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Abstract. Recent advances in machine learning, particularly Large Lan-
guage Models (LLMs) such as BERT and GPT, provide rich contextual
embeddings that improve text representation. However, current docu-
ment clustering approaches often ignore the deeper relationships between
named entities (NEs) and the potential of LLM embeddings. This pa-
per proposes a novel approach that integrates Named Entity Recognition
(NER) and LLM embeddings within a graph-based framework for doc-
ument clustering. The method builds a graph with nodes representing
documents and edges weighted by named entity similarity, optimized us-
ing a graph-convolutional network (GCN). This ensures a more effective
grouping of semantically related documents. Experimental results indi-
cate that our approach outperforms conventional co-occurrence-based
methods in clustering, notably for documents rich in named entities.

Keywords: Large Language models, Named Entity Recognition, Graph
Convolutional Networks, Node Embedding, Node Clustering.

1 Introduction

Document clustering is widely used in data analytics, especially in fields like
information retrieval and natural language processing (NLP). It groups docu-
ments into categories based on shared characteristics, which is crucial for tasks
like topic modeling and recommendation systems. Traditional methods depend
on lexical features [29, 39], co-occurrences, or TF-IDF matrices [1, 27]. Although
effective in various situations, these methods face challenges in recognizing se-
mantic connections that extend beyond basic word frequency analysis [13].

Recent advances in machine learning, particularly with the emergence of
Large Language Models (LLMs) such as BERT [35, 18] and GPT [24], have rev-
olutionized text representation. These models offer rich contextual embeddings
that capture the nuances of word meanings in context. However, many cluster-
ing methods still use traditional approaches like k-Nearest Neighbors (KNN) to
construct graphs [14, 23], which depend on shallow lexical similarities and often
fail to capture deeper semantic relationships between documents.
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To illustrate the limitations of traditional methods, Figure 4 compares two
graph structures generated from the BBC News dataset: one using a KNN-
based graph and the other using our proposed NER-based graph construction
method. In the KNN graph, documents are connected based on lexical similarity,
leading to overlapping and indistinct clusters. In contrast, the NER-based graph
leverages named entity similarities, resulting in a clearer separation of clusters
that correspond to distinct semantic topics.

Fig. 1. Comparison of graph structures for the BBC News dataset. (Left) KNN-based
graph with lexical similarity; (Right) NER-based graph capturing entity similarities.

In this paper, we propose a novel approach that leverages Named Entity
Recognition (NER) alongside LLM embeddings in a graph-based framework for
document clustering. Our method builds a graph where nodes represent docu-
ments and edges are weighted by the similarity of named entity contexts in each
document. Named entities in similar contexts show strong semantic connections,
and combining NER with LLM embeddings constructs a graph that better rep-
resents document similarities. To optimize this, we use a Graph Convolutional
Network (GCN) [11, 15], which enables the joint optimization of the embeddings
and the clustering objectives. This procedure guarantees that semantically re-
lated documents are grouped more effectively, addressing the shortcomings of
conventional clustering techniques that do not incorporate global contextual in-
formation. Our main contributions include:

– A document clustering method that improves accuracy using NER, LLM
embeddings, and graph-based representations.

– A technique to create an adjacency matrix based on named entity similarity
for precise document relationship identification.

– Experiments demonstrating our approach outperforms co-occurrence-based
techniques, especially for documents rich in named entities.

The remainder of this paper is organized as follows. Section 2 reviews the
literature on graph representation learning, graph clustering, GCNs, LLMs, and
NER. Section 3 details our method, including adjacency matrix construction and
GCNs. Section 4 presents the experimental framework and results, followed by
a conclusion and future perspectives in Section 5.



