ) and this
identification no longer holds.

z,y),(z',y’

Thom isomorphism in DG Morse theory.
Since the product CSpg is meant to generalize the Chas-Sullivan product, we constructed it so that the
diagram

Ktop m
H;(X,F)®?*>> H; ;(X? F?) Hipjn(X,F?) —"—> Hij_n(X,F)

Hi(LX)®2 ﬂ) Hi+j(£X2) L ~i+j ((LX ev Xev ﬁX)ev*TX) ﬂ> 1'+j—n(£X ev Xev EX) g i+j—n(£X)

commutes, where we denoted F = C,(Q2X) and F? = C,(QX?), the vertical arrows are defined by the
Fibration Theorem and EZ : H;(£LX)®? — H;,;(£X?) is the Eilenberg-Zilber map.

It is a simple proof (Lemma that the first square commutes and Theorem B will conclude that, since
the concatenation m : LX ., Xe, LX — LX is a morphism of fibrations, the last square also commutes. In
order to complete this correspondence, we prove a DG version of the Pontryagin-Thom construction stating

that A, corresponds to the intersection product :

Theorem D 1} ¢ Let Y"F & 27 be an embedding of closed manifolds with tubular neighborhood

U. Let F — E 5 Z be a fibration and F — Fy — Y be the pullback fibration by @. Define a Gysin map



o1 : Hy(E) = H._(Ey) as the composition of a Pontryagin-Thom collapse map 7, : H.(FE) = H.(Fy, Esy)
on Ey = m=1(U) with the Thom isomorphism u. : H.(Ey, Eoy) — He_i(Ey).
The following diagram commutes

P1

H(Z,C(F)) —— H. (Y, p"Cu(F))

QElN Nl%y

H.(E) H. (Ey).

Pt

To the best of the author’s knowledge, the setting in which the Gysin map ¢ : H.(Ey) — H._p(FE2) is
classically considered is when E5 < F; are Hilbert manifolds with Fs of finite codimension in F; so that
there always exists a tubular neighborhood V of E5 in Fj, unique up to isotopy, in which to consider the
Thom isomorphism (see [COT15| Section 3] and [Lan95]). In a similar fashion as [HW23]| did for the particular
case where the fibration is LY x LY — Y? = Z and ¢ : Y — Z is the diagonal map, we here avoid infinite
dimensional arguments by using the fibration £ = Z to pull back a tubular neighborhood U of Y in Z
which is finite dimensional and prove that there exists a Thom isomorphism H,(Ey, Esy) — Hi—r(Ey) in
this case, where Ey = 7~ 1(U).

Path-product.

Theorem B, Theorem C and Theorem D have their own interest independently of Theorem A and may be
used to describe other operations involving the idea of combining operations on the base and on the fiber. In
this spirit, we also give a Morse-theoretic description of the path product on H,(Px_,xY), the homology of
the space of paths in Y starting and ending in X, of degree —n where (X™, %) is a pointed, oriented, closed
and connected manifold included in a topological space Y. This space and this product have been studied
in [Ste23] when Y is a closed manifold. The construction also relies on "intersecting" paths to make them
concatenable and then concatenating.

Consider the fibration QY — Px_.xY (evo—’svl) X? on the space of paths in Y that start and end on X. We
state here a theorem in preparation that will be proved in a future paper :

Theorem E (in preparation) : The concatenation m : Px_xY cv; Xevo Px—oxY — PxoxY is a
morphism of fibrations and defines a product

PPpg : H.(X?,C.(QY))®?) = H.(X?, C.(QY))

of degree —n that consists in intersecting endpoints of a chain of such paths with the startpoints of another
chain, concatenating them and then forgetting the concatenation point. This can be written as the composition

H (X2,C. Q)2 5 H (x4 0. (v?) B H, (X3, D C.(0Y2) B H, (X3 p*C.(QY))
" H, (X2, C.(Q)))

with the Dold sign. Here D : X® — X*, D(a,b,c) = (a,b,b,c) and p: X> — X2, p(a,b,c) = (a,c),
This product is associative up to the sign (—1)" and admits a neutral element.

Structure of this paper : Since we use quite often in this paper tools and techniques that have been
developed and introduced in [BDHO24], we present in Section |2| a non-exhaustive (and sometimes heuristic)
summary of definitions and constructions that we will need in the rest of the paper.

We prove Theorem D in Section

In Section [}, we define the Morse complex with coefficients in an A.-module over C,(2X) and prove that
the homology of this complex is independant of the choices made to define it. We then study in Section
the maps induced by an A..-morphism of modules between the coefficients and prove Theorem B.

We prove Theorem C in Section [f] We then use the results of the previous sections to define CSpe and
prove Theorem A in Section

We then discuss in Section [§] further directions in which we could expand this paper.
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2 Recollections on Morse homology with DG coefficients

Throughout this paper, X will denote an oriented, closed and connected manifold. Let x € X be a preferred
point in X and (f,£) be a Morse-Smale pair on X. This section is a brief and non-exhaustive summary of
[BDHO24] aimed at presenting the main tools used in the present paper.

2.1 Morse homology with DG coefficients

For any topological space V, we can consider its cubical complex C,(V'), the Z-module spanned by
continuous maps ¢ : [0,1]¥ — V endowed with the differential

k

0r =3 ()" ol s ~ ol

i=1

modded out by the Z-module spanned by the maps o : [0,1]¥ — V that factor through a face of the cube
[0,1]%. We call these chains degenerate.
Consider X = {v:[0,a] = X continuous, a € [0,+00), ¥(0) = v(a)} the space of Moore loops based
at x. The concatenation is strictly associative on this space. Define the Pontryagin product on C,(2X)
by

o1 (0.7 (x,y) = o(x)#7(y))

for every continuous maps o : [0, 1]¥ — QX and 7 : [0,1]! — QX, where # denotes the concatenation in Q.X.
It extends to a product p : C;(QX) ® C;(QX) — C;1;(2X) which defines a DGA structure on C,(02X).

Definition 2.1. A twisting cocycle is a family {my, € C|z—|y|-1(QX), x,y € Crit(f)} that satisfies the
Maurer-Cartan equation

6m1’7y = Z (_l)lﬂi‘z‘ml’,zmz,y- (2)

|]>]2[>y]
Definition 2.2. We call DG system a right differential graded module (Fi,0r) on C.(Q2X).

Definition 2.3. Let F be a DG system and let (my,) be a twisting cocycle. The Morse complex of X with
coefficients in F is defined by

O*(Xa m:c,yvf) =FQ ZCrit(f),
with the differential

dNawz)=da@z+ (1) [ Y a-m., |y

ly|<|z|

The resulting homology depends on the choice of twisting cocycle. We denote by H.. (X, mgy 4, F) the homology
of this complex. We will refer to a complex with coefficient in a DG system as an enriched Morse complex
and its homology as enriched Morse homology.

In the next section, we describe how the authors define a particular twisting cocycle called Barraud-Cornea
twisting cocycle as the construction follows the seminal paper [BCO7]. It carries homological information
on the moduli space of Morse trajectories £(z,y). This construction depend on choices but the resulting
homology will not depend on them. We therefore denote H,.(X,F) the homology of an enriched Morse
complex Cy (X, mgyy, F) constructed with a Barraud-Cornea twisting cocycle.



2.2 Twisting cocycles defined by DG Morse data

Choose a Morse-Smale pair (f,€) on X and o, an orientation of the unstable manifolds W*(x) for each
x € Crit(f).

Definition 2.4. For any pair of critical points x,y € Crit(f), define the moduli space of broken Morse
trajectories

L(z,y) == L(x,y) U U L(x,21) X L(21,22) X -+ X L(21,Y).
k>1
zl,...,zk_ECrit(f)

We refer to [AD14], Section 3.2] to prove that with its natural topology, L£(x,y) is an orientable compact
manifold with boundary and corners of dimension |z| — |y| — 1 whose interior is L(x,y).

Intuitively, the twisting cocycle my,, € C|y|—),|-1(£2X) is constructed by evaluating in the based loop space
QX a well-suited representative of the fundamental class of L(x,y) for any z,y € Crit(f).

Definition 2.5. A representing chain system of the moduli spaces of trajectories is a collection {s; , €

Cla|=jy|-1(L(x,y)), x,y € Crit(f)} such that

1. each sy, is a cycle relative to the boundary and represents the fundamental class [L(z,y)].

2. each s, satisfies

851:,34 - Z(*l)lmli‘z‘sq-vz X Sz,y- (3)

z

Such a representing chain system always exists and is inductively constructed. It is nonetheless not unique
(although all representing chain system are homologous in a sense defined in [BDHO24, Proposition 5.2.8]).

Definition 2.6. We say that a family of maps gz, = L(z,y) — QX for x,y € Crit(f) is a family of
evaluation maps if it satisfies

1. The concatenation relation : For any (A, \') € L(x,z) x L(z,y) C dL(z,y),

q:v7y(A7 )‘I) = Qx,z()\)#qu(A/)~ (4)

2. Compatibility with lifting : Choose for each critical points x a preferred lift & in X, the universal
cover of X. For any |z| = |y| + 1 and X\ € L(z,y), denote g = [qz,(N)] € m1(X) the homotopy class
of the loop gz 4(N). We say that qg, is compatible with lifting if the lift X of X starting from & ends
m gy.

Here is the construction of a family of evaluation maps given in [BDHO24| Lemma 5.9] that we will use as
a blueprint in the rest of the paper when it will come to construct families of evaluation maps:

First, choose

1. A tree Y in X whose vertices are the critical points of f and whose root is the basepoint *.

2. 0: X/Y — X, a homotopy inverse of the canonical projection p : X — X/ such that 9([Y]) = *.

Define a parametrization map I'; , parametrizing a trajectory A into a path. Here, we parametrize maps
using the values of the Morse function f.

The evaluation maps g, , : L(z,y) — QX are then defined by ¢, , = fopol'y ,,. Here, modding out by the tree
Y turns the path I'; , (A) into a loop. The twisting cocycle is defined by Mz y = qry,«(52,y) € Clz—|y)—1(2X).

To construct the Barraud-Cornea cocycle, we needed six choices :
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A Morse function f: X — R.

A pseudo-gradient ¢ adapted to f.

An orientation o of the unstable manifolds of (f,¢).
e A representing chain system {s, ,}
o A tree )

e A homotopy inverse 6 of the projection p : X — X/V.

Figure 1 — Example of a Barraud-Cornea twisting cocycle on S2.

Definition 2.7. Denote = = (f,€,Y,0,54,,0) the choices that have been made in order to construct such
a twisting cocycle. We will refer to such a set £ as DG Morse data on (X, xx). We will omit to mention
the basepoint *x if it is not necessary.

Given a set of DG Morse data =, we will denote C, (X, 2, F) 1= Ci(X, Mgy, F) = F. QZCrit(f) the enriched
Morse complex with the Barraud-Cornea cocycle constructed with the data =. The homology of this complex
does not depend on the set of data =. More precisely :

Theorem 2.8. [BDHOZ24, Theorem 6.5.1]

1) Given two sets =y and Z; of DG Morse data on X, the continuation map V= : C.(X,Zy,F) —
C.(X,E1,F) is a homotopy equivalence and its chain homotopy type does only depend on Zg and Z1. The
map W= is in particular a quasi-isomorphism.

2) Given another set of data 2o on X and denoting U;; the continuation map between the data Z; and =;,
then o is homotopic to the identity and Yoo is homotopic to W15 0o Woy. In particular, in homology

\Ifoo = Id and \1112 o \:[101 = \:[102.

2.3 Fibration Theorem

In this section, we will introduce one of the main result of [BDHO24], the Fibration Theorem, that will con-
nect our construction on the enriched Morse complex of the base X of a fibration with previous constructions
that use the singular complex of the total space F of this fibration.

2.3.1 Lifting functions

The notion of lifting function is a tool that we will use all along this paper to study fibrations and enriched
Morse complexes.

Notation 2.9.
e For any topological space A and x,y € A, we will denote

PosyA = {’7 € CO([O,G],A), 7(0) =z, y(a) = y}

11



the space of Moore paths that start in x and end in y. We will respectively denote evy and evy the
evaluation at the startpoint and the endpoint of a Moore path.

e I[fB,C CA,be B and c € C we use the notations

PpocA = U PyscA, PpucA:=PpyocA and Ppy A= Pp_ A
beB,ceC

A Hurewicz fibration £ 5 X is a continuous and surjective map that has the homotopy lifting property
with respect to all spaces : For any space B and any maps H : B X [0,1] = X and f : B — FE such that
mo f = H(,0), there exists a lift H

-~ . 7

Bx[0,1] X=X,

This property is equivalent to the existence of a map called lifting function ¢ : E ; X.,, PX — PE such
that mo ¢ = pro and evg o ¢ = pry.
A transitive lifting function is a map

®:F Xy PX > E

such that m o ® = ev; o prg, such that for any e € E, ®(e,n(e)) = e where m(e) is the constant path in
m(e) € X and such that for every 7,0 € PX such that evyy = evyd,

(D(e,7),0) = (e, v#0).

It is proven in [DK69, Proposition 5.5] that every fibration is fiber homotopy equivalent to a fibration that
admits a transitive lifting function and we will therefore assume that any fibration is equipped with a tran-
sitive lifting function.

Denote F' = 7~ !(%) the fiber of the fibration. A transitive lifting function induces a right C, (X )-module
structure on C,(F) given by a- 0 = . (a ® o).

2.3.2 Statement

One of the main results of [BDHO24] is the following theorem

Theorem 2.10. ([BDHOZ2], Theorem 7.2.1]) Let F — E — X a (Hurewicz) fibration, ® : E ;X ¢y, PX — E
a transitive lifting function and = a set of DG Morse data on X. Then there exists a quasi-isomorphism

Ugp: CuX,E,Cu(F)) = Ci(E),
where C.(F) is endowed with the C\(QX)-module structure induced by .

Notation 2.11. For any fibration F — E — X owver a pointed oriented, closed and connected manifold
(X, ), unless otherwise specified, we will denote Vg : H (X, C.(F)) — H.(E) the isomorphism given by the
Fibration Theorem.

Remark 2.12. ([BDHOZ24, Remark 7.3.5]) This theorem has a version for manifolds with boundary. Let
0X = 0. X UOJ_X, where 04X is the subset of 0X where the pseudo-gradient points outwards and 0_X the
subset where it points inwards. Then, if we denote E, = n=1(0, X), there exists a quasi-isomorphism

C.(X,0.X,C.(F)) = C.(E,E4).

12



2.3.3 Tools for the proof

We will need in some proofs of this paper to understand how this quasi-isomorphism is constructed. There-
fore, let us lay out the tools necessary for the proof of this theorem.

We first consider F’ < E’ — X/ the pullback fibration by 6 : X/ — X, the chosen homotopy inverse of
the projection p : X — X /). The family of evaluation maps {q;’y =poly,: L(z,y) — Q(X/y)} define a
twisting cocycle m;, , € C«((X/Y)) such that 0.(m}, ,) = m,, and the C.((X/Y))-module structure on
C.(F") is given by a0 := - 0, (0).

The map Vg is then defined as a composition of three maps

Cu(X, Cu(F)) = Cu(X, Cu(F") & C.(E') = C.(E).

The only real consideration is on the middle map since the first one is just an identification a - mj, , =
a-0.(my ) =a-my, € Cu(F') = C.(F) and the last one is a homotopy equivalence given by 6.

The map Vg : Co(X, Ci(F')) — C.(E') is essentially constructed by using the transitive lifting function to
lift the cellular decomposition of X given by its unstable manifolds. Let us be more precise.

Definition 2.13. Define for every x € Crit(f), its Latour cell

Wia) = Wh(@)U |J Lla,y) x W().
lyl<lz|
It has been proven in [Lat94, Proposition 2.11/, in [Qin10, Theorem 3] and [AD1], section 4.9.c| that with
its natural topology, W (x) is a compact manifold with boundary and corners of dimension |x| whose interior
is W¥(z) and which is homeomorphic to the closed disk E‘ml. Latour cells induce a cellular decomposition

of X.

Definition 2.14. We define the morphism Vg in several steps :

o There erists a family of evaluation maps q, : Wu(x) — Piosx/yX/Y constructed by parametrizing the
gradient lines and projecting them into X/Y (see [BDHOZ24, Lemma 7.5.5]).

o Let (sg,4) be a representing chain system for the Morse moduli spaces in B. A compatible representing
chain system of the Latour cells in B as defined in [BDHOZJ| is a collection {s, € Cp,|(W*(z)) | = €
Crit(f)} of chains such that :

1. each s, is a cycle relative to the boundary and represent the fundamental class [W4(x), OWu(z)].

2. each s, satisfies 0s, = 287”9 X s, with the product of chains defined via the inclusions L(z,y) X

Wu(y) C OWu(z) C Wu(x).

Such a system always exists and is constructed inductively.
e Define my = qu«(82) € Cly|(Passg/yB/Y) for each x € Crit(f). This family satisfies

Om, = E m;ymy
y

e The map Vg : Cu(X,Ci(F")) = C(E') is then defined by Vg (a @ x) = (a0 @ my).

To conclude the proof, one remarks that ¥ induces a morphism of spectral sequences between the spectral
sequence defined earlier that converges towards H,(X,C,(F’)) and the Leray-Serre spectral sequence that
converges towards H,(E’), and proves that this is an isomorphism between the second pages.

2.4 Direct and shriek maps

Let ¢ : (X™,xx) — (Y™, xy) be a continuous map between pointed, oriented, closed and connected mani-
folds. We will assume p(*x) = xy.
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Let F be a DG right-module over C,(2Y) and ¢*F be its pullback by ¢, i.e F endowed with the DG
right-module over C,(QX),

Vae F, Vy e Cu(QX), a-v:=a- p«(7)
~——
€C.(QY)
Theorem 2.15. [BDHO2J, Theorem 8.1.1] There exist two maps respectively called direct map and shriek
map,

o Ho(X, 0" F) = HL(Y, F) and g1 s Ho(Y, F) = Hepn (X, 6" F)
that satisfy the following properties :
1. Identity: 1d, = Id; = Id in homology.
2. Composition: Let v : Z¥ — X be a continuous map and F be a DG right-module over C,(QY) .

Then
(0V)s = @utbs s Ho(Z, ™" F) = Ho (X, " F) = H.(Y, F)

and
(@¢)! = ¢!<P! : H*(Y7 -7:) - H*+7L—m(X7 90*-7:) — H*+k—77L(Z7 %O*WJ:)

3. Homotopy: Two homotopic maps induce the same direct and shriek maps in homology.

4. Spectral sequence : The morphisms g, and ¢y in homology are limits of morphisms between spectral
sequences associated to the corresponding enriched complezes, given at the second page by

Opx + Hy(X, 0" Hy(F)) — Hp(Y, Hy(F)) and @p1 2 Hy (Y, Hy(F)) = Hpin—m (X, 0" Hy(F)).

There are two equivalent definitions for these maps (see [BDHO24] Section 9 and 10]).

3 Thom isomorphism in DG Morse theory. Proof of Theorem D

Let (Z™, %) be a pointed, oriented, closed, connected manifold and F < E > Z a fibration. Let ¢ : Y% <
Z"™ be an embedding of a closed manifold and iy : U — Z be an embedding of the total space of the
normal bundle p : U — Y of . Denote [r] € H¥(U,0U) the Thom class of this disk bundle and choose
7 € C*(U,0U) a representative. We will see ¢ as an inclusion since the diffeomorphism Y — ¢(Y") will not
play a role in this section and we will write ¥ instead of ¢(Y") in the arguments that follow. We will therefore
see U as a tubular neighborhood of Y in Z and denote Ey =7~ 1Y), Ey = 7~ 1(U) and E}f = 7~(0U).
Let (fu,&u) be a Morse-Smale pair on U constructed by taking a Morse-Smale pair (fy,&y) on Y and
extending it on U by fy = x - fy o p where x is some cutoff function equals 1 near Y and 0 near oU.
Extend it again to a Morse-Smale pair (f,&) on Z such that Crit;(f) NU = Critj_i(fy). This is the Morse
identification CMerse(U, 9U) = CMorse(Y),

The next lemma is a fibered version of the classical Thom isomorphism.

Lemma 3.1. The cap product with the pullback 7*[t] € H*(Ey, Ef;) defines an isomorphism
Uy * H*(EU,E[}L) — H*,k(Ey)

Proof. There exists a projection p, : Ey — Ey such that 7w o p, = p o w defined in the following way :

Let v € By and w = w(v) € U. Let v : [0,1] — p~!(p(w)) such that v(0) = w and v(1) = p(w) € Y be

the path given by the gradient line passing through w. Let 4 : [0,1] — Ey be the lift of v starting on v.

Define p,(v) = (1) € Ey.

