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Abstract

Reliability analysis is a sub-field of uncertainty quantification that assesses the probability
of a system performing as intended under various uncertainties. Traditionally, this analysis
relies on deterministic models, where experiments are repeatable, i.e. they produce consistent
outputs for a given set of inputs. However, real-world systems often exhibit stochastic
behavior, leading to non-repeatable outcomes. These so-called stochastic simulators produce
different outputs each time the model is run, even with fixed inputs.

This paper formally introduces reliability analysis for stochastic models and addresses it
by using suitable surrogate models to lower its typically high computational cost. Specifically,
we focus on the recently introduced generalized lambda models and stochastic polynomial
chaos expansions. These emulators are designed to learn the inherent randomness of the
simulator’s response and enable efficient uncertainty quantification at a much lower cost than
traditional Monte Carlo simulation.

We validate our methodology through three case studies. First, using an analytical
function with a closed-form solution, we demonstrate that the emulators converge to the
correct solution. Second, we present results obtained from the surrogates using a toy example
of a simply supported beam. Finally, we apply the emulators to perform reliability analy-
sis on a realistic wind turbine case study, where only a dataset of simulation results is available.
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1 Introduction

Structural reliability analysis aims to determine the probability that uncertainties in a real-
world system lead to the failure of the considered system. This analysis typically utilizes
computational models that serve as a virtual representation of the actual system. Although these
models are often complex and expensive to evaluate, they are widely used because they allow for
extensive testing of various scenarios without the need for physical prototypes or experimental
setups.

The conditions applied to these virtual models are controlled by a set of input parameters
described by a random vector X ∈ DX ⊂ RMX , which is characterized by the joint probability
density function (PDF) fX . The state of the system, i.e., whether it fails to meet its performance
requirements or not, is determined by the limit-state function g(x), typically associated with
the computational model and prescribed conditions on its operation. Failure is associated to
non-positive values of the limit-state function, i.e., g(x) ⩽ 0. By extension, the failure domain is
defined as Df = {x : g (x) ⩽ 0}, and the boundary of this domain, where g (x) = 0, defines the
limit-state surface. This framework enables the definition of the probability of failure, Pf , as
follows (Ditlevsen and Madsen, 1996; Lemaire, 2009; Melchers and Beck, 2018):

Pf = P (g (X) ⩽ 0) =
∫

Df

fX(x) dx. (1)

In this context, it is assumed that all sources of uncertainties are accounted for by the random
variables and the limit-state function is deterministic, i.e., evaluating it multiple times with
the same input vector x0 yields the same response g (x0). However, there are cases where this
assumption does not hold.

In contrast to deterministic models, stochastic simulators yield different responses each time
they are run with the same input parameters. This variability arises from additional sources of
uncertainty that affects the computational model but are not explicitly included in the input
parameters because it is either impossible or not desired. Common examples of stochastic
simulators include epidemiological models, where disease transmission and recovery are treated
as random events with specific probabilities (Britton, 2010; Binois et al., 2018; Zhu and Sudret,
2021). Another example is found in financial modeling, where stock prices are modeled using
stochastic processes, such as the geometric Brownian motion, to capture market fluctuations
and investor behavior (Heston, 1993; McNeil et al., 2015; Zhu and Sudret, 2023; Lüthen et al.,
2023). Aero-servo-elastic simulations, which are commonly used in wind turbine engineering,
present significant latent stochasticity because they rely on stochastic turbulent wind fields
(Jonkman, 2009). Agent-based models (Wilensky, 2015) constitute another broad class of
stochastic simulators widely adopted in engineering and applied sciences.

As a result of this implicit randomness, often referred to as latent variability or noise, stochastic
simulators can produce both failed and non-failed outputs for different runs with the same set of
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input parameters. In this case, failure does not depend uniquely on the input parameter x, but
also on the realization of the latent variables of the model.

Research on reliability analysis for problems involving stochastic simulators is still relatively
sparse. Choe et al. (2015) first formalized the problem of performing reliability analysis in the
presence of stochastic simulators, by explicitly accounting for latent variability in an extension
of classical importance sampling (Melchers, 1989). A sequence of works have then followed,
addressing different aspects of this complex problem: Choe et al. (2017) studied the asymptotic
properties of the stochastic importance sampling estimator, proposing an asymptotically valid
confidence interval. Cao and Choe (2019) introduced instead a cross-entropy-based solution
scheme for stochastic importance sampling. Pan et al. (2020) introduced an adaptive stochastic
importance sampling approach, while Li et al. (2021) proposed a nonparametric importance
sampling method focused on a wind turbine case study. The latter quantifies the contributions of
each environmental factor and their interactions while avoiding computational issues with data
sparsity in rare event simulation. From another perspective, Zheng et al. (2022) utilized quantile
regression techniques to develop a feedforward neural network surrogate model for stochastic
systems. Upon training, they conducted reliability analysis via Monte Carlo simulation (MCS)
by sampling across input variables and quantile levels. Hao et al. (2021) extended the well-known
stochastic Kriging method (Ankenman et al., 2010) to handle unknown heteroskedastic Gaussian
noise and perform reliability analysis. Recently, Gramstad et al. (2020) proposed the use of
Gaussian process modeling, extreme value distributions and active learning techniques, to emulate
parametrically the conditional response of a stochastic simulator, with the goal of assessing the
short- and long- term reliability of wind turbines.

In this paper, we propose instead the use of a class of stochastic emulators recently introduced
by Zhu and Sudret (2021, 2023), as a natural tool for the model-agnostic solution of reliability
analysis in the presence of stochastic models. These emulators are cheap-to-evaluate parametric
models that can learn the behavior of stochastic simulators, including their inherent stochasticity,
with reduced computational effort, thus enabling reliability analysis applications. We validate the
proposed methodology on three case studies. The first is a standard reliability analysis problem
modified with the introduction of latent variables in the limit-state function. The second study
applies our approach to a simply supported beam, a classic problem in structural reliability.
Analytical solutions are available in both cases, hence allowing us to easily validate our proposed
methodology. The third case study focuses instead on a real-world wind turbine example, where
only operational data is available.

This paper is organized as follows: Section 2 introduces the formal framework for reliability
analysis in the context of stochastic simulators. Section 3 presents the stochastic emulators
employed in our methodology, namely generalized lambda models and stochastic polynomial
chaos expansions. Section 4 introduces reliability analysis using these emulators. Section 5
showcases the results obtained with our methodology when applied to the previously mentioned
case studies. Finally, Section 6 presents our conclusions and provides an outlook on future
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research on the topic.

2 Problem statement

2.1 Stochastic Simulators

A stochastic simulator MS can be formally defined by the following mapping:

MS : DX × Ω → R,

(x, ω) 7→ MS(x, ω),
(2)

where x ∈ DX ⊂ RMX is the MX -dimensional vector of input parameters and ω is a random
event in a probability space (Ω,F ,P) that represents the inherent stochasticity. In practice, the
latter is due to latent random variables Z(ω) (defined over the same probability space, with
support DZ ⊂ RMZ ), which are internal parameters of the simulator that are not explicitly
considered as input variables. In other words, a stochastic simulator is built from a deterministic
model M as follows:

MS(x, ω) = M(x,Z(ω)). (3)

For a given input vector x0, each run of the simulator corresponds to a different realization of the
latent variables Z, say z0 ≡ Z(ω0) and provides one particular realization of the output random
variable Yx0 ≡ MS(x0, ·). To characterize the distribution of the latter, replications should be
generated, i.e. multiple runs of MS with the same input vector x0 and different realizations
{z1, . . . , zR} of the latent variables. We will refer to the probability density function of Yx0 as
the conditional distribution of the response given x0.