NER and LLM Embedding in Document Clustering 3

2 Related work

Unsupervised graph representation learning has seen remarkable progress in re-
cent years, primarily through two key approaches: contrastive learning and au-
toencoders. Contrastive learning has emerged as a powerful method due to its
ability to differentiate between positive and negative pairs in a self-supervised
manner. Techniques such as GraphCL [42] have introduced graph augmenta-
tions that improve graph representations by maximizing the agreement between
different augmented views of the same graph. Similarly, MVGRL [12] enhances
the embeddings of node- and graph-level by contrasting views at both levels.
On the other hand, autoencoder-based methods provide an alternative by re-
constructing specific graph properties, such as the adjacency matrix, to learn
embeddings. For example, Graph Autoencoders (GAEs), introduced by [37], pro-
pose an architecture designed for large-scale graph data, enabling tasks such as
node classification and link prediction. Further developments, such as Variational
Graph Autoencoders (VGAE) [16], extend this approach by incorporating vari-
ational autoencoders with GCNs, while Linear Variational Graph Autoencoders
(LVGAE) [28] simplify this architecture using a linear transformation with a
one-hop propagation matrix.

Building on the foundation of graph representation learning, graph clustering
aims to group nodes into clusters based on either graph structure or node-level
features, or both. When focusing solely on node attributes, traditional cluster-
ing algorithms can be applied to graph data. Spectral clustering [22], for ex-
ample, leverages the graph structure exclusively and optimizes the ratio and
normalized cut criteria to form clusters. Deep Graph Infomax (DGI) [36], on
the other hand, improves graph clustering by maximizing mutual information
between graph embeddings and substructures. In addition to these approaches,
more recent methods have explored joint optimization of node embeddings and
clustering objectives. An example is Graph Convolutional Clustering (GCC)
[11], which simultaneously learns node embeddings and clusters, resulting in en-
hanced performance and reduced computational costs. These methods show that
incorporating clustering into the learning process can result in more meaningful
representations and improved clustering outcomes.

In parallel to advancements in graph learning, recent progress in LLMs has
significantly improved document representation. Models such as BERT or GPT
provide deep contextual embeddings that are particularly well suited for tasks
such as clustering, as they capture semantic relationships between entities and
documents that traditional methods often miss [21, 13]. Sentence-BERT [25], for
example, fine-tunes BERT to specialize in sentence similarity, making it an ideal
candidate for clustering semantically related texts. Incorporating clustering algo-
rithms such as k-means directly into LLM embeddings has also been explored, as
seen with BERT-Kmeans [31, 13]. Furthermore, the combination of LLMs with
graph-based models, such as Graph-BERT [43], provides a promising avenue for
more accurate and context-aware document clustering by integrating semantic
knowledge and graph structures.
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3 Model and algorithm

The use of NEs in clustering, although not yet widely adopted, presents a promis-
ing approach to improve document clustering. By focusing on key entities, such as
medical concepts, NE-based clustering can group documents that share relevant
entities. For example, in sports news, named entities such as "Kylian Mbappé"
and "Cristiano Ronaldo" can link documents about their performances, such
as a match in which Mbappé leads PSG to victory or Ronaldo secures Por-
tugal’s World Cup semi-final spot. Furthermore, their involvement in political
campaigns, like a UN-backed global education initiative alongside "Emmanuel
Macron," can connect documents from political domain. Research such as [6, 8]
shows that the integration of NEs into clustering can lead to improved perfor-
mance, especially in fields where entities are central to the thematic structure
of the text. We start by presenting the preliminaries and notation, followed by
a description of our proposed model and algorithm (Figure 2).

Fig. 2. Overview of the proposed model pipeline: LLM-based feature extraction, NER-
based graph construction, and joint embedding and clustering.

