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Quadratic obstructions to small-time local
controllability for multi-input systems

Théo Gherdaoui∗

December 19, 2024

Abstract

We present a necessary condition for the small-time local controllability of multi-
input control-affine systems on Rd. This condition is formulated on the vectors of Rd

resulting from the evaluation at zero of the Lie brackets of the vector fields: it involves
both their direction and their amplitude.

The proof is an adaptation to the multi-input case of a general method introduced
by Beauchard and Marbach in the single-input case - see [5]. It relies on a Magnus-
type representation formula: the state is approximated by a linear combination of
the evaluation at zero of the Lie brackets of the vector fields, whose coefficients are
functionals of the time and the controls. Finally, obstructions to small-time local
controllability result from interpolation inequalities.

Keywords: Control theory, ODEs, Obstruction for controllability, Lie Brackets, Small-
time local exact controllability, control-affine systems.
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1 Introduction

1.1 Multi-input control-affine systems
One considers the control-affine system

x′(t) = f0(x(t)) + u(t)f1(x(t)) + v(t)f2(x(t)), (1.1)

where the state is x(t) ∈ Rd, the controls are scalar functions u(t), v(t) ∈ R, and f0, f1 and
f2 are real-analytic vector fields on a neighborhood of 0 in Rd such that f0(0) = 0. The last
hypothesis ensures that 0 is an equilibrium of the free system (i.e. with (u, v) ≡ 0).

For each t > 0, u, v ∈ L1((0, t),R), there exists a unique maximal mild solution to (1.1)
with initial data 0, which we will denote by x(·; (u, v)). As we are interested in small time,
and small controls, the solution is well-defined up to time t.

In this article, we study the small-time local controllability of system (1.1) in the
sense of Definition 1.1 below, which requires the following notion. For t > 0, m ∈ N and
p ∈ [1,+∞], we consider the usual Sobolev space Wm,p((0, t),R) equipped with the usual
norm

∥u∥Wm,p := ∥u∥Lp + · · ·+ ∥u(m)∥Lp .

The following concept was introduced by Beauchard and Marbach in [4] for scalar-input
systems.

Definition 1.1 (Wm,p × Wm′,p′
-STLC). Let m,m′ ∈ N, p, p′ ∈ [1,+∞]. We say that

system (1.1) is Wm,p × Wm′,p′
-STLC when, for every t, ρ > 0, there exists δ > 0, such

that, for every x∗ ∈ B(0, δ), there exist (u, v) ∈ Wm,p((0, t),R) × Wm′,p′
((0, t),R) with

∥(u, v)∥Wm,p×Wm′,p′ ⩽ ρ and x(t; (u, v)) = x∗.

We say that system (1.1) is Wm,p-STLC when (1.1) is Wm,p ×Wm,p-STLC.

Remark 1.2. The historical notion of STLC corresponds to m = 0, p = ∞ - see [8, 24, 22].
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1.2 Notations
We use the definitions and notations of Beauchard and Marbach in [5]. LetX := {X0, X1, X2}
be a set of 3 non-commutative indeterminates.

Definition 1.3 (Free algebra). We consider A(X) the free algebra generated by X over the
field R, i.e. the unital associative algebra of polynomials of the indeterminates X0, X1 and
X2. The space A(X) can be seen as a graded algebra

A(X) =
⊕
n∈N

An(X),

where An(X) is the finite-dimensional R-vector space spanned by monomials of degree n over
X.

Definition 1.4 (Free Lie algebra). For a, b ∈ A(X), one defines the Lie bracket of a and b
as [a, b] := ab − ba, also called ada(b). One defines by induction on n ∈ N, adn+1

a (b) =
[a, adna(b)]. This operation is anti-symmetric and satisfies the Jacobi’s identity: for all
a, b, c ∈ A(X),

[a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0. (1.2)

Let L(X) be the free Lie algebra generated by X over the field R, i.e. the smallest linear
subspace of A(X) containing X and stable by the Lie bracket [·, ·]. The space L(X) is a
graded Lie algebra

L(X) =
⊕
n∈N

Ln(X), [Ln(X),Lm(X)] ⊂ Ln+m(X),

where we define Ln(X) := L(X) ∩ An(X), for any integer n ∈ N.

Definition 1.5 (Iterated brackets). Let Br(X) be the free magma over X, i.e. the set of
iterated brackets of elements of X, defined by induction as: X0, X1, X2 ∈ Br(X) and if
a, b ∈ Br(X), then the ordered pair (a, b) belongs to Br(X).

There is a natural evaluation mapping e from Br(X) to L(X) defined by induction by
e(Xi) := Xi for i = 0, 1, 2 and e((a, b)) := [e(a),e(b)].

Definition 1.6 (Length and homogeneous layers within L(X)). For b ∈ Br(X), |b| denotes
the length of b. For i ∈ J0, 2K, for b ∈ Br(X), ni(b) denotes the number of occurrences of the
indeterminate Xi in b. We will use the notation: n(b) := n1(b) + n2(b) = |b| − n0(b). For
A1, A2 ⊂ N, SA1,A2

(X) is the vector subspace of L(X) defined by

SA1,A2
(X) := Span{e(b), b ∈ Br(X), n1(b) ∈ A1, n2(b) ∈ A2}.

For A ⊂ N, SA(X) is defined by

SA(X) := Span{e(b), b ∈ Br(X), n(b) ∈ A}.

For i ∈ N, we write Si(X) instead of S{i}(X).

For example, with b = (((X1, (X0, X2)), X2), (X1, X2)), |b| = 6, n0(b) = 1, n1(b) = 2,
n2(b) = 3 and n(b) = 5.

Definition 1.7 (Left and right factors). For b ∈ Br(X) with |b| > 1, b can be written in
a unique way as b = (b1, b2), with b1, b2 ∈ Br(X). We use the notations λ(b) = b1 and
µ(b) = b2, which define maps λ, µ : Br(X) \X → Br(X).

For example, with b = ((X1, X2), ((X2, X0), X0)), one has λ(b) = (X1, X2) and µ(b) =
((X2, X0), X0).

Definition 1.8 (Bracket integration b0ν). For b ∈ Br(X) and ν ∈ N, we use the uncon-
ventional short-hand b0ν to denote the right-iterated bracket (· · · (b,X0), . . . , X0), where X0

appears ν times.
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For example, if b = ((X1, X2), (X0, X2)), then b02 = ((((X1, X2), (X0, X2)), X0), X0).

Definition 1.9 (Lie bracket of vector fields). Let f, g : Ω → Rd be two smooth (at least C1)
vector fields on an open subset Ω of Rd. One defines

[f, g] : x ∈ Ω 7→ Dgxf(x)−Dfxg(x). (1.3)

Definition 1.10 (Evaluated Lie bracket). Let f0, f1, f2 be C∞(Ω,Rd) vector fields on an
open subset Ω of Rd and f = {f0, f1, f2}.

For b ∈ L(X), we define fb := Λ(b), where Λ : L(X) → C∞(Ω,Rd) is the unique
homomorphism of Lie algebras such that Λ(Xi) = fi, for i ∈ J0, 2K.

We will write fb instead of fe(b) when b ∈ Br(X). Finally, for N ⊂ Br(X), we use the
notation

N (f)(0) := Span{fb(0), b ∈ N} ⊆ Rd. (1.4)

For example, if b = (((X1, X2), X0), (X1, X0)), one has fb := [[[f1, f2], f0], [f1, f0]].

1.3 A Hall basis
The purpose of this section is to introduce tools in order to construct a basis of the free Lie
algebra L(X).

Definition 1.11 (Hall set). A Hall set is a subset B of Br(X) endowed with a total order
< such that

• X ⊂ B,

• for all b1, b2 ∈ Br(X), (b1, b2) ∈ B iff b1, b2 ∈ B, b1 < b2 and either b2 ∈ X or
λ(b2) ⩽ b1,

• for all b1, b2 ∈ B such that (b1, b2) ∈ B then b1 < (b1, b2).

Theorem 1.12 (Viennot, [18]). Let B ⊂ Br(X) be a Hall set. Then e(B) is a basis of
L(X).

For a Hall set B and A ⊂ N, we denote by BA the subset of B defined by BA := {b ∈
B; n(b) ∈ A}. When A is a singleton, we write BN instead of B{N}.
The definition of a Hall set is also an algorithm for its construction. Indeed, the subsets BN

of a Hall set B can be constructed by induction on N . One may start, for example, with
B0 = {X0} and B1 = {X10

ν1 , X20
ν2 ; ν1, ν2 ∈ N} with the following order

∀k ∈ N, X10
k < X20

k < X10
k+1 < X20

k+1 < · · · < X0.

which is compatible with the 3 axioms above. For N ⩾ 2, to find all Hall elements b ∈ BN

given BJ1,N−1K, one adds first all (a, b) with a ∈ BN−1, b ∈ X and a < b. Then for each
bracket b = (b1, b2) ∈ BJ1,N−1K, one adds all the (a, b) with a ∈ BN−n(b) and b1 ⩽ a < b.
Finally, one inserts the newly generated elements of BN into an ordering, maintaining the
condition that a < (a, b). With this construction, one obtains the following statement,
already used in [10, Proposition 2.13].

Proposition 1.13. There exists a Hall set B such that X0 is maximal,

B1 =
{
M1

j := X10
j , M2

j := X20
j ; j ∈ N

}
, (1.5)

and B2 = B2,good ∪ B2,bad with

B2,bad =
{
W 1

j,l := (M1
j−1,M

1
j )0

l, W 2
j,l := (M2

j−1,M
2
j )0

l; j ∈ N∗, l ∈ N
}
, (1.6)

and
B2,good =

{
Cj,l := (−1)j

(
M1

⌊ j+1
2 ⌋,M

2
⌊ j
2 ⌋

)
0l; j, l ∈ N

}
. (1.7)

We used the following notation.

Notation. For b = (b1, b2) ∈ Br(X) and j ∈ N, we use the notation (−1)jb as (−1)jb =
(b2, b1) if j is odd and (−1)jb = b if j is even. This notation is unconventional, it is used
to condense the writing.

Remark 1.14. When l = 0, we will write W 1
j ,W

2
j , Cj instead of W 1

j,0,W
2
j,0 and Cj,0.
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1.4 Main result
The purpose of this article is to prove the following theorem.

Theorem 1.15. Let f0, f1, f2 be analytic vector fields over Rd such that f0(0) = 0. Let
k,m ∈ N∗. We define the integer

π(k,m) := 1 +

⌈
2k

m

⌉
, (1.8)

and the set

Nm
k := SJ1,π(k,m)K\{2}(X)

∪{Cj,l; j ∈ J0, 2k − 2K, l ∈ N} ∪
{
W 1

j,l,W
2
j,l; j ∈ J1, k − 1K, l ∈ N

}
,

where the last set in the right-hand side is empty if k = 1. Let σ : Rd → Rd/Nm
k (f)(0) be

the canonical surjection, ẽ1 := σ
(
fW 1

k
(0)
)
, ẽ2 := σ

(
fW 2

k
(0)
)

and ẽ3 := σ
(
fC2k−1

(0)
)
. If

the system (1.1) is Wm,1-STLC, then one of the following conditions is satisfied

• ẽ1 = 0 or ẽ2 = 0,

• (ẽ1, ẽ2) is a linearly independent family and ẽ3 = aẽ1 + bẽ2 with ab ⩾ 1
4 ,

• ẽ2 ∈ R∗
−ẽ1,

• ẽ2 = βẽ1, ẽ3 = γẽ1 with β ⩽ γ2 and β ̸= 0.

The parameter k is associated with the drift order, m with the regularity of the controls.
The historical case m = 0 can be studied using this theorem, for systems with an integrator,
i.e. satisfying x′1 = u. In general, the restriction to the case m ⩾ 1 is technical and could be
improved in future work. A heuristic explanation of this theorem is given in the following
sections.

Remark 1.16. For any m ∈ N∗, p ∈ [1,+∞], t ∈ (0, 1) and u ∈ Wm,p(0, t), one has
∥u∥Wm,1 ⩽ ∥u∥Wm,p . Consequently, we more generally prove a necessary condition for
Wm,p-STLC.

Remark 1.17. Note that, it may be possible to deal with techniques used in [5, Section 10]
to remove the assumption of analyticity of the vector fields f0, f1 and f2. This will not be
explored in the article.

Example 1: an elementary example to which the previous theorem applies is the fol-
lowing one x

′ = u
y′ = v
z′ = x2 + y2 + αxy

, (1.9)

with a parameter α ∈ R. This is a control-affine system of the form (1.1) that satisfies

fW 1
1
(0) = fW 2

1
(0) =

0
0
2

 , fC1
(0) =

0
0
α

 , Nm
1 (f)(0) = Span

1
0
0

 ,

0
1
0

 ,

for any integer m ∈ N∗. Let σ : R3 → R3/Nm
1 (f)(0) be the canonical surjection, ẽ1 =

σ
(
fW 1

1
(0)
)
, ẽ2 = σ

(
fW 2

1
(0)
)

and ẽ3 = σ (fC1
(0)). Thus, ẽ1 = ẽ2 = 2 and ẽ3 = α. The

first three points of Theorem 1.15 are not satisfied. The last one is not verified if and only
if |α| < 2 and then, by contraposition, Theorem 1.15 proves that, for every m ∈ N∗, the
system (1.9) is not Wm,1-STLC. Indeed,

x2 + y2 + αxy =
(
x+

α

2
y
)2

+
4− α2

4
y2,
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thus, if |α| ⩽ 2, then z′ ⩾ 0. The use of Lie brackets formalizes the fact that such a
subsystem is hidden, in some sense, inside the system (1.1). Note that, when |α| > 2, for
every m ∈ N, the system is Wm,∞ − STLC. Indeed, we can choose u : s ∈ (0, t) 7→ φ′( st ),
and v : s ∈ (0, t) 7→ ψ′( st ) with φ,ψ ∈ C∞

c ((0, 1),R). If ψ ≡ 0, the state moves along +e3. If
φ = −α

2ψ, the state moves along −e3, as

z(t) = −α
2 − 4

2
t3
∫ 1

0

ψ2.