The fact that u, = pr (- N 7*7) is an isomorphism will be a direct consequence of Proposition

|

One can construct a Gysin map ¢y : H.(E) = H._(Ey) given by the composition of a Pontryagin-Thom
collapse map 7, g « : Hi(E) — H.(E,E — Ey) ~ H,(Ey, E{;) with the Thom isomorphism wu. (see [GS08]).
We now prove that the shriek map ¢y : Ho(Z,C(F)) = H.—(Y,*C.(F)) corresponds via the Fibration
Theorem to the Gysin map ¢ : H,(E) — H._(Ey).
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Theorem 3.2. Let Y5 < 77 be an embedding of manifolds, F — E 5 Z be a fibration endowed with a
transitive lifting function ® : £ 1 X¢y, PZ — E and ' — By LY be the pullback fibration by ¢. The shriek
map ¢ : H (Z,C(F)) = Hi—k (Y, 0*C(F)) is compatible with the Gysin map ¢ : H.(F) — H._,(Ey) via
the Fibration Theorem [BDHOZ2J, Theorem 7.2.1]. In other words, the following diagram commutes

$1

H.(Z,Cu(F)) — H. (Y, 9" Cu(F))

\pE\LN Nl\I}EY

H.(E) ——— = H._(Ey).

Proof. Denote F = C,.(F). Recall iy : U — Z is an embedding of the normal bundle p: U — Y of ¢ and
that we see ¢ : Y — Z as an inclusion.
We use the definition of the shriek map in the case of an embedding given in [BDHO24, Section 9] :

a®x fxeU

v, Ho(Z,F) = H.(U,0U,i; F) = H—(Y, ¢ F), iv(a®@x) = { 0 otherwise

We prove the theorem by showing that iy : H.(Z, F) — H.(U,0U,ij;F) corresponds to the Pontryagin-
Thom collapse 7, g« : H.(E) — H.(Ey,E{) and that the equality H.(U,0U,i5F) = H._ (Y, p*F)
corresponds to the Thom isomorphism via the Fibration Theorem.

Proposition 3.3. The following diagram commutes :

H(Z,F)—25 . [4.(E)

iiu,! J{TwE,*
v

H.(U,0U,i% F) —% H,(Ey, Ef)).

Proof. Consider Fy < Ey % Z/Y the pullback fibration of F < E — Z by 0 : Z/Y — Z. Denote
EU); = 7T3_;1(Uy) where Uy = U/y, E[J']_y = 773_}1(6[]3;) and Fy = C*(Fy)

By the definition of the quasi-isomorphisms U and ¥, (see Section or [BDHO24, Section 7] for
more details), the diagram is decomposable into

~

H.(Z,F) H.(Z,Fy) H.(Ey) ———— H,(E)

iiu,! \Liu,z iTsu,Ey,* \LT%E,*
w

H.(U,0U, i, F) —~> H.(U,0U, i, Fy) —% H.(Ev, Bf.,) — > H.(Ev, E)

The rightmost and leftmost squares commute because the left horizontal maps are identifications of DG
modules and the commutativity of the square on the right is a property of pullback fibrations. See the
proof of Proposition 9.8.1 of [BDHO24] for more details.

Let us now prove that the middle square commutes. Let x € Crit(f) and o € Fy. If z ¢ U, then none of
the gradient lines coming from z will cross U since the pseudo-gradient points outwards U. Therefore,
\I}Ey (CY & :v) S C*(Ey \ EU’y) and

To.Eyx © Vi, (@ ®x) = 0.

Moreover, by definition of iy,
Vg, oivy(a®x) = 0.

If z € U, we decompose the middle square into
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v

Vg
H(Z,Fy) ———— H.(Ey)

lpu,* ipEU,*

H.(Z,Z\U,Fy) H.(Ey,Ey \ Ev,)
NTJ'U,*
\I/EUy "
U ouU, ZUfy) H*(EijEUy)

The map jy. : C’*(EUJ,,E;});) — C.(Ey, Ey/Ey,) is the homotopy equivalence given by excision
and pg, « @ Cu(Ey) = Cu(Ey,Ey/Ey,), pux : Ci(Z,Fy) — Ciu(Z,Z \ U, Fy) are the canonical
projections. Let {s, € C|;(W"(x))} be a representing chain system for the Latour cells. We can
define evaluation maps (see Definition Qe Wu(x) — P..x/yX/Y into the space of based paths
in X/Y or ¢¥ : W%(z) — Piu, Uy into Uy. These two maps respectively evaluate s, to obtain
My € Cly|(Pasx/yX/Y), or to obtain mY € Cjy(Pumsvy, Uy, Pussouy, Uy).

It is then clear that, up to homotopy, for all o € Fy,

JU (Y iy, (@@ 1)) = ju((a@my)) = ppy «(B(a @ my)) = ppy,«(Vi, (@@ 1)) € Cu(Ey, Ey \ Euy).

|
In order to finish the proof of Theorem [3.2] we prove the following proposition, which is a result that has
been referred to in [BDHO24, Remark 9.2.5].

Proposition 3.4. The Morse identification H,(U,0U,i;;F) = H,_(Y,1*F) corresponds to the Thom
isomorphism in the sense that the diagram

H.(U,0U,it, F) = Ho (Y, i*F)

/ \

H.(Ey, Ef) H, (Ey)

commutes.

Proof. Tt is enough to consider the pullback fibration by 8 and prove that the diagram

UaUZU]:y *kYZ]:y

%k

H.(Eyy, Ef i H._x(Ey,y).

commutes.

Let o € F and = € Crit(fy). Denote |z|y = |z| + k the index of = as a critical point of fy. Let
{80,y € Claj—yj-1(Ly (2,y)), x,y € Crit(fy)} be a representing chain system for the Morse moduli
spaces in Y and {s) € Cl,, (Wii(z)), = € Crit(fy)} a compatible representing chain system of the
Latour cells in Y as defined in Definition [2.14] Recall that it is a family of chains that satisfies

1. each sY is a cycle relative to the boundary and represents the fundamental class [Wyt(x), OW(z)].

2. each s, satisfies 0s, = Z Sz X 8y With the product of chains defined via the inclusions Ly (z, y) x

y
We want to build a family {s{ € C|,, (W&(z),0U NW(z)),z € Crit(fy)} such that

1. s¥ is a cycle relative to the boundary and represents the fundamental class [W(z), OWE(x)].
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2. s¥ = sg|[071]|m|x{0}e Clz|(Wi(x)) is a representing chain system of the unstable manifold of x
seen as a critical point in Y.

3. a= S$U|{0}><[0’1]k is a representative of the fundamental class [D*, ODF].

Once such a representing chain system is built, we can define the associated twisting cocycle mY and
mY by evaluating respectively s} and s in the space of based paths of Y/) and U/)Y. Recall that the
isomorphisms Vg, ,, and ¥, ,, are then defined by

Vg, (a®@z) =0 (a@ml) and Vg, ,(a @) = B (@ @m)).

We then can just evaluate at the chain level using a representative 7 of the Thom class [7] € H*(Eyy, an):
Uy (Vg (a®2)) = u(Pu(@@ml)) = 7(a)2u(a@m)) = 2. (a@m)) = Vg, (a® ).

It remains to construct such a representing chain system {s¥, x € Crit(fy)}. We do it by induction on

|z|y. Let {sY, = € Crit(fy)} be a representing chain system of the Latour cells {W;ﬁ(z)}

If |z|y = 0, then W, (2) = D* and 8U1WZ (x) i(’)W?](z) = OD*. Define s¥ = a to be a representative

of the fundamental class [DF, OD¥| = [W; (), OW ; (x)].

Suppose now that syU has been constructed for every |y|y <! for some | € N. Let = € Criti11(fy).

Y

Define s¥ = s¥ x a and remark that, since a is a cycle,

U _ U
0s, = E Sa,ySy
Y

and it is a representative of [0W(z)] by the induction hypothesis. Indeed,

oWi(x) = |J Lu(z,y) x Wiy)

ly|<|z|

and the product orientation is equal to the boundary orientation. Therefore, if s’V is a representative
of [W(z)], there exists a chain p, € C,|(W(x)) such that 9(sY — s)V) = dp,.

It follows that sV + p, — s§ € Cj,, (Wi(x)) is a cycle. However, since W#(x) is a |z|y-dimensional,
closed and connected manifold with boundary and corners, we have H\,|, (W{(x)) = 0 and therefore
there exists b € C|y),+1 (W (z)) such that

and therefore

sy = sy = W), 0OW(x)] € g, (Wi (), OW (2)).

x

|
To summarize, we have proved that the diagram
P!
H.(Z, F) . H.(U,0U,i5F) H, (Y, p*F)
tu,!
l\PE \L‘PEU \IJEY \L
H.(E) e H.(Ey, EF) - H._(By)
P!
commutes and therefore Theorem [3.2]is proved.
|
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4 Morse homology with coefficients in an A,-module

In this section, we extend the construction of Morse homology with coefficients in a DG module to the more
general case of a A.-module structure over C,(2X). The main motivation to consider this setting is that a
morphism of A,,-modules ¢ : A — A’ induces a morphism of enriched complexes ¢ : C, (X, A) = C, (X, A)
(Proposition . This property plays a key role in the definition of the Chas-Sullivan product CSp¢.

4.1 A, -modules over C,(QX)

The complex C,.(©2.X) has an associative algebra structure, which we view as an As-algebra structure (y;);>o0
given by the differential 11 : C,(2X) — C,._1(2X), the Pontryagin product ps : C.(Q2X)%? — C,(2X),
and p; =0 for ¢ > 3.

Definition 4.1. A differential graded Z-module (A, v = {v2}) is an Aoo-module over C.(QX) if for all
n > 1, the operations v : A® C.(QX)®"~! — A have degrees n — 2 and satisfy, for all N > 1,

o D1+ Y (D (1 @ @15 =0,
s+t=N r+s+t=N
s>1 r,s>1

Using the fact that p; = 0 for ¢ > 3, this leads to the equation

Z (1) (v @19 + Z (—D)" 218" @ @19+ Z (-1 v (18" @ua®1%) = 0. (5)
s+t=n r+t=n—1 r+t=n—2
s>1 r>1 r>1

Note that these functional expressions are subject to the Koszul sign rule when applied to elements: if
f:Vi— W, and g: V] — W/ are homogeneous graded linear maps of respective degrees |f| and |g|, then
forany 2@y € Vo V', (f@g)(zoy) = (1)W1 f(z) @ g(y).

Definition 4.2. A morphism ¢ : (A,v2) — (B,vB) of Aw-modules over C,(2X) is the data, for all
n > 1, of a chain map @, : A® C.(QX)®""1 — B of degree n — 1 such that for all N € N*,

Z (_1)T+St§0r+t+1(]-®r ® I/;A ® 1®t) _ Z (_1)(s+1)t1/3_1((ps ® 1®t).
r+s+t=N s+t=N

Using that C.(QX) is an associative algebra, we get

N
Z (_l)n(k+1)(;07z+1(V;?_i_l@l@n) —+ Z(—l)N¢N+1(1®T Q@ 1®N7r)
n+k=N r—1
N—-1
T DN @ 19N ) = 3T () (o @1°7).
r=1 ntk=N

(6)

4.2 Complex with coefficients in an A,-module

Defining a complex with this larger kind of coefficients is not very different from the case of DG modules.
However, in order to prove that there exist A., analogues for the definitions and tools of [BDHO24|, raw
computations can be very complicated. That is why, in this paper, we deliberately use as much functional
expressions as possible in order to avoid Kozsul signs that quickly make computations unreadable. To this
effect, we use the following notation:
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Notation 4.3. Let {m,, € Clz—|y-1(2X), z,y € Crit(f)} be a twisting cocycle. We denote m €
Hom_1(ZCrit(f), C.(2X) @ ZCrit(f)) the morphism given by

x) = me’y R y.
y

For a more compact writing, if A is an As-module over C.(QX), we extend m to m € End_; (ARTC,(2X)®
ZCrit(f)) defined by

maen@ - @uer)=1"gm)(aen @ - 0n ),

where TC,( @C QX)®" is the tensor algebra of C,.(QX).
i>0
We also extend py and ps to A® TCL(QX) ® ZCrit(f) by

fla®n @ - @uer)=1%emuel)(a®n ® - ®p @),
fio(@@N @ @Y1 @) = (1% @ pue @ 1)(a® 71 @+ @ Ypy1 @ T).

Lemma 4.4. The Maurer-Cartan equation can be written as
fiim + fig? = 0. (7)

Proof. Using the Kozsul sign rule, we check

Yy
—Z D Fla@mn @ @9 @ pa(me,. @m.y) @y
_Z lx‘ ‘Z a®71®"'®’yk®mw,z®mz,y®y)

=—pm*(a®y Q- @y Q).

|
Using this equation, we prove a technical lemma that will be useful in several proofs :
Lemma 4.5. For allr € {1,...,N},
(71)N(1®7‘ R ® 1®N7T)ﬁ1N _ (71)7‘+1(1®r Q pa ® 1®N*T)ﬁ1N+1'
Proof.
(DY @y @ 1PV )Y = (<)Y ()N RN
= — (1)t
= —(=1)"(1%" @ py @ 18N "")ymN 1,
|

Definition 4.6. Let f : X — R be a Morse function on X, {mg, € C|y)—y-1(QX), x,y € Crit(f)} be a
twisting cocycle and (A, v = {v,}n) be a Aso-module over C\.(2X). We define the complex

Ci(X,myy, A) = Cu(X, A) := A, @ ZCrit(f),

endowed with the differential

0=>> (Vpy1 ® 1)m"

n>0
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Remark 4.7. This sum is finite because m strictly decreases the index of the critical point. We can also
remark that if A is a DG-module (i.e, v,11 = 0 for all n > 2), then this differential corresponds to the
known differential for the DG Morse complex.

Proposition 4.8. The application 0 is a differential on C,.(X,my ,, A).

Proof. The application 0 has degree —1 because m" has degree —n and v, 1 has degree n — 1.
It remains to show that 9% = 0.

82 = Z(l/n+1 X I)Iﬁn(yk+1 ® l)ﬁlk

n,k
=Y (=) V(g @ Dt
n,k
N N-1
:_le Nun41(1%7 @ py @ 19V +Z D'on(1%97 @ pp @ 19V 71- T)]rhN_
N r=1 r=1

We used equation (5] for the last equality. It then follows, using Lemma that

N N-1
0% =— [Z( DV (197 @y @ 19977 + Z (—1D)"vn(1%" @ g ® 1®N_1_7’)] m”
N r=1 r=1

N N-—-1
_ [Z VN+1(]-® Q s ® 1®N r) N+1 Z(_l)rVN(:l@r ® Uz ® 1®N—1—r)ﬁ,lN‘|
N

r=1 r=1

=0

|
We will also denote the associated homology groups by H.(X,mg,,A). If {m,,} is a Barraud-Cornea
cocycle, we will denote H,(X,.A) the associated homology groups ; we will prove in Theorem that this
homology does not depend on the Morse data set = used to define the {m, ,}.

4.3 A.-Morse toolset

The following propositions are A, analogues to [BDHO24| Proposition 2.3.3 and Proposition 2.3.4. The
goal is to prove that a cocycle defined by a homotopy between two Morse-Smale pairs induces a chain map
between enriched complexes defined using those pairs. If those cocycles are themselves homotopic (in a sense
that will be defined in equation ), then it induces an homotopy between the chain maps. However, we
will state these propositions in a more general setting, so they can be applied even in situations where the
twisting cocycles considered are not Barraud-Cornea cocycles. Let F be an As-module over C,(2X).

Proposition 4.9. Let fo, f1 : X — R be two Morse functions on X. Let {mg,y € Clz|—jy-1(2X), =,y €
Crit(fo)} and {m}, , € Clar|—y|-1(2X), ',y € Crit(f1)} be twisting cocycles.
Let {74y € Claj—1y|(2X), 2 € Crit(fo), 3’ € Crit(f1)} be a cocycle satisfying the equation

Oy = Z mg,z "Tzy T Z (_1)‘x‘_|w,|7x,w’ 'mqlu',y" (8)

z€Crit(fo) w’ €Crit(f1)

Then, the map ¥ : Co(X,m3 , F) = C(X,m} ,, F) defined by

S

V=33 ()" (s ® Vi) g

n>1u=1

is a morphism of complexes where ¥ € Homg(F ® TC,(QX) ® ZCrit(fy), F @ TC.(2X) ® ZCrit(f1)) is
defined below.
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Remark 4.10. We used notations similar to those in the previous section : Define the morphism T €

Homg (ZCrit(fo), Ci (2X) ® ZCrit(f1)) by
= Z Tm7y/ ® y/
yl
and 7 € Homo(F @ TC,(2X) @ ZCrit(fo), F @ TC(2X) ® ZCrit(f1)) b

Flaem® - onuer)= 1" e aen e @y o).
We can then write equation as

1T = floTi gy — f2mm)T

Proof of Proposition[{.9 We compute

o = ZZ )" (Vi1 © DIy (vng1 © iy “Fig!
n>1u=1
k>0

D) D e ORI YA E S e

n>1u=1
k>0

and
VO =3 D (=" (s @ D FRG (s © 1,
=3 D (D)D) EIOID v @ Dyt Fm
= Z Z (1) Y1)+ @ 1>m?1+)k7u7~_ﬁ1?07)1.
Therefore, by taking N =n + k,

Vo — OV = Zﬁ:(—

N>1u=1

Rr RQN—1—1r ~N—u~=~u—1
—1—2 VN1 @ uae ® 1 )] m T

We decompose the computation of (17 @ puy ® 19V -")m (1) Tm(o) into three cases:

1. If r <w— 1, Lemma [£5] gives

(197 @ 1 @ 19N )mf T Fi = (1) (1% @ pp @ 19N )m Y A

(€] 0)
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2. If r > u, the same lemma gives

(1@7" Q1 ® 1®N_r)fflé\1[)7u7~'ﬁl?07)1 _ (_1)N—r+1<1®r ® po ® 1®N—T)ﬁlé\l;k17u7~;r~huofl.

3. If r = u, we use equation @ to obtain the equality:

(1% @ pn @ 19V )m T Fg
(—l)N Uth

- ~u—1
(1) (i 7)m,

(_1)N_um(1) [z 0) — izt 7] rh?o)

_ (_1)N—u(1®u ® Lo ® 1®N—r> [ﬁlé\{;u%rh?o) _ I—hé\{;rl UE 1(;0)1

Therefore,
D% @ p @ 1N ) m T Fmy
— Z( 1)N—r(1®r ® pa ® 1®N r)rhé\lf;u%rhuo)
r=1
N
+ (_1)N—7-+1(1®r ® Lo ® 1®N—1) ~ é\{;kl uf‘ﬁl?o)17
r=u
and

00— = 33 [ S0y (197 8 iy © 19Ny D)
N u=1 Lr=1

+

] =

(D) un 1 (17 @ pp @ 18N ") Pyt

r

u
—1

2

(=1)“Tun(1%7 @ po ® 1®N*1*T)mﬁ) “i-ﬁl?o—)

(]

1

S <
|

Indeed, for every triple (N, u,r) with N >3, N > u, and N > r, the term
(1) un (1% @ pp @ 19V A

appears only once with a positive sign (either in the first sum if » < u — 1 or in the second sum) and always
once negatively in the third sum.

|
The next proposition is an A, analogue to Proposition 2.3.4 of [BDHO24|. It aims to provide homotopies
between the maps defined by the previous proposition. We will state this proposition to the same degree of
generality as the previous one.

Proposition 4.11. Let fy, f1 : X — R be Morse functions. Let {m%y € Clz—1y|-1(2X), z,y € Crit(fo)}
and {m}, ,, € Clo|—1y-1(2X), 2,y € Crit(f1)} be twisting cocycles. Let {7z, € Cly—py(2X), = €
Crit(fo), v € Crit(f1)} and {7, € Cz)_1y|(Q2X), x € Crit(fo), y" € Crit(f1)} be cocycles that satisfy @®).
and let ¥ and W' be the morphisms associated with {7y, } and {7, .} respectively (see Proposition .
Suppose that there erists a cocycle {hy € Clg)—1y+1(QX)} such that

firthey = Toy — Toy + Z 1)lel=l2 ‘m ol Z (—n)le=lwlh, 'mﬂ}v’,y" (10)
z€Crit(fo) w’ €Crit(f1)
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Then the map H : Co(X F) = Cup1(X,ml | F) defined by

Yy’

H= ZZ”"H@ (" by,

n>1u=1

Iy’

18 a chain homotopy between ¥ and ¥'.