3.1 Preliminaries and Notation

Let G = (V,A,X) represent an undirected graph, where: V is the set of vertex,
consisting of nodes {v1, . . . , vn}, A ∈ Rn×n is a symmetric adjacency matrix,
where aij indicates the edge weight between nodes vi and vj , X ∈ Rn×d is the
matrix of node features. In the following, we adopt the following notations: Tr(·)
denotes the trace of a matrix, k is the number of clusters, e is the embedding
dimension, 1m is a column vector of m ones, and Im is the identity matrix of
dimension m. For matrix X, xi refers to the i-th row vector, x′

j to the j-th
column vector, and xij to the element in the i-th row and j-th column.
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3.2 Leveraging LLM Embeddings to Represent Node Features

In our approach, the node feature matrix X ∈ Rn×d, which typically repre-
sents document features, is now replaced by LLM embeddings and d becomes
dℓℓm. Traditional feature representations such as TF-IDF focus on surface-level
word frequencies and co-occurrence patterns, which may not capture semantic
nuances. Using LLM embeddings, we aim to incorporate rich contextual infor-
mation that provides a more holistic view of the document semantics.

Let fℓℓm : D → Rdℓℓm be the LLM model that maps each document di ∈ D or
its components (words, sentences, or entities) to a vector in a high-dimensional
embedding space. The features matrix Xℓℓm is constructed as:

Xℓℓm =


fℓℓm(d1)
fℓℓm(d2)

...
fℓℓm(dn)

 = [x′
1, . . . ,x

′
dℓℓm

] ∈ Rn×dℓℓm (1)

where each row fℓℓm(di) = xi is the embedding of document di.

3.3 Leveraging Named Entities for Context-Aware Graph
Construction

We aim to train a similarity model, such as Word2Vec [20], to capture word-
level similarities. Note that any other model can be used. The objective is to
identify named entities, locate entities that occur in similar contexts using the
trained model and cosine similarity, and build a document graph Ḡ where edges
represent similarities between named entities across documents.

Let D = {d1, d2, . . . , dn} be the set of documents in the dataset. The problem
is divided into the following steps:

Step 1: Training a Similarity Model First, we train a Word2Vec model
f : V → Re, where V is the vocabulary of the dataset, and each word wi ∈ V is
mapped to an embedding vector f(wi) ∈ Re. The objective of Word2Vec is to
maximize the likelihood of predicting the context words for a given target word
wi using the following objective function:

max
θ

∑
wi∈V

∑
wj∈Context(wi)

logP (wj | wi; θ) (2)

where θ represents the parameters of the model and P (wj | wi; θ) is the proba-
bility that the word wj appears in the context of the word wi.

Step 2: Named Entity Recognition (NER) Let Ed = {e1, e2, . . . , e|Ed|} be
the set of named entities extracted from a document d ∈ D. We apply a NER
model to each document di to identify named entities Edi

. Formally, we define
an NER model as: NER : d → Ed where Ed is the set of named entities detected
in document d.
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Step 3: Entity Similarity Search For each named entity e ∈ Ed, we use
the trained model f to compute the cosine similarity between named entities in
different documents. Given two entities ei and ej , their similarity is defined as:

Sim(ei, ej) =
f(ei) · f(ej)

∥f(ei)∥∥f(ej)∥
. (3)

We identify pairs of named entities (ei, ej) in documents that have a cosine
similarity exceeding a threshold τ .

Step 4: Graph Construction (with Entity Threshold) We construct
a document graph Ḡ = (VḠ , EḠ), where VḠ represents the set of documents
{d1, . . . , dn} and EḠ represents the edges between documents. An edge exists
between two documents di and dj if they share a sufficient number of similar
named entities. Specifically, an edge is formed only if the number of shared enti-
ties Edi

∩ Edj
is greater than or equal to a predefined threshold τ . The weight of

the edge aij is proportional to the similarity of the named entities between the
two documents:

aij =
1

|Edi
∩ Edj

|
∑

ei∈Edi
,ej∈Edj

Sim(ei, ej) (4)

where |Edi
∩ Edj

| ≥ τ . This ensures that a link is established only when the
documents share a sufficient number of similar entities, reducing the risk of
connecting documents based on superficial relationships. The resulting graph is
represented by an adjacency matrix Aner, where Aner(i, j) = aij for documents
di and dj that satisfy the entity threshold τ . The final objective is to harness
this graph for document clustering.