In contrast, fixing the realization z0 and running the model for different inputs provides a
trajectory of the simulator, i.e. a (standard) function MS(·, ω0) : DX → R. This function can
be obtained in practice by resetting the random seed of the random number generator which
generates the realizations of Z for each x. Statistical summaries of the output of a stochastic
simulator, such as the mean value, variance or quantiles are also standard functions of the input
parameters.

To illustrate the above definitions in a practical application, let us consider an aero-elastic
simulator used to design wind turbines (see detailed example in Section 5.3). A wind field is
characterized by macroscopic parameters, such as the average velocity over 10 minutes U , the
turbulence intensity TI and the shear exponent α that describes the variation of wind speed with
altitude. These three parameters correspond to the input vector x. Then a three-dimensional
spatio-temporal wind realization is generated over a time window [0, T ] (typicaly T = 10 minutes)
using the power spectral density of the wind field and thousands of Gaussian random variables,
which in turn form the latent vector Z. For a fixed so-called climate x0 = {u0, T I0, α0}, an
infinite number of 10-minute wind fields could be generated, which provide different structural
responses of the wind turbine, e.g. maximal tip blade displacement, blade root bending moments,
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etc. The latter are random variables whose distribution depend on x0, that may be further used
in a reliability analysis, whose general problem statement is now introduced.

2.2 Reliability analysis on stochastic simulators

Following the formalism of Choe et al. (2015), the probability of failure associated with a
stochastic limit-state function gs is defined as:

Pf = P (gs (X, ω) ⩽ 0) . (4)

Introducing the underlying deterministic function g and the latent variables Z, Eq. (4) can be
written as:

Pf = P (g (X,Z) ⩽ 0) . (5)

Assuming that the random variables X and Z are independent and that the failure domain
is defined in the joint (X,Z) space, i.e., Df = {(x, z) : g (x, z) ⩽ 0}, this equation can be
expanded into:

Pf =
∫ ∫

{(x,z):g(x,z)⩽0}
fX (x) fZ (z) dx dz

=
∫

RMX

∫

RMZ

1Df
(x, z)fX (x) fZ (z) dx dz,

(6)

where 1Df
(x, z) is the indicator function of the failure domain, equal to 1 if the system fails, i.e.,

g (x, z) ⩽ 0, and 0 otherwise. This definition integrates the uncertainty arising from both the
input parameters and latent variables.

Furthermore, by manipulating Eq. (6), we can derive equivalent definitions of Pf based on
the two perspectives discussed in Sec. 2.1. For a given x0, the conditional failure probability is
defined as:

PZ (g (X,Z) ⩽ 0 | X = x0) =
∫

RMZ

1Df
(x0, z)fZ (z) dz. (7)

For different values of x, we then obtain a deterministic conditional failure probability function,
which we denote by s (x):

s(x) = PZ (g (X,Z) ⩽ 0 | X = x) . (8)

This function reflects the probability of failing due to the internal stochasticity of the limit-state
function alone.

By reformulating Eq. (6), we can express Pf as a function of s (x):

Pf =
∫

RMX

(∫

RMZ

1Df
(x, z)fZ (z) dz

)
fX (x) dx

=
∫

RMX

s (x) fX (x) dx

≡ EX [s(X)] .

(9)
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This allows us to decompose the estimation of the probability of failure into a two-step pro-
cess, namely the characterization of the function s (with semi-analytical equations), and the
computation of its expected value (see details in Sec. 4).

Alternatively, when the latent stochasticity is fixed, we can express Pf as:

Pf = EZ [PX (g (X,Z) ⩽ 0 | Z = z)] . (10)

The inner term in Eq. (10) represents the probability of failure due to uncertainty in the input
parameter for a fixed realization of the stochasticity. In other words, Pf can be computed as
the expected value (over many random seeds) of the probabilities of failure associated to each
resulting trajectory.

2.3 Estimating Pf

Similarly to the deterministic case, solving Eq. (4) analytically is generally not feasible. An
alternative approach is to estimate Pf using Monte Carlo simulation. This method provides an
unbiased estimation of Pf because each time the limit-state function is evaluated for a given
x, a realization of ω, that is of Z, is also implicitly used. In this sense, MCS is performed on
both X and Z, however only X is explicitly sampled, while Z is sampled implicitly through a
mechanism internal to the stochastic simulator for each evaluation. Another important aspect
is that MCS does not suffer from the curse of dimensionality. Consequently, the presence of
stochasticity does not increase the complexity of the problem, and the number of limit-state
function evaluations needed only depends on the desired accuracy when estimating Pf , just as in
the deterministic case.

Monte Carlo simulation is, however, often intractable in practice as it requires numerous evalu-
ations of the possibly expensive-to-evaluate limit-state function. Variance-reduction techniques
have been developed to address this issue, e.g., importance sampling (Melchers, 1989), subset
simulation (Au and Beck, 2001; Papaioannou et al., 2016), line sampling (Koutsourelakis et al.,
2004; De Angelis et al., 2014), or cross-entropy importance sampling (Kurtz and Song, 2013;
Geyer et al., 2019). These methods aim to provide more accurate estimates of the probability
of failure at a lower computational cost compared to crude MCS. While well-established for
deterministic simulators, stochastic-aware variance-reduction techniques are not yet widespread,
with the exception of the family of stochastic importance sampling mentioned earlier (Choe et al.,
2015, 2016, 2017).

Another commonly used approach to reduce the costs associated with MCS is the introduction
of surrogate models. These are inexpensive mathematical approximations that mimic the behavior
of complex, costly-to-evaluate functions. These models are trained on an experimental design,
which is a set of points obtained from full-scale simulations. Many surrogate models are available
and well-established for deterministic functions. In the context of reliability analysis (Teixeira
et al., 2021; Moustapha et al., 2022), Kriging is arguably the most widely adopted surrogate
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model. Other methods, such as polynomial chaos expansion (Marelli and Sudret, 2018) or support
vector machines (Bourinet et al., 2011) have also been employed. However, these approaches
cannot be directly applied to stochastic simulators, as they do not account for latent stochasticity.

With the growing interest in stochastic simulators, traditional deterministic methods have been
extended to handle stochastic cases. For example, Ankenman et al. (2010) extended the traditional
Kriging method to stochastic systems. However, this approach assumes that the conditional
distributions are Gaussian, which is often not realistic. Generalized linear models and generalized
additive models, introduced by McCullagh and Nelder (1989) and Hastie and Tibshirani (1990),
respectively, relax this Gaussian assumption by allowing the conditional distributions to belong
to a broader exponential family. The primary limitation of these approaches is that they focus
on approximating only the mean function of the simulator.