Example 2: let us focus on the following system
x′1 = u
x′2 = v
x′3 = x1v
x′4 = x3
x′5 = 1

2x
2
1 +

1
2x

2
2 + x4

. (1.10)

We can write (1.10) as x′ = f0(x) + uf1(x) + vf2(x). Let ε > 0 and z ∈ R. Using the
following controls,

uz(t) :=
√
|z|
(
1(0,ε) − 1(2ε,3ε)

)
(t), vz(t) := sgn(z)

√
|z|
(
1(ε,2ε) − 1(3ε,4ε)

)
(t),

one has
∥(uz, vz)∥L∞ ⩽ |z| 12 ,

x1(4ε) = x2(4ε) = 0, x3(4ε) = zε2,

x4(4ε), x5(4ε) = O
(
zε3
)
.

Thus, e3 = [f1, f2](0) is a second-order tangent-vector, in the sense of [17]. Noticing that
e4 = [[f1, f2], f0](0), e5 = [[[f1, f2], f0], f0](0), one deduces from [12, Theorem 6] that e4 and
e5 are also tangent-vectors. Using [17, Corollary 2.5], one obtains the L∞-STLC1 of system
(1.10). This example emphasizes the fact that we need to put not only the bracket (X1, X2)
but also {(X1, X2)0

ν ; ν ∈ N}, in the set Nm
k .

Example 3: the necessary condition for STLC given by Theorem 1.15 is not sufficient,
i.e. there are systems that are not Wm,1-STLC, but that verify at least one of the four
points, for a fixed m ∈ N∗. For instance, consider the following systemx

′ = u
y′ = v
z′ = x4 + y4

. (1.11)

For this system, for every k ∈ N∗, fW 1
k
(0) = 0. Thus, for all m ∈ N∗, this system satisfies

the first point of Theorem 1.15. However, for every m ∈ N∗, this system is not Wm,1-STLC
because z′ ⩾ 0. In this situation, quadratic terms do not prevent the system from being
controllable. Theorem 1.15 doesn’t allow us to conclude for this example, since the drift
arises from quartic terms. An opening to the case of quartic drifts is given in Section 4.6.

Example 4: another counter-example is given by the following system
x′1 = u
x′2 = x1
y′1 = v
z′1 = x22 + y21

. (1.12)

Then, fW 1
1
(0) = 0 and for all k ∈ N⩾2, fW 2

k
(0) = 0. Consequently, for all k,m ∈ N∗, the first

point is satisfied by this system. However, for every m ∈ N∗, the system is not Wm,1-STLC
1In fact, we can prove that this system is Wm,∞

0 -STLC for every m ∈ N, using the same strategy as in
[10, Proposition 2.25].

6



Quadratic obstructions to stlc for multi-input systems

because z′1 ⩾ 0. Here, the obstacle to controllability is created by the bracket W 1
2 +W 2

1 .
Indeed, Theorem 1.15 is designed to study competitions with quadratic brackets associated
with controls of the same homogeneity in time. For this reason, we prove a generalization
of Theorem 1.15 that allows us to deal with asymmetrical cases, this is the purpose of the
following statement.

Theorem 1.18. Let f0, f1, f2 be analytic vector fields over Rd such that f0(0) = 0. Let
k, k′,m,m′ ∈ N∗ be such that k′ ⩽ k. One recalls that π is given by (1.8). We define

Nm,m′

k,k′ = SJ1,π(k,m)K\{2}(X) ∩ SJ0,π(k,m)K,J0,π(k′,m′)K(X)

∪{Cj,l; j ∈ J0, k + k′ − 2K, l ∈ N} ∪
{
W 1

i,l,W
2
j,l; (i, j) ∈ J1, k − 1K × J1, k′ − 1K, l ∈ N

}
,

where the last set in the right-hand side is empty if k = 1 or k′ = 1. Let σ : Rd →
Rd/Nm,m′

k,k′ (f)(0) be the canonical surjection, ẽ1 := σ
(
fW 1

k
(0)
)
, ẽ2 := σ

(
fW 2

k′
(0)
)

and

ẽ3 := σ
(
fCk+k′−1

(0)
)
. If the system (1.1) is Wm,1×Wm′,1-STLC, then one of the following

conditions is satisfied

• ẽ1 = 0 or ẽ2 = 0,

• (ẽ1, ẽ2) is a linearly independent family and ẽ3 = aẽ1 + bẽ2 with ab ⩾ 1
4 ,

• ẽ2 ∈ R∗
−ẽ1,

• ẽ2 = βẽ1, ẽ3 = γẽ1 with β ⩽ γ2 and β ̸= 0.

Remark 1.19. This theorem gives a necessary condition for Wm,p×Wm,p′
-STLC, for every

p, p′ ∈ [1,+∞].

Remark 1.20. The case when k ⩽ k′ can be proved in the same way.

Theorem 1.18 can be used to study the system (1.12) with k = 2, k′ = 1, m,m′ ∈ N∗.

1.5 Drift for obstructions
Our strategy is to prove that system (1.1) has a drift, to deny Wm,p ×Wm′,p′

-STLC - see
Section 3.1. More precisely,

Definition 1.21 (Drift). Let e ∈ Rd, N ⊂ Rd be a vector subspace, m,m′ ∈ N∗, p, p′ ∈
[1,+∞] and ∆ : L1((0, 1),R)2 → R+. We say that system (1.1) has a drift along e parallel
to N with strength ∆ as

(
t, ∥(u, v)∥Wm,p×Wm′,p′

)
→ 0 when there exist C > 0, β > 1 and

0 < ρ < 1 such that, for every t ∈ (0, ρ), and (u, v) ∈Wm,p((0, t),R)×Wm′,p′
((0, t),R) with

∥(u, v)∥Wm,p×Wm′,p′ ⩽ ρ,

Px(t; (u, v)) ⩾ C∆(u, v)− C ∥x(t; (u, v))∥β , (1.13)

where P is a linear form, satisfying P(e) > 0 and P N ≡ 0.

Lemma 1.22. With the notations of Definition 1.21, if the system (1.1) has a drift along e
parallel to N with strength ∆ as

(
t, ∥(u, v)∥Wm,p×Wm′,p′

)
→ 0, then, the system (1.1) is not

Wm,p ×Wm′,p′
-STLC.

Proof. The solution x(t; (u, v)) cannot reach targets of the form x∗ = −ae with a > 0 small
because this would entail

−aP(e) ⩾ C∆(u, v)− C ∥x∗∥β ⩾ −C ∥e∥β aβ ,

which is impossible for a small since β > 1 and P(e) > 0.

7
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1.6 The strategy to prove drifts
To explain the strategy, we need the following definition.

Definition 1.23 (Iterated primitives). For j ∈ N, t > 0, we define by induction the iterated

primitives of u ∈ L1((0, t),R), denoted uj : (0, t) → R as: u0 := u and uj+1(t) :=

∫ t

0

uj(s)ds.

The proof of Theorem 1.15 is based on the Magnus-type representation formula and
a strategy developed by Beauchard and Marbach in [5] to prove quadratic obstructions to
STLC for single-input systems. Here are the main points to adapt their strategy to the case
of multi-input systems. We fix m ∈ N∗ and p ∈ [1,+∞]. The purpose is to create a drift -
see Definition 1.21 - as (t, ∥(u, v)∥Wm,p) → 0. Let M ∈ N∗. The solution to (1.1) is given by
the following formula (see Proposition 2.8), as ∥(u, v)∥L1 → 0,

x(t; (u, v)) = ZM (t; f, (u, v))(0) +O
(
∥(u, v)∥M+1

L1 + ∥x(t; (u, v))∥1+
1
M

)
,

where ZM (t; f, (u, v)) is an analytic vector field belonging to SJ1,MK(f) and given by

ZM (t; f, (u, v)) =
∑

b∈BJ1,MK

ηb(t, (u, v))fb,

where ηb are functionals, called coordinates of the pseudo-first kind (see [3, Proposition 44]
for more details). These functionals are not easy to compute. However, the coordinates of
the second kind (ξb)b∈B - see Definition 2.1 and [3, Section 2.5.3.] - are easy to compute,
and there is a link between ηb and ξb. Heuristically, we can think that ηb ≈ ξb. Then, the
Magnus formula becomes

x(t; (u, v)) =
∑

b∈BJ1,MK

ξb(t, (u, v))fb(0) +
∑

b∈BJ1,MK

(ηb − ξb) (t, (u, v))fb(0)

+O
(
∥(u, v)∥M+1

L1 + ∥x(t; (u, v))∥1+
1
M

)
,

(1.14)

where the dominant part is the first sum. We now consider b1, b2, b3 ∈ BJ1,MK, brackets that
will be used to create a drift and N ⊂ BJ1,MK \ {b1, b2, b3} the set defined as

∀b ∈ BJ1,MK \ {b1, b2, b3}, (∀i ∈ J1, 3K, ξb ̸= o(ξbi
) as (t, ∥(u, v)∥Wm,p) → 0) ⇒ b ∈ N .

The elements of N are the brackets whose second-kind coordinates are not negligible com-
pared to those of the brackets generating the drift. We don’t know how to deal with these
terms, so we’ve decided to neutralize them. Then, we consider a linear form P on Rd, so
that

P N (f)(0) ≡ 0 and ∆(u, v) :=

3∑
i=1

ξbi
(t, (u, v))P (fbi

(0)) ⩾ 0. (1.15)

The existence of such a P is given by the framework of Theorem 1.15 - see Section 3.1. Finally,
we fix M (in terms of the parameters m, p, b1, b2, b3) and use interpolation inequalities to
absorb the remainder term ∥(u, v)∥M+1

L1 by the drift ∆(u, v) and obtain

∥(u, v)∥M+1
L1 ≲ ∥(u, v)∥αWm,p ∆(u, v), (1.16)

for some α > 0. Now, the formula (1.14) becomes

Px(t; (u, v)) = ∆(u, v) +
∑

b∈BJ1,MK,

b/∈N∪{b1,b2,b3}

ξb(t, (u, v))P (fb(0))

+
∑

b∈BJ1,MK,

b/∈N

(ηb − ξb) (t, (u, v))P (fb(0)) +O
(
∥(u, v)∥αWm,p ∆(u, v) + ∥x(t; (u, v))∥1+

1
M

)
.

(1.17)
Intuitively, as (t, ∥(u, v)∥Wm,p) → 0, in the right-hand side of (1.17),
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1. the second term is bounded by ε∆(u, v), thanks to the choice of N ,

2. the third term is small, as ηb ≈ ξb,

3. the forth term is bounded by ε∆(u, v), thanks to the asymptotic ∥(u, v)∥Wm,p → 0,

4. finally, the last term is part of the definition of a drift (see Definition 1.21).

Here, we pretend that a series of "small" terms keeps the same asymptotic, this fact is true in
a precise framework defined in Section 2.5. The brackets in competition here are b1 :=W 1

k ,
b2 := W 2

k and b3 := C2k−1, for k ∈ N∗. In the asymmetrical case (Theorem 1.18), we use
the same strategy, with a different truncation in the Magnus-type representation formula of
the state - see Proposition 4.1.

1.7 State of the art
The first known statement linking Lie brackets and small-time local controllability is

proved by Hermann [13] and Nagano [19]. These articles assert that the Lie Algebra Rank
Condition is a necessary condition, i.e. if (1.1) is L∞-STLC, then, Lie(f0, f1, f2)(0) = Rd.
This is the case for a control-affine system with an arbitrary number of controls. This
condition is sufficient for systems with f0 ≡ 0; this is proved by Chow in [7], and Rashevski
in [21] in 1938− 39. However, this condition is not sufficient in general when f0 ̸≡ 0.

1.7.1 For single-input systems

Hermes and Sussmann proved in [24, 14] in 1983 the following theorem.

Theorem 1.24. Let f0, f1 be analytic vector fields over Rd with f0(0) = 0. Assume that
the LARC is verified, i.e. Lie(f0, f1)(0) = Rd and that,

∀k ∈ N∗, S2k(f)(0) ⊆ S2k−1(f)(0). (1.18)

Then, system x′ = f0(x) + uf1(x) is L∞-STLC.

Sussmann was interested in the reciprocal of condition (1.18): is it necessary? Let
us focus first on the case k = 1. Assume that there exists a bracket b ∈ B such that
fb(0) ∈ S2(f)(0) \ S1(f)(0). The easiest bracket possible in the basis is b = W 1

1 . Then, in
[24], Sussmann proves the first necessary condition, which is as follows.

Theorem 1.25. Let f0, f1 be analytic vector fields over Rd with f0(0) = 0. If x′ = f0(x) +
uf1(x) is L∞-STLC, then fW 1

1
(0) = [f1, [f1, f0]](0) ∈ S1(f)(0).