Remark 4.12. We will refer to such a cocycle {hy ,} as a homotopy cocycle.
As for any cocycle, we used the notations

h € Hom; (F @ TC,(2X) ® ZCrit(fo), F @ TC,(QX) @ ZCrit(f1))

for the morphism associated with a homotopy cocycle {hy,}. We can rewrite equation using this
morphism :

fuh =7 — 7 — ishing) — ) h. (11)
Proof of Proposition[{.11} The proof is very similar to the proof of Proposition [1.9} We compute

ZZVW@l () (g1 @ 1) Rt

n>1u=1
k>0
= Z Z ("'H)k (Ve41Vn41 ® 1)m ) k=" hyn ?0)1
n>1u=1
E>0

and

k
HO=Y > (1 ® 1)rhfﬁuhrhz‘031(un+1 ® 1),
n>0u=1
k>1

- Z Z DR (1 g v g @ 1)1 uh 1 ?OJ)W '

n>0u=1
E>1

n+k

=Y > (DO papn @ D e hing)

n>0u=n+1
E>1

Therefore, by taking N =n + k,

HO+0H = — ZZ D DN on (197 @ @ 1987

N>1u=1 L r
—|—Z )N ( 1®T®u2®l®N 1= - mév uhmz‘o)l.

u—1

We decompose the computation of (197 ® yy ® 19V -")m m; ; hm m into three cases:
1. If r <wu—1, Lemma gives

(197 @ @ 1#N ") m Ay = (=) (17 @ pp @ 19V )m Y hinf,.
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2. If r > u, the same lemma gives

(1®r ®M1 ® 1®N—7") é\{) uh ~ ?0)1 _ ( 1)N—r+1(1®7' ®/1*2 ® 1®N—T)mé\{;L1 uh~ 210)1.

3. If r = u, we use equation to obtain the equality:
Ru QN —u\, =~ N ~ 1
(19 @ @ 19V iy o)

= (DY )

(1)Y= [F = # — fishifg) — o) Rlm .

Therefore,

D (1% @ py @ 19N )Y hang !

T

= Z(_1)N—T(1®T ® pp @ 19N m T A

N
+Z N —r+1 1®r®'u2®1®N r)ﬁ,lé\lfjl uh~'21,0)1
r=u

+ ( 1)N u+1(1®r ® Lo ® 1®N r) é\lf) uf’ﬁl?ogl _ (_1)N—u+1(1®r ® Lo ® 1®N—r)l;hN uq':/fhu71

and

N u
HO 01 = 35 |31 (197 & 158y R
N u=1 [r=1

N

N-1

VN 1®r®’u ®1®N 1— T) Nfuﬁﬁlufl

!
m, “himg | + V-0

M

r:l

=v -V

4.4 Filtration and spectral sequence

If f: X — Ris a Morse function on X, {m,, € Cjz—jy-1(2X), 2,y € Crit(f)} is a twisting cocycle and
F is an As-module over C,(©2X), then the associated enriched Morse complex has a natural filtration

Fp(Cul(X,may, F)) = @ F; @ ZCrit(f).

itj=k
i<p

The spectral sequence E  associated to this filtration converges to H,+,(X,F) and its first page is

E, , = Hy(F) ® ZCrity(f).

The structure of A, Z[r1(X)]-module on H,(F) is associative. Therefore, we can define a differential on
this first page in the same way as in the case of a DG-module :



The second page is given by R
Ep o = Hy(Cp(£): Hy(F)),

where C,,(f) = Z[r1(X)] ®z ZCrit,(f) endowed with the differential

d*(x) = Z Mgy Y.

lyl=le|-1

4.5 Invariance and A, continuation map

Let =y and E; be enriched Morse data on X and let F be a A.-module over C,(2X). We prove that
there exists a continuation map Wy : Cy(X,Zg, F) — Ci(X,Z1,F) which is a quasi-isomorphism. As a
consequence, the homology of the enriched complex with coefficients in a A..-module does not depend on
any of the choices that have been made to define it.

Following [BDHO24, Lemma 6.2.1], one builds a DG Morse set of continuation data =Z on X x [0,1] by
considering a representing chain system sp on the moduli spaces of trajectories in X x [0, 1] such that:

— SEaome = (—1)IFITWs g ., for all 2,y € Crit(fy).

— SFaiy = 5(1),a,y for all z,y € Crit(f1).

— Oy = SF.a,y for all € Crit(fo) and y € Crit(f1).

The family {04} can then be evaluated into X to build a continuation cocycle {7,y € Cjz)—1,|(2X), z €
Crit(fo), v € Crit(f1)} associated to the continuation data =. For i € {0, 1}, denote m; , the Barraud-
Cornea twisting cocycle defined by Z,. The cocycle {7, ,} satisfies equation .

Definition 4.13. We call Ao continuation map the map induced by {7, € C|y 1y (2X), z € Crit(fo), y

Crit(f1)} by Proposition : ~
U= Cu(X, B0, F) = Cu(X,E1, F)

defined by

n

=22 (1" (vner © DiRG G
n>1u

=1

(1

v

Proposition 4.14. Let T C'(fo,fo) — C'(fl,fl) be the morphism between lifted Morse complexes defined
by V() =312y Moy, where gy is the projection of 7oy in Ho(QX) = Z[m (X)].

If\if s a quast-isomorphism, then so is W.

Proof. As in [BDHO24| Proposition 4.4.1], the proof comes from the fact that ¥ preserves the canonical

filtrations and therefore induces a morphism of spectral sequences (‘I/(r))T such that ¥4 = Id @ 0. It

then follows from the existence of a spectral sequence for the change of coefficients that, if ¥ is a quasi-
isomorphism, then so is ¥ and therefore .

|

The A, continuation map W= is therefore a quasi-isomorphism since it is shown in [BDHO24, Proposition

6.2.2] that the cocycle {7, ,} satisfies the condition of Proposition Hence, the homology H.(X,F) is
well-defined if F is an Aq,-module over C,(Q2X).

In fact more is true : there is an A, analogue of the invariance Theorem 2.8

Theorem 4.15. Let F be an As-module over C,(2X).

1) Given two sets Zg and 21 of enriched Morse data on X and continuation data = on X x [0,1] , the A
continuation map V= : O, (X, =0, F) — C.(X,Z1,F) is a homotopy equivalence and its chain homotopy type
only depends on Zy and Z,. The map V= is in particular a quasi-isomorphism.

2) Given another set of data E2 on X and denoting ¥;; the Ao, continuation map between the data Z; and
E;, then Woq is homotopic to the identity and Voo is homotopic to Wiz o Wo1. In particular, in homology

25



“IIOO =1Id and ‘1112 e} \1101 = \1102.

T heorem is proven in [BDHO24l Section 6.2.2]. Using Proposition to construct homotopies between
continuation maps, their proof carries over in our setting.

5 Morphisms of fibrations and A,-morphism of modules. Proof of
Theorem B

The main goal of this section is to prove that a morphism of fibrations ¢ : Fy — FEs over X induces a
morphism of complexes ¢ : Cy (X, Ci(F1)) = Cu(X, Ci(F»)) that is compatible with the Fibration theorem,
with direct and shriek maps. The main difficulty is that ¢ does not necessarily respect the transitive lifting
functions associated to the fibrations F; — EF; — X and Fy — F5 — X and therefore does not induce a DG
morphism of modules over C,(2X) from C,(F1) to C.(F3) in general. Hence, the map ¢ : Ci(X, C.(F1)) —
Co(X,Cu(Fy)), ¢(a® x) = pu () @ x is a priori not a morphism of complexes. We will prove that if there
exists a morphism ¢ : F — G of As-modules over C,(Q2X), then there exists a morphism of complexes
@ Cu(X,F) = Ci(X,G) compatible with direct and shriek maps.

In the context of a fibration, we will prove Theorem B that states that a morphism of fibrations
¢ : By — FE5 induces a morphism ¢ : C.(Fy) — Ci(F») of As-modules over C(2X) and that the map ¢ :
C.(X,F) = C.(X, G) corresponds to the map ¢, : Cx(E;) — C.(E>) via the Fibration Theorem. Therefore,
in this context, ¢ inherits the good functorial behavior of singular complexes in our finite dimensional model
of enriched Morse complexes.

5.1 Functoriality with respect to the coefficients
Let = be a set of DG Morse data on X with Morse function f: R — X.

Proposition 5.1. Let ¢ : (A, ') — (B vB) be a morphism of Axs-modules over C,(QX).
Then, the map ¢ : C (X, 2, A) = C(X, 2, B) defined by

o= Z(Qpnﬂ ® 1)m"

n>0
is a morphism of complezes.

Proof. The definition of m € End_; (A ® TC,(QX) ® ZCrit(f)) and is given in
We use equation @ to compute

0p = Z( Vi1 @ " (ppp1 @ 1)
= Z Viy1(pp41 ®197) @ 1)m

_ Z n(k+ ) @n+1(yl?+1 ® 1®n) ® 1)ﬁ,ln+k

N—-1
+Z Z Won1 (17 @ @ 18V7) + 3 " (1) N (17 @ pp ® 19N 177) [ Y
r=1 r=1

and

#0= 3 (prn @ D" iy @ D1

= Z "D (o1 (vt @ 197) ® 1m" .
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It then follows from Lemma that 0p — 0 = 0, and ¢ is indeed a morphism of complexes.

Notation 5.2. For any ¢ : (A, v) = (B,v3) morphism of As-modules over C,(QX), we will denote
¢:C(X,2,A) = C.(X,E,B)

the associated morphism of complezes.

5.2 Topological modules and morphisms of fibrations. Proof of Theorem B

Since many naturally occuring morphisms of A.,-modules are of a topological nature, we define the notion
of A.-morphism of topological modules over Q2X.
We will denote - the concatenation.

Definition 5.3. Let (F,vr) and (G, vg) be two topological spaces endowed with strictly associative topological
module structures over QX. An As-morphism of topological modules (over QX ) is the data of a
sequence of maps

Ont1 I X FXx QX" -G, n>0

such that for all ty,...,t, € I, a € F and y1,...,7v, € X,

§0n+1(t17...,tn,O{7’}/1,...,")/n,) =

(pn(tgi...,tn,yp(a,'yl),’yg, ceyYn) if =1, (12)
(pn(tj,()é,’}/l,...,’)/j_l"‘}/j,...,")/n) iftjil, jZQ,
va (@t tjo1, 00y, Yi-1),% - -0 ) if t; = 0.

Remark 5.4. The reader accustomed to Aso-theory may expect the maps ¢,11 to be defined on the multi-
plihedra J,, introduced in [Sta70]. Since we will mainly work on fibrations, where we can always assume that
there exists a transitive lifting function, we will only work on the case where F' and G have strictly associa-
tive topological module structures on QX itself endowed with a strictly associative multiplication. The next
proposition is a proof that cubes are enough to encode coherent homotopies for a map between two strictly
associative (topological) modules over a strictly associative (topological) algebra.

Proposition 5.5. An A, -morphism of topological modules {¢n+1 : [" X FxQX™ — G} induces a morphism
¢ : (Cu(F),0,vp.) = (Cu(G),0,vG.4) of Ass-modules over C(2X), where ¢py1 : Cu(F) @ C.(QX)®" —
C(G), the map of degree n induced by ¢, +1, is defined by

¢n+1(a Q1 &:--- ®'}/n) = @n-&—l,*(IdI" Ry &« ®’7n)

Proof. Let p, : C(2X) ® Ci(2X) — C,(Q2X) denote the Pontryagin-product. We use equation in
order to compute d¢,1 for alln € N :

8¢n+1(a®71 Q- ®7n)

n—1
— . 1®7L 1 1®7’ 1®n 1—ry _1 n—1 . 1
¢n(l/F ® + Z (bn( &® Usx @ ) ( ) va, ((bn ® )+ \O,/
=t Tl tr=1, r>2 £ t,=0, r<n
+Z )" s 1(1%" @ @1 | (@Y1 @ -+ @ ).

Indeed, forany § € F, 71,...,7, € QX, if there exists r < n such that ¢, = 0, then @, 11(¢t1,. .., 0, 0,71, .., Tn)

does not depend on t,41. Therefore, ¢, +1(a@® ¥ & -+ - ® V)¢, =0 is a degenerate chain.
This shows that ¢ : (C.(F),d,vp.) = (Ci(G),0,ve,.) satisfies equation (6) and finishes the proof.
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Proposition [5.1] gives a direct Corollary.

Corollary 5.6. If {11 : " x F x QX" — G} is an As-morphism of topological modules, then it induces
a morphism of complezes
¢ : Cu(X, Cu(F)) = Cu(X, C(G)).

Assume that F' and G are fibers of fibrations F' — FE; — X and G — FE; — X endowed with the
QX topological module structures induced by transitive lifting functions. For the morphism of complexes
@ 1 Cu(X,Ci(F)) = Cu(X,Ci(G)) to be compatible with the Fibration Theorem, we will require that
{ont1 : I" X F x QX™ — G} is induced by a morphism of fibrations ¢, : £y — Es.

Definition 5.7. Let F — F1 5 X and Fy — Es 3 X be fibrations over X. A morphism of fibrations
(over X) is a continuous map p : E1 — Es such that o 0 ¢ = 1.

A morphism of fibrations does not in general preserve lifting functions. Indeed, consider QX — £X % X
endowed with the transitive lifting function

®:LX ev Xevg PX — EX; (D(OZ?’Y) = ’y_lafy

and the fibration of the figure-eight space QX2 — LX ., Xep LX 23 X endowed with the transitive lifting
function
o2 . (LX evXew LX) ev Xevy PX, @2(((1,[3),7) = ('y*la'y,'y*lﬁ’y).

The concatenation m : (£LX ¢, Xey LX) — LX does not preserve those transitive lifting functions :
m(®((e, B),7)) =7 ey By # v TaBy = ®(m(, B), 7).
This makes it difficult to define a morphism

m: Ho (X, C,(QX?)) = H.(X,C.(2X))

~H(LX evXen LX) ~H, (LX)

at the chain level, since it would have to be compatible with the module structures, which are themselves
defined by the respective transitive lifting functions.

However, Theorem B states that every morphism of fibrations yields a morphism between enriched Morse
complexes that corresponds to the morphism between the singular complexes of the total spaces. We will
now restate Theorem B and prove it.

Theorem 5.8. Let F} — E1 — X and F» — FEs — X be two fibrations. Let ¢ : E1 — E5 be a morphism
of fibrations and = be a set of DG Morse data on X.

1) There exists a sequence of maps {gonH IPX P x QXTI P v X — Eg} called a coherent homo-
topy for ¢ that induces a morphism of complezes ¢ : Cy (X, 2, Ci(F1)) = Cu(X, E, Ci(F2)).

ii) A coherent homotopy induces a chain homotopy v : Cy (X, 2, Ci(F1)) — Ciuy1(E2) between ¥y 0 @ and

px oWy for any set of DG Morse data Z on X where the morphisms ¥y and Uy are the quasi-isomorphisms
given by the Fibration Theorem. In other words, the following diagram commutes up to chain homotopy

O*(XaEaC*(Fl)) L C*(X,E,C*(FQ))

©x
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Proof of i). We will prove that even if a priori
Fi xPoxX — FEs Fi xPeiyxX — FEy
(a,7) = Pa(p(a),y) (a,7) = o(®1(a, 7))

these maps are always homotopic and there exists a family of higher homotopies as defined in the following
lemma.

#

Lemma 5.9. Let F} — E; 2 X and Fy — Fy 33 X be two fibrations over X endowed with transitive lifting
functions ®1 : B1 X PyysxX — Fq and $y : Es X Pyox X — FEs.

For any morphism of fibrations ¢ : By — Es, there exists a sequence of maps pn1 @ I™ x Fy x QX1 x
PisxX — Ey forn > 1 such that ¢ = ¢1, T2 0 @ni1(ti, - b, @Y1, -+, Yn) = ev1(Vn) and

@TH*l(tlw"7tn7a7’717"'a7’n) =

(pn(tQZ...7tn7<b1(()é,")/1),"}/2,...7’}/n) lf tl = ]., (13)
(pn(tﬁavryla"'a’yj—l"Yjv-“v’)/n) lft]:LjZQ,
(I)Z (goj(th7tj—17aa71777]—1)77_] ’Yn)) if t] = 0.

Definition 5.10. We say that a family
{gDnJrl I x By % QXn_l X PisxX — Eg}
satisfying equation is a coherent homotopy for the morphism of fibrations ¢ = 1.

Before proving this lemma, we will see how it concludes the proof of i).

If ¢ : By — F5 is a morphism of fibrations, Lemma build a coherent homotopy {@n4+1 : I™ X Fy X
QX" ! x P, ,xX — Eo, n > 1}. It suffices to check that a coherent homotopy induces an A,,-morphism
of topological modules {4,05#1 (I x By x QX" x QX — Fy,n > 0} where <pf1 = ¢|p: F1 — F> and

F
Soni,-l = Pn+1

ImxF xoxn- Indeed, it would prove that ¢|m,: F1 — F3 induces a morphism
@ Cu(X,E,Cu(Fr)) = Cu(X, E, Ci(F2))

by Corollary [5.6]
First remark that since mo 0 ¢ = m, @(F1) C Fy and therefore ¢|p: F; — F». Moreover, since for any

tyee sty QYo s Y1, T € TP X Fy X QX" VX P x X, 20 0ni1(tiy e stns Y1,y Yn) = ev1(Vn), if
Yn € QX, then @pi1(t1, .- tn, @Y1, -y, Tn) € Fa.

The module structure on C(Fy) and C,(F») are defined by the lifting functions ®; and ®,. Therefore since
{pns1: " x Fy x QX" x P, ,x X — Ey} satisfies equation , the family {<P53r1 I X Fy x QX" — Fo}
satisfies equation and indeed defines an A.,-morphism of topological modules over Q.X.

Proof of Lemma[5.9
Before defining the whole coherent homotopy for the morphism of fibrations ¢ : Fy — FEs, let us define
wo : I X F; X PouxX — Es. This map is a homotopy between ¢2(0,-) : (a,y) — Pa(¢(a),v) and

©2(1,7) : (a,7) = o(P1 (e, 7))
Let aw € Fy and 7 : [0,s] = X € P, xX. This homotopy is defined by

P2 (t7 @, 7) =D (QO((I)l (O[, ’Y|[O,ts]))7 ’Y[t&s])'

It lifts a part of v in E starting from «, sends ®1(a, v|jo,¢5)) into Eo by ¢ and lifts the rest of  starting from
©(P1(a, Yljo,4]))-
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We now define ¢, 41 : I™ X F1 X QX" 1 x P, xX — E, for all n > 1. Let us first fix some notations.
o Let Jy : I x [0,+00) — [0,400)

Ji(t,s) = ts.
For any n > 2, define J,, : I" x [0,400)™ — [0, +00) by

Jn(th cee vtnysla < Sn) = Jnfl(tlw <. 7tn717817" <y Sn—1 +tnsn)
= tl(Sl + tQ(SQ +t3(53 =+ .- +tn_1(8n_1 + tnsn) . )))

By convention, we set Jy = 0.
For any n € N, denote
I%(ty, ... tnyS15e e 80) = [0, Tt oo oy 81, ... 50)]

and
I,ll(tl,...,tn,sh...sn) = [Jn(t1, .. tn, 81, Sn), 81+ -+ + Sl

e In the following arguments, for any v; € P, x X we will always denote a; > 0 such that ; : [0,a;] — X.
Let o I x E1 X P*ﬂXX — EQ,

Tl(tv avfyl) =@ (‘I)l(a,’hho,ml})) .
For any n > 2, define 7, : I x F} x QX" ! x P,_,xX — E, by

T’I’L(tla PN N T L P a’Y'rL) =Tn-1 (tla s b1, 0591, Y (’YRI[O,tnan]))
=@ ((I)l (Oé, (71 Toeee ’Yn)IIBL(tl,...,tn,al,...,an))) :

30



By convention, we set rg = ¢ : By — Ejs.
e Define the coherent homotopy in the following way :
Let n > 1. Define ¢, 11 : I" x F} x QX" ! x P, ,x — FE3 by

@n+1(t17~"7tn7a771a"'7777,):(PQ (Tn(tlw">tn7a7’71a"'77n)7(71' '7n)|]1(t1 ..... tr s Q1 yeney an))'

We now prove that this satisfies the three equations of .
First, we remark that for any n > 1, 5 > 2, k> 1, t1,ta,...,t, € I" and sy,...,s, € [0,+00)™,

Jn(l,tg,...,tn,sl,. --73n) = S51 + Jn_l(tg,...,tn,SQ,...,Sn), (14)
Jn(tj = 1,81,...,Sn) = Jn,l(fj,sl,...,sj,l +Sj,...,8n), (15)
Jn(tk =0,81,.-.,8,) = Jk—l(t1,~ cootp—1,81,.- .,sk_l), (16)

where tAj = (tl, NN 7tj_1,tj+1, ‘e ,tn)

First equation : For any n > 1, t1,t9,...,t, € [, a € F} and 71,...,7, € QX™ X Py, x X, using ,

(’)/1 .t 'yn)|[2(1’t2’..,,tn,al,...,an): T - (72 Tl 7 ’YTL) 1271(t2,<~~7tn7a27'“7an)
and ( ) )
. . _ Y2 - " Un 1;71(tz,,..,tn,azymyan) lfTL Z 2
('71 e 'Yn)|I}L(1,t2,...,tn,a1,...,an) { evl(’}/l) lf n = 1
Therefore,
(L ta, oy tn, Y1, ) = @(<I>1 (am (2 - ~%)|13_1(tz,...,tn,az,...,m))
= <P<‘I)1 (‘131(04771)7(72' v IO (o tnan,ens an)))
:Tnfl(t%--~7tn7a'71a72a"'a,yn)
and

g0n+1(17t27'"atnaaa’yla"w’)/n):Son(tQa"'7tn7a'71772%"7771)'
Second equation : Forany n > 2,7 > 2, t1,t9,...,t, € [", « € Fy and v1,...,7, € QX" X P, x X, using

),
(1 v M)

for ¢ € {0, 1}.
Hence,

Ii(t;j=1,a1,...,an) " (71 e (’ijl : ’7]) R Vn)|Ii_1(fj,az,.‘.,aj,lJraj,...an)

Spn+1(tj = 17047’717""’77’7,) = @n(fjaa7’yl7"'a’7jfl 7]77’771)
Third equation : Forany n > 1, k> 1, t1,ta,...,t, € I, a« € F1 and 71, ...,7, € QX" X P, x X, using

[,

(71 Toees " '7n)|10(tk:O,a1,...,an): ('Yl Toees " ’ykfl)|I,871(t1,.‘.,tk_l,al,...,ak._l)

and
(’Yl ‘7n)|]}1(tk:0,a1,...,an): (’71 "ykfl)|Ié71(tl,...,tk_l,al,.H,ak_l)"Yk' <o " Tne

Therefore,
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@n-‘rl(tk = Oaaa’yla cee a')/n)

= P, (rk,l(tl,...7tk,1,a,'yl,...77k,1)7(71- cee o Ye—1)| I (tretieran,ag—1)” Yk © oo ~'yn>
=, (% (Tk—l(tl,---’tk—l,Oé,’Yl,--~7’Yk—1)7(71' o M=) (et riansens ak,l)),’Yw "Yn)
= Do ( k(b1 ey b1y YLy e o s Yh—1)s Ve * -+ * Vn)-
|
This concludes the proof of i).
]

Proof of ii).