In an effort to model both the mean and variance, Iooss and Ribatet (2009) proposed a
joint modeling approach, which was further refined by Marrel et al. (2012). Despite these
advancements, such methods remain limited to capturing the first two moments. To approximate
the full PDF of the response of the simulators, Moutoussamy et al. (2015) introduced the use of
kernel density estimation. For the specific purpose of performing reliability analysis on extreme
value-type problems, typical of wind turbine design, Gramstad et al. (2020) combine instead
Kriging and active learning to emulate the conditional distribution of maximum loads, as a
function of statistical summaries of short and long term environmental conditions. More recently,
Zhu and Sudret (2020, 2021) proposed the generalized lambda models (GLaM), a method that
uses generalized lambda distributions to approximate conditional distributions. Similarly, Zhu
and Sudret (2023) introduced stochastic polynomial chaos expansions (SPCE), which map a
latent random variable to target conditional distributions through polynomial chaos expansions.
Finally, Lüthen et al. (2023) developed spectral surrogate models that rely on Karhunen-Loève
expansions for problems where the random seed can be controlled within the computational
model.

These newly introduced emulators address some of the limitations of the other existing methods.
Specifically, Zhu and Sudret (2021, 2023) focus on emulating the PDF of conditional distributions,
with minimal assumptions regarding the shape of those distributions. In contrast, Lüthen et al.
(2023) propose an emulator specifically targeted to problems where trajectories (with controlled
random seeds) are available. In this paper, we leverage the methods developed by Zhu and
Sudret (2021, 2023) to conduct reliability analysis on stochastic simulators.

3 Stochastic emulators

3.1 Generalized lambda models

Generalized lambda models (GLaM) are a type of surrogates designed for stochastic simulators.
The primary objective of GLaM is to mimic the probability density function of the random
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variable Yx ≡ Y | X = x. This is done by fitting a generalized lambda distribution (GLD) to
the conditional response Yx. GLDs can approximate most common unimodal distributions, such
as Gaussian, Students’ t-, or Weibull distributions. They are defined by their quantile function
Q (u), which is a monotonically increasing function defined on u ∈ [0, 1]. GLaM specifically relies
on the Freimer-Kollia-Mudholkar-Lin GLD family (Freimer et al., 1988), which reads:

Q(u; λ) = λ1 + 1
λ2

(
uλ3 − 1
λ3

− (1 − u)λ4 − 1
λ4

)
, (11)

where λ1 represents the location parameter, λ2 > 0 is the scale parameter, λ3, and λ4 are the
shape parameters. For a deeper explanation of how these parameters affect the resulting GLD,
the reader is referred to Zhu and Sudret (2020, 2021).

The rationale behind the GLaM emulator is that for every x, there exists a set of parameters
{λi (x) , 1, . . . , 4} that can be used to generate a distribution that approximates the response of
the original simulator, i.e.:

Yx
d≈ Ỹx ∼ GLD (λ1(x), λ2(x), λ3(x), λ4(x)) . (12)

The symbol d≈ indicates that the two sides are approximately equal in distribution.

Each component of λ (x) consists of a deterministic function and, as a consequence, can be
modeled by polynomial chaos expansions (Lüthen et al., 2021). Since λ2 (x) must be positive,
its associated expansion is constructed in the logarithmic space. Thus the polynomial chaos
expansions read:

λl(x) ≈ λPC
l (x; c) =

∑

α∈Al

cl,αψα(x), l = 1, 3, 4,

λ2(x) ≈ λPC
2 (x; c) = exp


 ∑

α∈A2

c2,αψα(x)


 ,

(13)

where ψα (x) are a set of polynomials, orthonormal with respect to the input distribution fX ,
α are multi-indices, which identify the degree of the multivariate polynomials, c = {cl,α : l =
1, . . . , 4,α ∈ Al} denote the corresponding coefficients and A = {Al : l = 1, . . . , 4} represents
the truncation set, which defines the basis functions. For a more detailed explanation on the
construction of PCEs and their properties, interested readers are referred to Lüthen et al. (2021).

There are two approaches to constructing the GLaM emulator. The first approach, introduced
by Zhu and Sudret (2020), relies on replications, i.e., for each point x(i), there are R evaluations
of the simulator: Y(i) =

{
y(i,1), y(i,2), . . . , y(i,R)

}
. The training then involves two steps. First, the

local GLD parameters λ
(
x(i)

)
for each x(i) are inferred from the dataset Y(i), using either the

method of moments or maximum likelihood estimation. In the second step, PCE approximation
of the lambda functions, i.e. the mapping x 7→ λ (x), are constructed using the experimental
design

{(
x(i), λ

(
x(i)

))
, i = 1, . . . , N

}
.

A second, generally more efficient approach was introduced by Zhu and Sudret (2021) and
eliminates the need for replications. Given an experimental design X =

{
x(1). . . . ,x(N)

}
and its
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associated model responses Y =
{
y(1). . . . , y(N)

}
, the associated maximum likelihood optimization

problem is directly cast as a function of the PCE coefficients c:

ĉ = arg max
c∈C

L(c), (14)

where

L(c) =
N∑

i=1
log

(
fY

(
y(i); λPC

(
x(i); c

)))
. (15)

Here, the set C defines the search space for c and fY represents the PDF of the generalized
lambda distribution and reads:

fY (y; λ) = 1
Q′(u; λ) = λ2

uλ3−1 + (1 − u)λ4−1 with u = Q−1(y; λ). (16)

A closed-form solution of Q−1 is generally not available, therefore the PDF is obtained numerically.
For further details on the estimator in Eq. (15), the reader is referred to Zhu and Sudret (2020,
2021).

A detailed analysis of the impact of replications on experimental design is provided in Zhu
and Sudret (2021). A straightforward advantage of not using replications is that the available
computational budget can be allocated to a more space-filling experimental design, ensuring
information is distributed across the entire domain rather than concentrated at replicated points.
Furthermore, it eliminates the constraints associated to predefined experimental designs, allowing
datasets collected for other purposes to be used to train the emulator.

3.2 Stochastic polynomial chaos expansion

Stochastic Polynomial Chaos Expansion (SPCE), introduced by Zhu and Sudret (2023), is
another stochastic emulator that enables modeling the output distribution of Yx. An artificial
latent variable Z is introduced to represent the stochasticity of the simulator within the polynomial
chaos expansions framework. This approach capitalizes on the probability integral transform
(PIT), a statistical technique that allows transforming a continuous random variable into another,
enabling the mapping of a known variable Z to the desired output distribution. Typically, Z is
chosen to follow a standard uniform or Gaussian distribution.

Let the cumulative distribution function (CDF) associated to Yx be denoted by FY |X(y | x).
The PIT allows us to express a relationship between Yx and an artificial latent variable Z, as
follows:

Yx
d= F−1

Y |X (FZ(Z) | x) , (17)

where FZ is the CDF of the latent variable Z. The symbol d= indicates that the two sides are
equal in distribution.

Eq. (17) implies that Yx can be represented as a deterministic function of both the input x

and the latent variable Z. This deterministic mapping is then captured using a PCE in the
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(X, Z) space:
F−1

Y |X (FZ(Z) | X = x) d=
∑

α∈NMX +1

cαψα(x, Z). (18)

For a given x, the expansion above is a function of the latent variable Z, making the response
Yx a random variable. Considering a truncation scheme A, we have:

Yx
d≈ Ỹx =

∑

α∈A
cαψα(x, Z). (19)

Relying on Eq. (19) as-is may lead to issues such as singularities in the probability density
functions. To address this, Zhu and Sudret (2023) introduced an additive noise component
ϵ ∼ N (0, σ2), which acts, in practice, as a regularization term. The resulting SPCE emulator is
then expressed as:

Yx
d≈ Ỹx =

∑

α∈A
cαψα(x, Z) + ϵ. (20)

The PDF of Ỹx results from the convolution of that of the PCE with the Gaussian noise.
Assuming the noise variance σ2 is known, the corresponding PDF can be cast as:

fỸx
(y) =

∫

DZ

1
σ
φ

(
y −∑

α∈A cαψα(x, z)
σ

)
fZ(z)dz, (21)

where φ represents the standard normal PDF.