3.4 Joint Embedding and Clustering

Our objective is to simultaneously learn node embeddings and cluster assign-
ments. Inspired by [11], we formulate the problem as follows:

min
θ1,θ2,G,F

(
∥Dθ2 (Eθ1 (Agg(Aner,Xℓℓm)))− Agg(Aner,Xℓℓm)∥2

+ λ ∥Eθ1 (Agg(Aner,Xℓℓm))−GF∥2
) (5)

subject to: G ∈ {0, 1}n×k, G1k = 1n

where Eθ1 and Dθ2 represent the encoding and decoding functions. The term
Agg(Aner,Xℓℓm) is an aggregation of the adjacency matrix Aner and node fea-
tures Xℓℓm, G ∈ {0, 1}n×k is the binary cluster assignment matrix, F ∈ Rk×d

represent the cluster centroids in the embedding space while the parameter λ
controls the trade-off between reconstruction and clustering. Specifically, the sec-
ond term in the objective function can be viewed as optimized by Kmeans. It is
applied on the encoded representations forcing, thereby, the learned embeddings
to be clustering-friendly. This penalizes representations that do not fit into clear
clusters, following the loss of Kmeans.
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Linear Graph Embedding Model. We use a linear graph autoencoder (LGAE)
approach, which has been shown to perform comparably to more complex GCN-
based models for tasks such as link prediction and node clustering [16, 28]. Our
encoder is defined as a simple linear transformation:

E (Agg(Aner,Xℓℓm);W1) = Agg(Aner,Xℓℓm)W1 (6)

In contrast to LGAE, which reconstructs the adjacency matrix Aner directly,
the decoder incorporates both the adjacency matrix and the node features and
is ZW2 where Z = Agg(Aner,Xℓℓm)W1, representing the encoded graph.

Normalized Simple Graph Convolution. Inspired by the Simple Graph
Convolution (SGC) [40], we define our aggregation function by Agg(Aner,Xℓℓm) =
TpXℓℓm where T the symmetric normalized adjacency matrix with added self-
loops is defined by T = D−1

T (I+S̃) where S̃ = D̃−1/2ÃD̃−1/2 with Ã = Aner+I;
D̃ and DT are the diagonal degree matrices of Ã and I + S̃ respectively. This
formulation extends traditional graph convolution by normalizing the spectrum
of the graph filter, ensuring that the filter acts as a low-pass filter in the fre-
quency range [0, 1]. In the following, for convenience, denote the matrix TpXℓℓm

by Yp.

Optimization Problem. The objective function takes the following form:

min
G,F,W1,W2

∥Yp −YpW1W2∥2 + λ ∥YpW1 −GF∥2 (7)

subject to: G ∈ {0, 1}n×k, G1k = 1n

The two terms in (7) establish a link between the two tasks, with the first term
acting as a linear autoencoder and the second term facilitating clustering in the
embedding space. The parameter λ controls the importance of the second term
in terms of regularizing the embedding. However, we take λ = 1 as in [11]; this
assumption can be investigated in the future even it appears effective in our
experiments.

Graph Convolutional Clustering. To further enhance the interaction be-
tween embedding and clustering, we assume W = W1 = W⊤

2 and impose an
orthogonality constraint W⊤W = Ik, leading to the modified problem:

min
G,F,W

∥∥Yp −YpWW⊤∥∥2 + ∥YpW −GF∥2 (8)

subject to: G ∈ {0, 1}n×k, G1k = 1n, W⊤W = Ik

This formulation encourages a more direct interaction between the embedding
and clustering tasks. Following [2, 3, 17, 11], we can show that solving this prob-
lem is equivalent to solving (subject to the same constraints):

min
G,F,W

∥∥Yp −GFW⊤∥∥2 . (9)
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By decomposing the reconstruction and regularization terms, it can be shown
that both formulations lead to the same solution, allowing efficient joint learning
of embeddings and clusters. The solution of the classical problem (9) is accom-
plished by alternating updates of G, F and W; all steps are detailed in [11]
where W is initialized using a randomized PCA on Yp and G is initialized
using Kmeans on YpW.