If fW 1
1
(0) ∈ S1(f)(0), we can now ask what about the bracket W 1

2 = (X10, X10
2). One

considers the system  x′1 = u
x′2 = x1
x′3 = x31 + x22

. (1.19)

For this system,

S1(f)(0) = Span(e1, e2), fW 1
1
(0) = 0, fW 1

2
(0) = 2e3.

Thus, fW 1
1
(0) ∈ S1(f)(0) and fW 1

2
(0) /∈ S1(f)(0). However, Sussmann proved in [24] that

this system is L∞-STLC. The study of all quadratic drifts is therefore not obvious. Nev-
ertheless, in [5], Beauchard and Marbach propose a general method for demonstrating ob-
structions to the controllability of affine systems. This method is based in an adaptation of
the Magnus formula - see [3] - which gives the expression of the solution to a control-affine
system in the form of a series of Lie brackets. They use this method to study all quadratic
drifts, proving the following statement.
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Theorem 1.26. Let f0, f1 be analytic vector fields over Rd with f0(0) = 0 Let m ∈
J−1,+∞J. If system x′ = f0(x) + uf1(x) is Wm,∞-STLC, then,

∀k ∈ N∗, fW 1
k
(0) ∈ SJ1,π(k,m)K\{2}(f)(0). (1.20)

where π(k,m) := 1 +

⌈
2k − 2

m+ 1

⌉
with the convention π(k,−1) = +∞ and π(1,−1) = 1.

This is an extension of Theorem 1.25 (k = 1, m = 0). In particular, system (1.19) is
not W 1,∞-STLC (apply Theorem 1.26 with k = 2, m = 1).

Another necessary condition for controllability is Stefani’s, in [22], which is concerned
with the drift of the kth order term, when k is an even integer. The statement is the following
one.

Proposition 1.27. Let f0, f1 be analytic vector fields over Rd with f0(0) = 0. If system
x′ = f0(x) + uf1(x) is L∞-STLC, then,

∀k ∈ N∗, ad2kf1 (f0)(0) ∈ S2k−1(f)(0). (1.21)

1.7.2 For multi-input systems: the necessary condition of [11]

In [11], Giraldi, Lissy, Moreau and Pomet consider affine systems (1.1) with f0(0) = f2(0) =
0 (this class of systems is different from those studied in this article, because our assumptions
imply that f2(0) ̸= 0 - see Lemma 3.12). They prove a necessary condition for STLC; it is
formulated on the bracket W 1

1 . Their statement can be formulated as follow.

Theorem 1.28. Let f0, f1, f2 be analytic vector fields over Rd with f0(0) = f2(0) = 0. If
(1.1) is L∞-STLC, then fW 1

1
(0) ∈ R1(f)(0) with

R1 := {b ∈ Br(X); n1(b) ⩽ 1}.

In this framework, fW 2
1
(0) = 0 and the equivalent of set Nm

k is R1. They prove a drift

thanks to the coercivity of
∫
u21, the drift is not a combination as in our situation. As a

consequence, there is no bound on n2(b) is R1, they put brackets with associated coordinates
of the second kind of any order on v in the set R1. For the proof, they use the Chen-Fliess
formula and re-organize its terms to form Lie brackets (as Stefani did in [22]).

In the same paper [11], the authors prove another necessary condition for STLC of
multi-input control-affine systems. In simpler special cases, the theorem can be stated as
follows.

Theorem 1.29. Let f0, f1, f2 be analytic vector fields over Rd with f0(0) = f2(0) = 0.
Assume that fW 1

1
(0), f(X1,(X2,X1))(0), f((X2,X1),(X0,X1))(0) ∈ R1(f)(0). Let

q : (x, y) ∈ R2 7→ −x2fW 1
2
(0)− y2f((X2,X1),(X2,X1)0)(0)

−xy
(
f((X2,X1),M1

2 )
+ f(M1

1 ,(X2,X1)0)

)
(0).

If there exists a linear form φ : Rd → R, whose restriction to R1(f)(0) is zero and such that
the quadratic form (a1, a2) ∈ R2 7→ φ (q(a1, a2)) is positive definite, then system (1.1) is not
W 1,∞ × L∞-STLC.

In this article, Theorem 1.15 is proved as a consequence of the more precise Theorem
3.7. The hypothesis of Theorem 3.7 is (3.1), where (BC) is defined in Definition 3.1. Finally,
Corollary 3.4 ensures that (BC) can be exactly formulated as the assumption of Theorem
1.29. Consequently,we use the same types of assumptions.
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1.7.3 For multi-input systems: link with Sussmann’s sufficient S(θ)-condition

Now, let us compare our necessary condition with Sussmann’s sufficient S(θ)-condition (see
[23, Theorem 7.3]), recalled in Proposition 1.31 below (see [8, Theorem 3.29]).

Definition 1.30. The map σ : Br(X) 7→ L(X) is defined by σ(b) = e(b) + π(e(b)), where
π : L(X) 7→ L(X) is the unique morphism of Lie algebra such that π(X0) = X0, π(X1) = X2

and π(X2) = X1.

For instance, σ(W 1
k ) =W 1

k +W 2
k .

Proposition 1.31 (Sussmann’s S(θ)-condition). Let f0, f1, f2 be analytic vector fields over
Rd that satisfy the Lie Algebra Rank Condition, Lie(f0, f1, f2)(0) = Rd. If there exists
θ ∈ [0, 1] such that, for every b ∈ Br(X) with n0(b) odd and both n1(b) and n2(b) even, we
have

fσ(b)(0) ∈ Span{fb(0); b ∈ Br(X), n(b) + θn0(b) < n(b) + θn0(b)} (1.22)

then the system x′ = f0(x) + uf1(x) + vf2(x) is L∞-STLC.

Sussmann’s S(θ)-condition is a very popular sufficient condition for controllability of
affine systems because it is quite simple to apply. Nevertheless, more powerful conditions
are known, for example Agrachev and Gamkrelidze’s - see [2, Theorem 4].

For b = W 1
k , we have σ(b) = W 1

k +W 2
k and our necessary condition also involves the

Lie brackets W 1
k and W 2

k . If m = 1 and the four points of Theorem 1.15 are not verified,
then, for every θ ∈ [0, 1], (1.22) does not hold for b =W 1

k (see Appendix A.4 for a proof).
Moreover, for the system (1.9), one has fσ(W 1

1 )
(0) = 4e3, and N 1

1 (f)(0) = Span(e1, e2).
Furthermore, for every θ ∈ [0, 1],

Span(fb(0), b ∈ Br(X), n(b) + θn0(b) < 2 + θ) ⊆ N 1
1 (f)(0).

Consequently, W 1
1 doesn’t satisfy the condition (1.22). However, as already explained in

Section 1.4, the W 1,1-STLC of (1.9) is function of the value of α. The Sussmann’s S(θ)-
condition is sensitive to the direction of the Lie brackets, but not to their amplitude.

1.7.4 For multi-input systems: the necessary condition of [15]

In [15], Lewis and Hirschorn use the Chen–Fliess series to prove the following result, which
we restate using our slightly different context and our own notations.

Theorem 1.32. Let f0, f1, f2 be analytic vector fields with f0(0) = 0 and (f1(0), f2(0))
linearly independent. Assume that 0 is a regular point for Lie(f1, f2)(0)2. Let N :=
S1(f)(0) + Span{adµf0([f1, f2])(0); µ ∈ N}+ Lie(f1, f2)(0). Assume that the system (1.1) is
L∞-STLC. Let σ : Rd → Rd/N be the canonical surjection. Let us define the vector-valued
quadratic form

BN : (a1, a2) 7→ a21σ(fW 1
1
(0)) + a22σ(fW 2

1
(0)) + 2a1a2σ(fC1

(0)).

Then, there doesn’t exist a linear form P : R2/N → R such that the quadratic form (a1, a2) 7→
P (BN (a1, a2)) is a positive definite quadratic form.

In [15], the authors focus on the case where k = 1, whereas we deal with the case of
k ∈ N∗. They prove a necessary condition for L∞-STLC of control-affine systems without
any assumption of smallness on the controls. In this article, we work in the functional
framework Wm,p-STLC, with m ∈ N∗. They require the compensation of all the elements of
Lie(f1, f2)(0), while we can use the smallness of the controls. However in our low regularity
regime k = m = 1, we require compensation for all brackets of S3, which is not the case in
Theorem 1.32. Enlightened by [15], it might be possible te refine our result.

Other authors have studied obstructions to controllability linked with quadratic phe-
nomenons (see e.g. [1, 6]).

2i.e. dim{g(x); g ∈ Lie(f1, f2)} doesn’t depend on x on a neighborhood of 0
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1.8 Structure of the article
The paper is organized as follow: in section 2, we present some tools and properties that
will be used in the next sections. In section 3, we give the proof of the main theorem of this
article by contraposition - see Theorem 1.15. Finally, in section 4, we prove a generalization
of this result in the asymmetrical case - see Theorem 1.18. Some elements of proof are
developed in the appendix.

2 Requirements for the proof

2.1 Expression of the coordinates of the second kind
Definition 2.1 (Coordinates of the second kind). Let B ⊂ Br(X) be a Hall set. The
coordinates of the second kind associated with B is the unique family (ξb)b∈B of functionals
ξb : R+ × L1

loc(R+,R)2 → R defined by induction as: for every t > 0 and u, v ∈ L1((0, t),R),

• ξX0(t, (u, v)) := t, ξX1(t, (u, v)) := u1(t) and ξX2(t, (u, v)) := v1(t),

• for b ∈ B \X, there exists a unique couple (b1, b2) of elements of B such that b1 < b2
and a unique maximal integer m ⩾ 1 with b = admb1(b2), and then

ξb(t, (u, v)) :=
1

m!

∫ t

0

ξmb1(s, (u, v))ξ
′
b2(s, (u, v)) ds. (2.1)

The following proposition is taken from [10, Proposition 2.18].

Proposition 2.2. The following equalities hold.

1. For b ∈ B, and ν ∈ N,

ξb0ν (t, (u, v)) =

∫ t

0

(t− s)ν

ν!
ξ′b(s, (u, v))ds. (2.2)

2. For every j ∈ N,
ξM1

j
(t, (u, v)) = uj+1(t), (2.3)

ξM2
j
(t, (u, v)) = vj+1(t). (2.4)

3. For every j ∈ N∗, l ∈ N,

ξW 1
j,l
(t, (u, v)) =

1

2

∫ t

0

(t− s)l

l!
u2j (s)ds, (2.5)

ξW 2
j,l
(t, (u, v)) =

1

2

∫ t

0

(t− s)l

l!
v2j (s)ds. (2.6)

4. For every j, l ∈ N,

ξCj,l
(t, (u, v)) =

∫ t

0

(t− s)l

l!
u⌊ j

2⌋+1(s)v⌊ j+1
2 ⌋(s)ds. (2.7)

Proof. The first three points are proved in [5, Lemma 3.6 and Proposition 3.7]. Let us prove
the last one: let j, l ∈ N. First, assume that j = 2j0 is even. Thus, using the first point,

ξCj,l
(t, (u, v)) =

∫ t

0

(t− s)l

l!
ξ′Cj

(s, (u, v))ds.

Moreover, Cj = ad1X10j0
(X20

j0), thus using Definition 2.1 and (2.3), (2.4), one obtains

ξCj
(t, (u, v)) =

∫ t

0

uj0+1(s)vj0(s)ds =

∫ t

0

u⌊ j
2 ⌋+1(s)v⌊ j+1

2 ⌋(s)ds.

This is the same proof when j is odd.
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Lemma 2.3. Let j, l, N ∈ N, t > 0 and u, v ∈ L1((0, t),R). Then,

ξCj,l
(t, (u, v)) =

N∑
µ=0

(−1)µu⌊ j
2 ⌋+µ+2(t)

(
v⌊ j+1

2 ⌋
(t− ·)l

l!

)(µ)

(t)+

(−1)N+1

∫ t

0

u⌊ j
2 ⌋+N+2(s)

dN+1

dsN+1

(
v⌊ j+1

2 ⌋(s)
(t− s)l

l!

)
ds.

(2.8)

Proof. We prove the lemma by induction on N , using an integration by parts.

2.2 Estimates on the coordinates of the second kind
Lemma 2.4. For every p ∈ [1,+∞], j ⩾ j0 ⩾ 1, t > 0, and u ∈ L1((0, t),R),

∥uj∥Lp ⩽
tj−j0

(j − j0)!
∥uj0∥Lp . (2.9)

Proof. This lemma is proved in [5, Lemma A.6].

Proposition 2.5. The following inequalities hold.