Given a replication-free experimental design, as defined in Sec. 3.1, the PCE coefficients c can
be computed using maximum likelihood estimation. Because the noise variance is, in general,
not known in advance, tuning this parameter is still needed. Zhu and Sudret (2023) proposes
using cross-validation for this task. A more detailed explanation regarding the fitting process
can be found in Zhu and Sudret (2023).

SPCE does not require replications in the experimental design, making all the advantages
discussed in Sec. 3.1 also applicable. Moreover, unlike GLaM, SPCE does not impose a specific
parametric form on the simulator response. Instead, it offers a flexible model capable of
approximating a wide range of distributions, including bimodal ones. Another notable advantage
of SPCE is that it represents stochasticity using a single latent variable. Regardless of the number
of latent variables Z used to represent the inherent stochasticity of the model (See Eq. (3)), the
emulator consistently reduces it to a single latent variable.

4 Proposed methodology for reliability analysis

4.1 Monte Carlo estimators of the probability of failure

Once the emulators are trained, the probability of failure Pf can be estimated using MCS.
Since Pf can be defined in multiple ways, as in Eqs. (6), (9) and (10), it is of interest to determine
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which definition yields the estimator with the minimum variance. For this purpose, we compare
the variances of the MCS estimators derived from Eqs. (6) and (9). This comparison assumes
that s (x) is known, which is generally not the case. However, in the context of the emulators
under consideration, such a function can be inexpensively computed, as described in Sec. 4.2 and
Sec. 4.3.

The MCS estimator of Eq. (5) follows the conventional MCS framework and reads:

Pf = 1
NMCS

NMCS∑

i=1
1Df

(
X(i),Z(i)

)
, (22)

where
{

X(i), i = 1, . . . , NMCS
}

are i.i.d copies of the input vector X ∼ fX and
{

Z(i), i = 1, . . . , NMCS
}

are i.i.d copies of the latent variables of the simulator.

The variance of this estimator is computed as follows:

Var
[
Pf

]
= Var


 1
NMCS

NMCS∑

i=1
1Df

(
X(i),Z(i)

)

 ,

= 1
NMCS

Var
[
1Df

(X,Z)
]

=
Pf

(
1 − Pf

)

NMCS
.

(23)

Similarly, the MCS estimator derived from Eq. (9) reads:

P̂f = 1
NMCS

NMCS∑

i=1
s
(
X(i)

)
. (24)

Its variance reads:

Var
[
P̂f

]
= Var


 1
NMCS

NMCS∑

i=1
s
(
X(i)

)

 ,

= 1
NMCS

Var [s(X)] .

(25)

Thus, for a fixed NMCS, comparing the variance of the estimators reduces to comparing
Var

[
1Df

(X,Z)
]

and Var [s(X)]. From the law of total variance, we have:

Var
[
1Df

(X,Z)
]

= EX
[
VarZ(1Df

(X,Z) | X)
]

+ VarX
(
EZ[1Df

(X,Z) | X]
)
,

= EX
[
VarZ(1Df

(X,Z) | X)
]

+ Var(s(X)),

= EX [s (X) (1 − s (X))] + Var(s(X))

(26)

This implies that, for a given computational budget, Var
[
Pf

]
will always exceed Var

[
P̂f

]
, as

the term EX [s (X) (1 − s (X))] is always non-negative. This contribution represents the part of
the variance due to sampling explicitly in the Z-space, which does not exist when the conditional
failure probability function s (x) can be computed without sampling.
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Although s (x) is typically unknown, the presented emulators allow us to exploit the latent
space to numerically integrate the uncertainty associated with Z. It is important to note that
this benefit only applies when the conditional failure probability function is computationally
tractable, as is the case for SPCE and GLaM. We show in Appendix A that in cases where s (x)
is unknown and has to be estimated by MCS, the estimator Pf is preferable.

4.2 Computing s(x) from GLaM emulator

For the GLaM model, computing the conditional probability of failure s(x) is straightforward.
Once trained, the PCE models provide the parameters λ(x), and the associated quantile function
of the generalized lambda distribution is obtained according to Eq. (11). The computation of
s(x) is then given by:

s (x) = Q−1 (0; λ (x)) . (27)

Since the CDF of the generalized lambda distribution does not have a closed-form solution, a
numerical inversion of the quantile function is required. Due to the monotonic property of the
quantile function, this inversion is computationally efficient.

4.3 Computing s (x) from SPCE emulator

For SPCE, the CDF associated with a predicted Ỹx, denoted as FỸx
(y), is obtained by

integrating the PDF introduced in Eq. (21). Since this PDF is a one-dimensional integral, it can
be evaluated using Gaussian quadrature as follows:

fỸx
(y) =

∫

DZ

1
σ
φ

(
y −∑

α∈A cαψα(x, z)
σ

)
fZ(z)dz

≈
NQ∑

j=1

w(j)
√

2πσ
exp


−

(
y −∑

α∈A cαψα

(
x, z(j)

))2

2σ2


 ,

(28)

where NQ is the number of integration points, z(j) is the j-th integration point, and w(j) is the
corresponding weight, both associated to the weight function fZ , which is in practice the uniform
or Gaussian PDF, for which the integration points and weights are well-known.

The approximation introduced by the numerical integration scheme implies that fỸx
(y) is ap-

proximated by a mixture ofNQ Gaussian distributions
{

N
(∑

α∈A cαψα

(
x, z(j)

)
, σ2

)
, j = 1 . . . NQ

}
,
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with corresponding weights w(j). The CDF of this approximation is straightforward and reads:

FỸx
(y) ≈

∫ y

−∞

NQ∑

j=1

w(j)
√

2πσ
exp


−

(
y −∑

α∈A cαψα

(
x, z(j)

))2

2σ2


 dy

≈
NQ∑

j=1
w(j)

∫ y

−∞

1√
2πσ

exp


−

(
y −∑

α∈A cαψα

(
x, z(j)

))2

2σ2


 dy

≈
NQ∑

j=1
w(j)Φ



y −∑

α∈A cαψα

(
x, z(j)

)

σ


 ,

(29)

where Φ is the standard Gaussian CDF.

Finally, the conditional failure probability function is given by FỸx
(0), that is:

s (x) ≈
NQ∑

j=1
w(j)Φ


−

∑
α∈A cαψα

(
x, z(j)

)

σ


 . (30)

Once the SPCE model is trained, computing ∑α∈A cαψα(x, z) is inexpensive. The accuracy
of this approach strongly depends on the number of quadrature points used. In this paper, we
used NQ = 100, which, based on our tests, results in a negligible numerical error.

5 Results

All simulations presented in this section were conducted using the Generalized Lambda Models
(Lüthen et al., 2024a) and Stochastic Polynomial Chaos Expansions (Lüthen et al., 2024b)
modules from the UQLab software for uncertainty quantification (Marelli and Sudret, 2014).

5.1 Stochastic R − S function

We first showcase the usage of the presented stochastic emulators using a modified stochastic
R− S example. The limit-state function reads:

g(X,Z) = R

Z1
− S · Z2, (31)

where X = {R,S} are the random variables representing the resistance and demand, as in the
classical R − S problem, and Z = {Z1, Z2} are two latent variables introduced to represent
the inner stochasticity of the model. The distribution of the associated random variables, their
moments and their associated parameters are described in Table 1.
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Table 1: Moments, distributions, and parameters of the considered variables for the R − S

problem.