Algorithm 1 GCC∗: GCC incorporating named entities and LLM
Require: Dataset D, fℓℓm, similarity threshold τ , number of clusters k
Ensure: Clustered documents
⇝ Extract named entities Ed for each d ∈ D
⇝ Train Word2Vec on D
⇝ Initialize list L to store document pairs
for each pair of docs (di, dj) do
⇝ Compute similarity between Edi and Edj

if similarity > τ then
⇝ Append (di, dj) to L

end if
end for
for each pair (di, dj) in L do

if di and dj share at least 3 common named entities then
⇝ Add edge between di and dj

end if
end for
⇝ Construct graph Aner with docs as nodes and similarities as edges
⇝ Generate embeddings Xℓℓm for each doc using fℓℓm
⇝ Apply GCC [11] on (Aner,Xℓℓm) and obtain optimal G, F and W
⇝ Deduce the clusters of documents from G.

4 Experiments

4.1 Datasets

We assess our model using different configurations: Xco (Bag-of-Words), Xℓℓm

(LLM embeddings), Aknn (KNN-based graph), and Aner (NER-based graph).
We test our model using four datasets that vary in size and number of clusters.
The characteristics of these datasets are shown in Table 1.

Table 1. Description of datasets. The balance represents the ratio between the smallest
and largest class. #Tokens indicates the mean token count.

Datasets Characteristics
#Documents #Clusters Balance #Tokens Domaine Language

BBC News3 2,225 5 0.75 390 News articles En
MLSUM [30] 407,835 612 2.2e-05 543 News articles Fr
Arxiv-10 [10] 100,000 10 1 155 Scientific papers En

PubMed 19,716 3 0.52 224 Pubmed abstracts En
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4.2 Clustering algorithms

In this section, we evaluate various clustering algorithms using different input
types: the document feature matrix X., the adjacency matrix A., or a combina-
tion of both (X.,A.). These matrices capture different aspects of the data:

– Kmeans [19], Deep Kmeans [9] and DCN [41] : Use Xco or Xℓℓm.
– Spectral clustering: Uses only Aner or Aknn for clustering.
– PC Kmeans: Uses (Xℓℓm,Aner) or (Xℓℓm,Aknn). We retain the top 500 strongest

links from the named entity graph A∗ as must-link constraints. Increasing
this number reduced model performance, so we enforced the 500-link limit.

– GCC(.,.): applied to (Aknn,Xco), (Aner,Xco) and (Aner,Xℓℓm) respectively.
– GCC∗: applied to (Aner,Xℓℓm).

4.3 Experimental setting

Using labeled datasets, we evaluate clustering algorithms performance with ex-
ternal indices: Accuracy (ACC), Normalized Mutual Information (NMI) [33], and
Adjusted Rand Index (ARI) [32]. ACC measures how well each cluster matches
the ground-truth class labels, while NMI, ranging from 0 to 1, evaluates the mu-
tual dependence between the predicted clusters and true labels. Finally, the ARI
considers the similarity between predicted clusters and ground truth partitions,
with a range from -0.5 to 1, where higher values indicate better agreement. Intu-
itively, NMI quantifies how much the estimated clustering is informative about
the true clustering, while the ARI measures the degree of agreement between
the estimated clustering and the reference partition. Both NMI and ARI are
equal to 1 if the resulting clustering partition is identical to the ground truth.
Contrary to ACC, it is important to note that NMI and ARI are more reliable
as external indices because they are less sensitive to disproportionate classes.

For clustering algorithms, Kmeans is initialized using K-means++ [4], which
selects starting centroids by sampling based on their contribution to total inertia.
We limit the iterations to 300 and run 10 initial setups to enhance clustering
stability. For Deep Kmeans and DCN, we use the default settings to maintain
consistency across experiments.