To finish the proof of Theorem [5.8] we now prove that such a coherent homotopy induces a chain homotopy
(VB O*(X,E,C*(Fl)) — C*+1(E2) between \1’2 o @ and ©x O \Ifl.

For i € {0,1}, we denote F; = C.(F;) endowed with the module structure induced by a transitive lifting
function associated to F; — E; — X. Let = be a set of DG Morse data on X with Morse function f. Let
{80,y € Clu)—jy|-1(L(2,y)), x,y € Crit(f)} be a representing chain system and for each z,y € Crit(f).
Define 'y, : £(x,y) — Py X to be the parametrization map by the values of f. The twisting cocycle
{my, € Claj—1y-1(QUX/Y)), x,y € Crit(f)} is defined by mj, , = p« 0 I'zy «(82y), so that the Barraud-
Cornea twisting cocycle satisfies m, , = 0.m}, , € Cjy|_|y—1(2X). The twisting cocycle {m/, ,} satisfies the
Maurer-Cartan equation

r_ |z|—|z],,,/ /
8mm,y - Z(_l) mw,zmz,y

z

We use the definition of the morphisms ¥, and ¥y from in Section @ Each of these morphisms is defined
as a composition of three maps :

Co(X My, Fi) & Co(X,ml, ,0°F1) B CL.(0°Ey) — C.(Ey),

Iy?

Co(X, My, Fo) & Co(X,ml, 07 F2) 23 CL (67 Ey) — Cu(E).

We state here a lemma proving that morphisms of fibrations are stable by pullback.

x,y)

Lemma 5.11. Let (Y,*y) be a smooth, oriented, pointed, closed and connected manifold. Let F — E ™ X

/
s

and F' — E" = X be fibrations, F — Ey — Y, F' — E{, = Y be the pullback fibrations by a continuous
map Y : Y — X such that Y(xy) =*. If ¢ : E — E’ is a morphism of fibrations over X, then

Vo By = By, ¥ o(y,a) = (y,p(a))

is a morphism of fibrations over Y .

Proof. Recall that
Ey ={(y,a) €Y X E,

By ={(y, )EYxE’

(@) = ()}
o) =1(y)}

'
a) = y and 7 (y,') = y. The statement is
7T

(y, ).

and my : By = Y, 7 : B}, — Y are defined by 7y (y,
therefore clear since for any (y,a) € Ey, n'(y, p(a)) =y =
|

We will show that the following diagram is commutative.

|
6.

ST
Cu(X Mg gy Fa) — Cu(X, il 0% Fp) — 22 CL (07 By) — > O, ().

Iy’
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Since F; ~ 0*F; is just an identification of DG modules, it is clear that the first square commutes. The third
square commutes by definition of the map 0*¢ : C\.(0*E1) — C.(6*E>) induced by ¢ : C.(E1) = Ci(Es).

In order to complete this proof, we now have to prove that the middle square commutes in homology :

We use the notation m € Hom_1 (ZCrit(f), C..(A(X/Y)) ® ZCrit(f)) for the map m(z) = 3> m; , ®y. We
will extend m in the same manner as in Section 2] to

1 € End_1(C.(F}) ® TC,(QX/Y)) ® ZCrit(f))
defined by
MmaRo ® - Qop@z)=1%"Tom)(a®e @ @0, ® ).

Given z € Crit(f), we can define m, € Cy(Ps— x/yX/Y) by evaluating on X/} a suitable representative of
the fundamental class of the Latour cell W*(z) (see [BDHO24, Lemma 7.3.2 and Lemma 7.3.3]). It satisfies
the equation

Imy = Z MYy My (17)
y€eCrit(f)

We denote m™ € Hom(ZCrit(f), Cy(Py— x/yX/Y)) the morphism defined by

mL(m) =My € Cm('P*HX/yX/y)

for all x € Crit(f) and we extend it to

B € Homo(F; © TC.(Q(X/)) © ZOrit(f), F; © TC.(Q(X/P)) @ Co(Pys x/y X/))
by
mfa®Re® - ®0,01)=a®0 @ @ 0 @My,
Therefore, for i € {1,2}, the definition of the quasi-isomorphism ¥, : C,.(X,m., _ ,0*F;) — C.(0*E;) can be

T,y
written
U, = &, ,m". (18)

Let {¢n41: 1" x Fy x Q(X/Y)" ' x P,,x/yX/Y — 0*E>} be a coherent homotopy for the morphism of
fibrations 6.
Denote ¢1 = 0* ¢, : C(0*E1) — C.(0*E2) and for all n > 1, define

Pni1: 0°F1L @ Cu(AUX/V)" ™ @ Cu(Pisux/pX/Y) = Cu(0" Es)
by
Ont1(@®01® - R0y) =nt1,:Idm ®a®01 @+ @ 0y).

Therefore

0" = ¢ppam.

n>0

The proof of Proposition also proves the following lemma.

Lemma 5.12. If we denote vi* and v¥ the differentials of A = 0*C.(Fy) and B = C.(0*Ey), vit = &4,
vl = &y and I/]? = V,? =0 for k > 3, then the Ay -relation @ is satisfied as a functional equality on maps
A® CQUX/V)" 1@ Cu(Pysx/pX/Y) = B for the family {6ns1 : A® Co(QX)" 1 @ Cy(Pusx X) —
B,n > 1}.
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We now define
v="Y (~1)"g, Tl  OL(X,m, ), 07 F1) = Cipa (0 B»)

and show that
(p*\I’l \IIQ (% —+ v@

We will denote p; the differential on C (2(X/Y)) as well as the differential on C\ (P, x/yX/Y) and po will
denote the Pontryagln product ps : Co(UX/P))RCL(AUX/Y)) = C(2(X/Y)) as well as the concatenation
po : Co(QUX/Y)) @ Cu(Passx/yX/Y) = Cu(Passx/yX/Y). Let us first remark that the equation (17)) can
be written

pimY = pgomm. (19)
We now use equation @ to compute
v =" (~1)" 0, it m" !
n>1
=> (-1 ¢, ®y . m" qu én @ 1)mEmn !
n>1
+ Z n+1 ¢n+la}_1mLm _ Z Z ¢n+1(1®r ® p ® 1®n_T)IﬁLIﬁn_l
n>1 n>1r>1
_ Z Z r+n¢ 1®r ® Lo ® 1®n r— 1)mLm —1
n>2r>1
=001 = > (~1)F g1 @yt mb — ) 0y b, mn !
k>1 n>1
- Z(_ +1¢n+1mLm 18]—'1 Z Z ¢7L+1(1®r ® M1 ® 1®"7T)ﬁlLﬁ'ln71
n>1 n>1r>1
+ Z Z D™ hp (197 @ pg @ 128 7)ymlmk,
E>1r>1

Moreover
v0 = v(0p, + ®1,.1M)
=3 ()" gpmm T oF, + ) (1) gm0 i

n>1 n>1
— Z(_l)n+1¢n+lﬁlLﬁlnfla}_l + Z(_l)n+1¢n+1‘bl,*ﬁ11‘ﬁ’ln-
n>1 n>1

Using equation (7)) and (19), we get a similar equation as in Lemma [4.5}
<1®r RO® 1®n—r>ﬁ,lLrhn _ (_1)r+n(1®r ® pa @ 1®"_r)fflLff1"+1.
We therefore get the relation

ov + vl = QD*\IJl — Z (I)27,,J}1L(bn+1l’hn = (p‘I’l — \1129*@.
n>0

[ |
We now state some corollaries of this Theorem.

Corollary 5.13. Let @1 : E ; Xep, PX = E and @o 1 E 1 Xy, PX — E be two transitive lifting functions
associated to a fibration F — E 5 X. Let = be a set of DG Morse data on X. For i € {1,2}, denote
Fi = Cu(F) endowed with the C.(QX)-module structure induced by ®; and ¥, : C.(X,E,F;) — Ci(E)
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the quasi-isomorphism given by the Fibration Theorem. Then Id : E — E induces a quasi-isomorphism
Id: Cu(X, 2, F1) = Cu(X,E, F2) such that the following diagram commutes up to homotopy,

O*(Xvaa]-l) - C*(X,E,‘FQ)

C.(B).

This result would be no much smaller task to prove on itself than Theorem [3.2] since one would need to
complete a homotopy between ®; and ®, into a whole coherent homotopy for Id and then prove that Id
corresponds to Id : C,(E) — C.(E).

Corollary 5.14. If ¢ : By — Es is a morphism of fibrations, then the map ¢ : H.(X,C.(F1)) —
H.(X,C.(Fy)) is well-defined.

Proof. Let =y and =1 be sets of DG Morse data on X. Proving this corollary amounts to prove that the
following diagram commutes

H.(X,Z0,C.(F))) —2> H,(X,Z0, C(F}))
l‘llm l‘l’m
Ho(X,Z1,Cu(F)) —2> Ho(X,Z1,Cu(F))).

We decompose this diagram in

H.(X,Z0,Cy(F1)) —2> H(X,Zo, Cu(F1))

i‘l’El l‘I’E2

Wo1 H*(El) i H*(EZ) Vo1

1 -1

H.(X,Z1,C.(F)) —2> H,(X,Z1, C(FY)).

Theorem gives that the two squares commutes. It remains to prove that Vg, o Vo; = Ug, in ho-
mology for ¢ € {0,1}. [BDHO24, Proposition 10.2.1] states that oy = Id, : H.(X,E, Cu(F1)) —
H.(X,E1,C«(F1)) and [BDHO24|, Proposition 9.8.1] states that ¥p,Id, = Idg, Ug,. This concludes the
proof of this Corollary.

|

Corollary 5.15. Let I} — E; — X and F, — Fy — X be two fibrations and ¢ : E1 — FEo a morphism
of fibrations. Let g : Y™ — X™ be a continuous map. Denote Fy = C(F1) and Fo = C.(F3). Then the
following diagram commutes

H.(Y,g"F1) —> H,(Y, 9" Fs)

H*(X,]:l) 7H*<X,./T"2)

Remark 5.16. Using a more algebraic approach for any morphism of complexes ¢ induced by a morphism
of Aoo-modules over Cy(QX), we will reprove this property as well as prove that the map ¢ is compatible

with shriek maps (Proposition .
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Proof. We will prove that this diagram is a face of cube where every other faces are commutative.

9" P

H.(Y,g"F1) H,.(Y,g"F2)
|
v} v k
WA E) 9 TP U (g"E»)
g :g*
|
|
|
Gx y 9=
H(X,F)= === =1 <= = = = H.(X, Fy)
Vg, AN \‘l’EQ
Vi, oo VE T2

The front face is commutative by general properties about pullback fibrations. Theorem [5.8] states that
the faces on the top and on the bottom are commutative. [BDHO24, Proposition 9.8.1] states that the
lateral faces are commutative. From there, a diagram chase concludes the proof.

|

Corollary 5.17. If ¢ : E1 — Es is a morphism of fibrations, then ¢ : H (X, C.(F1)) = H. (X, Ci(Fy))
does not depend on the coherent homotopy but only on . : H.(E1) — H.(E3). Moreover, if g, : H.(E1) —
H.(E3) is an isomorphism, then so is ¢ : H (X, C.(F1)) — H. (X, C.(F2)).

Corollary 5.18. If p: Ey — E1 and ¢ : E1 — Es are morphisms of fibrations, then 1o p : Ey — Ey is a
morphism of fibrations and
’Lp op = ¢ o ()5 : H*(E()) — H*(Eg)

Proof. Theorem proves that at the homology level,

pop="Vg o(hop),oWy!
:\I/Eooqp*ogp*o\llgzl
=Up, 0th 0 Vg o Wp, 0, 0Vp;
=Pop.

5.3 Compatibility with the A,-Morse toolset, direct and shriek maps

The main results of this section are that any morphism ¢ : F — G of A.-modules over C,(Q2X) induces
a well-defined map ¢ : H.(X,F) = H.(X,G) in homology and that it is compatible with direct and shriek
maps. Therefore, the reader only interested in the case of fibrations will only find here the proof of the
compatibility of ¢ with shriek maps. We have provided independent proofs of the compatibility with direct
maps (Corollary and the fact that ¢ : H. (X, F) — H.(X,G) is well-defined (Corollary using
Theorem [5.8] in the case of a fibration.

5.3.1 Compatibility with A, -Morse toolset

We prove here that the map induced by an A.,-morphism of modules commutes in homology with the maps
defined in Proposition [1.9} The statement and proof are quite technical since the proposition is aimed to be
applied in various situations.
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Proposition 5.19. Let fo, f1 : X — R be two Morse functions and F,G two Aoo-modules over C,(2X).
Let {m3 , € Clz—1y|-1(QX), 2,y € Crit(fo)} and {m}, v € Clo—1y|(QX), 2",y € Crit(f1)} be two twisting

s

cocycles on X. Let {1y € Clz—jy |(QX) x € Crlt(fo) y' € Crit(f1)} a cocycle satisfying (8).
Let Ur : Cu(X,m° F) = C.(X,m", F), ¥g : Cu(X,m°,G) — Ci(X,m!,G) be the morphisms defined in
using {7z € Clg|—|y|(QX), = € Crit(fo), y’ € Crit(fl)}.

Let ¢ : (F,vF) — (G,vF) be a morphism of Ax-modules and po : Cio(X,m°, F) — C(X,m°,G),

@1 Cu(X,m!, F) = C(X,m,G) be the induced morphisms of complexes as defined in Proposition .
Then, the following diagram commutes up to chain homotopy :

O (X, m0, F) —2"= € (X,m°, Q)

Wi lw

C.(X,m' F) ?C*(X,ml,g).

Proof. Let k: C(X,m° F) = Ciy1(X,m',G) defined by

k=YY (1" (pns1 @ D “Fiify

n>1u=1

We now prove that Vgpo — ¢1¥r = 0k + k0.
We compute

and

KO = Z Z Z(_l)u_l(‘Pn+1 ®@ Dy “Fm; ! (vg @ 1)in (0)1

k n>1lu=1
=20 2 U T DY pn v ® gy b
kE n>lu=1
n+k

- Z Z Z ()" (=) (op v @ 1)lf'fl?lJ)rk_u'T'lr'I';(lo_)1

k n>lu=k+1

n+k
D S ) s D
n>1u=1
Y S D s & DR
k n>lu=1

37



Therefore,

k
Ok + KO = Z Z Z(*1)%1(*1)(k71)n(<ﬁn+1’/k+1 ®1)m (1J)Hl€_u7~'rhuo_1

k n>lu=1
n+k

722 Z (=D (=D (Vi 19Pnt1 © 1)m (—s)_k_u‘fﬁl?o_)l

k n>1lu=n+1

- Z [Z NN (197 @y @ 197V77)

N>1 Lr=1
N—-1

N
(_1)7"%0]\](1@7’ ® Lo ® 1®N—1—7’)‘| lZ(_l)u—lm?lrk—u%m?o—)ll ]

u=1

-3 S erat om 12V
N2>1 Lr=1
N
+Z ) on (197 @ pp ® 198717 7)1 lZ(—l)“—lm?S’”%mgO;].
u=1

The same arguments as in the proof of Proposition concerning the relation between (19" @ pu; ®

18N= T)ﬁa?f)rk “-rm?o)l and (197 ® py @ 19N-1= T)m(l) “-T-Ih?o_)l depending on u and r show that the

last sum is 0 and therefore conclude the proof.
|

Corollary 5.20. For any data Z¢ and =1 over X and any morphism ¢ : (G,v,) — (G, V) of As-module
over C,(2X), the following diagram commutes up to chain homotopy:

O*(Xa EO7 g) & O*(X’ EO7 g/)

thl l‘l’m

O*(XaEhg) ? C*(XvEIag/)'

In particular, the map ¢ : H (X, G) — H.(X,G’) is then well-defined.

Proof. This is a consequence of Proposition with m? the Barraud-Cornea twisting cocycle arising from

=9, m! the Barraud-Cornea twisting cocycle arising from Z; and Wo; : Cu(X,Z0,G) — Cu(X,Z1,G), Yor :
Cv(X,20,G") = Ci«(X,E1,G’) the corresponding A..-continuation maps (see Theorem [4.15)).

|

Proposition 5.21. Let ¢ : F — F' be a morphism of A -modules over C,,(2X) and denote ¢ = 1. Then,

the induced map in homology ¢ : H. (X, F) — H.(X,F') is a limit of morphisms <p( " By, — By, between
the spectral sequences associated with those homologies and

P = 0. @11 Hy(F) ® Cyl(£,6) = Hy(F') @ Cy(£,6)-
Proof. Recall that the enriched complex C, (X, .A) is filtered by
Fp(Cu(X, A) = P Ai®Cy(f.¢)
it+j=k
J<p

and that the 0-th page is given by E) , = A, ® Cp(f,€).
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The morphism ¢ respects the filtration since m strictly decreases the index of the critical point. If
a®x e F,®Cy(f,§), the only term in $(a @ x) that belongs to F, @ Cp(f,§) is ¢« (a) ® x. Therefore

PNa®z)=pu() @
and this induces in homology V) = ¢, ® 1: H,(F) @ Cp(f,&) — Hy(F') @ Cp(f,&).

Corollary 5.22. If o : F — F' is a quasi-isomorphism of As-modules, then
@ Ho (X, F) = Ho (X, F)

is an isomorphism.

5.3.2 Compatibility with direct and shriek maps

Let X™ and Y™ be two pointed, oriented, closed and connected manifolds and (F,v) be an A..-module over
C.(2Y). Let f: X >R and g: Y — R be Morse functions that are part of sets of DG Morse data Zx and
Zy on respectively X and Y. Denote {m ,} and {m?w,} the Barraud-Cornea cocycles associated to Zx
and Zy-.

Let ¢ : X = Y be a continuous map.
The first definition of direct map ¢, : H.(X, ¢*F) — H,.(Y, F) and shriek map @) : H. (Y, F) = Huin-m(X, ¢*F)
are exactly the same in the A setting as in the DG case (see [BDHO24], Section 9]).

Let ¢ : X — Y be a smooth map.
The second definition of the direct map ¢, : Cu(X,Ex,¢*F) — Ci(Y,Ey,F) is described in [BDHO24,
Section 10] by constructing a cocycle {7,, € C|g—,/|(Y), = € Crit(f), 3 € Crit(g)} satisfying the
equation for the twisting cocycles {ml};’w, € Cly|—jw|-1(QY)} and {p.(m3 ) € Clyj—12-1(2Y)} on Y.
The second definition of the shriek map ¢ : Cu(Y,Zy,F) = Ci—min(X,Ex,*F) is described by con-
structing a cocycle

{7y 2 € Cly—)(QY), ¥ € Crit(g), = € Crit(f)}
satisfying the equation (8) for the twisting cocycles {m;/,,w, € Cly)—w)-1(2Y)} and {@.(mZ,) € Clj_(5-1(2Y)}
on Y where we used the following grading for each z € Crit(f), vy’ € Crit(g).