Variable Distribution Mean Std. Deviation λ ζ

R Lognormal 5.0 0.8 1.5968 0.1590
S Lognormal 2.0 0.6 0.6501 0.2936
Z1 Lognormal 1.0 0.028 -0.0004 0.0280
Z2 Lognormal 1.0 0.096 -0.0046 0.0958

Given the problem setup, an analytical solution can be obtained by remarking that the
failure domain Df = {(x, z) : g (x, z) ≤ 0} also corresponds to the negative values of g̃ (x, z) =
ln
(

R
Z1

)
− ln (S · Z2) = lnR − lnS − lnZ1 − lnZ2 . Since all input variables have a lognormal

distribution, g̃ is a linear combination of Gaussian variables, and Pf can be computed analytically:

Pf = Φ


 λR − λZ1 − λS − λZ2√

ζ2
R + ζ2

Z1
+ ζ2

S + ζ2
Z2


 = 3.154 × 10−3. (32)

It is also possible to obtain an analytical solution for the conditional failure probability function
s (x) defined in Eq. (8). In this case, we condition the limit-state function on x = (r, s)T , while
Z is random. This leads to the following function:

s (x) = s (r, s) = Φ


 ln r − λZ1 − ln s− λZ2√

ζ2
Z1

+ ζ2
Z2


 . (33)

To demonstrate the performance of the emulators in estimating Pf and s(x), we trained
both models using various experimental design sizes, sampled via space-filling Latin Hypercube
Sampling (LHS, Olsson et al., 2003), with sizes N ∈ {500; 1,000; 5,000; 10,000; 50,000}. The
polynomial chaos expansions used in surrogating the parameters λ1 (x) λ2 (x) of the GLaM
model have degree adaptivity ranging from p ∈ [0, 3], while the expansions related to parameters
λ3 (x) and λ4 (x) vary from p ∈ [0, 2]. The SPCE emulators have degree adaptivity ranging
from p ∈ [0, 4]. For both emulators, the hyperbolic truncation q-norm ranges in q ∈ [0.7, 1] with
constant increments of 0.1.

The probability of failure P̂f (i.e., the average of the conditional failure probabilities) is
estimated for each emulator using Monte Carlo simulation with a fixed sample size of NMCS = 106.
Moreover, to compare the performance of the emulators against direct MCS, we also estimate Pf

using the same sample size of full-scale simulations that were used to train the emulators, i.e.
N ∈ {500; 1,000; 5,000; 10,000; 50,000}. We depict the results in box plots to capture statistical
variability, as each experimental setup is repeated 50 times. The width of the box plots represents
the interquartile range, the horizontal line is the median and responses deviating by more than
±2.7 standard deviations from the mean are considered outliers and plotted as circles.
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Figure 1 depicts the box plots of the probabilities of failure estimated by the emulators, with
GLaM in green and SPCE in blue, alongside the crude MCS estimates in orange. The black
dashed line represents the analytical probability of failure Pf from Eq. (32). The emulators
provide accurate estimates of Pf , even in a small data regime when N ⩽ 1,000 samples. As the
size of the experimental design increases, the bias on the estimations of the emulators disappears,
and the emulators converge to Pf . Additionally, the box plots resulting from the emulators are
consistently narrower than those from direct MCS. This allows us to conclude that the emulators
produce a lower variance in their estimations with the same number of full-scale simulations. In
other words, it demonstrates the variance-reduction property of the emulators. These results
suggest that the presented stochastic emulators are a viable option for performing reliability
analysis.

The current implementation of this methodology still requires numerous evaluations of the limit-
state function. However, active learning approaches, as shown in the literature for deterministic
models (Teixeira et al., 2021; Moustapha et al., 2022), offer a way to significantly reduce the cost
of training the emulators. By iteratively enriching the experimental design on regions where a
more accurate surrogate model is needed, these methods can drastically lower the number of
simulations required. As a result, precise estimates of Pf can be obtained with relatively small
experimental designs, greatly minimizing computational costs. To the author’s best knowledge,
such an approach is still not available in the context of structural reliability for stochastic
emulators.

Furthermore, Table 2 is provided to complement Figure 1, presenting the same data in numerical
form. This table allows for precise comparison across sample sizes, showing the median value
and coefficient of variation over 50 replications for the estimated probabilities of failure.
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(a) GlaM emulator (in green) against direct MCS
(in orange)

50
0

1;
00
0

5;
00
0

10
;0
00

50
;0
00

N

10!3

10!2

P̂
f

SPCE
MCS
Pf

(b) SPCE emulator (in blue) against direct MCS
(in orange)

Figure 1: R−S function – Box plots comparing convergence behavior obtained from the emulators
and from direct MCS for increasing values of N . The analytical probability of failure is depicted
by the dashed black line.

Table 2: R− S function – Median and coefficient of variation of probability of failure estimates
for GLaM, MCS, and SPCE across varying sample sizes, obtained from 50 repetitions of the
experiments. The analytical probability of failure is 3.154 × 10−3.

N
GLaM MCS SPCE

Median P̂f Coef. of var. Median P f Coef. of var. Median P̂f Coef. of var.

500 2.447 × 10−3 24.7% 2.000 × 10−3 65.4% 2.389 × 10−3 25.1%
1,000 2.923 × 10−3 19.4% 3.000 × 10−3 55.7% 2.931 × 10−3 24.3%
5,000 3.000 × 10−3 5.9% 3.000 × 10−3 24.8% 3.069 × 10−3 7.3%
10,000 3.045 × 10−3 4.8% 3.300 × 10−3 13.3% 3.114 × 10−3 4.7%
50,000 3.144 × 10−3 2.3% 3.180 × 10−3 6.7% 3.123 × 10−3 2.3%

Due to the stochastic nature of the problem, depicting a limit-state surface in the x-space
is not possible. However, to visually compare the performance of the emulators, we plot heat
maps of the function s(x) and those estimated by GLaM and SPCE, denoted as ŝGLaM (x) and
ŝSP CE(x), respectively. Figure 2 displays the heat maps for three different experimental design
sizes: N = {500; 5,000; 50,000}. These surfaces correspond to the seeds that led to the median
P̂f in Figure 1. For N = 500, there is a noticeable difference between the reference function and
those produced by the emulators. However, as the size of the training set increases, the emulators

16



(a) Analytical solution

(b) GlaM solution (N = 500; 5,000; 50,000)

(c) SPCE solution (N = 500; 5,000; 50,000)

Figure 2: R − S function: Comparison of the conditional failure probability heat maps for
different sizes of the experimental design used for GLaM and SPCE models.

become more accurate, with only minor differences observed for N = 5,000. For N = 50,000, no
distinguishable differences are evident.

5.2 Stochastic simply supported beam

Let us consider a simply supported beam subjected to uniform load. We are interested in the
probability that the mid-span deflection exceeds a given threshold tlim. The associated limit-state
function reads:

g(X, E) = tlim −
(

5pL4

32Ebh3

)
. (34)

The input variables are X = {p, L, b, h}, and Z = E is treated as latent variable. By doing this,
we aim to simulate a scenario where heterogeneous properties of the materials are modeled using
random fields (Grigoriu, 2002), which would naturally require a stochastic treatment. However,
since we focus on validating the proposed methodology in an academic context, we do not discuss
appropriate ways of modeling these properties. Instead, we simplify the problem by using E as a
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latent variable. The distributions of the related random variables, along with their moments and
corresponding parameters, are presented in Table 3.