1. Let p ∈ [1,+∞], and j0 ∈ N∗. There exists c > 0 such that, for every j ⩾ j0, t > 0,
u, v ∈ L1((0, t),R),

∣∣∣ξM1
j
(t, (u, v))

∣∣∣ ⩽ (ct)|M
1
j |

|M1
j |!

t−(j0+1)t1−
1
p ∥uj0∥Lp . (2.10)

∣∣∣ξM2
j
(t, (u, v))

∣∣∣ ⩽ (ct)|M
2
j |

|M2
j |!

t−(j0+1)t1−
1
p ∥vj0∥Lp . (2.11)

2. Let p ∈ [1,+∞], and j0 ∈ N∗. There exists c > 0 such that, for every j ⩾ j0, l ∈ N,
t > 0, u, v ∈ L1((0, t),R),

∣∣∣ξW 1
j,l
(t, (u, v))

∣∣∣ ⩽ (ct)|W
1
j,l|

|W 1
j,l|!

t−(2j0+1)t1−
1
p ∥uj0∥

2
L2p , (2.12)

∣∣∣ξW 2
j,l
(t, (u, v))

∣∣∣ ⩽ (ct)|W
2
j,l|

|W 2
j,l|!

t−(2j0+1)t1−
1
p ∥vj0∥

2
L2p . (2.13)

3. Let p, q ∈ [1,+∞] such that 1
p + 1

q ⩽ 1, and k, k′ ∈ N∗ with k′ ⩽ k. There exists c > 0

such that, for every j ⩾ k + k′ − 1, l ∈ N, 0 < t < 1, u, v ∈ L1((0, t),R),

∣∣ξCj,l
(t, (u, v))

∣∣ ⩽ (ct)|Cj,l|

|Cj,l|!
t−(1+k+k′)t1−(

1
p+

1
q ) ∥uk∥Lp ∥vk′∥Lq

+1l⩽k−2−⌊ j
2 ⌋
K

(
k∑

µ=1

|uµ(t)|2 + t ∥vk′∥2L2

)
,

(2.14)

where K only depends on k.

Proof. The first two points are proved in [5, Proposition 3.10]. We prove the last one: let
j ⩾ k + k′ − 1, l ∈ N, t > 0, u, v ∈ L1((0, t),R). First, assume that ⌊ j

2⌋ + 1 ⩾ k (this is
always the case when k = k′). Using (2.7) and Hölder’s inequality, we obtain

∣∣ξCj,l
(t, (u, v))

∣∣ ⩽ tl

l!
t1−(

1
p+

1
q )
∥∥∥u⌊ j

2 ⌋+1

∥∥∥
Lp

∥∥∥v⌊ j+1
2 ⌋

∥∥∥
Lq
.
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Notice that ⌊ j+1
2 ⌋ ⩾ ⌊k+k′

2 ⌋ ⩾ ⌊ 2k′

2 ⌋ = k′. Using two times Lemma 2.4 with j0 = k and with
j0 = k′, we get

∣∣ξCj,l
(t, (u, v))

∣∣ ⩽ tl+j+1−k−k′

l!(⌊ j
2⌋+ 1− k)!(⌊ j+1

2 ⌋ − k′)!
t1−(

1
p+

1
q ) ∥uk∥Lp ∥vk′∥Lq .

We obtain the result because, for all j ⩾ k + k′ − 1, l ∈ N,

1

l!(⌊ j
2⌋+ 1− k)!(⌊ j+1

2 ⌋ − k′)!
⩽

23|Cj,l|(k + k′ + 1)!

(l + j + 2)!
.

Now, we assume that ⌊ j
2⌋ ⩽ k − 2. We use Lemma 2.3 with N = k − 2− ⌊ j

2⌋ ⩾ 0 to obtain
ξCj,l

(t, (u, v) = A + B with A the boundary terms and B the integral part. Using Leibniz
formula, one gets

(
v⌊ j+1

2 ⌋
(t− ·)l

l!

)(µ)

(t) =

 0 if µ < l(
µ

l

)
(−1)lv⌊ j+1

2 ⌋+l−µ(t) otherwise .

Consequently, the following inequality holds

|A| ⩽ 1l⩽N

N∑
µ=l

(
µ

l

) ∣∣∣u⌊ j
2 ⌋+µ+2(t)v⌊ j+1

2 ⌋+l−µ(t)
∣∣∣ .

Then, using Young’s and Cauchy–Schwarz’s inequality,

|A| ⩽ 1l⩽N2N−1

(
k∑

µ=1

|uµ(t)|2 + t max
µ∈Jl,NK

∥∥∥v⌊ j+1
2 ⌋+l−µ−1

∥∥∥2
L2

)
,

as 1 ⩽ ⌊ j
2⌋+ µ+ 2 ⩽ k, for µ ∈ J1, NK. Note that ⌊ j+1

2 ⌋+ l − µ− 1 ⩾ k′. Finally, applying
Lemma 2.4 with p = 2 and j0 = k′, we obtain the following estimate

|A| ⩽ 1l⩽N2k−3

(
k∑

µ=1

|uµ(t)|2 + t ∥vk′∥2L2

)
. (2.15)

We finally estimate B. Using Leibniz formula, and Hölder’s inequality, one gets

|B| ⩽
min(N+1,l)∑

µ=0

(
N + 1

µ

)
tl−µ

(l − µ)!
t1−(

1
p+

1
q ) ∥uk∥Lp ∥vj+µ+1−k∥Lq .

Using Lemma 2.4 with p = q and j0 = k′, one has

|B| ⩽ (2N+2t)|Cj,l|

l!
t−(1+k+k′)t1−(

1
p+

1
q ) ∥uk∥Lp ∥vk′∥Lq . (2.16)

Finally, for all l ⩾ 0, for all j ∈ J0, 2k − 3K,

1

l!
=

(j + 2)!

(j + l + 2)!

(
j + l + 2

l

)
⩽

(2k − 1)!

(j + l + 2)!
2j+l+2 ⩽

(2(2k − 1)!)|Cj,l|

(j + l + 2)!
. (2.17)

Thus, equations (2.15), (2.16) and (2.17) lead to the desired inequality.

2.3 Analytic norms
The following paragraph is inspired by [5, Section 4.1]. We introduce some basic notions
about analytic vector fields and norms of analytic vector fields. These will be useful for
ensuring the convergence of the series that we will consider in the following sections.

14
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Definition 2.6 (Length and factorial of a multi-index, partial derivative). Let d ∈ N∗ be a
positive integer and α = (α1, · · · , αd) ∈ Nd be a multi-index. We define

1. the length of α as: |α| := α1 + · · ·+ αd,

2. the factorial of α as: α! := α1!× · · · × αd!,

3. the partial derivative: ∂α := ∂α1
x1

· · · ∂αd
xd

.

Definition 2.7 (Analytic vector fields, analytic norms). Let δ > 0 and Bδ be the closed
ball of radius δ, centered at 0 ∈ Rd. For r > 0, we define Cω,r

(
Bδ;Rd

)
as the subspace of

analytic vector fields on an open neighborhood of Bδ, for which the following norm is finite

|||f |||r :=

d∑
i=1

∑
α∈Nd

r|α|

α!
∥∂αfi∥L∞(Bδ) .

2.4 An approximate formula for the state, of Magnus-type
This article relies on an approximate representation formula for the state, involving Lie
brackets and coordinates

(
ηb : R+ × L1

loc(R
+,R)2 → R

)
b∈B defined in [3, Proposition 44].

The goal of the following proposition is to introduce this formula.

Proposition 2.8 (Magnus formula). Let M ∈ N∗, δ, T > 0, f0, f1, f2 : B(0, 2δ) → Rd

be analytic vector fields with f0(0) = 0 and T ∥f0∥∞ ⩽ δ. For u, v ∈ L1((0, T ),R), as
∥(u, v)∥L1 → 0,

x(t; (u, v)) = ZM (t; f, (u, v))(0) +O
(
∥(u, v)∥M+1

L1(0,t) + ∥x(t;u, v)∥1+
1
M

)
, (2.18)

where
ZM (t; f, (u, v))(0) =

∑
b∈BJ1,MK

ηb(t, (u, v))fb(0). (2.19)

Proof. This proposition stems from [3, Proposition 161]. The ideas of proof are recalled in
[10, Appendix A.3.2]

2.5 A black-box estimate
Here are a few definitions and notations.

Definition 2.9 (Support). Let a ∈ L(X). For b ∈ B, we denote by ⟨a, b⟩ the coefficient of
e(b) in the expansion of a on the basis e(B). We define

supp(a) := {b ∈ B, ⟨a, b⟩ ≠ 0}.

If A ⊂ Br(X), we let supp(A) :=
⋃

a∈A supp(a).

With this definition, one has, for a ∈ L(X), a =
∑

b∈supp(a)

⟨a, b⟩e(b).

Definition 2.10 (F). Given q ⩾ 2 and b1, · · · , bq ∈ Br(X), we define F(b1, · · · , bq) as the
subset of Br(X) of brackets of b1, · · · , bq involving each of these elements exactly once.

To put the strategy (described in Section 1.6) into practice i.e. to extract the dominant
terms from ZM (t; f, (u, v))(0), we will use the following propositions. They guarantee the
convergence of the series involved and legitimize the heuristic. This part of the article is
based on [5, Section 4.4]. The following proposition allows us to estimate the second term
in the right-hand side of (1.17).
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Proposition 2.11 (Estimate of main terms). Let M,L ∈ N∗. Let E ⊂ BJ1,MK. Assume
that there exist c > 0, and a functional Ξ : R∗

+ × L1
loc(R

+)2 → R+ such that the following
holds: for all b ∈ E, there exists an exponent σ ⩽ min(L, |b|), such that, for all t > 0 and
u, v ∈ L1((0, t),R),

|ξb(t, (u, v))| ⩽
(ct)|b|

|b|!
t−σΞ(t, (u, v)). (2.20)

Let δ, r > 0 and f0, f1, f2 ∈ Cω,r
(
Bδ,Rd

)
be analytic vector fields. Then, for any r′ ∈ [r/e, r),

as (t, ∥(u, v)∥L1) → 0, ∑
b∈E

|||ξb(t, (u, v))fb|||r′ = O (Ξ(t, (u, v))) .

The following proposition allows us to estimate the third term in the right-hand side
of (1.17).

Proposition 2.12 (Estimate of cross terms). Let M,L ∈ N∗. Let E ⊂ BJ1,MK. Assume that
there exist c > 0, and a functional Ξ : R∗

+×L1
loc(R

+)2 → R+ with Ξ(t, (u, v)) = O(1) such that
the following holds: for all q ⩾ 2, b1 ⩾ · · · ⩾ bq ∈ B\{X0} such that suppF(b1, · · · , bq)∩E ≠
∅, there exist σ1, · · · , σq ⩽ L with σi ⩽ |bi| and (α1, · · · , αq) ∈ [0, 1]q with α1 + · · ·+ αq ⩾ 1
such that, for all t > 0 and u, v ∈ L1((0, t),R),

|ξbi(t, (u, v))| ⩽
(ct)|bi|

|bi|!
t−σi (Ξ(t, (u, v)))

αi . (2.21)

Let δ, r > 0 and f0, f1, f2 ∈ Cω,r
(
Bδ,Rd

)
be analytic vector fields. Then, for any r′ ∈ [r/e, r),

as (t, ∥(u, v)∥L1) → 0,∑
b∈E

||| (ηb − ξb) (t, (u, v))fb|||r′ = O (Ξ(t, (u, v))) .

The two previous propositions are proved in [5, Appendix A.5]. The following corollary
is a direct consequence of (2.19) and the two previous propositions. This clarifies several
steps of the heuristic (Section 1.6).

Corollary 2.13. Let M,L, r ∈ N∗. Let b1, · · · , br ∈ BJ1,MK and N ⊂ BJ1,MK. Assume that
there exist c > 0 and a functional Ξ : R∗

+ × L1
loc(R

+)2 → R+ with Ξ(t, (u, v)) = O(1) such
that

1. the assumptions of Proposition 2.11 hold for E = BJ1,MK \ N ∪ {b1, · · · , br},

2. the assumptions of Proposition 2.12 hold for E = BJ1,MK \ N .

Let f0, f1, f2 be analytic vector fields over Rd. If P is linear form such that P N (f)(0) ≡ 0,
as (t, ∥(u, v)∥L1) → 0,

PZM (t; f, (u, v))(0) =

r∑
i=1

ξbi
(t, (u, v))P (fbi

(0)) +O (Ξ(t, (u, v))) . (2.22)

2.6 Interpolation inequalities
We recall the Gagliardo–Nirenberg interpolation inequalities used in this article and proved
in [9, 20].

Proposition 2.14 (Gagliardo–Nirenberg inequalities). Let P, q, r, s ∈ [1,+∞], j < l ∈ N,
and α ∈ (0, 1) such that

j

l
⩽ α and

1

P
= j +

(
1

r
− l

)
α+

1− α

q
.

There exists C > 0 such that, for every t > 0 and φ ∈ C∞([0, t],R),∥∥Djφ
∥∥
LP ⩽ C

∥∥Dlφ
∥∥α
Lr ∥φ∥

1−α
Lq + Ct

1
P −j− 1

s ∥φ∥Ls . (2.23)
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3 Necessary conditions for STLC in the symmetrical case

3.1 Bracket condition and drift result
To prove Theorem 1.15, we use the following definition.

Definition 3.1 (BC). Let e1, e2, e3 ∈ Rd be three vectors and N ⊂ Rd a vector subspace.
We say that

e1, e2, e3, N satisfy (BC) if there exists a linear form P : Rd → R such that

P N = 0, and P(e3)
2 < P(e1)P(e2).

Remark 3.2. The hypothesis P(e3)2 < P(e1)P(e2) ensures that P(e1) and P(e2) have the
same sign. Even if it means replacing P by −P, we can assume that P(e1) > 0, P(e2) > 0.
This is the case in the rest of the article.

Lemma 3.3. Let α, β, γ ∈ R and q : (a1, a1) ∈ R2 7→ 1
2αa

2
1 +

1
2βa

2
2 + γa1a2. Then, q is a

positive definite quadratic form iff α > 0 and γ2 < αβ.

Proof. If q is positive definite, then q(1, 0) > 0 so α > 0. Moreover, for all a1 ∈ R,
q(a1, 1) > 0. Thus ∆ = γ2 − αβ < 0. Conversely, the result follows from the equality: for
all a1, a2 ∈ R,

q(a1, a2) =
1

2
α

((
a1 +

γ

α
a2

)2
+
αβ − γ2

α2
a22

)
.