[z] = [z +m and [y'] = [y'| + n.
In our case, using Proposition the direct map ¢ : Cu(X, o*F) — C.(Y, F) is defined by

Px = Z Z(_l)uil(lﬁwl ® l)ﬁlg_u%(@*rh)()lhl

n>1u=1
and the shriek map ¢y : Ci (Y, F) = Cumin(X, ©*F) is defined by

w1 = Z Z(*l)lhl(’/nﬂ ® 1)(p.anx)" "7yt

n>1u=1
If o : X — Y is continuous, let ¢’ : X — Y be a smooth map which is homotopic to ¢ through a basepoints
preserving homotopy H which is C?-close to the constant homotopy. The identification morphism

U (X, Ex, " F) = C.(X,Ex,¢* F)

defined in [BDHO24| Proposition 8.2.1] carries over in our setting using again Proposition and we also
define

e = (pi o WH,
Using the A, homotopy property instead of the DG one, the property stating in [BDHO24] that the
first and second definition of the direct and shriek maps are equivalent in homology still holds.
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Proposition 5.23. Let h: X" — Y™ be a continuous map, G and G be two As-modules over C,(QY),
and {on} : G = G’ be a morphism of Ax-modules.

Then the following diagrams commute

* ~

* h™¢ * (3l h*G
H (X, hG) = H. (X, b"G') Honin(X.107G) 2 Ho (X, 1°G))

H.(Y,G) ——— H.(Y,d") H.(Y,G) ———= H.(¥,¢)

Proof. It is a direct consequence of Proposition [5.19]

6 DG Kunneth formula. Proof of Theorem C

Let X,Y be two pointed, oriented, closed and connected manifolds endowed with DG Morse data Zx and
Ey. The goal of this section is to define a cross-product C.(X,Ex, F)QC.(Y,Ey,G) — C.(X XY, Exxy,H)
where the DG Morse data =x xy is defined below and the coefficients H will be discussed in Section

6.1 Morse data on a Cartesian product

Given Ex = (f,&x, 82,2, 0x,Yx,0x) a set of Morse data on (X,xx) and Zy = (g,&y, Sy,i/,0v, Yy, 0y)
a set of Morse data on (Y,*y), we construct a set of Morse data Exxy = (H,&,5(zy),(2',y),0,V,0) on
(X x Y, (xx,*y)) that consists in the following :

1. H(z,y) = f(z) + g(y). Note that H is a Morse function on X x Y which satisfies |(z,y)| = |z| + |y|.

2. &(z,y) = (Ex(x),&y (y)) is a pseudo-gradient associated to H.

3. There is a canonical identification W (z,y) ~ Wi (z) x Wi(y). We therefore use the orientation
Or W (x,y) = (Or W(I), Or W(y))

4. The tree Y = (Vx, Vy)-

5. The homotopy inverse § = (0x,0y) : (X xY)/Y — X x Y of the canonical projection p: X x Y —
(X xY)/Y.

The goal of this section is to define a suitable representing chain system s(; ), (2’4 Of Lu((z,y), (@', y)).
First, let us fix our orientation conventions for the spaces of trajectories.

6.1.1 Orientation conventions

We use the same orientation conventions and rules as [BDHO24].
Let (f,&) be a Morse-Smale pair and = € Crit(f). The orientation o, of the unstable manifolds W*(x) is
fixed by the set of DG Morse data. This induces a co-orientation of the stable manifolds

Coor W*(z) = Or W*(x).
We orient a tranverse intersection Z th W between an oriented manifold Z and a co-oriented manifold W by

(Or Z th W, Coor W) = Or Z.
Therefore, for z,y € Crit(f), the manifold M(z,y) = W*(x) h W*(y) is oriented via the rule
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(Or M(x,y), Or W*(y)) = Or W*(x). (20)

Define
S*(y) = W3y) h f7H(f(y) +e)
for small € > 0 the stable sphere associated to a critical point y € Crit(f). We co-orient S*(y) C W*(y) by

Coor 5°(y) = (=¢, Coor W*(y)) = (=€, 0r W"(y)).

There is an identification

L(x,y) =W"(x) h S*(y),

which yields the orientation

(Or L(z,y),—&,0r W¥(y)) = Or W¥(x).

We use the same orientation rules for the compactifications £(z,y) and W4(z).
(Or L(z,y),—&,0r W¥(y)) = Or W¥(z). (21)

6.1.2 Representing chain system on a Cartesian product

Lemma 6.1. If v = 2/, Ly((z,y),(z,y)) = {x} x L,(y,y’') and the orientations differ by the sign
(_1)|$|(|y\—\y/|)_

Ify=vy', Lu((z,y), (2", y)) = Ls(z,2") x {y} and the orientations coincide.

Proof. The two identifications are clear. It remains to compare orientations.
The rule implies for z = y that a constant trajectory is oriented positively.
For any two critical points (z,y), (x,y’) of H,

(Or Ly ((z,y), (z,y')), =& Or Wi(z,y')) = Or Wi (z,y).
If x = 2/, the equalities
(Or {z},0r Ly(y.y'), —€,0r W(z,y')) = (—1)l=IvI=lv'D (Or Wi(x),0r Ly(y,y'), =€, Or WT;@'))
= (=1)l=Iy=1y'D Oy Wi (x,y).

show the orientation difference between L ((z,y), (z,y')) and {z} x L,(y,y').
If y = ¢/, the equalities

(Or Lg(z,2"),0r {y},—§, Or Wh(a',y)) = (Or Wi (), Or W(y’)) = Or Wi(z,y).
show that Ly ((x,y), (2',y)) and Lf(z,z") x {y} have the same orientation.

Remark that
Mu((z,y), (xlv yl)) =Wy (2,y) WIS{(xlv yl)
= (Wi(2) hWi(y)) x (Wi(z) b Wi(y)) = M(@,2') x My(y.y'),

and therefore there exist a projection 7 and a section 4,

Lal(ay), @'y) =M@ TV M) g S My, 0') R x Mo (y,9')/R = L5(,21) % L4(3.9)
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which can be written 7([a,blxxy) = ([a]x, [bly) and i(Ax, A\y) = [ix(Ax),iv (A\y)]xxy, where ix(Ax) =
Ax N~ 1 ( z)+f(x )) and iy (\y) = Ay 0971 (g(y)gg(y )) )
Remark that 7 =Id if x = 2’ or y = ¢/'.

Lemma 6.2. Let {st,} and {s;y,} be representing chain systems for the moduli spaces of trajectories
Li(z,2") and L4(y,y') respectively. There exists a representing chain system {5@.y). (2w} for the moduli
spaces Ly ((z,y), (z',y')) such that

1. S($7y),(x/,y/) — (71)|x‘(‘y|7|y/|)({x}’S;y/) Zf:L‘ — 1,/‘
2. Sy y) = (e U} fy=19

3. Tu(S(ay),(ary)) =0 if x # 2" and y # y'.

Proof. & If x = ' or y = y' we can just choose 5,4 (z.y/) = (71)|“"(‘y|*|y/|)({x},s;y/), S(zy),(aly) =
(siw,, {y}) and complete by induction as in Proposition 5.6 of [BDHO24]| in order to obtain {8 ) (»/,y)}

a representing chain system for Lz ((x,y), (2/,y’)) that satisfies conditions 1 and 2. We just have to check
that

Osyy.an = O, EDls ) @) X 8@ @)
weCrit(g)

and

Oy = D, (DTS Gy X Sl )
z€Crit(f)

We only establish the first equality since the second one is analogous,

as(x,y)v(xvy’) = (_1)‘$|(Iy‘7‘y/‘)({x} 0sy.,y)
=(-1) lzl(lyl—1y"]) Z \y| |w\ ({2}, Sy X Suy')

- \yl Iw\ )Iw\(\ylflw\)(,1)Iw\(|w|fly’\)({x}, Syaw) X ({2}, Sw.y)

Z DS 0 ) (00) X S0, .0
o If v # 2’ and y # 3, we build {s(; ) 27y} by induction on |z| + |y| — |2| — |¢/| = 1. If z # 2,
y # vy and [ = 2, then |2| — |2/| = 1 and |y| — |¢/| = 1 or Lx((z,y),(2,y’)) is empty. Any rep-
resentative s ) (2,y) € C1(Lu((x,y),(2',y’))) of the fundamental class satisfies condition 3. since
T (S22 ) € Cr1(Ly(z,2") X Ly(y,y')) is a one chain in a 0-dimensional space and is thus constant
and degenerate.

Suppose a representing chain system s, p),(a’,p) respecting the conditions 1.,2. and 3. has been constructed
for every [a| +[b| — |a'| = [b'| <. Let [z +[y| — |2'| = |y/| =1+ 1 and z # 2’ y #y'. Let {s(, ) v} De
a refresentativeiof the fundamental class of Ly ((z,y), (z',y’)) which satisfies (3). Then T (S{e ), (ar)) €
Ci(Ly(x,x") x Lg(y,y")) is a cycle. Indeed, using the induction hypothesis

O (8(0 ). (@) = D (DI s ) X T (200,07,

(z:w)

= (=)W s ) @) X Sy @y + (DT s @) X S ) @)
= (=)lHIAHIE DR (54 20 8y00) = (Saars Syar)) = 0.
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Since Lf(z,z") xizg(y,y’ ) is a manifold of dimension I — 1 every l-cycle is a boundary. Hence, there
exists b € Ci1(Ly(x,2) x Lg(y,y')) such that 0b = m.(s(, ) ). We then define s(; ) 2y =
s’(m’y) @) 0i.(b), which satisfies condition 3. The resulting representing chain system {5,y (2/,y/)}

satisfies all the conditions.
[ ]

6.1.3 Kiinneth twisting cocycle

We will evaluate the representing chain system constructed in Lemma [6.2] by a family of evaluation maps
q([;y)7(x,7y,) : L((z,y), (2',y)) — QX x QY adapted to the Cartesian product to obtain a twisting cocycle
m{i,y),(m’,y’) = q{;y)y(z,,y,)_’*(s(myy),(z/,y/)) € Clal4ly|—|2’|—ly|—1(QX x QY)). This twisting cocycle is not the
Barraud-Cornea cocycle associated to the set of DG Morse data =x«y but is well-adapted to chain-level
computations and enables to define a chain-level cross product for enriched Morse complexes. We will prove
in the next section that the enriched Morse complex constructed with the Barraud-Cornea cocycle is chain

homotopy equivalent to the one constructed with m*

Lemma 6.3. The family

_ o _ @*,a )
q{;y)’(z,,y,) L((zyy), (@, y) —— L(xz,2") x L(y,y) e X < QY

is a family of evaluation maps in the sense of Definition[2.6, i.e, it satisfies the following two conditions

LoAf ) + [yl = 2| = [y'| = 1 and X € L((z,y), (2", ¢")) = L((z,), (',y)), the class [qf; ) o (V] €
71 (X X Y) is the one associated to X in the lifted Morse complex.

2. If (A X) € L((2,y), (z,w)) x L((2,w), (¢, y)) C OL((2,y), (z',y)), then
q(I;y),(z’,y’)()‘ >‘) (I y),(z,w) ( )#q{g,w),(aﬂ,y’)(A/)'

Proof. Let (z,y), (z,w), (z',y') € Crit(H) and (\,\) € L((z,y), (z,w)) x L((z,w), (2",y")). If we de-
note m7x = prionw : L((z,y),(x,y")) — L(x,2') and 7y = proom : L((z,y), (@",y")) — Ly,y),
then mx (A#XN) = (nx(N\),7x (X)) and 7y (A#N) = (my (A), 7y (V). Condition 2 is then clear be-
cause ¢X and ¢Y satisfy such concatenation relations. Condition 1 is a consequence of the fact that,
if |z| + |y| — |2'| — || =1, then x =2/ or y = ¢/'.

|

Definition 6.4. The family of evaluation maps g™ yields a twisting cocycle
mg,y%(m,’y,) = q{i,y),(x,7y,)7*(s(z,y)’(xgy/)) € Cla|+lyl—|a'|-|y'|-1(2X x QY)) that satisfies
(=1)lelCyl=1v"D (4, My,) if x=a,
Mz (o) = ) (M%) ify=y,
0 otherwise

This is the preferred twisting cocycle associated to the set of DG Morse data Zxxy. We will refer to this
cocycle as the Ktinneth twisting cocycle.

The evaluation map defining the Barraud-Cornea twisting cocycle m( vy). (2 y )

Do),y = 00D O T P £((2:9), (27,)) = UX x V) C QX x QY,

where the parametrization map Fg; y})/(m e CL((2,y), (2,Y) = Play)— (g0 X x Y is defined by
[O,H(.’Ii,y) —H(.’El7y/)] - X xY

1—wX><Y(:C ) ()\) .

() t = ANH YH(z,y) —t).

Proposition 6.5. For any right As-module H over C.(QX xQY'), there exists a chain homotopy equivalence

0 Txo
C*(X X Y, m(Ly),(z,,y/),/H) \II:% C (X X Y m(l v), (' ,y’ )7%)
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6.2 Invariance with respect to the parametrization

The proof that the cocycles m® and m*X defined above induce the same homology will be given in the second
subsection. We first prove that we can use any Morse function that admits the same pseudo-gradient ¢ to
parametrize the trajectories. The subsequent complexes will be chain homotopy equivalent.

6.2.1 Parametrizing Morse trajectories by different Morse functions

Let 2 = (f,&, Su,y,0,Y,0) be a set of DG Morse data on a pointed, oriented, closed and connected manifold
(X, *) and let h, A’ : X — R be Morse functions that admit the vector field £ as an adapted pseudo-gradient.
We prove that the complex built using h for parametrizing the trajectories in the construction of the twisting
cocycle (see Section is chain homotopy equivalent to the complex built using the Morse function h’. This
is equivalent to saying that the enriched complex does not depend on the Morse function used to parametrize
the trajectories of a given adapted pseudo-gradient up to chain homotopy equivalence.

This does not prove Proposition since there is no Morse function h : X x Y — R that corresponds to
parametrizing independently on X and on Y, but this invariance is worth noticing and its proof will inspire
the proof of Proposition [6.5

Proposition 6.6. Let h,h' : X — R be two Morse functions and & a pseudo-gradient adapted to both h and
K. Let F be an Aso-module over C.(QX). Let C(X,Zp, F) and C(X,Zp, F) be the two complexes built
using respectively h' and h for parametrizing the trajectories in the definition of the evaluation maps.

There exists a quasi-isomorphism ®p, ps @ Co (X, Zp, F) = Cu(X,Eps, F).

Proof. We use the same construction as in the section 6.2 of [BDHO24] where the authors prove that the
constant homotopy between a Morse function and itself induces a continuation map that is homotopic to
the identity. Let

7:[0,]] x X - X

and
p: X = X/Y

be the canonical projections and let
0:X/Y—>X

be a homotopy inverse of p.

We follow the proof of invariance for Morse theory [AD14 Section 1.3.4] to build a : [—¢,1 +¢ — R a
strictly decreasing function on [0, 1] such that a is a Morse function and Crit(a) = {0,1}. We can assume
that a is decreasing enough for FF = f+a : [—¢,1 +¢] x X — R to be a Morse function whose critical
points are, for any k € N,

Crity (F) = {0} x Crite—1(f) U{1} x Critg(f)

and let ¢ be an adapted pseudo-gradient for F on [0,1] x X.
If © € Critg(f), we denote xg € {0} x Critg(f) C Critg1(F) and 21 € {1} x Critg(f) C Critg(F)
the corresponding critical points of F'. Let {s, ,} be a representing chain system for the moduli spaces
of Morse trajectories. There exists a representing chain system {sf; 7yj} for the moduli spaces of Morse
trajectories in [0, 1] x X such that for any z,y € Crit(f) :

— sk o= (D), e Crpmpy -1 (Lo, vo)).-

— 551“1/1 =Sz,y € C|z|7|y\71(‘c(xl7yl))-

— We denote o3, = 5% € Clyj— 1y (L(wo,y1)).

zy ~ Szo,um .
— Since a strictly decreases between 0 and 1, then L£(x1,y0) = 0.

Define now an evaluation map qgg?ylj : L(wi,yj) — QX such that
h,h'

— gt =q), :=0opomoll ~where I} : L(z0,90) = Prysyo ({0} x X) parametrizes the

trajectory using the Morse function h. This is the evaluation map that arises from the data =; and

h

therefore qgohl;o*(sg;y) =m; , is the twisting cocycle defining C\(X, =, F).
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— qglf‘;jl = qmy :=0opomo le 41 Where I‘Zl o L(x1,y1) = Payoy ({1} x X) parametrizes the
trajectory using the Morse function h’. This is the evaluation map that arises from the data =j.

and therefore qgfl;l,*(sx’y) = mg/y is the twisting cocycle defining C. (X, Zp/, F).

It remains to define qm - Let A € L(z0,y1). Since a is strictly decreasing between 0 and 1, the trajectory
A transversely intersects {1} x X exactly once. Denote z € AN X x {4}. We define

Ph h’ :Z(xo,yl) — ’Pgm*)yl([a ].] X X)

Z0,Y1
by parametrizing the piece of A going from zy to z using h and then parametrizing the other piece of A

going from z to y; with A’.

Let us reformulate this idea with some formulas:
We assume w.l.o.g that A = a(0) > 0 and a(1) = 0.

Define
Doy (A) 2 [0, A+ h(w) = h(y)] — [0,1] x X,
I‘ZO yl()\)(t) =(h+ a)_l(A + h(z)—1)
and

" (A):[0,A+h(z) — h(y)] = X x [0,1],

Z0,Y1

Tl W) = (W +a) (A + 1 () - 1).
There exists a unique t;, € [0, A 4 h(z) — h(y)] such that T2 ()\) € X x {1/2} and a unique t €
[0, A+ h/(x) — h/(y)] such that T (A) € X x {1/2}.

To,Y
Let, 0,Y1
it () 2 [0, A+ B (@) = W (y) + tn — tw] = X x [0,1],
/ 2 if ¢ <
Z;thl ()‘) (t) { % Z0,Y1 ()‘) (t) / 1 t < th
¥ Loy M=t + ;) ift =1,

It is clear from the definition that these evaluation maps satisfy :

1. The concatenation relations :
— for any (A, X') € L(x0, 20) x L(20,y1) C 0L (0, y1), qzo O X) = (VL (V).
— for any (\, ) € L(z0, 21) x L(z1,91) C IL(wo, y1), gy, (A N) = @yl (N #ak , (X).
2. Compatibility with the lifted Morse complex : Let {¢f , : L(zo,y1) = QX,z,y € Crit(f)} be

the family of evaluation maps defined by parametrizing by the values of F. Since it is only the
parametrization of the path that changes between the evaluation maps qhv and ¢%, then ql0 'y, also

satisfies the condition that, if  and y have the same Morse index, the homotopy class [qzmy (V)] e

71(X) is the same as the one associated to A € L(zg,y1) in the lifted Morse complex C., (F,¢’) (see
Lemma 6.2.4 of [BDHO24]).

For any z,y € Crit(f), define 1/;1;5' = fqg(;{lyh*(cr;‘}y) € Clg|—1y|(2X).

Since O’Id satisfies the relation 8aId = E Sy Zoifiy— E (—1)lzl=lwlgld s, we have

w

al/hh mez ,?gjl Z<_1)|x\—\w|y;t:g 'Z}y
w
P . . . . . h,h/ . . . —
The quasi-isomorphism criterion implies that {v,", } yields a morphism of complexes @}, » : Ci(X, Zp, F) —
C.(X,Ep, F) which is a quasi-isomorphism. Indeed, the map between the associated lifted Morse com-
plexes is the continuation map for the lifted Morse complexes (as in the proof [BDHO24, Proposition

6.2.2]) which is therefore a quasi-isomorphism.
|

In fact more is true :
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Proposition 6.7. The map @y, 1 : Cu(X, 2, F) — Cu(X,E, F) is a chain homotopy equivalence.
Proof. We prove here that ®j, p 0 @pr j, 1 Co(X,Zp, F) = Cu(X, Zp, F) is homotopic to the composition

Ca(X, 20, F) S Cu(X, 20, F) S CL(X,En, F).
The last map being chain homotopic to the identity, the proposition follows.
We will use the notations introduced in the previous proof and follow the idea of the proof of [BDHO24,
Proposition 6.3.8] to construct a homotopy cocycle (see Proposition .
Define K = f +a; +a, : [0,1)> x X — R by K(t,7,2) = f(x) + a(t) + a(r). This is a Morse function
whose critical points are

Critg1(K) = {(0,0)} X Critk,l(f) U {(0, ].)} X Critk(f) U {(1,0)} X Critk(f) U {(]., ].)} X Critk+1(f).