Table 3: Moments, distributions, and parameters of the considered variables for the simply
supported beam example.

Variable Distribution Mean Std. Deviation λ ζ

b Lognormal 0.15 m 7.5 × 10−3 m -1.8984 0.0500
h Lognormal 0.3 m 15 × 10−3 m -1.2052 0.0500
L Lognormal 5.0 m 0.05 m 1.6094 0.0100
p Lognormal 10 kN/m 2 kN/m 9.1907 0.1980
E Lognormal 30,000 MPa 4,500 MPa 24.1133 0.1492

As in the R− S problem, based on the shape of the limit-state function in Eq. (34) and the
lognormal input distributions, the probability of failure can be calculated analytically and reads:

Pf = Φ




ln(tlim) − ln
(

5
32

)
− λp − 4λL + λE + λb + 3λh

√
ζ2

p + 16ζ2
L + ζ2

E + ζ2
b + 9ζ2

h


 . (35)

We consider a displacement threshold of tlim = span/250 = 0.02 m, according to European
Committee for Standardization (2004). This yields Pf = 1.019 × 10−3.

We evaluate the performance of the emulators using a similar approach as in the previ-
ous example. Both emulators were trained with different experimental design sizes N ∈
{500; 5,000; 10,000; 50,000} obtained via LHS (Olsson et al., 2003). The polynomial chaos
expansions used to approximate the parameters λ1(x) and λ2(x) in the GLaM model had
adaptive degrees ranging from p ∈ [1, 4], while the expansions for λ3(x) and λ4(x) varied from
p ∈ [0, 2]. For SPCE, the degree adaptivity ranged from p ∈ [1, 7]. The hyperbolic truncation
q-norm for all expansions ranged from q ∈ [0.7, 1], with increments of 0.1. P̂f , obtained as the
empirical average of the conditional failure probability function, was computed via MCS with
NMCS = 106 samples. To compare with direct MCS, we also estimated Pf with the same number
of full-scale simulations for training the emulators. All results are displayed in box plots as we
carried out 50 experiment repetitions to account for the statistical variability.

Figure 3 compares the various estimates of the failure probability for different sizes of the
experimental design. The emulators provide relatively accurate estimates of Pf , even with small
EDs (N ⩽ 1,000), despite a slight bias. In contrast, for many Monte Carlo simulation runs with
N ⩽ 1,000, no failed samples were observed, leading to Pf = 0, thus the orange box plots shown
in Figure 3. Using such small datasets for MCS to estimate Pf on the order of 10−3 is generally
not recommended. However, we include these results to show that the emulators already provide
reasonable estimates with limited data. The bias in the emulator estimates decreases as the
experimental design size increases, ultimately converging to the reference probability of failure,
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Pf . Additionally, as observed in the previous example, the box plots obtained by the emulators
are consistently narrower than those from MCS, indicating that the emulators converge faster to
Pf .

Additionally, Table 4 is included to supplement Figure 3. It offers a numerical representation
of the same data and enables detailed comparison across sample sizes by providing the median
and standard deviation of the estimated failure probabilities.
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Figure 3: Simply supported beam example – Box plots comparing convergence behavior obtained
from the emulators and from direct MCS for increasing values of N . The analytical probability
of failure is depicted by the dashed black line.

Table 4: Simply supported beam – Median and standard deviation of probability of failure
estimates for GLaM, MCS, and SPCE across varying sample sizes, obtained from 50 repetitions
of the experiments. The analytical probability of failure is 1.019 × 10−3.

N
GLaM MCS SPCE

Median P̂f Coef. of var. Median P f Coef. of var. Median P̂f Coef. of var.

500 7.324 × 10−4 55.4% 0 126.0% 1.276 × 10−3 24.3%
1,000 7.653 × 10−4 30.3% 1.000 × 10−3 76.3% 1.337 × 10−3 15.5%
5,000 8.4953 × 10−4 22.6% 1.000 × 10−3 37.6% 1.094 × 10−3 9.8%
10,000 8.887 × 10−4 12.4% 1.000 × 10−3 26.8% 1.059 × 10−3 8.0%
50,000 9.564 × 10−4 5.4% 1.000 × 10−3 12.6% 1.030 × 10−3 4.4%
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5.3 Wind turbine application

Understanding and predicting the performance of wind turbines under realistic wind conditions
is paramount when designing them. Consequently, reliability analysis of stochastic models has
often focused on wind turbines, as shown in numerous studies Choe et al. (2015, 2016, 2017);
Cao and Choe (2019); Pan et al. (2020); Li et al. (2021). The typical design process involves
two steps: generating wind excitations and conducting aero-elastic simulations to model the
interaction between wind inflow, aerodynamics, and structural dynamics. While the aero-elastic
model itself is deterministic, stochasticity arises from the wind excitation. The wind loads are
represented as 10-minute spatio-temporal random fields defined by macroscopic parameters such
as wind speed and turbulence intensity. Although these parameters simplify wind modeling, they
do not fully characterize the wind inflow. Consequently, multiple wind fields can be generated
from the same parameters, leading to different dynamical responses.

We test our methodology using the dataset from Barone et al. (2012), which includes the
equivalent of 96 years of operational data for the onshore 5 MW NREL reference turbine (Jonkman
et al., 2009). Stochastic wind inflow is generated using the NREL TurbSim code (Jonkman,
2009), with average wind speed and turbulence intensity as inputs. The wind speed is modeled
using a truncated Rayleigh distribution, following Moriarty (2008). The average wind speed
U is 10 m/s (untruncated), with cut-in and cut-off speeds of 3 m/s and 25 m/s, respectively.
Turbulence intensity is specified deterministically as a function of mean wind speed, following
the IEC normal turbulence model (International Electrotechnical Commission, 2005), making
wind speed the only random variable in this study. Aero-elastic simulations are performed using
the FAST code (Jonkman and Buhl, 2005; Jonkman and Jonkman, 2013).

Of interest is the probability that the maximum flap-wise bending moment at the root of
the blade during the 10-minute simulations Mb(U, ω) exceeds a given threshold τ within the
simulated time frame. The associated limit-state function can be defined as follows:

gs(U, ω) = τ −Mb(U, ω), (36)

Figure 4a presents the available dataset, displaying Mb(U, ω) as a function of the average wind
speed U (approximately 5 million data points), while Figure 4b shows a normalized histogram
representing the PDF of the wind speed U . The dataset comprises approximately 5 million
simulator runs, with no replications. We consider a threshold of τ = 15,000 kN · m, resulting
in a target probability of failure, Pf = 1.022 × 10−2, with a coefficient of variation below 0.5%,
computed using all available samples in the dataset. This threshold (and corresponding target
Pf ) is slightly larger (and smaller, respectively) than those considered in Choe et al. (2015); Cao
and Choe (2019).
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(a) (b)

Figure 4: Wind turbine application – (a) Scatter plot depicting the relationship between the
average wind speed and the maximum flap-wise bending moment for the given dataset. (b)
Normalized histogram representing the PDF of the average wind speed for the given dataset.