Corollary 3.4. Let e1, e2, e3 ∈ Rd be three vectors and N ⊂ Rd a vector subspace. Let σ :
Rd → Rd/N be the canonical surjection and q : (a1, a2) ∈ R2 7→ 1

2a
2
1e1+

1
2a

2
2e2+a1a2e3 ∈ Rd.

Then, the following are equivalent

1. e1, e2, e3, N satisfy (BC),

2. there exists a linear form P : Rd → R such that N ⊂ ker(P) and (a1, a2) ∈ R2 7→
P(q(a1, a2)) is a positive definite quadratic form,

3. there exists a linear form P̃ : Rd/N → R such that (a1, a2) ∈ R2 7→ P̃(σ (q(a1, a2))) is
a positive definite quadratic form.

Remark 3.5. Let k ∈ N∗. We fix b1 = W 1
k , b2 = W 2

k and b3 = C2k−1. With the linear
form P : Rd → R given by (BC), the quantity ∆ introduced in (1.15) is a positive definite
quadratic form (the expressions of ξbi are given in (2.5), (2.6), (2.7)).

The following proposition, proved in Appendix, makes a direct link between this defi-
nition and the problem under study.

Proposition 3.6. Let e1, e2, e3 ∈ Rd be three vectors and N ⊂ Rd a vector subspace. Let
σ : Rd → Rd/N be the canonical surjection, and ẽi := σ(ei) for i ∈ J1, 3K. Then, e1, e2, e3,
N don’t satisfy (BC) iff one of the following conditions is satisfied

• ẽ1 = 0 or ẽ2 = 0,

• (ẽ1, ẽ2) is a linearly independent family and ẽ3 = aẽ1 + bẽ2 with ab ⩾ 1
4 ,

• ẽ2 ∈ R∗
−ẽ1,

• ẽ2 = βẽ1, ẽ3 = γẽ1 with β ⩽ γ2 and β ̸= 0.

Let k,m ∈ N∗. We reason by contraposition and we assume that the four point of
Theorem 1.15 are not satisfied, i.e.

fW 1
k
(0), fW 2

k
(0), fC2k−1

(0), Nm
k (f)(0) satisfy (BC), (3.1)

thanks to Proposition 3.6. The purpose of this section is to prove Theorem 1.15, as a
consequence of the following more precise statement.
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Theorem 3.7. Let k,m ∈ N∗ and p ∈ [1,+∞]. Assume that (3.1) holds. Then, system
(1.1) has a drift along fW 1

k
(0) + fW 2

k
(0) parallel to Nm

k (f)(0) with strength ∆ : (u, v) ∈

L1((0, 1),R)2 7→
∫ t

0

(
u2k + v2k

)
∈ R+ as (t, tα ∥(u, v)∥Wm,p) → 0 where α = π(k,m)−2k

π(k,m)−1 .

Remark 3.8. For example, if k ∈ N∗ and m = 1, α = 1
2k > 0. Thus, the controls u, v need

only to be bounded in W 1,p.

If this theorem holds, we immediately obtain Theorem 1.15 thanks to Lemma 1.22.

3.2 Dominant part of the logarithm
We use Corollary 2.13 to extract the main terms from the dynamics. This is the goal of the
following statement.

Lemma 3.9. Let k,m ∈ N∗. Let P be a linear form satisfying P Nm
k (f)(0) ≡ 0. Then, as

(t, ∥(u, v)∥L1) → 0,

PZπ(k,m)(t; f, (u, v))(0) = P
(
fW 1

k
(0)
)
ξW 1

k
(t, (u, v)) + P

(
fW 2

k
(0)
)
ξW 2

k
(t, (u, v))

+P
(
fC2k−1

(0)
)
ξC2k−1

(t, (u, v)) +O
(
t ∥(uk, vk)∥2L2 + |(u1, · · · , uk, v1, · · · , vk)(t)|2

)
.

(3.2)

Proof. We apply Corollary 2.13 with M = π(k,m), N = Nm
k , L = 2k+2, r = 3, σ = 2k+2,

b1 =W 1
k , b2 =W 2

k , and b3 = C2k−1.

1. Estimates on the main terms: let b ∈ BJ1,π(k,m)K be such that b /∈ Nm
k ∪ {b1, b2, b3}.

Then, n(b) = 2 and

(a) If b ∈ B2,bad, b =W 1
j,l or b =W 2

j,l with j > k or (j = k and l ⩾ 1). Consequently,
|b| ⩾ 2k+2 and the estimates (2.12) and (2.13) with p = 1 and j0 = k give (2.20)
with Ξ(t, (u, v)) = t ∥(uk, vk)∥2L2 .

(b) If b ∈ B2,good, then b = Cj,l with j > 2k − 1 or (j = 2k − 1 and l ⩾ 1). Similarly,
|b| ⩾ 2k + 2 and the estimate (2.14) with p = q = 2 and k′ = k gives (2.20) with
Ξ(t, (u, v)) = t ∥(uk, vk)∥2L2 as k − 2− ⌊ j

2⌋ < 0.

2. Estimates of cross terms: let b1 ⩾ · · · ⩾ bq ∈ B\{X0} be such that n(b1)+· · ·+n(bq) ⩽
π(k,m), and suppF(b1, · · · , bq) ̸⊂ Nm

k . For i ∈ J1, qK,

(a) if bi =M1
j or M2

j with j ∈ J0, k − 1K, then by (2.3) and (2.4),

|ξbi(t, (u, v))| ⩽ |(uj+1, vj+1)(t)|.

Then, the estimate (2.21) is verified with σi = j + 1, αi =
1
2 and Ξ(t, (u, v)) =

|(u1, · · · , uk, v1, · · · , vk)(t)|2.
(b) If bi = M1

j or M2
j , with j ⩾ k, |bi| ⩾ k + 1, and the estimates (2.10) and (2.11)

with j0 = k and p = 2 give

|ξbi(t, (u, v))| ⩽
(ct)|bi|

|bi|!
t−(k+1)t

1
2 ∥(uk, vk)∥L2 =

(ct)|bi|

|bi|!
t−(k+1)

(
t ∥(uk, vk)∥2L2

) 1
2

.

We obtain (2.21) with σi = k + 1, and αi =
1
2 .

Since suppF(b1, · · · , bq) ̸⊂ Nm
k , one has q = 2, and b1, b2 ∈ B1. Then, as α1 + α2 = 1,

we can apply Corollary 2.13 and we obtain the desired equality.
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3.3 Vectorial relations
The purpose of this section is to prove that the condition (BC) implies algebraic properties
on the Lie brackets. Using this fact, we will be able to estimate one by one - in the next
paragraph - the terms |(u1, · · · , uk, v1, · · · , vk)(t)| which appear in the previous proposition.

Lemma 3.10 (A bracket relation). Let k,m ∈ N∗. For all l ∈ J0, k−1K, for all (αj,1)j∈J0,lK ∈
Rl+1, (αj,2)j∈J0,lK ∈ Rl+1, one considers the bracket

B :=

l∑
j=0

αj,1M
1
j +

l∑
j=0

αj,2M
2
j .

Then, the following expansion holds[
B0k−l−1, B0k−l

]
∈ α2

l,1W
1
k + α2

l,2W
2
k + 2αl,1αl,2C2k−1 +Nm

k .

This lemma is proved in Appendix A.2.

Lemma 3.11. Let e1, e2, e3 ∈ Rd be three vectors and N ⊂ Rd a vector subspace. If e1, e2,
e3, N satisfy (BC), then, there doesn’t exist (a, b) ∈ R2 \ {(0, 0)} such that

a2e1 + b2e2 ± 2abe3 ∈ N. (3.3)

Proof. By contradiction, assume that there exists (a, b) ∈ R2 \ {(0, 0)} satisfying (3.3). If
a = 0, then (3.3) gives b2e2 ∈ N. As, b ̸= 0 , one obtains e2 ∈ N . This is a contradiction
with (BC). Thus, a ̸= 0. Similarly, b ̸= 0. Hence, using P given by (BC), one has

a2P (e1) + b2P (e2)± 2abP (e3) = 0. (3.4)

Nevertheless, by hypothesis (BC) and Young’s inequality,

|2abP(e3)| < 2 |ab|
√

P (e1)P (e2) < a2P (e1) + b2P (e2) .

This is a contradiction with (3.4).

Lemma 3.12. Let k,m ∈ N∗, and ν(k,m) :=
⌊
π(k,m)

2

⌋
. Assume that (3.1) is verified.

Then,

1. the family
(
fM1

0
(0), · · · fM1

k−1
(0), fM2

0
(0), · · · , fM2

k−1
(0)
)

is linearly independent.

2. if ν(k,m) ⩾ 2,

Span
(
fM1

0
(0), · · · , fM1

k−1
(0), fM2

0
(0), · · · , fM2

k−1
(0)
)
∩ SJ2,ν(k,m)K(f)(0) = {0} .

In particular, f1(0) ̸= 0 and f2(0) ̸= 0.

Proof. We prove the second point: assume by contradiction that there exist (αi,1), (αi,2) ∈
Rk not all zero, and B ∈ SJ2,ν(k,m)K(X) such that fB1(0) = 0, with

B1 :=

k−1∑
j=0

(
αj,1M

1
j + αj,2M

2
j

)
+B.

Let K = max{j ∈ J0, k − 1K; (αj,1, αj,2) ̸= (0, 0)}. As f0(0) = 0, fB2
(0) = 0, with

B2 := [B10
k−1−K , B10

k−K ] ∈ α2
K,1W

1
k +α

2
K,2W

2
k +2αK,1αK,2C2k−1+Nm

k +SJ3,2ν(k,m)K(X),

the expansion is given by Lemma 3.10 with l = K. As π(k,m) ⩾ 2ν(k,m) and ν(k,m) ⩾ 2,
one has SJ3,2ν(k,m)K(X) ⊆ SJ1,π(k,m)K\{2}(X) ⊆ Nm

k . Thus,

α2
K,1fW 1

k
(0) + α2

K,2fW 2
k
(0) + 2αK,1αK,2fC2k−1

(0) ∈ Nm
k (f)(0).

We use Lemma 3.11 with e1 = fW 1
k
(0), e2 = fW 2

k
(0), e3 = fC2k−1

(0) and N = Nm
k (f)(0) to

obtain a contradiction. We obtain the first point in the same way, taking B = 0.
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3.4 Closed-loop estimate
Using the algebraic properties proved in the previous section, we can now estimate the terms
|(u1, · · · , uk, v1, · · · , vk)(t)|, using the representation formula of the state of Magnus-type -
see Proposition 2.8.

Lemma 3.13. Let k,m ∈ N∗, and ν(k,m) :=
⌊
π(k,m)

2

⌋
. Assume that (3.1) holds. Then, as

(t, ∥(u, v)∥L1) → 0,

| (u1, · · · , uk, v1, · · · , vk) (t)| = O
(
t
1
2 ∥(uk, vk)∥L2 + ∥(u, v)∥ν(k,m)+1

L1 + ∥x(t; (u, v))∥
)
.

(3.5)

Proof. Let i ∈ J0, k − 1K, By Lemma 3.12, one can consider a linear form P such that
P(fM1

i
(0)) = 1 and P N (f)(0) ≡ 0, with N := BJ2,ν(k,m)K∪{M1

0 , · · · ,M1
k−1,M

2
0 , · · · ,M2

k−1}\
{M1

i }. Now, we use Corollary 2.13 with M = ν(k,m), L = k + 1, r = 1, and b1 =M1
i .

Indeed, for all b ∈ BJ1,ν(k,m)K such that b /∈ N ∪ {b}, necessarily, n(b) = 1, and b = M l
j for

j ⩾ k and l ∈ {1, 2}. Thus, estimates (2.10) and (2.11), with j0 = k and p = 2 give

|ξb(t, (u, v))| ⩽
(ct)|b|

|b|!
t−(k+1)

(
t
1
2 ∥(uk, vk)∥L2

)
.

Then, (2.20) holds with Ξ(t, (u, v)) = t
1
2 ∥(uk, vk)∥L2 and σ = k + 1. Moreover, there is no

cross terms. Then, Corollary 2.13 leads to the equality

PZν(k,m)(t; f, (u, v))(0) = ui+1(t) +O
(
t
1
2 ∥(uk, vk)∥L2

)
.

Using the Magnus formula given by Proposition 2.8 with M = ν(k,m), we finally get

Px(t; (u, v)) = ui+1(t) +O
(
t
1
2 ∥(uk, vk)∥L2 + ∥(u, v)∥ν(k,m)+1

L1 + ∥x(t; (u, v))∥1+
1

ν(k,m)

)
.

We obtain the result. We can obtain the same estimate for |vi+1(t)|, i ∈ J0, k − 1K.

3.5 Interpolation inequality
The representation formula of the state (Proposition 2.8 with M = π(k,m)) makes a
strong link between x(t; (u, v)) and Zπ(k,m)(t; f, (u, v))(0). Lemma 3.9 gives an expansion of
PZπ(k,m)(t; f, (u, v))(0). Furthermore, the edge terms |(u1, · · · , uk, v1, · · · , vk)(t)| are esti-
mated by Lemma 3.13. However, there is an error term in the Magnus-type formula shaped
as O

(
∥(u, v)∥π(k,m)+1

L1

)
. We then relate this quantity to the size of the drift ∥(uk, vk)∥2L2 ,

thanks to the Gagliardo–Nirenberg interpolation inequalities. This is the purpose of the
following lemma.