For each critical point = € Crit(K), we use the notation z;; if z € {(¢,7)} x Crit(f) for 4,5 € {0,1}.
Following the proof of [BDHO24, Lemma 6.3.9], we can construct a representing chain system (s% ) for the

moduli spaces of trajectories L (z,y) such that, if we denote S, , = Sfoo,yn € C|x|_‘y|+1(ZK (200, y11)),

08,y = D (DI MSL Sy 4 3RS, s
200 w11

Id Id Id 1d
- E Ozu Ouyy + E Ogv " Ouy-
v

u1io0

We now want to evaluate these chains into C,(QX).

Define now for each z,y € Crit(K) a parametrization map 'y, : Lx(2,y) — Proy([0,1]? x X). Let
A€ L (z,y) and C = [1/2,1] x [0,1/2] x X. The trajectory \ intersects C' transversely since a is strictly
decreasing and I'y () is the path parametrizing A by h outside of C' and by b’ inside C' (see the following
figure).

(0,0) (1,0)

©,1) (€% ))
Figure 3 - Parametrization map I' ,

We define for each z,y € Crit(K) the evaluation maps

wa =TOo (Id[0,1]2 X 0) o (Id[0,1]2 X p) o Fgc,y :ZK(IE,y) — QX,

where 7 : [0,1]2 x X — X is the canonical projection. In particular, if A € Lx(zo0,y10) and N €
L (210, y11), then Qu (N) = gy (N) and Q. o, (V) = ¢l (X).
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These evaluation maps again satisfy the concatenation relations and compatibility with the lifted Morse
complex.
Denote Hyy = Qu.y(Sey) € Claj—jy+1(02X),

8Hx,y=Z(— el=lelm | H, +Z 1ylel=lelp, , omh
_thh' h:?;h_’_zyx:U

Using Proposition this proves that the map

Co(X,Zh, F) — Cup1(X,Ep, F)
H: a®x > Za~Hm’y®y
Yy

is a chain homotopy between the map

C*(X,Eh,]:) — C*(X,Eh,]:)
Dprpo®pp: a® Z (Z Vh o ’, > 2y

and the map
C*(X7Eh7‘/—:) — ‘—‘h,

C.(X
doold: ( V,>®y.

6.2.2 Parametrizing independently on a Cartesian product

Let f: X >R, g:Y =>Rand H=f+g: X xY — R be Morse functions.
Let {s.w € Cpz|—jw|-1(LH(2,w)), z,w € Crit(H)} be the twisting cocycle constructed in Section
Recall the notatlon of the previous section : mfw =g w,«(8z.w) is the Kiinneth twisting cocycle from Defi-

nition and m? w = =q° w,«(8zw) 18 the Barraud- Cornea twisting cocycle associated to the DG Morse data
set Exxy-

Proof of Proposition . Proceed as in the proof of the previous proposition to define W : [0,1]x X xY — R
a Morse function such that Crity (W) = {0} x Critg_1(H) U {1} x Critx(H), a pseudo-gradient {y and a
representing chain system {s%, . z,w € Crit(H), i,j € {0,1}} such that

Y13 w )
— s e = (-1 el=lvls, € €|Z\7\w|71(£w(zo,wo))-
o SZY,U& =Szw € C| |— |w\ 1(,61}[/(21,1[)1)).

— We denote 0,4 = 8%, € Clzj—jw|(L(20,w1)).
Denote 7Y 1 [0,1] x X x Y — X x YV, 7% : [0,1] x X — X and 7¥ : [0,1] x Y — Y the canonical
projections. We can assume w.l.o.g that F = f4+a:[0,1]]x X - Rand G=g+a:[0,1] xY — R are Morse
functions. Denote {p = &5 — o’ % and g =&, — d % adapted pseudo-gradients for F' and G respectively.
There is an inclusion

I Mw ((z,9)o, (2", 4')1) = Mp(xo,21) x Ma(yo,v1), I(7,(a,b)) = ((7,a),(r,b))

which induces a map
J = (JX7 JY) : ZW((xay)Oa (xlay/)l) — ZF(‘%Oa‘rll) X ZG(yOa y/l)
Define F(z Do (&) Lw((x, )0, (&', y)1) — Pyt ([0,1] X X) X Pyy 0 ([0, 1] x Y) by

Pl oeran V) = (Th o 0 XN, TG o Iy (V)
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where Ffo,w’l : Lp(xo,21) = Payoar ([0,1] x X) and Fqi,yg D La(Wo,y1) = Pyesy ([0,1] X Y) are the
parametrization maps by the values of the Morse functions F’ and G respectively. They are defined in Sec-
tion

Denote -
T onerwn  Lw (@90, (@, 5)1) = Pagoa ([0,1] X X) X Py ([0,1] X )
the composition of the map
]‘—‘E/‘r/,y)g,(x’,y/)l : ZW((xv y)Ov (mlv y/)l) — P(ﬁ,y)oﬁ(m’,y’)l ([0, 1] X X X Y)
which parametrizes by the values of W and the inclusion
Payyo—(@ ) ([0,1] x X xY) — Pwoﬁ%([o, 1] x X) x Pyoﬁyi([o, 1] xY).
Now define

F((Jafy)o,(:c’,y’h : ZW((:C’y)Oa (z/ay/)l) - Pxo—m;’l([o, 1] X X) X ,PZI—W'([O? 1] X Y)

the parametrization map that shifts the parametrization from I'° to I' when the trajectory crosses X x
Y x {3},

Lemma 6.8. The family q?fy)o’(w,’y,)l =fopo(n¥,m¥)o F(()fy)o,(m’,y’)l L L((z, )0, (',y)1) — QX x QV

is a family of evaluation maps, i.e, it satifies

1. The concatenation relations : For any (\,\') € L((z,y)o, (2, w)0) X L((z,w)o, (z',y')1),

0K n _ 0 0K /
U)o, (a1 (P A) = 4l ), (2,0) ML), (2, (A
and fOT‘ any ()‘7>‘I) € Z((%y)ov (Zaw)l) X Z((Zaw)lu (x/ay/)l)y
0K N _ 0K K i
Uary)or (a1 (P A) = Qo 2wy N FIG )@ (A

2. The compatibility with the lifted Morse complex : if (x,y) and (2',y") have the same index, then the

homotopy class [q?nf,(y)o,(x’,y’)l (V)] € T (X xY) is the same as the one associated to X € L((x,y)o, (z',y')1)

in the lifted Morse complex of X xY x [0,1].

Proof. Condition 1. is clearly satisfied.

Condition 2. is satisfied because, even if F?gy)m(w,’y,)l (M) and F(()w,y)o,(z’,y’)1

they are homotopic. Indeed, if we denote (735, 49%) = F?afy)(),(x',y')l (N) and (V& 75) =T, )0, (M)

then 7% = 7% and 495 = 49 up to reparametrization but (v3*,49%) and (7%,4y) do not have the

same image. However, it is enough to reparametrize vg)/K in %QK so that (’yg(K ,7{9}{ ) = (79(77%) up to

parametrization. Therefore, since ¢° satisfies the condition 2, then so does ¢°¥.

(M) do not have the same image,

|
From the concatenation relations, it follows that

K K
e =q ()@)€ Clal+lyl-lar| -1y (X x Q)

zy),(@ ) = QUzy)o. (2 y)1*

satisfies equation

0K _ 0 0K _ _\lzl+yl—12" |~ |w'], 0K K
OVre) (o) = D M) (o) Vo) (o — D (D) Vi), (= ) (3 ) (')

zZ,w 2w’

This concludes the proof because the compatibility with the lifted Morse complex ensures that the continu-
ation cocycle satisfies the quasi-isomorphism criterion [£.14]
Therefore
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C*(XXKEXX}/,H) — C’*(XXKmK,H)
Yox : @@ (z,y) =2 e @ @Y
(z",y")
is a quasi-isomorphism for any right DG C, (22X x QY)-module H.
In fact more is true :
Proposition 6.9. The map Yo is a chain homotopy equivalence.

Proof. We will use the notation introduced in the previous proof.
We can define for any z, 2’ € Crit(f), y,y’ € Crit(g) the parametrization map

Fg?y)y(w’vy’) L (2, 9)o, (2",9)1) = Pxo%ri([()? 1] x X) x Pyo%y’l([ov 1] xY)
that shifts the parametrization from I' to I'® when A crosses {4} x X x Y.
Let us describe this map in more detail. Let A € Ly ((z,y)o, (z/,y')1) and let (3,2x,2y) € {3} x X x YV

be the point where A crosses transversely {1} x X x Y. The paths (v§,7#) := I‘g Do (M) can be
restricted to paths that we still denote

(Vﬁ((a’yg) € ng—)(%,zx)([(L 1] X X) X Pyoﬁ(%,zy)([07 1] X Y)

'y )1

Denote
(79(7'7)0/) € 'P(l,zx)%z/l([oﬂ 1] X X) X P(%,Zy)%yi([()’ 1] X Y),

2
the paths obtained by parametrizing the half-infinite gradient line starting at (1,zx,2y) using I, or

equivalently, obtained by restricting I‘ngy)m(m,’y,)l()\) to start at (%,Zx,Zy) and applying the inclusion

,P(%,zx,zy)%(:v’,y’)l([ov 1] x X % Y) — ,P(%,zx)%zg([oa 1] X X) X P(%,zy)—)yi([ov 1] X Y)
We define

We can therefore construct Z/(I;?y)y(m,yy,) € Cla|4|y|—|a'|—|y'| (X x QY) such that

KO _ K KO _ _\lzl+lyl— 2= |w'], KO0 0
M5 ) = D Mg eV ooy (o) — D (D)7 Vi), (=" w) M ) (")

RV 2z w!
and obtain a quasi-isomorphism
C.(X xY,m& H) — Ci(X XY, Exxy,H)
Ukoi  a®(wy) o ) @) ey @ @Y
(zy")
for any right A..,-module H over C,(2X x QY).

From there, the same proof as Proposition [6.7] shows that Wy o Wox ~ Id and ¥ox o ¥ ~ Id.
|
In view of Proposition we may and will assume that the complex C,(X X Y,ZExxy,H) is constructed
using the Kiinneth twisting cocycle for any right A.-module H over C,(QX x QY).

6.3 Kiinneth formula. Proof of Theorem C

The goal of this section is to define an analogue of the Kiinneth formula for enriched Morse homology using
the twisting cocycle defined above. In Section [6.1] and [6.2) we dealt with how sets of DG Morse data Zx and
Zy on X and Y induce a preferred set of DG Morse data Zx«y on X XY and how to construct the preferred
Kiinneth twisting cocycle on X x Y computing the same homology as the Barraud-Cornea twisting cocycle.
It remains to understand how DG systems F over C,(2X) and G over C,(Q2Y) induce a DG system over
C.(AUX xY)).
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6.3.1 The cross products K9 and K*oP
We will start by an algebraic construction F ®z G which can be stated for any DG systems F and G.

Definition 6.10. Let F be a right C..(2X)-module and G be a right C.(QY)-module. The tensor product
F ®7G has a natural C,(QX) @ C(QY)-module structure (a @ B) - (yx @yy) = (—1)PIxl(a-vx @ B-yy).
Consider the Serre diagonal A : C,(QX x QY) — C.(QX) ® C.(2Y), i.e the cubic equivalent to the
Alexander-Whitney diagonal for singular complexes (see [KS03, Section 2.4] and [Ser5l)).

This can be used to transfer the natural module structure of F @ G over C.(2X) @ C.(2Y) described above
to a module structure over Cy,(2(X xY)) — C,(2X x QY) :

(a®P) - (wx,wy) = (a®p) - Alwx,wy).

On the other hand, if F — E — X and G < E’ — Y are two fibrations with respective transitive functions
®x and Py, then the fibration F x G — E x E' —+ X x Y is naturally endowed with the transitive lifting
function (®x, Py ). Therefore, to study fibrations, if 7 = C(F) and G = C.(G), it is natural to consider
the complex C.(X x Y,C.(F x G)) where the module structure is defined by (®x,®y). The main goal of
this paper is to define and study the DG Chas-Sullivan product, and this heavily uses considerations on
fibrations. Therefore we will prefer the DG system C.(F x G) in this case so that we can use morphisms of
fibrations to study this product.

Definition 6.11. Let F = C.(F) and G = C.(G) be the cubical complexes of some topological spaces F and
G, where F' has an associative topological module structure F x QX — F and G has an associative topological
module structure G X QY — G. Lettx : X XY — X and 7wy : X XY — Y be the canonical projections.
For a loop v € Q(X xY), we denote yx = wx () and vy = 7y (7).

For any topological space A, B, we use the notation EZ : C,(A)RCy(B) — C.(AX B) for the Filenberg-Zilber
map EZ(a ® b) = (a,b) on cubic complezes.
Topologically, the right Q(X x Y)-module F' x G is defined by

FXGxQUX xY) —» FxQXxGxQY — FxG
(04,6,’7) = (a)7X76any) = (a7X767Y)

This gives rise to a module structure

Ci(Fx Q)@ C(2AX xY)) = Ci(FXGEXxQUX XY)) = C(FxQX xGxQY) — Cu(F x G).

Remark 6.12. 1. Let F' and G be fibers of fibrations F — Ex — X and G — Ey — Y equipped with
transitive lifting functions
(DX : EX 7w Xevg PX, and (I)y : Ey 7w Xevo PY.

The module structure described above corresponds to the one that arises from the natural transitive lifting
function
EXxEy( ) Xew P(XXY)
(b : TX,TY 0
o (a,8), (7,0)

of the fibration FF x G — Ex X By — X x Y.

EXxEy

N
= ((I)X(Ol,’)/),q)y(ﬂ,g))

2. The general definition of this module structure is better understood at the topological level. Indeed, we
cannot really write explicit formulas for every chain in C.(Q(X xY)) due to the fact that the cubical chains
on a Cartesian product need not have split parametrizations. Therefore, at the chain level, a sign would
appear to keep track of the Kozsul signs corresponding to the switch of parameters.

However, if v = EZ(v1 ® v2) = (71,72) € C. (X x Y)), then for every (o, 8) = EZ(a ® B) € C.(F x G),

(. 8)y = (=1)/17 (@1, Br). (22)
In this case, we will say that v € C.(QUX xY)) and (o, 8) € C.(F x G) are split. Remark that if

{mi{x, € Clg|—j-1(2X)} and {m}l/’y, € Cly|—1y|-1(QY)} are Barraud-Cornea cocycles respectively on X
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and Y, the Kinneth twisting cocycle {m{;y)w(z,,y,) € Clajtly|—|2’ ||y -1 (QUX x Y))} on X x Y is a family
of split chains.

We now restate and prove Theorem C.
Theorem 6.13. Let =x, Zy be sets of DG Morse data on X and Y with respective Morse functions
f: X—=>Randg:Y — R.

i) The Kiinneth twisting cocycle {mX,, € C|,|_jy-1(QX x QY), z,w € Crit(f + g)} associated to Ex and
Zy computes the same homology as the Barraud-Cornea cocycle associated to the set of DG data Exxy
constructed in Section [6.1]

ii) Let F and G be DG modules over C.(2X) and C.(QY). Then,

C*(XaEX7‘F)®C*( ,EY,Q) - C*<X><Km£(:w’]:®g)

Kalg .
' (a®z)® (Bey) = (=D (e B) @ (2,y)

is an isomorphism of complezes.

1) If Cy(F) and C.(G) are complexes of cubical chains of topological spaces equipped with topological module
structures respectively over QX and QY , then

Co(X,Ex,Cu(F)) @ Co(Y,Zy, Cu(@)) = Cu(X x Y,mE, C.(F x G))
(a®z)® (Bey) = (=D, ) © (z,y)

is a quasi-isomorphism of complezes.

Ktop .

Proof. 1) We proved in Proposition that the complexes constructed with the Barraud-Cornea cocycle
and the Kiinneth cocycle are chain homotopy equivalent.
ii) The map K%Y is clearly bijective. We now check that it is a morphism of complexes :

Ko((ewz) @ (Bey)) = K(aa@wr ""Za mmf®ac>®(ﬁ®y)>

+ (=Dl f(avez)e |08Qy + (— WZﬁ My @Y

= (-1 (0a @ B) @ (x,2") + (*1)‘“'+'“E”ﬁ'(a®aﬂ) ® (z,y)
+ Z |a|+\5|\r (Mg @ B)@ (2, y)

+Z 1)l BBl U=y Do) (o @ 8-y ) @ (2, 3.

0K ((a@ ) ® (Boy)) = (~)I(0a ® §) ® (z,y) + (1)1 (-1)l* (0 © 85) ® (z,y)
+ (=1)Bllzl(—1)lel+IA] Z a®p)- wy) (' y)®(93 ')

z’,y’

= (~)P*0a ® B) ® (x,y) + (-1) I (-1)*l(a © 85) ® (2, y)
+Z D)8l HBI 1210 (1)l Bl (o, 0 @ B) @ (o, y)

+Z D)l HBH Bl el (11D (o @ B -y ) @ (2, 3)

:K@((a@z)@(ﬁ®y))~
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iii) The proof that K*°P is a morphism of complexes is exactly the same as for K9 since every chain
in this computation is split and we can use equation for every multiplication. It will be proven in
Corollary that K*°P is a quasi-isomorphism.
|
In particular, this shows the following corollary.

Corollary 6.14. IfC.(F) and C.(G) are complexes of cubical chains of topological spaces equipped with topo-
logical module structures respectively over QX and QY , then H (X XY, C.(F x G)) and H (X xY,C.(F)®
C.(Q)) are both isomorphic to H, (C(X,Zx,C(F)) ® C.(Y,Zy, Ci(Q))) and therefore there is an isomor-
phism

H (X xY,C.(F x Q) ~ H,(X x Y,C.(F) ® C.(G)).
]

By coupling Theorem with the general Kiinneth short exact sequence, we obtain a Kiinneth formula for
enriched Morse complexes.

Corollary 6.15. There are a short exact sequences that split,

0 P HX,F) oz Ho(Y,G) 5 Hi(X x Y, F@z6) » @ Torf(Hp(X,F), Hi(Y,G)) — 0.
k+k'=l k4k'=1-1

6.3.2 Properties of K*9 and K*'oP

We now prove that the Kiinneth maps are compatible with the direct and shriek maps (Lemma , with
maps induced by a morphism of fibrations (Lemma , and with the Fibration Theorem (Lemma .
We will also prove Corollary stating that K*°P is a quasi-isomorphism, and this will complete the proof
of Theorem [6.13] and its Corollary [6.14]

The next Lemmas and Corollary are stated and proved using K9 but also apply for K7 if F, = C.(F),
G. = C.(G) since the module structure will only be applied to split chains and we can therefore use equation
. We will therefore use the notation K.

Lemma 6.16. Let ¢ : Y™ — X"X et : Z™% — W™ be two continuous maps. Then the following
diagram for the direct maps commutes at the chain level

C.(Y, 0" F) @ C(Z,9*G) —> CL.(Y % Z,0*F @ ¢*G)
w@d&l i(goxw)*
Cu(X,F) ® CL(W,G) CoX xW,F®G)

and the following diagram for the shriek maps commutes at the chain level up to sign :

* * K * *
Ci+annx (Y,<p ]:) ®Cj+nzﬂzw (va g) — = Uitjtny+nz—nx—nw (Y X Z,<p ]:®¢ g) .

@!®¢1T T(«PX@&)!

Ci(X, F) ® C;(W,G) Citj(X x W, F®G)

More precisely,

K(p(a®z) @ (8 @w) = (_1)(ny—nx)(nw—Iﬁ\—|w|)+(nz—nw)(\a|+lrl)(QO! x)K(a®zr® 8o w).
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Proof. We prove the result for the shriek map, the same arguments apply for the direct map.
Let fx, fy, fz, fw be Morse functions respectively on X,Y, Z, W and z,y, z, w critical points.
We start by computing (¢ x ¢);:

MEXO (g, 2) = W (y, 2) N (¢ x ) (T (2, w))
= We(y) x We(2) N~ ' WH(z) x v~ We(w)
= M (x,y) x M*(w, 2).

Let’s now compare orientations :

(Or W (z,w),Or MPX¥(z w,y, Z)) = Or W*(y, 2).

Or Ws(z,w), Or M#'(z,y), Or MY (w, z))
= (—1)l#lw =lwh) (1w —fwh (2] =lyl+ny —nx) (Or W3 (y), Or W=(z))
(— ) —lwl) \y|+nvfnx)(_1)\y|(nz%2\)or Ws(y, 2).