The emulators are constructed by subsampling the available data uniformly in the input
space. This adjustment, as opposed to using the original Rayleigh distribution, ensures that
enough training samples are located in the tails, which is crucial for the emulators accuracy.
The emulators are built with three experimental design sizes: N ∈ {500, 1,000, 5,000}. The
polynomial chaos expansions used to surrogate the parameters λ1(x) and λ2(x) in the GLaM
model have adaptive degrees ranging from p ∈ [1, 10], while the expansions for λ3(x) and λ4(x)
vary in the range p ∈ [0, 3]. For the SPCE emulators, the degree adaptivity ranges in p ∈ [1, 10].
Since this example involves only a single random variable, hyperbolic truncation does not apply.
A total of 50 different experiments are conducted to account for statistical variability.

Since this is a one-dimensional example, we can visually assess the emulators predictions
against those derived from the dataset. Our analysis includes a comparison of the mean function,
µ(u), and the α-quantile function, Qα(u). Additionally, to gain some insights regarding the
heteroskedasticity of the problem, we compute the variance function associated with the simulator.
Given the discrete nature of the data, we employ a moving window approach to estimate these
functions. For each wind speed u, we define a window as [u− ∆, u+ ∆], where ∆ = 0.1 m/s is a
small positive parameter. The mean function at u is then estimated as the empirical mean of the
values Mb within this window, i.e.,

µ(u) = 1
Nw

∑

i:u(i)∈[u−∆,u+∆]
M

(i)
b , (37)

21



where M (i)
b = Mb

(
u(i)

)
and Nw is the number of data points within the window:

Nw = card {i : u(i) ∈ [u− ∆, u+ ∆]}. (38)

Similarly, the variance function is estimated empirically as follows:

σ2(u) = 1
Nw − 1

∑

i:u(i)∈[u−∆,u+∆]

(
M

(i)
b − µ(u)

)2
, (39)

Since the conditional responses of the model are not necessarily normally distributed, estimating
confidence intervals requires quantile estimation. The empirical α-quantile is estimated by first
sorting the values Mb within the window in ascending order. The α-quantile, Qα(u), is then
defined as:

Qα(u) = Mb(⌊αNw⌋) (40)

where ⌊·⌋ represents the floor function, which gives the largest integer less than or equal to αNw

and Mb(•) are the sorted values of Mb ordered so that Mb(1) ≤ Mb(2) ≤, . . . ,Mb(N) .

Figure 5 illustrates the results obtained with the moving window approach. Figure 5a displays
the mean function, µ(u), along with the 95% central confidence interval Q2.5% −Q97.5% (Eq. (40)).
Figure 5b depicts the variance function, σ2(u). While the empirical mean function is relatively
smooth, the variance function depicts heteroskedastic and non-monotonic behavior, which
generally complicates surrogate modeling.

(a) (b)

Figure 5: Wind turbine application – (a) Empirical mean curve (dotted line) and the corresponding
95% empirical confidence interval (gray shaded area) based on the available dataset. (b) Empirical
variance function.

Figure 6 shows the fitting of the emulators for different experimental design sizes. For each
ED size, the model yielding the median P̂f is used for illustration. The colored lines represent
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the mean functions obtained by the emulators, while the dashed black lines show the empirical
mean computed from the data. The shaded colored areas indicate the 95% confidence interval
obtained from the emulators, whereas the ones in gray correspond to the confidence intervals
derived directly from the data.

With a relatively small experimental design of 500 points, the surrogate models capture the
behavior of the mean function fairly accurately, despite minor discrepancies. As the size of the
experimental design increases, the accuracy of the emulators improves, and the mean curve
obtained by the emulator gets closer to that obtained from the data. A similar behavior is
observed with the confidence intervals. For small experimental designs, discrepancies are more
remarkable, but as the experimental design size increases, the emulators converge more closely
to the confidence intervals derived from the data, demonstrating a convergence trend.
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(a) GLaM, N = 500 (b) SPCE, N = 500

(c) GLaM, N = 1, 000 (d) SPCE, N = 1, 000

(e) GLaM, N = 5, 000 (f) SPCE, N = 5, 000

Figure 6: Wind turbine application – Empirical mean curve (dotted line) and the corresponding
95 % empirical confidence interval (gray shaded area) based on the available dataset. The full,
colored line represents the mean function obtained by the emulator, while the colored shaded
area shows the 95 % centered confidence interval generated by the emulators when trained with
an ED of size N . 24



Figure 7 shows the probabilities of failure obtained by the emulators and via MCS, obtained
by drawing subsamples of the original dataset. The green boxplots represent results from GLaM,
while the blue ones correspond to those obtained via SPCE. The orange boxplots display the
results from crude MCS. Similar to previous examples, Table 5 provides a numerical summary of
the data shown in Figure 7. Despite the strong heteroskedasticity in the simulator, we observe
that the emulators yield reasonable estimates of Pf , even for small ED, such as N = 500.
Nevertheless, a small bias is observed in the results. We attribute these results to an inaccurate
fitting in the tails of the conditional distributions, especially in the input regions with high
probability density, which significantly impacts the estimated probability of failure. As shown
in Figure 6a and 6b, for N = 500 points, the emulators overestimate the Q97.5%. While this
estimation improves as the experimental design size increases, the bias does not fully vanish and
persists at N = 5,000 in the range 14 ⩽ u ⩽ 18.

Even though convergence is observed as the ED size increases, the emulators do not consistently
outperform Monte Carlo simulation. There are two main reasons for this. First, the relatively
large failure probability requires only a limited number of samples for accurate estimation by MCS.
Second, the conditional distributions generated by the emulators are not sufficiently accurate
in areas contributing the most to the failure probability. While accuracy improves with larger
ED, convergence remains relatively slow, hence favoring MCS. However, the convergence rate
of the emulators could be accelerated by selectively targeting training points in these critical
areas, rather than the the current global training approach. As in surrogate-based reliability
analysis with deterministic simulators, active learning can be leveraged to achieve this targeted
refinement of the ED.

In addition to reliability estimates, the emulators provide valuable insights into the behavior
of the simulators. Once trained, they enable the estimation of the conditional failure probability
function, providing valuable information on input configurations that are most likely to lead
to system failure. Furthermore, the emulators allow some degree of extrapolation, enabling
reliability estimations that would be infeasible with crude MCS.
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(a) GlaM emulator (in green) against direct MCS
(in orange)

(b) SPCE emulator (in blue) against direct MCS (in
orange)

Figure 7: Wind turbine application – Box plots comparing convergence behavior obtained from
the emulators and from direct MCS for increasing values of N . The reference probability of
failure is depicted by the dashed black line.

Table 5: Wind turbine application – Median and standard deviation of probability of failure
estimates for GLaM, MCS, and SPCE across varying sample sizes, obtained from 50 repetitions
of the experiments. The reference probability of failure is 1.022 × 10−2.

N
GLaM MCS SPCE

Median P̂f Coef. of var. Median P f Coef. of var. Median P̂f Coef. of var.
500 1.570 × 10−2 33.1% 1.200 × 10−2 39.0% 1.219 × 10−2 43.9%

1,000 1.315 × 10−2 21.6% 9.000 × 10−3 25.9% 9.333 × 10−3 22.0%
5,000 1.116 × 10−4 8.7% 1.000 × 10−2 14.7% 1.080 × 10−3 11.1%

6 Conclusion

Structural reliability methods are well established for systems in which the limit state function
is deterministic. However, modern simulators found in, e.g., wind turbine design or earthquake
engineering are stochastic in nature due to the presence of latent variables Z on top of the basic
input variables X in their formulation. In this paper, we present the established definition of
the probability of failure Pf in the context of stochastic simulators and outline its associated
estimators. Although crude Monte Carlo simulation based on sampling in the (X,Z) space is
feasible, it reveals intractable for realistic problems.