Lemma 3.14. Let k,m ∈ N∗, and p ∈ [1,+∞]. There exists C > 0 such that, for every
t > 0, and u ∈ L1((0, t),R)

∥u∥π(k,m)+1
L1 ⩽ Ctπ(k,m)−2k ∥u∥π(k,m)−1

Wm,p ∥uk∥2L2 . (3.6)

Proof. For simplicity, we write π instead of π(k,m). We use the Gagliardo–Nirenberg in-
terpolation inequalities (2.23) with P = 2(m+k)p

2k+mp , q = 2, r = p, s = 2, j = k, l = m + k,
α = k

k+m , and φ = uk, and we obtain

∥u∥LP ⩽ C
∥∥∥u(m)

∥∥∥α
Lp

∥uk∥1−α
L2 + Ct

1
P −(k+ 1

2 ) ∥uk∥L2 . (3.7)

Moreover, using Hölder’s inequality,

∥u∥L1 ⩽ t1−
1
P ∥u∥LP . (3.8)
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Using (3.7) and (3.8), we obtain

∥u∥π+1
L1 ⩽ Ct(π+1)(1− 1

P )
(∥∥∥u(m)

∥∥∥α(π+1)

Lp
∥uk∥(1−α)(π+1)

L2 + t(π+1)( 1
P −(k+ 1

2 )) ∥uk∥π+1
L2

)
Thus, if we define β := 1 + 2k

m , then, (1− α)(1 + β) = 2. We get

∥u∥π+1
L1 ⩽ Ct(π+1)(1− 1

P )
(
∥u∥α(π+1)

Wm,p ∥uk∥(1−α)(π−β)
L2 + t(π+1)( 1

P −(k+ 1
2 )) ∥uk∥π−1

L2

)
∥uk∥2L2 .

(3.9)
Moreover,

∥uk∥L2 ⩽ tk+
1
2 ∥u∥L∞ ⩽ Ctk+

1
2 ∥u∥Wm,p . (3.10)

Using (3.10) in (3.9), we obtain

∥u∥π+1
L1 ⩽ Ct(π+1)(1− 1

P )
(
∥u∥α(π+1)+(1−α)(π−β)

Wm,p t(k+
1
2 )(1−α)(π−β)

+t(π+1)( 1
P −(k+ 1

2 ))+(π−1)(k+ 1
2 ) ∥u∥π−1

Wm,p

)
∥uk∥2L2 .

As α(π + 1) + (1− α) (π − β) = π − 1, one obtains

∥u∥π+1
L1 ⩽ Ct(π+1)(1− 1

P )
(
t(k+

1
2 )(1−α)(π+1)−(2k+1) + t

π+1
P −(2k+1)

)
∥u∥π−1

Wm,p ∥uk∥2L2 .

Finally, (
k +

1

2

)
(1− α) =

(2k + 1)m

2(k +m)
⩾

1

P
,

Thus,
∥u∥π+1

L1 ⩽ Ct(π+1)(1− 1
P )t

π+1
P −(2k+1) ∥u∥π−1

Wm,p ∥uk∥2L2 .

3.6 Proof of the drift
We can now use the Magnus-type representation formula given by Proposition 2.8, the
expansion of PZπ(k,m)(t, f, (u, v))(0) given by Lemma 3.9, the estimate of Lemma 3.13 and
the interpolation inequality given by Lemma 3.14 to prove Theorem 3.7.

Proof of Theorem 3.7. Let k,m ∈ N∗ and p ∈ [1,+∞]. We will write π instead of π(k,m).
Let e1 := fW 1

k
(0), e2 := fW 2

k
(0) and e3 := fC2k−1

(0). Let P be a linear form given by (BC).
The Magnus-type expansion formula given by Proposition 2.8 with M = π, the equalities
(2.5), (2.6) and (2.7) and (3.2) give, as (t, ∥(u, v)∥L1) → 0,

Px(t; (u, v)) =
∫ t

0

(
P(e1)

u2k
2

+ P(e2)
v2k
2

+ P(e3)ukvk

)
+O

(
t ∥(uk, vk)∥2L2

+|(u1, · · · , uk, v1, · · · , vk)(t)|2 + ∥(u, v)∥π+1
L1 + ∥x(t; (u, v))∥1+

1
π

)
.

(3.11)

The closed-loop estimates (3.5) gives, with ν :=
⌊
π
2

⌋
,

|(u1, · · · , uk, v1, · · · , vk)(t)|2 = O
(
t ∥(uk, vk)∥2L2 + ∥(u, v)∥2ν+2

L1 + ∥x(t; (u, v))∥2
)
. (3.12)

By definition of ν, one has 2(ν + 1) ⩾ π + 1. In particular, as ∥(u, v)∥L1 → 0,

∥(u, v)∥2ν+2
L1 = O

(
∥(u, v)∥π+1

L1

)
.

Using (3.12) in (3.11) and the interpolation inequality (3.6), one gets

Px(t; (u, v)) =
∫ t

0

(
P(e1)

u2k
2

+ P(e2)
v2k
2

+ P(e3)ukvk

)
+O

((
t+ tπ−2k ∥(u, v)∥π−1

Wm,p

)
∥(uk, vk)∥2L2 + ∥x(t; (u, v))∥1+

1
π

)
.
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We prove that the system (1.1) has a drift in the regime (t, tα ∥(u, v)∥Wm,p) → 0, with
α = π−2k

π−1 : by definition, there exist C, ρ > 0 such that, for every t ∈ (0, ρ), there exists
η > 0 s.t. for every u, v ∈Wm,p((0, t),R) with ∥(u, v)∥Wm,p ⩽ η,∣∣∣∣Px(t; (u, v))− ∫ t

0

(
P(e1)

u2k
2

+ P(e2)
v2k
2

+ P(e3)ukvk

)∣∣∣∣
⩽ C

((
t+ tπ−2k ∥(u, v)∥π−1

Wm,p

)
∥(uk, vk)∥2L2 + ∥x(t; (u, v))∥1+

1
π

)
.

(3.13)

Let γ := |P(e3)|√
P(e1)P(e2)

< 1, by hypothesis (BC). Using Young’s inequality, one obtains∫ t

0

(
P(e1)

u2k
2

+ P(e2)
v2k
2

+ P(e3)ukvk

)
⩾ K

∫ t

0

(
u2k + v2k

)
, (3.14)

with K :=
1

2
(1− γ)min (P(e1),P(e2)). Thus, for all t ∈

(
0,min

(
ρ, K

4C

))
, for all u, v ∈

Wm,p((0, t),R), with ∥(u, v)∥Wm,p ⩽ min
(
η,
(
t2k−π K

4C

) 1
π−1

)
, the equalities (3.13) and (3.14)

lead to
Px(t; (u, v)) ⩾

K

2
∆(u, v)− C ∥x(t; (u, v))∥1+

1
π ,

with ∆ : (u, v) ∈ L1((0, 1),R)2 7→
∫ t

0

(
u2k + v2k

)
∈ R+. Then, the system (1.1) has a

drift along e1 + e2 parallel to Nm
k (f)(0) with strength ∆ as (t, tα ∥(u, v)∥Wm,p) → 0. This

concludes the proof of Theorem 3.7.

4 Necessary conditions for STLC in the asymmetrical
case

4.1 A new truncation in the Magnus-type representation formula
In order to prove Theorem 1.18, we first give an asymmetrical Magnus-type representation
formula. This is the purpose of the following statement.

Proposition 4.1 (Asymmetrical Magnus expansion). Let M,N ∈ N∗ with N ⩽ M , let
δ, T > 0 and f0, f1, f2 : B(0, 2δ) → Rd be analytic vector fields with f0(0) = 0 and T ∥f0∥∞ ⩽
δ. For u, v ∈ L1((0, T ),R), as ∥(u, v)∥L1 → 0,

x(t; (u, v)) = ZM,N (t; f, (u, v))(0) +O
(
∥u∥M+1

L1(0,t) + ∥v∥N+1
L1(0,t) + ∥x(t; (u, v))∥1+

1
M

)
, (4.1)

where ZM,N is defined as

ZM,N (t; f, (u, v)) :=
∑

b∈BJ1,MK
n2(b)⩽N

ηb(t, (u, v))fb. (4.2)

Proof. By definition

ZM (t; f, (u, v))(0) = ZM,N (t; f, (u, v))(0) +
∑

b∈BJ1,MK,

n2(b)⩾N+1

ηb(t, (u, v))fb(0).

We use analytic estimates, as for Propositions 2.11 and 2.12, and the estimates on the
coordinates of pseudo-first kind given by [3, Proposition 52] to obtain, as ∥(u, v)∥L1 → 0,∑

b∈BJ1,MK,

n2(b)⩾N+1

|||ηb(t, (u, v))fb|||r′ = O
(
∥v∥N+1

L1(0,t)

)
,

for a given r′ > 0. The Magnus-type representation formula (2.18) leads to the conclusion.
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We are now in a position to prove Theorem 1.18. We adopt the approach presented in
Section 3.1. Let k, k′,m,m′ ∈ N∗. We reason by contraposition and we assume that

fW 1
k
(0), fW 2

k′
(0), fCk+k′−1

(0), Nm,m′

k,k′ (f)(0) satisfy (BC). (4.3)

We prove Theorem 1.18 as a consequence of the following more precise statement.

Theorem 4.2. Let k, k′,m,m′ ∈ N∗ and p, p′ ∈ [1,+∞]. Assume that (4.3) holds, then,
system (1.1) has a drift along fW 1

k
(0) + fW 2

k′
(0) parallel to Nm,m′

k,k′ (f)(0) with strength ∆ :

(u, v) ∈ L1((0, 1),R)2 7→
∫ t

0

(
u2k + v2k′

)
∈ R+ as

(
t,
(
tα ∥u∥Wm,p , tα

′ ∥v∥Wm′,p′

))
→ 0,

where α = π(k,m)−2k
π(k,m)−1 and α′ = π(k′,m′)−2k′

π(k′,m′)−1 .

Thus, we obtain Theorem 1.18 thanks to Lemma 1.22. From now on, we will sometimes
refer to π(k,m) as π, π(k′,m′) as π′ and Nm,m′

k,k′ as N .

4.2 Dominant part of the logarithm
Lemma 4.3. Let k, k′,m,m′ ∈ N∗ be such that k′ ⩽ k. Let P be a linear form satisfying
P N (f)(0) ≡ 0. Then, as (t, ∥(u, v)∥L1) → 0,

PZπ,π′(t; f, (u, v))(0) = P
(
fW 1

k
(0)
)
ξW 1

k
(t, (u, v)) + P

(
fW 2

k′
(0)
)
ξW 2

k′
(t, (u, v))

+P
(
fCk+k′−1

(0)
)
ξCk+k′−1

(t, (u, v)) +O
(
t ∥(uk, vk′)∥2L2 + |(u1, · · · , uk, v1, · · · , vk′)(t)|2

)
.

(4.4)

Proof. As for Lemma 3.9, we fix M = π, N = Nm,m′

k,k′ , r = 3, b1 = W 1
k , b2 = W 2

k′ , and
b3 = Ck+k′−1. Let N = π′.

1. Estimates of the main terms: let b ∈ E := BJ1,πK ∩ {b ∈ Br(X), n2(b) ⩽ π′} \ N ∪
{b1, b2, b3} ∪ {Cj,l; l + ⌊ j

2⌋ ⩽ k − 2}. Then, n(b) = 2 and

(a) If b ∈ B2,bad ∩ {b ∈ Br(X), n1(b) = 2}, b =W 1
j,l with j > k or (j = k and l ⩾ 1).

Thus |b| ⩾ 2k+2 and the estimate (2.12) with j0 = k and p = 1 gives (2.20) with
Ξ(t, (u, v)) := t ∥uk∥2L2 .

(b) If b ∈ B2,bad∩{b ∈ Br(X), n2(b) = 2}, b =W 2
j,l with j > k′ or (j = k′ and l ⩾ 1).

Thus |b| ⩾ 2k′ + 2 and the estimate (2.13) with j0 = k′ and p = 1 gives (2.20)
with Ξ(t, (u, v)) := t ∥vk′∥2L2 .

(c) Else, b ∈ B2,good and b = Cj,l with j ⩾ k + k′ or (j ⩾ k + k′ − 1 and l ⩾ 1).
Then, |b| ⩾ k + k′ + 2 and the estimate (2.14) with p = q = 2 gives (2.20) with
Ξ(t, (u, v)) := t ∥(uk, vk′)∥2L2 .

Thus, one can apply Proposition 2.11 to obtain as ∥(u, v)∥L1 → 0,∑
b∈E

|||ξb(t, (u, v))fb|||r′ = O
(
t ∥(uk, vk′)∥2L2

)
,

for a given r′ > 0. We finally need to examine the brackets b ∈ {Cj,l; l+ ⌊ j
2⌋ ⩽ k−2},

where the set is finite. Then, estimate (2.14) with p = q = 2 gives, as ∥(u, v)∥L1 → 0,∑
l+⌊ j

2 ⌋⩽k−2

|||ξCj,l
(t, (u, v))fCj,l

|||r′ = O
(
t ∥(uk, vk′)∥2L2 + |(u1, · · · , uk)(t)|2

)
.