—~

Now, if we choose of", and O'Zﬁl’z two representing chain systems corrected by a sign (see [BDHO24! section
10.4]) of respectively M#!(x,y) and M¥' (w, z), then

LN nw —|w ny —n nz—|z ' :
O = (1) Db =t (g bl D (g gt )

is a corrected representing chain system of M#*¥)(z w,y, z). Moreover, it is clear from the definition of
the evaluation maps [BDHO24] Section 10.4] that for every x € Crit(fx),y € Crit(fy),w € Crit(fw),z €

Crlt(fZ) qgf zg))(ly z) (qua:;w q:fjl,z)

Therefore
Uy = (L) Dbty =m0 ol —lob (g )
where 12!, i= —qFy+(0,), Vi, i= —aian(ot,) and 0 = =T (o).
We can now compute
(ex ) K(a®z® B w) Iﬁllm\ Z (nw lwl)(Jyl+ny — nx)( )Iyl(anIZI)(a ® B).(v2,, Vfﬁ'z) ® (y,2)

= (7 )|y\(\w|+\ \+|ﬁ|+nzfnw)(fl)(nyfnx)(nW*|/B‘*|w|) Z(a‘yf,!y ® 5’4},@) ® (y, Z)

Y,z

Kpr®d)(a®r® fow) = (~1)rz e S (0 @ y) @ (B, © 2)

Y,z
= (~1)rz=nw)lalHa) ) ielH B0 SV (02 @ Bu0) @ (y, 2).
Y,z

[ |
Corollary 6.17. The maps K9 and K'*P are well-defined in homology.

Proof. Let Zf and =5 be Morse data sets on X and =) and =} be Morse data sets on Y. Let F and G be
DG systems on respectively X and Y. [BDHO24, Proposition 10.2.1] states that Idx . : C.(X, =, F) —
Cu(X,EX,F), Iy : Cu(Y,2Y,G) — C.(Y,ZY,G) and Idxxy. : Co(X x Y, 57V F @ G) — Cu(X x
Y, E{( Y F® G) are respectively chain homotopic to the continuation maps

\Ilé(l : C*(X,Eé(,./—") — C*(X,E{(,]:),
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U CL(Y,EY,G) = C.(Y,EY,G),
Y O X x Y, EFY  FG) = CuX x Y, EXY  Fog)
of Theorem 2.8 Since K o (Idx . ® Idy ) = Idxxy,« o K, it follows that
K:H. (X, F)®@ H,(Y,G) = H (X xY,F®QG)

is well-defined in the sense that the diagram

H.(X, 5, F) @ H(Y,ZY,9) “— H.(X x Y, 50" F® g)
l@éﬁwoﬂ @éﬁ”l

commutes.

Lemma 6.18. Let Zx and Zy be sets of DG Morse data respectively on X and Y. The maps

K% . H, (C.(X,Z2x,F)®C.(Y,Ey,G)) = HAX XY, F®G)

and

K" . H, (C.(X,Ex, C.(F)) @ C.(Y, By, C.(G))) = Ho(X x Y,C.(F x G))

are limits of morphisms of spectral sequences

K400 BL((X,F) @ (Y.6)) = B (X x Y, F@g)

and

Ktop(r) . EL(X,F)® (Y,G)) = E[ (X xY,F xG).

Proof. Let f: X — R and g:Y — R be the respective Morse functions of Zx and Zy. Let =x«y be the
DG Morse data set on X x Y defined in Section
Recall that the spectral sequence EY ,(X x Y, F ® G) is induced by the filtration

F(Cr(X x Y, Exxy, F®G)) = P (F@G); @ ZCriti(f + g).
i+j=k
1<s

Define now define a filtration of the complex C\(X,Zx,F) ® C(Y,Zy,G). Let s,k € N,

F(C.(X.Ex, F)® C(Y.Ey,O)) = @ (Fy @ ZCrity(f)) ® (Gy ® ZCrity (9))) -

p+p'+a+q'=k
p+p'<s

This induces a spectral sequence E; (X, F)®(Y, G)) converging towards H(C.(X, Ex, F)@C.(Y,Ey, G))
whose first page is

EL (X, F)e(Y,9)~ € Hi(F @G) e ZCrit,(f) ® ZCrity (g).

p+p'=s

Moreover, since

(FeG);= P F, @Gy and Crit;i(f +9) = € Crit,(f) x Crity (g),

q+q'=j p+p' =i

it follows that

KY(F((Cu(X,Ex,F) @ Cu(Y,Ey, §)))) = Fs(Ch(X x Y, Exxy, F @ G)).
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The same approach applies for K*? for F = C.(F) and G = C,(G). Indeed, since

EZ| € Ci(F)@Cy(G) | C Ci(F xG),

qt+q'=j

K'P (F,((Cx(X,Ex,Cu(F)) @ Co(Y,Zy,G))1)) C Fs(Cr(X X Y, Exxy, Cs(F x Q))).
|

Corollary 6.19. For any sets of DG Morse data Zx on X and Zy on'Y, the map K'P : C.(X,Ex,Cy(F))®
Cy(Y, 2y, Cu(G)) = Cu(X XY, Exxy,Ci(F x GQ)) is a quasi-isomorphism.

Proof. Denote f: X — R the Morse function of =x and g : ¥ — R the Morse function of =y. The map
K*P induces an isomorphism on the first pages

KW H(CU(F) @ Cu(G)® | @D ZCrit,(f) ® ZCrity (9) | — Hy(F x G) @ ZCrit,(f + g).
ptp'=s

Indeed,
is an isomorphism.
|
We finished to prove that H. (X XY, C.(F)®C.(G)) ~ H. (X xY,C.(F xG)). We will now denote K = K*'?
for the two next lemmas that state compatibility properties of K with the Fibration Theorem and with maps
induced by morphisms of fibrations.

Lemma 6.20. Let F — Ex — X and G — Ey — Y be two fibrations over two pointed oriented closed
and connected manifolds equipped with transitive lifting functions ®X and ®Y. Let ®X*Y = (X, ®Y) be

a transitive lifting function for the fibration F X G — Ex X Ey — X x Y. Then the following diagram
commutes

H.(X,C.(F)) ® H,(Y,C.(G)) —2> H.(X x Y,C.(F x G))
l/‘l’EX(g\DEY l\PEXXY
H,.(Ex) ® H,(Ey) bz H.(Ex x Ey).

Proof. Let f : X — R and g : Y — R be Morse functions. Consider the Morse function H = f + ¢ :
X xY — R. Once again, it suffices to prove the statement for the pullback fibrations by the chosen
homotopy inverses 0x, 60y and x«y of the canonical projections px : X — X/YVx, py : Y — Y/)y and
Pxxy : X XY = (X xY)/Y (see Section [2.3| for explanation about the Fibration Theorem or [BDHO24!
Sections 7.2, 7.3] for more details). We therefore only have to check that, for any a € Ci(F), 5 € C.(G),
x € Crit(f) and y € Crit(g),

K@ (a@m,)® @) (Bom,) = (-1)1I"g,_ ((a,8) @ (z,y)).
Since Wu(x,y) = Wu(z) x W4(y), we can choose the representing chain system

M(z,y) = (mm,my) € OIzI—&-IyI(P*—»XXY/y(X xY/Y))

of the Latour cells in X x Y. Moreover, ®X*Y is given at the chain-level by
2 ((a, B), (my, my)) = (~=1)/IM=l(@F (@, my,), DY (8,m,)).

Since |my| = |z|,

((I)i((a ®mw)a‘1’§(5 ® ml/)) = (_1)\[3\\x|q)i(><Y((a75) ® m(m,y)) = (_1)|ﬁ‘|$|q/EXxY((a7ﬂ) ® (x,y)),

and this concludes the proof.

55



Lemma 6.21. Let F; — EX — X and G; — EY — 'Y be fibrations over two pointed oriented closed and
connected manifolds (X, ) and (Y,*y) with respective transitive lifting functions ®X and ®) fori € {1,2}.
Let ¢ : BE{X — EX and v : EY — EY be morphisms of fibrations over X and Y respectively. Endow the
fibrations EX x EY — X x Y with the transitive lifting functions

XY = (X ®Y) for i € {1,2}.

Then o x ¢ : EX x EY — EX x EY is a morphism of fibrations and the following diagram commutes

Ho(X,Cu(F))) ® Ho(Y,Co(G1)) 2= H.(X x Y,C,.(Fy x G1))
i@@& i;i@
Ho (X, Cu(F)) ® Ho(Y,C(Ga)) 2= H, (X x Y, C.(Fs x Ga)).

Proof. Using the compatibility between K and the Fibration Theorem (Lemmal6.20)) and the compatibility
between induced maps and the Fibration Theorem (Theorem , we obtain the commutativity of the
diagram

H.(X,Cu(F))) ® H,(Y,C,(G1)) —2= H, (X x Y,C.(Fy x G1))

Y px ®F gy Ypxsmy
H.(EY) ® H.(EY) = H.(BY x EY)
Py L (X)) v
H.(E5X) ® H.(EY) bz H.(E¥ x EY)
Yoy OV ay Vixwmy

H,(X,C.(F)) ® Hy(Y,Cy(Ga)) —2> H (X x Y,C.(Fy x Gy)).
]

7 Morse description and generalization of the Chas-Sullivan prod-
uct. Proof of Theorem A

In this section we will define a product on the homology of the total space E of a fibration F < E = X" over
a n-dimensional closed, connected, oriented and smooth manifold X, endowed with a morphism of fibrations
m: E X, F — E using DG Morse theory. For that, we will use :
— The cross-product K := K : H,(X,C.(F))®? — H,(X?,C,(F?)) defined in Theorem
— The shriek map A, : Hy(X?,Ci(F?)) = H._n (X, A*C,(F?)) of the diagonal A : X — X?2. As proved
by Theorem [3.2] this map is the equivalent in our model to the Pontryagin-Thom construction used
in [GS08].
— The morphism m : H,(X,A*C.(F?)) — H.(X,C.(F)) induced by the morphism of fibrations m :
FE . x. E — E. We proved in Theorem that this morphism is the equivalent in our model to the
map my : H (E X, E) — H.(E).

7.1 Definition

Let E 5 X a fibration over a closed, connected, oriented and smooth manifold X and let « € X a preferred
point. Denote F' = 771 (x). Let ® : E ;X ,, PX — E be a transitive lifting function and consider F = C,(F),
the cubical complex of the fiber F' endowed with the DG module structure over C,(QX) induced by @.
Suppose that there exists a morphism of fibrations m : E X, E — E (see Definition .

We restate Theorem A and we will prove it in the next section.
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Theorem 7.1. The morphism of fibrations m : E X E — E induces a degree —n product

CSpg : Ho (X, F)®? = H. (X, F).

such that the following properties hold :
— Associativity : If m, is associative in homology, then so is CSpg.
— Commutativity : If m, is commutative in homology, then CSpg is commutative up to sign

CSpa(y® 1) = (71)(”*|7|)("*\T|)CSDG(T 2 7).

— Neutral element : If 7 admits a section s : X — E such that m(s(w(e)), e) = m(e,s(n(e))) = e for
all e € E, then CSpg admits a neutral element.

— Functoriality :
e For any pointed, oriented, closed and connected manifold Y*, any continuous map g : ¥ — X
induces a degree —k product for the fibration F — g*E —'Y

CShe : Hi(Y,g"F) @ H;(Y,g"F) = Hisj_(Y,g" F),

such that g1 : Ho (X, F) = Hyyn—i(Y,9*F) is a morphism of rings up to sign.
e If g is an orientation-preserving homotopy equivalence then, gi and g. : H (Y, g*F) — H.(X,F)
are isomorphisms of rings inverse of each other.

— Spectral sequence : Let = be a set of DG Morse data on X. The canonical filtration

Fp(Cu(X,E,F)) = €P Fj @ ZCrity(f)
i+j=k
i<p

induces a spectral sequence E}  that is endowed with an algebra structure

i T T
Ep,q ® El-,m - Ep+l7n7q+m

induces by a chain-level model CSpg : Cy(X, =2, F)®?% — C.(X, =, F) and converges towards H, (X, F)
as algebras. For s,t > 0 Eit = H (X, H,(F)) and the algebra structure is given up to sign by the
intersection product on X with coefficient in H,(F).

This product corresponds in homology, via the Fibration Theorem, to the product p. : H;(E) ® H;(E) —
Hiyj—n(E) defined in [GSO8] and therefore (re)proves that the product p. satisfies those properties. In
particular, if the considered fibration is the loop-loop fibration QX — LX — X and the morphism of fibration
m: LX ey Xeyw LX — LX is the concatenation, then CSpa corresponds to the Chas-Sullivan product.

We defined in Section a C.(Q2X?)-module structure on F?2 := C,(F?), which is in this case the module
structure defined by the natural holonomy of the fibration F? — E? — X2. We also denote, when the
context is clear, 2 = A*F? the C,(Q2X)-module structure on F2 obtained by pulling back by the diagonal
A : X — X2. Tt corresponds to the natural holonomy of the pullback fibration F? < E . x. E — X. The
morphism of fibrations m : E ;x, E — E induces a morphism of complexes m : C,.(X, =, F?) — C.(X,E, F)
that is compatible in homology with the Fibration Theorem (see Theorem [5.8).

The product

CSpe : Ho (X, F)®? = H. (X, F)

is defined in homology by the composition
Hi(X, F) @ Hj(X, F) 25 Hisj (X x X, F?) 3 iy on(X,A°F2) 2 Higj (X, F)
with the Dold sign. In other words,

Hi(X,F)® H;(X,F)
y&r

Hiij (X, F)

CSpa : (=)= 0 Ay o K (y @ 7).

_)
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7.2 Properties of the product
7.2.1 Associativity

Proposition 7.2. Suppose that m : E » x. E — E is associative in homology, i.e the diagram

H.E %z E zx; FE

)
(Idxm) . m

H.(E %, E) H.(E %, E)
H,

is commutative. Then, the product CSpg is associative in homology.

(E)
Proof. Let o,w,d € H,(X,F). Recall that if ¢ : Y — Z is a continuous function and G is a DG-module

over C,(27), then ¢*G is G endowed with the following DG-module structure over C,(2Y)

Va e G, Vye Cu(Y), a-v:i=a- .y
——

€C.(22)

~—

Consider now the diagram

H. (X, F)®?
H.(X,F)® H,(X2, F?) 1. H,(X?,F?) @ H.(X,F)
H,(X,F)® H.(X,F?) 2. H. (X3, F?%) 2. H.(X,F?) @ H.(X,F)
i \ (Idx A)y (AxId), / \L
Id®@m mId
H.(X,F)®? H. (X2, (Id x A)*F?) 4. H. (X% (A x Id)*F?) H,.(X,F)®?
Idxm Al Ay mxId
H. (X2, F?) 5. H.(X,F?) 5. H,. (X2, F?)
H.(X,F?) 6. H.(X,F?)
H.(X,F).

The associativity of CSp¢ is equivalent to the fact that this diagram commutes up to the Kozsul sign
(=1)"U7D and the Dold sign (—1)™"~19D Indeed, we can compute

CSpa(o ® CSpa(w ®6))
_ (_1)n(n—(|w|+\6\—n))(_1)n(n—|6|)m oAjoK (0® (Mol oK(w®Hd)))
= (=)l leDm o Ayo Ko (Id@m) o Id®@ Ay) o (Id @ K) (0 ® w ® d)

and

5
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CSpa(CSpa(o®@w) ®4)

_ (_1)n(n,—|w|)(_1)n(n—|6|)m oAo K ((’fh oA o K(U ® w)) ® 5)

= (—=1)™“+PDm 0 Ayo Ko (m®@1d) o (A ®@1d) o (K @ Id)(0 @ w ® §).
We then prove the commutativity of this diagram up to the wanted sign in 6 steps :
e Step 1 : The square 1. is commutative.
This is an easy computation at the chain level. Let Z;,Z5,Z3 be sets of DG Morse data on X. Let
a®z € Cu(X,51,F), BRY € Cu(X, 22, F) and e ® z € C(X,E3, F).

Ko(ld® K)((a®2)®(Boy) e (y©2)=(D"VE (a@ze (8,7 ® (y,2)
= (=1)UBIFMDIzIENIY (o, B, ~) @ (2,9, 2).

Ko(K@ld)((a®z)® (BRy) @ (y®2) = (—1)PIFK (o, 8) @ (z,9)) ® y® 2)
= (_1)\B|\w\+|7|(\w\+\y\)(OQ577) @ (,y,2)
—Ko(ld®K)(a®n)®(@Boy) e (y®:2)

e Step 2 : The square 2°. is commutative up to the Dold sign and 2. is commutative up to
the Kozsul sign.
This is a direct application of Lemma [6.16]

e Step 3 : The rightmost and leftmost triangles are commutative. _
This is a direct application of Lemma [6.21| since Id : £ — E is a morphism and fibration and Id = Id :
Co(X, F) = Cu(X, F).

e Step 4 : The square 4. is commutative.
This directly follows from the composition property of shriek maps [BDHO24, Theorem 8.2] since

A(A x Id) = A(Id x A).

e Step 5 : The squares 5. are commutative.
It is a particular case of Proposition [5.23}

e Step 6 : The square 6. is commutative.

We proved in Lemma that A*(m x Id) and A*(Id x m) are morphisms of fibrations. This step is
therefore a consequence of Corollary and Corollary Indeed, since we assumed m(m x Id), =
m(Id xm)y : HJ(E Xz E Xz E) = H.(E),

—_~—

mo A*m x Id = m(m x Id)

=m(Id x m)

=mo A*Id x m.

7.2.2 Commutativity

We will use the following notations for the switches of coordinates :
o 7:X%2 5 X2
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e Consider 7*F? — 7*E? — X2 the pullback fibration by 7 whose natural transitive lifting function is

T ((a, B) - (71,72)) = (®(ex, 92), (B, 71))

for all (a,3) € F? and (71,72) € PixX. The switch of coordinates 75 : 7*E? — E? is an
isomorphism of fibrations (bijective morphism of fibrations) that commutes with the transitive lifting
functions 7*®5 and

Py = (@, P) : E? (5 1) Xewy PX* — E?

Therefore,
75 1 Cu(X2, 77 Cu(F?)) = Cu(X?, Cu(F?)),  7e((e, ) @ (2,9)) = TBx(0, B) @ (,Y).
If (a, B) = EZ(a ® f), then 7&((, §) @ (z,y)) = (~=1)!*IPI(8,0) ® (z,y).
e 75 E .x, E— E ,x, E is also an isomorphism of fibrations and
e = A*7g 1 Ou(X, A*CL(F?)) = O (X, A*C.(F?)).

Proposition 7.3. We suppose that m is commutative in homology, i.e m,Tp . = my. : H(E %X, E) —
For any o,w € H (X, F),
CSpg(o,w) = (—1)(717‘G‘)(n7|wl)CSD0(w,U).

In order to prove this property, we have to understand how to switch variables on the manifold X?2. Let Z
be a set of Morse data on X.
Let = = (f,¢, s/ o', Y, 0") be another Morse DG data set on X and define 21, =5 to be the Morse DG

a:lvy/’
data sets on X2 described in Section With Y = X and respectively (Ex,Zy) = (E,Z') and (Ex,Zy) =

(=,5)
=, ).

Lemma 7.4. The shriek map 7 : Co(X2,Z1,Ci(F?)) — C.(X?2, 2o, 7*C(F?)) is given up to chain homo-
topy by ,
(. B) @ (z,2")) = (=) (o, B) @ (/).

Proof. Let us recall how the direct and shriek maps of a diffeomorphism ¢ : Y — Z have been defined in
[BDHO24| Section 9.1].

Given E = (f,£,Y,0, s3.,4,0), define p*= = (fop™, 0., @Y, p(0), ©*S(),p(y)s o) where the orientations
©(0) of the unstable manifolds are defined for any z,y € Crit(f) by

Or Wu(p(z)) := Or Wu(x),
and the representing chain system is
@*Sga(m),ap(y) = Px (Sl’,y) € Clx\—\y|—1 (Z(QO(SE), (P(y))) .
Then, the direct map and shriek map are defined for any DG system G on Z by
ws : CL (Y, E,0%G) = Cu(Z,9p"E,G), px(a®x) = a® p(x)

and
01 : Cu(Z,0"E,G) = Ci(Y,E,0%G), pra®@x) = (_1)deg ?a® (p_l(.’lﬁ).

Therefore
7 s Cu(X2,TEs, Cu(F2)) = Cu(X2, Z5, 7 Cu(F2), (e 8) & (2,2)) = (—1)" (e, B) @ (&', ).
However, 21 # 7%Z5. Indeed,
o1(z,2') == Or Wy s (z,2") = (Or Wi(x),0r Wy, (x'))

= (=1)l=l1=" (Or W (2/), Or W';(x)) = (—=1)=12 | 0y (2, &),
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The other data are the same. A corollary of the proof of the first step of [BDHO24, Theorem 6.3.1] shows

that the continuation map ¥ : C,(X?, 21, C\(F
(z,2)) = (-1
2,517F2) —

) = (=

U((a®pB)®
W (X

(e, 8) @ (z, 2/

Therefore, the shriek map 7

%) = Cu(X?

)\rllw’l(a ® B) ®
C.(X?