To address this issue, we leverage the estimator that expresses the probability of failure as the
expected value (over the X-space) of the conditional failure probability function s(x). Moreover,
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we propose using two types of recently developed stochastic emulators as surrogate models for
the (stochastic) limit state function, which yield semi-analytical expressions of s(x), thus leading
to a significant cost reduction. These are the generalized lambda models (GlaM) and stochastic
polynomial chaos expansions (SPCE). These two emulators do not require replicated runs of the
simulator to construct the training set (experimental design), thus offering a versatile data-driven
approach. We also prove that the proposed estimator of Pf has a smaller variance compared to
the crude MCS one.

We benchmark our emulator-based approach on two analytical examples for which both Pf

and the conditional failure probability function are derived analytically. This allow us to show
the convergence of our method with the increasing size of the experimental design. Both GlaM
and SPCE provide similar performances, with fairly accurate results already obtained with 5,000
samples, and a smaller coefficient of variation (computed from 50 independent replicated runs
of the full analysis) three times smaller than that of the crude Monte Carlo approach. The
third example is related to the reliability analysis of a 5 MW wind turbine w.r.t. the maximum
flap-wise bending moment at the blades toe. For this case study, we use a publicly available
set of simulations of the NREL 5-MW reference wind turbine, performed by Sandia National
Laboratories. We show that the two emulators reproduce the mean function and [2.5% − 97.5%]
quantiles of the bending moment with a remarkable accuracy compared to those obtained by
nonparametric methods. Regaridng failure probability estimation, the emulator-based approach
performs comparably to MCS and even outperforms it when employing SPCE with 5,000 training
points.

In contrast to recent reliability methods developed for deterministic limit state functions, the
proposed approach does not (yet) leverage an iterative construction of the emulators using an
active learning method. This work in progress should allow us to drastically reduce the overall
computational cost by increasing the accuracy of the surrogates only in the regions of interest.

A Variance of estimator for unknown s (x)

This section demonstrates that when the conditional failure probability function s(x) is
unknown, estimating Pf using the single-loop estimator Pf is more efficient than using the
double-loop estimator, denoted as Pf . The single-loop estimator is defined as:

Pf = 1
NMCS

NMCS∑

i=1
1Df

(
X(i),Z(i)

)
, (41)

where
{(

X(i),Z(i)
)
, i = 1, . . . , NMCS

}
are i.i.d. copies of (X,Z). Its variance is given by:

Var
[
Pf

]
= 1
NMCS

Var
[
1Df

(X,Z)
]

=
Pf

(
1 − Pf

)

NMCS
. (42)
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In contrast, the double-loop estimator Pf requires multiple replications to estimate s(x) for
each x, significantly increasing computational demand. The double-loop estimator is defined as:

Pf = 1
N

N∑

i=1
s
(
X(i)

)
, (43)

where s
(
X(i)

)
is an estimator of the conditional probability failure function based on R replica-

tions:

s
(
X(i)

)
= 1
R

R∑

j=1
1Df

(
X(i),Z(i,j)

)
. (44)

That is,

Pf = 1
N

N∑

i=1

1
R

R∑

j=1
1Df

(
X(i),Z(i,j)

)
, (45)

where N is the number of samples of s(x) evaluated.

To show that Pf converges faster than Pf , we compare their variances for a given budget.
Using a notation consistent with Sec. 4, we define the total budget as NMCS = NR. The variance
of the double-loop estimator Pf is given by:

Var
[
Pf

]
= Var


 1
N

N∑

i=1

1
R

R∑

j=1
1Df

(
X(i),Z(i,j)

)

 . (46)

Applying Bienaymé’s identity (Klenke, 2013) to Eq. (46) gives:

Var
[
Pf

]
= 1
N2R2

(
N∑

i=1

R∑

j=1
Cov

[
1Df

(
X(i),Z(i,j)

)
,1Df

(
X(i),Z(i,j)

)]

︸ ︷︷ ︸
I

+
N∑

i=1

R∑

j,l=1
j ̸=l

Cov
[
1Df

(
X(i),Z(i,j)

)
,1Df

(
X(i),Z(i,l)

)]

︸ ︷︷ ︸
II

+
N∑

i,k=1
i ̸=k

R∑

j,l=1
Cov

[
1Df

(
X(i),Z(i,j)

)
,1Df

(
X(k),Z(k,l)

)]

︸ ︷︷ ︸
III

)
.

(47)

The first component in the variance, I , simplifies to Var
[
1Df

(X,Z)
]
, which represents the

variance of the direct MCS estimator Pf , as shown in Eq. (23).

Next, we compute the second component, II . To do this, we introduce Z ′ as a copy of Z. In
this case, the covariance term can be rewritten as:

Cov
[
1Df

(
X(i),Z(i,j)

)
,1Df

(
X(i),Z(i,l)

)]
= Cov

[
1Df

(X,Z) ,1Df

(
X,Z ′)] . (48)
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Expanding the covariance leads to:

Cov
[
1Df

(X,Z) ,1Df

(
X,Z ′)] = EX,Z,Z′

[
1Df

(X,Z) ,1Df

(
X,Z′)]

− EX,Z

[
1Df

(X,Z)
]
EX,Z′

[
1Df

(
X,Z ′)] .

(49)

1Df
(X,Z) and 1Df

(X,Z′) are independent realizations of the Bernoulli random vari-
able 1Df

(X,Z). Moreover, EX,Z

[
1Df

(X,Z)
]

and EX,Z′
[
1Df

(X,Z ′)
]

correspond to the
replication-free estimator of the probability of failure Pf . Thus, we have:

Cov
[
1Df

(X,Z) ,1Df

(
X,Z ′)] = EX

[
EZ

[
1Df

(X,Z)
]
EZ′

[
1Df

(
X,Z′)]]− Pf

2
. (50)

Now, using the definition of the conditional probability of failure function s (x) from Eq. (8),
we can rewrite the covariance as:

Cov
[
1Df

(X,Z) ,1Df

(
X,Z ′)] = EX

[
s2 (X)

]
− Pf

2

= Var [s (X)] .
(51)

For the third component, III , where i ̸= k, the covariance terms vanish due to the independence
between 1Df

(
X(i),Z(i,j)

)
and 1Df

(
X(k),Z(k,l)

)
.

Substituting these components into Eq. (47), we obtain the final expression for the variance of
the double-loop estimator:

Var
[
Pf

]
= 1
N2R2

(
NR Var

(
1Df

(X,Z)
)

+NR (R− 1) Var [s (X)]
)

= 1
NMCS

(
Var

(
1Df

(X,Z)
)

+ (R− 1) Var [s (X)]
)

= 1
NMCS

(
Pf

(
1 − Pf

)
+ (R− 1) Var [s (X)]

)
.

(52)

Thus, for a fixed computational budget NMCS = NR, the variance of Pf is larger than the
variance of Pf (Eq. (23)) due to the additional term (R− 1)Var [s(X)] in the expression. In fact,
this variance can be reduced by setting R = 1, which corresponds to the case without replications.
This demonstrates that the replication-free estimator Pf is more efficient than Pf when s(x) is
unknown.
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