Finally, ∑
b∈BJ1,πK, n2(b)⩽π′,

b/∈N∪{b1,b2,b3}

|||ξb(t, (u, v))fb|||r′ = O
(
t ∥(uk, vk′)∥2L2 + |(u1, · · · , uk)(t)|2

)
.
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2. Estimates of cross terms: we apply Proposition 2.12 with the set E := BJ1,πK ∩ {b ∈
Br(X), n2(b) ⩽ π′} \ N . Let b1 ⩾ · · · ⩾ bq ∈ B \ {X0} be such that n1(b1) + · · · +
n1(bq) ⩽ π, n2(b1) + · · ·+ n2(bq) ⩽ π′ and suppF(b1, · · · , bq) ̸⊂ N . For i ∈ J1, qK,

(a) If bi = M1
j with j ∈ J0, k − 1K or bi = M2

l with l ∈ J0, k′ − 1K, then by (2.3) and
(2.4),

|ξbi(t, (u, v))| ⩽ |(uj+1, vl+1)(t)|.
Then, the estimate (2.21) is verified with σi = j + 1 or σi = l + 1, αi =

1
2 and

Ξ(t, (u, v)) = |(u1, · · · , uk, v1, · · · , v′k)(t)|2.
(b) If bi = M1

j with j ⩾ k, |bi| ⩾ k + 1, and the estimates (2.10) with j0 = k and
p = 2 gives

|ξbi(t, (u, v))| ⩽
(ct)|bi|

|bi|!
t−(k+1)t

1
2 ∥uk∥L2 =

(ct)|bi|

|bi|!
t−(k+1)

(
t ∥uk∥2L2

) 1
2

.

We obtain (2.21) with σi = k + 1, and αi =
1
2 .

(c) If bi = M2
l with l ⩾ k′, |bi| ⩾ k′ + 1, and the estimates (2.11) with j0 = k′ and

p = 2 gives

|ξbi(t, (u, v))| ⩽
(ct)|bi|

|bi|!
t−(k′+1)t

1
2 ∥vk′∥L2 =

(ct)|bi|

|bi|!
t−(k′+1)

(
t ∥vk′∥2L2

) 1
2

.

We obtain (2.21) with σi = k′ + 1, and αi =
1
2 .

Since suppF(b1, · · · , bq) ̸⊂ N , one has q = 2, and b1, b2 ∈ B1. Moreover, α1 + α2 = 1.

Thus, the definition of Zπ,π′ - see (4.2) - leads to the result.

4.3 Vectorial relations
Lemma 4.4 (A bracket relation). Let k, k′,m,m′ ∈ N∗ be such that k′ ⩽ k. For all
l ∈ J0, k′ − 1K, for all (αj)j∈J0,l+k−k′K ∈ Rl+k−k′+1, (βj)j∈J0,lK ∈ Rl+1, one considers the
bracket

B :=

l+k−k′∑
j=0

αjM
1
j +

l∑
j=0

βjM
2
j .

Then, the following expansion holds[
B0k

′−l−1, B0k
′−l
]
∈ α2

l+k−k′W 1
k + β2

lW
2
k′ + 2(−1)⌊

k−k′
2 ⌋αl+k−k′βlCk+k′−1 +Nm,m′

k,k′ .

This lemma is proved in Appendix A.3. This is a generalization of Lemma 3.10, in the
asymmetrical case.

Lemma 4.5. Let k, k′,m,m′ ∈ N∗ be such that k′ ⩽ k and ν :=
⌊
π
2

⌋
, ν′ :=

⌊
π′

2

⌋
. Assume

that (4.3) is verified. Then,

1. the family
(
fM1

0
(0), · · · fM1

k−1
(0), fM2

0
(0), · · · , fM2

k′−1
(0)
)

is linearly independent.

2. if ν ⩾ 2,

Span
(
fM1

0
(0), · · · , fM1

k−1
(0), fM2

0
(0), · · · , fM2

k′−1
(0)
)

∩ SJ2,νK(f)(0) ∩ SJ0,νK,J0,ν′K(f)(0) = {0} .

Proof. We prove the result in the same way as Lemma 3.12, we start with the second
point. Assume by contradiction that there exist (αi), (βi), reals, not all zero, and B ∈
SJ2,νK(X) ∩ SJ0,νK,J0,ν′K(X) such that fB1

(0) = 0, with

B1 :=

k−1∑
j=0

αjM
1
j +

k′−1∑
j=0

βjM
2
j +B.
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1. Firstly, assume that αk−k′ = · · · = αk−1 = β0 = · · · = βk′−1 = 0. One considers
K := max{j ∈ J0, k − k′ − 1K, αj ̸= 0}. As f0(0) = 0, one has fB2

(0) = 0 with

B2 := [B10
k−1−K , B10

k−K ] ∈ α2
KW

1
k +N + SJ3,2νK ∩ SJ0,2νK,J0,2ν′K(X).

Moreover, by definition of ν and ν′,

SJ3,2νK ∩ SJ0,2νK,J0,2ν′K(X) ⊆ SJ1,πK ∩ SJ0,πK\{2},J0,π′K(X) ⊆ N . (4.5)

As αK ̸= 0, we obtain a contradiction with (4.3), as fW 1
k
(0) /∈ N (f)(0).

2. Else, K := max{j ∈ J0, k′ − 1K, (αk−k′+j , βj) ̸= (0, 0)} is well defined. As f0(0) = 0,
fB2(0) = 0, with

B2 := [B10
k′−1−K , B10

k′−K ] ∈ α2
k−k′+KW

1
k + β2

KW
2
k′

+2(−1)⌊
k−k′

2 ⌋αk−k′+KβKCk+k′−1 +N + SJ3,2νK ∩ SJ0,2νK,J0,2ν′K(X),

the expansion is given by Lemma 4.4 with l = K. Using (4.5), one finally obtains

α2
k−k′+KfW 1

k
(0) + β2

KfW 2
k′
(0) + 2(−1)⌊

k−k′
2 ⌋αk−k′+KβKfCk+k′−1

(0) ∈ N (f)(0).

We use Lemma 3.11 to obtain a contradiction. The first point is obtained with B = 0.

4.4 Closed-loop estimate

Lemma 4.6. Let k, k′,m,m′ ∈ N∗ be such that k′ ⩽ k and ν :=
⌊
π
2

⌋
, ν′ :=

⌊
π′

2

⌋
. Assume

that (4.3) holds. Then, as (t, ∥(u, v)∥L1) → 0,

| (u1, · · · , uk, v1, · · · , vk′) (t)| = O
(
t
1
2 ∥(uk, vk′)∥L2 + ∥u∥ν+1

L1

+ ∥v∥ν
′+1

L1 + ∥x(t; (u, v))∥
)
.

(4.6)

Proof. We prove the estimate as Lemma 3.13. For that, we use the asymmetrical Magnus-
type representation formula given by Proposition 4.1 with M = ν, N = ν′ instead of
Proposition 2.8.

4.5 Proof of the drift
Proof of Theorem 4.2. Let k, k′,m,m′ ∈ N∗ and p, p′ ∈ [1,+∞] be such that k′ ⩽ k. Let
e1 := fW 1

k
(0), e2 := fW 2

k′
(0) and e3 := fCk+k′−1

(0). Let P be a linear form given by (BC).
The asymmetrical Magnus expansion formula given by Proposition 4.1 with M = π, N = π′,
the equalities (2.5), (2.6) and (4.4) give, as (t, ∥(u, v)∥L1) → 0,

Px(t; (u, v)) =
∫ t

0

(
P(e1)

u2k
2

+ P(e2)
v2k′

2

)
+ P(e3)ξCk+k′−1

(t, (u, v)) +O
(
t ∥(uk, vk′)∥2L2

+|(u1, · · · , uk, v1, · · · , vk′)(t)|2 + ∥u∥π+1
L1 + ∥v∥π

′+1
L1 + ∥x(t; (u, v))∥1+

1
π

)
.

1. If k′ ⩽ k − 2, then, one can apply Lemma 2.3 with j = k + k′ − 1, l = 0, and
N = k − 2− ⌊k+k′−1

2 ⌋ to obtain

ξCk+k′−1
(t, (u, v)) =

N∑
µ=0

(−1)µu⌊ k+k′−1
2 ⌋+2+µ

(t)v⌊ k+k′
2 ⌋−µ

(t) + (−1)N+1

∫ t

0

ukvk′ .
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2. If k′ ∈ {k − 1, k}, the equation (2.7) lead to ξCk+k′−1
(t, (u, v)) =

∫ t

0

ukvk′ , and the

writing is already convenient. In these cases, N + 1 = 0.

In all cases, the following equality holds

ξCk+k′−1
(t, (u, v)) = (−1)N+1

∫ t

0

ukvk′ +O
(
|(u1, · · · , uk)(t)|2 + t ∥vk′∥2L2

)
. (4.7)

The fact that 2(ν + 1) ⩾ π + 1, 2(ν′ + 1) ⩾ π′ + 1, the closed-loop estimates (4.6) and the
equality (4.7) give, as ∥(u, v)∥L1 → 0,

Px(t; (u, v)) =
∫ t

0

(
P(e1)

u2k
2

+ P(e2)
v2k′

2
+ (−1)N+1P(e3)ukvk′

)
+O

(
t ∥(uk, vk′)∥2L2 + ∥u∥π+1

L1 + ∥v∥π
′+1

L1 + ∥x(t; (u, v))∥1+
1
π

)
.

Finally, we use the interpolation inequality (3.6) to obtain

Px(t; (u, v)) =
∫ t

0

(
P(e1)

u2k
2

+ P(e2)
v2k′

2
+ (−1)N+1P(e3)ukvk′

)
+O

((
t+ tπ−2k ∥u∥π−1

Wm,p

)
∥uk∥2L2 +

(
t+ tπ

′−2k′
∥v∥π

′−1
Wm′,p′

)
∥vk′∥2L2 + ∥x(t; (u, v))∥1+

1
π

)
.

Let α := π−2k
π−1 , α′ := π′−2k′

π′−1 and ∆ : (u, v) ∈ L1((0, 1),R)2 7→
∫ t

0

(
u2k + v2k′

)
∈ R+. We

prove that the system (1.1) has a drift along e1 + e2, parallel to N (f)(0) with strength
∆ in regime

(
t,
(
tα ∥u∥Wm,p , tα

′ ∥v∥Wm′,p′

))
→ 0, as before. This concludes the proof of

Theorem 4.2.

4.6 Towards a quartic obstruction result
Having dealt with the case of quadratic drifts at any order, a natural question is to ask
what happens for the case of quartic drifts, and more generally, for any even-order drift.
We recall that this situation has been done in the case of single-input control-affine systems
by Stefani and Sussmann in [22] - see Proposition 1.27. Here, we have to study a quartic
competition between 5 brackets,

bi := adiX2

(
ad4−i

X1
(X0)

)
, i ∈ J0, 4K.

The associated functionals are the following ones: ξbi
(t, (u, v)) =

1

i!(4− i)!

∫ t

0

u4−i
1 vi1, for

i ∈ J0, 4K. If we choose N , a vector subspace of Rd and P, a linear form verifying P N ≡ 0
so that the dominant term of PZ4 are theses terms, then

PZ4(t; f, (u, v))(0) ≃
4∑

i=0

P(ei+1)

i!(4− i)!

∫ t

0

u4−i
1 vi1(s)ds, (4.8)

with ei+1 = fbi(0) for i ∈ J0, 4K. Using Young’s inequality in (4.8), one has

PZ4(t; f, (u, v))(0) ≳

(
P(e1)
24

− |P(e2)|
8

− |P(e4)|
24

)
∥u1∥4L4 +

P(e3)
4

∫ t

0

u21v
2
1

+

(
P(e5)
24

− |P(e4)|
8

− |P(e2)|
24

)
∥v1∥4L4 ,

(4.9)

Thus, the condition (BC) can be adapted in this case as: let e1, e2, e3, e4, e5 ∈ Rd be five
vectors and N ⊂ Rd a vector subspace. We say that e1, e2, e3, e4, e5, N verify (BC) if there
exists P : Rd → R a linear form such that:

3 |P(e2)|+ |P(e4)| < P(e1), |P(e2)|+ 3 |P(e4)| < P(e5), P(e3) ⩾ 0, P N ≡ 0.
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With this condition and a good choice of N , we can prove that (f1(0), f2(0)) is a linearly
independent family. Thus, we can use the same strategy for the closed-loop estimates. More-
over, the remainder term of the Magnus-type representation formula, shaped as ∥(u, v)∥ML1 ,
can be estimated by Gagliardo–Nirenberg interpolation inequalities. The major difficulty
lies in extracting the dominant part of Z4. This requires the ability to estimate the coor-
dinates of the pseudo-first kind. However, this is very time-consuming: B2 is made up of
3 families, B3 of 8 families, and B4 is made up of 36 different families! Thus, this is very
tedious to extend Proposition 2.5 is the case of B4. This strategy would make it possible to
treat systems as (1.11).

A Postponed proofs

A.1 Geometric conditions
Proof of Proposition 3.6. Assume that (BC) is not satisfied, and that the points 1, 3 and
4 are not verified. The purpose is to show that the second one is. Then, one of the three
following possibilities holds

a. (ẽ1, ẽ2) is a linearly independent family,

b. ẽ2 = βẽ1 with β > 0 and (ẽ1, ẽ3) is a linearly independent family,

c. ẽ1 ̸= 0, ẽ2 = βẽ1 and ẽ3 = γẽ1 with γ2 < β.

If the point b. holds, then Span(e1)⊕ Span(e3)⊕N . In this situation, one can define P as

P(e1) = 1, P(e3) = 0, P N = 0.