DI (a, 8) @

T 20, CL(F?)) is
(z,2).
,Zg, 7*F?) is given up to chain homotopy by

(', ).
|

Proof of Proposition [7.3. We first remark that 7 o A = A and therefore the composition property for the

shriek map gives A = AI o7 up to chain homotopy.

We compute

CSDg(a(X)x,ﬂ@x) 1 "(”*|ﬂ|*|$/|)(_

1
1)(n=lal=lz))(n—151-

(=1
(=1)
=(-1)
(=1
=(=1)

The equality Ay o 7 =

DPIlm 0 A (o, B) @ (,2)
1)BlledtHzlEm)+ DIzl g o Ay o 75 0 7y ((8,

Bl(lel+z[+n)+(n+|z])]="]

BIel+lzl+m)+(ntlzDla’ 5 o A (8,

A*T o Ay = 7F o Ay is a direct consequence of Proposition [5.23]

)
@) ® (7', x))
moTroA((B,a)® (¢,

o) @ (2',x))
“DCSpe(BR2' ® a® ).

x))

The equality

mo Tk = 1 is a direct consequence of Corollary and Corollary

7.2.3 Neutral element

Proposition 7.5. Suppose that the fibration F — E — X admits a section s : X — E such that

m(s(m(e)), e)

=m(e, s(m(e))) =e

for any e € E. Then, 5([X]) € Ho(X,F) is a neutral element for CSpg.

Proof. A section s : X — FE is a morphism of fibrations when one considers X as the total space of the

trivial fibration * <+ X 3 X. Denote F = C,(F) and F2 =

Consider the following diagram

C.(F?).

H.(X,F)® Ho(X,Z) 5= H,(X2,C.(F x {x})) —2 H.(X,C.(F x {x}))

\le/\x/s

H.(X?,F?))

lld®§

H.(X,F)® H.(X,F)

where o : E ;x19 X — E, (e,

— &
A*Idx s
m

H.(X,A*F?)) H.(X,F),

m(e)) — e. Since mo(Id x s) = o, Corollary proves that the last triangle

commutes. The first diagram commutes by Lemma [6.21] The second diagram commutes by Proposition

b.23l
It remains to prove that 6o Ajo K(y® [X])

=~ for any v € H.(X,F). Let = be a set of DG Morse data

on X. We can and will assume that the Morse function f : X — R has only one local maximum ... In

this case, [(* ® Tmax)] = [X] € Hn(X, Z).

Let a ®@ z € Co(X,E, F). We start by computing A ((«

Ay

(7, Zmax), ¥)

M (y)
(y)

(y)

w*
w*
w*
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N
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We now compare orientations. The orientation rule (Or w*® (Zmax), Or Wu(xmax)) = Or X gives Or w*® (Tmax) =
+ and

(Or W (2, Emax), Or M (2, Tanax ) y)) —OrW(y) = (Or W' (), Or HA!((m,xmax),y)) — O W (y).

Therefore Or M ((x, Zmaz),y) = Or M (z,y) and it follows that for any
GoAoK(a®@T®*Q Tmaz) =0(a,*x) @r=aQux

up to chain homotopy. Indeed, o, : Ci(F x {x}) = C.(F), (a,*) — « is a morphism of DG-modules and
therefore & : Cy (X, Cu(F X {*})) = Ciu(X,Cu(F)), (a,x) @2 — a @ x.

Remark 7.6. The inclusion of constant loops s : X — LX is a section of the loop-loop fibration QX —
LX S X.

7.2.4 Functoriality

Let (Y*, xy) be a k-dimensional, smooth, pointed, oriented, closed, connected manifold. Let g : Y — X be a
continuous map and F < Ey 5 Y be the fibration obtained by pulling back by g the fibration F < E 5 X.
This fibration is endowed with the morphism of fibrations

g*m : Ey my Xy Ey — Ey.
Proposition 7.7. The shriek map g1 : H (X, C(F)) = Hi_pny1(Y, 9" Ci(F)) is a morphism of rings up to

Stgn.
More precisely, up to chain homotopy,

CSha (a0 @) © (8 ©a')) = (- b=, (e85 a0 @ g @a))

Proof. We denote l =k —n € Z.
The proof amounts to show that the following diagram is commutative up to the wanted sign :

A " *1m "
Hii(Y, g*F) ® Hji (Y, *F) = Hy oo (Y2, (62)°F2) = Hipjona (Yo g™ F2) 2 Hiyjoni(Y, g F)

9!®9!T (QXQ)!T Q!T Q!T

HZ(X7JT)®H](X7]:) Hi+j (X27]:2) Hi+j—n(X7]:2) Hi+j—n(Xaf)

A

The first square commutes up to the wanted sign by Lemma the second square commutes by the
composition property [BDHO24, Theorem 8.1.1] and the third square commutes according to Proposition

0.2
|

Remark 7.8. In particular, if Y is n-dimensional, then g1 : H (X, F) — H.(Y,g*F) is a morphism of
7ings.

Corollary 7.9. If g : Y — X is an orientation-preserving homotopy equivalence between two manifolds of
same dimension, then ¢ : H (X, C.(F)) = H.(Y,9*C.(F)) and g. : H (Y, 9*C.(F)) = H.(X,C.(F)) are
isomorphisms of rings.

Proof. Using [BDHO24l, Corollary 10.6.4], g1 and g, are isomorphisms inverse to each other. Therefore g
is an isomorphism of rings and so is g, = (g1) %

62



7.2.5 Spectral sequence, chain description of the product

We describe a chain-level model CSpe : Ci(X,E, F) @ C;(X,E, F) — Ciyj—n(X,E,F) for the product
CSDG : ]{1()(7 f) ® H,(X, ./_") — Hi+j—n(Xa f)

We will prove that this preserves the canonical filtrations associated to these complexes and therefore prove
that our construction also endow the canonical spectral sequence Ej , associated to an enriched Morse
complex C,(X,Ep, F) with an algebra structure which converges towards H, (X, F) as algebras.

This a DG Morse equivalent to [CIY04, Theorem 1] for the Chas-Sullivan product that has been generalized
in [GS08, Theorem 3.6].

Proposition 7.10. Let =g be a set of DG Morse data on X. The canonical filtration
Fp(Cu(X,E0, F)) = @ Fj @ ZCriti(f)
i+j=k
i<p
induces a spectral sequence Ey . that is endowed with an algebra structure

T T T
Ep,q ® El,m - Ep+l—n,q+m

and converges towards H.(X, F) as algebras. For s,t >0, E2, = Hy(X, H,(F)) and the algebra structure is
given up to sign by the intersection product on X with coefficients in Hy(F).

Proof. We will use for A, the second definition of the shriek maps given in [BDHO24, Section 10.4] and
take =1 and Z; generic sets of Morse data on X such that

Alws )N Wiy g, (2, 27)

for all y € Crit(f2), z € Crit(fy), «’ € Crit(f1).
We define a chain-level product

Id@w¥

®

Co(X,Z0, F) ® Cu(X,Z0, F) 28 0,(X,Z0, F) @ C.(X,Z1, F)
B C(X2,501, F?)
B OU(X, g, AT F?)
T2 (X, 2y, A*F2)
Iy CW(X,Zo, F).

Every map preserves the canonical fibrations associated to an enriched complex. Indeed, [BDHO24|
Theorem 8.1.1] states that all direct and shriek maps preserve the filtrations. The continuation maps ¥q;
and Wy are defined by equation [BDHO24, equation (33)] and clearly preserves filtrations. We proved
in Proposition [5.21] that every morphism of complexes induced by a morphism of A.,-module preserves
filtrations.

It only remains to prove that K preserves filtrations. It suffices to remark that if a ® € F; ® ZCrit;(f)
and S ®y € G; ® ZCritg(g), then

K% (a@z)®(Bey)=(-1)"a b)) (r,y) € (F©G)jn ® ZCritiy(f +9)
and in particular

KU (Fy(Cu(X,Zx,F)) ® Fy(C.(Y,Zy,G))) = Fpy g (CL(X X Y, Exxy, F2G)).
If F = C,(F) and G = C,(G), we also have

K ((a@z)® (Bey)) = (=1)"(a, 8) @ (2,y) € Cj(F x G) @ ZCritir4(f + g)
and therefore

K'"P(Fy(Citj(X,Ex,Ci(F))) @ Fy(Cra(Y,Ey, Ci(Q)))) C Fpiq(Cigjrrs1(X X Y, Exxy, Cu(F x G))).
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It follows that for any a,b € N,
CSDG(FP(CG< , 50, F)) ® Fq(cb(X7 E0,F))) C F;DJrqfn(Caer*n(Xv o, F))
and [McCO01, Theorem 2.14] proves that CSp¢ induces an algebra structure

(r) . pr I T
CSDG . Ep,q by El,'rn — Ep-l—l—n,q+'m

such that E] = converges towards H.(X,F) as algebras.
On the second page, we infer using the description of the cross products above, [BDHO24, Remark 9.2.3]

stating that A, induces on the second page AI(Q) the usual shriek morphism with local coefficients and
Proposition [5.21] stating that m is a limit of morphism of spectral sequences, that the algebra structure
on Hy(X, Hi(F)) is given up to sign by the intersection product on X with coefficients in Hy(F).

|

7.2.6 Equivalence with the Griiher-Salvatore definition

Proposition 7.11. The product CSpg corresponds at the homology level via the Fibration Theorem to the
product i, : H,(E)®? — H,(E) defined in [GS0§].

Proof. We prove that the following diagram commutes

A
Hz(X7‘F) ®Hj(Xa]:) 4K> iJrj(XZa]:Z) L> i+j(ﬁ7aﬁ772) —_— i+j7n(X7]:2) 47h> 7;+j*7l(X7‘F)

X - N X X

K T ~ * Mos
H{(E) ® Hj(E) ——— Hiy;(E?*) — = Hiy; (E xx7 E)™ T%) —> H;j_n(E x Xz BE) —> Hij_n(E).

The vertical arrows are given by the Fibration Theorem. We used the following notations from [GSO0S|:
— na is a tubular open neighborhood of the diagonal in X2 seen as a disk bundle over X whose normal
bundle is denoted by va. Then na is homeomorphic to the total space of va.
— (E xXx E)’T*TX is the Thom space of the normal bundle 7*va ~ ev*TX associated to the inclusion

" 2
E % E < E?. We have an identification (E ,x, E)™ A ~ E/E2 \ A
— Ty is the Pontrjagin-Thom collapse map and u, is the Thom isomorphism.
e Lemma [6.20] shows that the first square commutes.
e The second and third squares commute. This is a direct application of Theorem [3:2}
e The fourth square commutes by Theorem applied to the morphism of fibrations m : F x, E — E.
|

Corollary 7.12. In particular, the product

CSpe : Ho(X,C.(QX) %2 5 H (X, C,(2X)*)
corresponds via the Fibration Theorem to the Cohen-Jones [CJ02] definition of the Chas-Sullivan product.
|
We can reprove using our setting the homotopy invariance of the Chas-Sullivan product.

Proposition 7.13. (Homotopy invariance) Let (Y, xy) be a smooth, oriented, pointed, closed and con-
nected manifold. Let g : Y — X be an orientation-preserving homotopy equivalence such that x = g(xy).
Consider the fibrations

QX — LX — X and QY — LY =Y.

There exists an isomorphism of rings

gu + Ho (X, C.(QX)) = H.(Y,C.(QY)).
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Proof. We proved in Corollary [7.9] that g : H.(X,C,(2X)) — H.(Y,g*C.(QX)) is a ring isomorphism.
It remains to define a ring isomorphism H, (Y, g*C,(QX)) — H. (Y, C.(QY)).

Consider f : X — Y a homotopy inverse of g such that f(x) = xy. We see ¢*LX as ¢g*LX =
{(y,7) €Y x LX, v(0) = g(y)}. Consider the map

Lf:g"LX = (fog) LY, Lf(y,7) = (y, [ o)
The map Lf is a morphism of fibrations over QY and induces a isomorphism
Lfe:Ho(g"LX) = Ho((fog) LY).
The map
L(fog): LY = (fog) LY, L(fog)(y)=fogoy

is also a morphism of fibrations and induces an isomorphism

L(fog)e: H(LY) = Hu((f 0 g)"LY).
Corollary shows that

—_~—

L(fog): Hi(Y,Cu(QY)) = H.(Y, (f 0 9)"Ci(2Y))

and

Lf: Ho(Y,g"C.(QX)) = H.(Y, (f 0 g)"Cu(QY))
are isomorphisms.
Denote now

— -1
g# =L(fog) oLfog: H (X, Cu(QX)) = H.(Y,C(QY)).
We prove that gy is an isomorphism of rings where the products on H,(X,QX) and H,(Y,QY) are re-
spectively the DG Chas-Sullivan products induced by the concatenations mx : LX ¢, Xey LX — LX and
v i LY oy Xew LY — LY which are morphisms of fibrations.

We already know from Corollary [7.9] that
H.(X,C.(QX)) = H.(Y,g*C.(QX))

is an isomorphism of rings. It remains to prove that
—_— 71 o~
L(fog) oLf:H.(X,g*°Cu(2X)) > H(Y,Ci(QY))
is a morphism of rings.

Denote F = C,(QX), F2 = C.(QX?) and G = C.(QY), G2 = C.(QY?). The following diagram commutes

HL(Y, " F)®? — X H,(V2, (g x 9)"F2) — s HL(Y,A%(g x 9)*F2) —L "5 > HL(Y,g"F)
E}f@”l J/L?%f iA*L?;zf lff
H.(Y, ( 09)9)% —o HL(Y2, (£ 0 9)%2)" 62) =2 H.(Y, A% ((f 0 9)°?)" 622 H. (v, (f  9)°G)
cTFo/wWT Tﬁ(?ong TA*L:GE.T)“ Tﬁ/(—fz;)

K Ay

H.(Y,6)®* —— "~ H.(v2,6?) H.(Y,A*G?) — ™~ H.(Y,G).

Indeed, the commutativity of the two squares on
— the first column is a consequence of Lemma [6.21]
— the second column is a consequence of Proposition [5.23]
— the third column is a consequence of Corollary and Corollary since

my o (Lf x Lf)=Lfomx, and my o (L(fog)x L(fog))=L(fog)omy.
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7.2.7 Pullback

Let (Y, %y) be a pointed topological space and F' < E % Y be a fibration. Let f : X — Y be a continuous
map such that f(xx) = *xy. Let m : E , X, E — E be a morphism of fibrations. Consider the pullback
fibrations

F— f*E— X and F? < f*(E ,x, E) = X.

It is straightforward that f*m, : f*(E , x, E) — f*E is also a morphism of fibrations. Therefore, there
exists a product of degree —n

CSpq : Ho(X, f*CL.(F)®? = H.(X, f*C,(F))

For instance : )
— Let X = {x} C Y and consider QY <5 £Y — Y. Then, CSp : H, (%, i*C(QY)®2 — H,(%,i*C,(2Y))
describes the Pontryagin product on QY.
— Let Y = LX and f : X — LX be the inclusion of constant loops. Consider the fibration QLX —
LLX — LX. Then, CSpg : Hi(X, f*C.(QLX))®? — H.(X, f*C.(QLX)) describes a product de-
gree —n on pinched tori.

7.3 DG Chas-Sullivan product for manifolds with boundary

If X has a boundary, take a Morse function without any critical points on the boundary and a pseudo-
gradient pointing outward along 04 X C X and inward along 0_X C 90X so that the boundary decomposes
0X = 04X UIJ_X (see [AD14l Section 3.5] for further explanations on Morse theory for a manifold with
boundary and [BDHO24, Section 5.3] for the construction of Morse homology with DG coefficients for a
manifold with boundary).

Let X,Y be pointed, oriented, compact and connected manifolds with boundary. Let F,F’ be two DG
modules over C,(2X) and G be a DG module over C,(2Y). Let ¢ : F — F’ be a morphism of A.-modules.
The Kiinneth map

Co(X,0.X,F) @ Cu(Y,0.Y,G) — Cu(X xY,X x0,YUd,X x Y, F xG)

K : aRr0BRY N (_1)|ﬂ||ll(a’ﬁ)®<x’y)

and
5= i : Ho(X, 0, X, F) = H.(X,0.X, F)

are defined in the same way, since all the trajectories between critical points avoid the boundary.

Let v : X — Y be a continuous map. The shriek map v has target H.(X,0.X,v*G) and factors
through H,(Y,G) — H.(Y,0+Y,G) — H.(X,04:X,¢*G) (see [BDHO24| Remark 10.4.3). Therefore A, :
H.(X?,04(X?%),F?) — H.(X,0,X,A*F?) is well-defined and has the same properties and the degree —n
product

CSpg : Ho(X,0, X, F)®? - H.(X,0, X, F)

is defined in the same way and has the same properties under the same assumptions.
In particular, if F < F = X and m : E » x; E — E is a morphism of fibrations, then CSp¢ induces a
degree —n product

CSDG : H*(E,E+) X H*(E, E+) — H*(E,E_;,_)
where we denoted Fy = 7 1(9; X).
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8 Further directions

In this paper, we laid out the necessary tools to study, using enriched Morse theory, products on total spaces
of fibrations that intersect on the basis and multiply on the fiber. The path product defined and studied by
[Ste23] is an example of such a product that does not fall into the category of products studied in this paper.

8.1 Path products

Let Y be a topological space, X™ be a pointed, oriented, closed, connected manifold, and f : X — Y be a
continuous map.

Define
Px Y = {(z,2',a) € X* x PY, a(0) = f(z),a(1) = f()}

and evg,evy : Px ;Y — X, evg(z, o', ) = x € X, evi(z,2',a) = 2/ € X the evaluation at the basepoint and
endpoint. We will denote ev = (evg, ev1) : Px, fY — X?2. A degree —n product

A: H.(Px;Y)®% = H.(Px;Y)

has been defined and studied by [Ste23] if Y is a closed manifold. This product, as the Chas-Sullivan product,
is defined by intersecting on a space where the paths are concatenable and then concatenating.

Denote 7 : Px £Y cu, Xevo Px,fY — X3, 7(7,7) = (7(0),7(1) = 7(0), 7(1)). Since Px ;Y and Px Y cu, Xew,
Px r are the total spaces of the fibrations

QY — Px ;Y 3 X2

and
QY2 < Px (Y e, Xewy Px.pY = X3,

we interpret this product in our setting by

PPpg : Hi(XQ, C.(Y)) ® HJ‘(XQ, C.(QY))

X, H; (X4, C.(QY?)) ~ H;j(Px Y x PxY)

& Hiyjn(X?, A*CL(QY?)) ~ Hiyjn(Px,fY evy Xevy Px,fY)
- Hi+j—n(X37PT,3O*(QY)) = i+j—n(m(PX,fY evy Xevg PX,fY))
L Hij n(X?,C.(Q7)) ~ H;jn(Px,tY)

where D : X® — X* D(a,b,c) = (a,b,b,c) and p: X3 — X2, p(a,b,c) = (a,c) and
m: PX,fY ev, Xevg PX,fY — p*PX7fY
is the morphism of fibrations over X3 induced by the concatenation of paths.

Remark 8.1. Intuitively, given two chains o, in Px Y, this product will intersect evy .(o) with evo «(T)
on X, concatenate at the intersection and forget the concatenation point.

We can remark that, since we do not intersect along the diagonal A : X2 — X*, this product does not fall
into the category of products studied in this paper. Nonetheless, the developed tools enable to define it and
study it.

Using techniques very similar to those used in Section [7] we will prove in future work

Theorem 8.2. The product PP p¢ is associative (up to the sign (—1)™ with the current orientation conven-
tions) and admits a neutral element.

Using the Fibration Theorem and the fact that all the maps defining PPpg are compatible with it, this
product yields a product PP p¢ : H.(Px ;Y )®? — H,(Px,;Y). We will study in further detail the similarities
and differences between PPpg and A : H, (PX)]cY)@’2 — H.(Px Y).
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8.2 Further study on A,-structures
8.2.1 A,.-algebra structures on enriched Morse complexes

This introduction of A..-structures to study enriched Morse theory is a clear path to defining an A..-
structures on enriched Morse chains as it has been defined in [Aboll] and [Maz22] for the Morse cochains
with coefficients in Z. These constructions rely on studying the moduli spaces perturbed Morse gradient

trees ﬁ(y, Z1,...,%,) and particularly those of dimension 0 and 1.
The main difficulty in the enriched Morse setting would be to extend this work to define a fundamental class

for the manifold with boundary and corners T'ig(y; Z1,...,%p) in any dimension and understand how the
orientations behave with respect to the boundary strata.

8.2.2 Towards a Chas-Sullivan product CS4__ with coefficients in an 4,-module

Whenever F is an A.-module over C, (2X) and there exists a morphism of A.,-modules m : A*(F@F) — F,
there exists a product

CS4. : Ho(X,F)®? = H.(X,F).

We will study, in future work, the question of associativity, commutativity and the existence of a neutral
element for this product.
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