Then, P satisfies (BC). This is a contradiction. If the point c. holds, then Span(e1) ⊕ N .
Thus, one can define P as

P(e1) = 1, P N = 0.

Then, P(e3)2−P(e1)P(e2) = γ2−β < 0 and P satisfies (BC), this is a contradiction. Necessar-
ily, a. holds, i.e. (ẽ1, ẽ2) is a linearly independent family. If dim (Span(ẽ1, ẽ2, ẽ3)) = 3,
then Span(e1)⊕ Span(e2)⊕ Span(e3)⊕N . Thus, one can define P as

P(e1) = 1, P(e2) = 1, P(e3) = 0, P N = 0.

Once again, P satisfies (BC), this is a contradiction. Consequently, there exists a,b ∈ R
such that ẽ3 = aẽ1 + bẽ2. Finally, assume that ab < 1

4 .

1. If a = 0, then, one can define P as

P(e1) = b2 + 1, P(e2) = 1, P N = 0.

Then, P satisfies (BC).

2. Else, Q := a2x2 + (2ab − 1)x + b2 verifies ∆ = 1 − 4ab > 0. Then x∗ := 1−2ab
2a2 > 0

satisfies Q(x∗) < 0. One can define P as

P(e1) = x∗, P(e2) = 1, P N = 0.

Then, P satisfies (BC).

This is a contradiction. Consequently, ab ⩾ 1
4 . This is the desired property.

Conversely, we reason by contraposition. Assume that (BC) holds, and let P be such a linear
form.

1. If the point 1 is satisfied, e1 ∈ N and P(e1) = 0 or e2 ∈ N and P(e2) = 0.
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2. If the point 2 holds, a ̸= 0 and

P(e3)
2 − P(e1)P(e2) = a2

(
P(e1) +

(
b

a
− 1

2a2

)
P(e2)

)2

+
4ab− 1

4a2
P(e2)

2 ⩾ 0.

3. If the point 3 is satisfied, P(e1)P(e2) = βP(e1)2 ⩽ 0.

4. If the point 4 holds, P(e3)2 − P(e1)P(e2) = (γ2 − β)P(e1)2 ⩾ 0.

All these points are in contradiction with (BC).

A.2 A bracket expansion in the symmetrical case
Proof of Lemma 3.10. Let l ∈ J0, k−1K, (αj,1), (αj,2) ∈ Rl+1. To prove the desired relation,
we compute in the quotient space L(X)/{e(b), b ∈ Br(X), n(b) = 2, n0(b) < 2k − 1}. We
note ā the class of a ∈ L(X) in this quotient. Expending the bracket, one has

[B0k−l−1, B0k−l] =
∑

i,i′∈{1,2}
j,j′∈J0,lK

αj,iαj′,i′ [M
i
j+k−l−1,M

i′

j′+k−l].

We note that, for all (i, i′) ∈ {1, 2}2,

∀j, j′ ∈ J0, lK such that j + j′ < 2l, n0

([
M i

j+k−l−1,M
i′

j′+k−l

])
< 2k − 1.

Using this remark,

[B0k−l−1, B0k−l] =
∑

i,i′∈{1,2}

αl,iαl,i′ [M i
k−1,M

i′
k ].

Finally,

[B0k−l−1, B0k−l] = α2
l,1W

1
k + α2

l,2W
2
k + αl,1αl,2

(
2C2k−1 + C2k−2,1

)
.

As L(X) is a graded Lie algebra, B2,2k−2 := B2∩{e(b); b ∈ Br(X), n(b) = 2, n0(b) < 2k−1}
generates all the elements e(b) with n(b) = 2 and n0(b) < 2k − 1. The elements of B2,2k−2

are in Nm
k . Finally, as C2k−2,1 ∈ Nm

k , the desired result follows.

A.3 A bracket expansion in the asymmetrical case
The purpose of this subsection is to prove the expansion of Lemma 4.4. The proof of this
lemma is quite different from the case k = k′ studied in Lemma 3.10, and is based on the
following lemma.

Lemma A.1. The following expansions hold.

1. For any ν ∈ N, and a, b ∈ L(X),

[a, b0ν ] =

ν∑
ν′=0

(
ν

ν′

)
(−1)ν

′
[a0ν

′
, b]0ν−ν′

. (A.1)

2. For any ν ∈ N∗, there exist coefficients αν
r ∈ Z for 1 ⩽ 2r+1 ⩽ ν such that, for every

b ∈ L(X),
[b, b0ν ] =

∑
1⩽2r+1⩽ν

αν
r [b0

r, b0r+1]0ν−2r−1. (A.2)

3. For any ν ∈ N, there exist coefficients βν
r ∈ Z for 0 ⩽ r ⩽ ν such that, for every p ∈ N,

[M1
p ,M

2
p0

ν ] =

ν∑
r=0

βν
rC2p+r,ν−r. (A.3)
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4. For any ν ∈ N, there exist coefficients γν ∈ Z for 0 ⩽ r ⩽ ν such that, for every p ∈ N,

[M2
p ,M

1
p0

ν ] =

ν∑
r=0

γνrC2p+r,ν−r. (A.4)

Moreover, γνν = (−1)1+⌊ ν+1
2 ⌋.

Proof. The first two points are proved in [5, Lemma 4.11]. We prove the last point by
induction on ν (the proof of 3. is very similar): the equality is true for ν = 0 with γ00 = −1.
The equality if true for ν = 1 with γ10 = 0 and γ11 = 1. We assume that the formula holds
for ν, ν + 1, with ν ⩾ 0. Then, for every p ∈ N,

[M2
p ,M

1
p0

ν+2] = [M2
p ,M

1
p0

ν+1]0− [M2
p+1,M

1
p+10

ν ],

thanks to the Jacobi’s equality (1.2). Using the induction hypothesis and a change of
variable, we get

[M2
p ,M

1
p0

ν+2] =

ν+1∑
r=0

γν+1
r C2p+r,(ν+2)−r −

ν+2∑
r=2

γνr−2C2p+r,(ν+2)−r.

Thus, [M2
p ,M

1
p0

ν+2] =
ν+2∑
r=0

γν+2
r C2p+r,ν+2−r, with

∀r ∈ J2, ν+1K, γν+2
r = γν+1

r −γνr−2, γν+2
ν+2 = −γνν , γν+2

0 = γν+1
0 , γν+2

1 = γν+1
1 .

We obtain the desired equality, as γν+2
ν+2 = −γνν = −(−1)1+⌊ ν+1

2 ⌋ = (−1)1+⌊ (ν+2)+1
2 ⌋.

We are now in a position to prove Lemma 4.4.

Proof of Lemma 4.4. By definition,[
B0k

′−l−1, B0k
′−l
]
= (I) + (II) + (III) + (IV), (A.5)

with

(I) =
l+k−k′∑
i,j=0

αiαj [M
1
i+k′−l−1,M

1
j+k′−l], (II) =

l+k−k′∑
i=0

l∑
j=0

αiβj [M
1
i+k′−l−1,M

2
j+k′−l],

(III) =
l∑

i=0

l+k−k′∑
j=0

βiαj [M
2
i+k′−l−1,M

1
j+k′−l], (IV) =

l∑
i,j=0

βiβj [M
2
i+k′−l−1,M

2
j+k′−l].

Then,

(I) =
k∑

i=k′−l

α2
i+l−k′W 1

i +

l+k−k′∑
i=2

i−2∑
j=0

+

l+k−k′−1∑
i=0

l+k−k′∑
j=i+1

αiαj [M
1
i+k′−l−1,M

1
j+k′−l], (A.6)

as the bracket is zero if j = i− 1. Moreover, the equation (A.2), applied with b = M1
j+k′−l

and ν = i− j − 1 ⩾ 1 gives: for all 2 ⩽ i ⩽ l + k − k′, 0 ⩽ j ⩽ i− 2,

[M1
i+k′−l−1,M

1
j+k′−l] = −

∑
1⩽2r+1⩽i−j−1

αi−j−1
r W 1

j+k′−l+r+1,i−j−2r−2.

As j + k′ − l + r + 1 ⩽ k − 1, we obtain

for all 2 ⩽ i ⩽ l + k − k′, 0 ⩽ j ⩽ i− 2, [M1
i+k′−l−1,M

1
j+k′−l] ∈ Nm,m′

k,k′ . (A.7)
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Similarly, we obtain:

for all 0 ⩽ i ⩽ l+k−k′−1, i+1 ⩽ j ⩽ l+k−k′, [M1
i+k′−l−1,M

1
j+k′−l] ∈ Nm,m′

k,k′ . (A.8)

Thus, the equations (A.6), (A.7) and (A.8) give

(I) − α2
l+k−k′W 1

k ∈ Nm,m′

k,k′ . (A.9)

We can manipulate the term (IV) in the same way and obtain

(IV) − β2
lW

2
k′ ∈ Nm,m′

k,k′ . (A.10)

Finally, we need to examine the cross terms (II) and (III).

(II) = αl+k−k′βl[M
1
k−1,M

2
k′ ] +

∑
(i,j)∈J0,l+k−k′K×J0,lK

(i,j)̸=(l+k−k′,l)

αiβj [M
1
i+k′−l−1,M

2
j+k′−l]. (A.11)

Assume temporarily that k ̸= k′. The equation (A.4), applied with p = k′ and ν = k−k′−1 ⩾
0 gives

[M1
k−1,M

2
k′ ] = (−1)⌊

k−k′
2 ⌋Ck+k′−1 −

k−k′−2∑
r=0

γk−k′−1
r C2k′+r,k−k′−1−r.

As, in the sum, 2k′ + r ⩽ k + k′ − 2, one obtain

[M1
k−1,M

2
k′ ]− (−1)⌊

k−k′
2 ⌋Ck+k′−1 ∈ Nm,m′

k,k′ . (A.12)

Using the Jacobi’s formula, this equality is also true when k = k′. We expand on the basis
the second term of the right-hand side (A.11). We split the space of subscripts as

J0, l + k − k′K × J0, lK \ {(l + k − k′, l)} = A ⊔B ⊔ C ⊔D ⊔ E ⊔ F,

with

A = {(i, j), 1 ⩽ i ⩽ l − 1, 0 ⩽ j ⩽ i− 1} B = {(i, j), 0 ⩽ i ⩽ l − 1, i ⩽ j ⩽ l − 1},

C = {(i, j), l ⩽ i ⩽ l + k − k′, 0 ⩽ j ⩽ l − 1} D = J0, l − 1K × {l}

E = Jl + 1, l + k − k′ − 1K × {l}, F = {(l, l)}.

Note that the spaces E and F are empty if k = k′. For all (i, j) ∈ A, one can apply (A.4)
with p = j + k′ − l and ν = i− j − 1 to have

[M1
i+k′−l−1,M

2
j+k′−l] = −

i−j−1∑
r=0

γi−j−1
r C2(j+k′−l)+r,i−j−1−r.

As 2(j + k′ − l) + r ⩽ k + k′ − 4, one has

∀(i, j) ∈ A, [M1
i+k′−l−1,M

2
j+k′−l] ∈ Nm,m′

k,k′ .

We can do the same manipulations for (i, j) ∈ B, C, D, E, and F , thanks to the equations
(A.3) and (A.4). Using, (A.12) in (A.11), one finally gets

(II) − (−1)⌊
k−k′

2 ⌋αl+k−k′βlCk+k′−1 ∈ Nm,m′

k,k′ . (A.13)

With the same manipulations, one has

(III) − (−1)⌊
k−k′

2 ⌋αl+k−k′βlCk+k′−1 ∈ Nm,m′

k,k′ . (A.14)

The equations (A.5), (A.9), (A.10), (A.13), and (A.14) lead to the conclusion.
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A.4 Relation between Sussmann’s S(θ)-condition and Theorem 1.15
Let k ∈ N∗, m = 1. We assume that

fW 1
k
(0), fW 2

k
(0), fC2k−1

(0), N 1
k (f)(0) satisfy (BC).

Let us show that, for every θ ∈ [0, 1], (1.22) is not verified for b := W 1
k . We assume the

opposite: there exists θ ∈ [0, 1] such that (1.22) holds for b = W 1
k . Then, n0(b) = 2k − 1 is

odd, n1(b) = 2, n2(b) = 0 are even and fσ(b)(0) = fW 1
k
(0) + fW 2

k
(0). Let b ∈ Br(X) be such

n(b) + θn0(b) < n(b) + θn0(b) = 2 + (2k − 1)θ. Then,

n(b) < 2 + (2k − 1)θ ⩽ 2k + 1.

Moreover, if n(b) = 2, then

2 + θn0(b) < 2 + θ(2k − 1) so n0(b) < 2k − 1.

Let E := SJ1,π(k,1)K\{2}(X) ∪ {b ∈ Br(X); n(b) = 2, n0(b) < 2k − 1}. As π(k, 1) = 2k + 1,
the previous inequalities lead to fσ(b)(0) ∈ E(f)(0). As E(f)(0) ⊂ N 1

k (f)(0), one obtains

P
(
fW 1

k
(0)
)
+ P

(
fW 2

k
(0)
)
= 0,

where P is a linear form given by (BC). Thus,

0 ⩽ P
(
fC2k−1

(0)
)2
< P

(
fW 1

k
(0)
)

P
(
fW 2

k
(0)
)
= −P

(
fW 1

k
(0)
)2

⩽ 0.

This is a contradiction. Consequently, (1.22) is not verified for b =W 1
k .
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