We remove stopwords and limit features to 2000 for co-occurrence matri-
ces. LLM embeddings were generated using OpenAI’s text-embedding-3-small
model (1536 dimensions, $0.02 per 1M tokens). Documents exceeding 8,191 to-
kens were excluded to fit model limits. Due to computational constraints, we
randomly sample 10,000 Arxiv documents and 16,321 MLSUM documents from
five categories: Sport, Health, Politics, Economy, and Climate.

For the NER, we use camembert-ner4 model for MLSUM since the dataset is
in French, and DeBERTa [34] for BBC News. For other datasets, we used GPT-
4o5 with prompts to extract named entities in JSON format, where keys are
entity types and values are lists of entities. For the named entity graph, we only
4 https://huggingface.co/Jean-Baptiste/camembert-ner
5 https://platform.openai.com/docs/models/gpt-4o
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kept links where τ was greater than 0.9 between each pair of named entities of
the same type. A link between two documents was considered only if there were
at least three links between their named entities. Word2Vec was trained using
CBOW with num_features = 500, min_word_count = 10, context window size
of 5, and 20 epochs. Composite named entities were merged to be treated as a
single token by Word2Vec.

4.4 Assessing the number of clusters k and the power p

Optimizing the propagation parameter p and the number of clusters k is essential
for the performance of our method. The parameter p controls the neighborhood
information captured by the GCN and affects the smoothness of node embed-
dings. An appropriate p aggregates enough information without over-smoothing.
Similarly, choosing the right number of clusters k ensures proper grouping of
documents, avoiding over- or under-segmentation.

Number of clusters k. Since our framework is unsupervised, we aim to assess
whether we could accurately detect the true number of clusters. Traditional inter-
nal criteria such as silhouette score [26], Davies-Bouldin index [7], and Calinski-
Harabasz index [5] did not yield satisfactory results. Most of these metrics tend
to favor the minimum number of clusters specified in the grid search. To ad-
dress this limitation, we applied an alternative approach by running GCC∗ with
a large number of clusters - 250 for BBC News and 500 for other datasets. This
over-segmentation allows us to capture local patterns, where each cluster cen-
troid represents a dense region in the feature space. We then applied hierarchical
clustering using Ward’s method [38] on the centroids. This method progressively
merges clusters, and by observing the dendrogram (Figure 3), we selected the
appropriate number of clusters. For most datasets, the true number of clusters
was easily identified. For the arXiv dataset, several partitions can be considered,
with 3, 4, or 10 clusters. To remain consistent with the benchmarks and our
evaluation study of GCC∗, we opted for 10 clusters.

Fig. 3. Comparison of dendrograms for different datasets.
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Power p. Once the number of classes has been set, our objective is to estimate p.
We tested a range of values for p between 1 and 50 and selected the optimal value
by minimizing the square root of the cluster loss. This ensures that the chosen
p captures sufficient neighborhood information while avoiding oversmoothing of
the graph signal. We observed that a value of p = 2 or p = 3 is the value retained
for the 4 datasets; the difference between these two values is not significant.

4.5 Results

Quality of clustering. In Table 2 we compare the performance of different clus-
tering algorithms on four datasets: BBC News, MLSUM, PubMed, and Arxiv-
10. We observe that the algorithms using co-occurrence matrices perform sig-
nificantly worse compared to those using LLM embeddings. For example, on
the BBC News dataset, Deep Kmeans with Xco achieves the highest accuracy
(66.45%), but its performance on larger datasets such as MLSUM and PubMed
drops significantly (NMI < 8% and ARI < 2%). This reflects the inability of co-
occurrence-based representations to capture deeper semantic relationships. On
the other hand, the methods incorporating LLM embeddings show a substantial
improvement in clustering performance. For example, on the BBC News dataset,
Kmeans achieves 93.01% ACC and 91.01 ARI, while DCN reaches 86.76% ACC.
This improvement is consistent across datasets, highlighting the advantage of
using rich contextual embeddings.

The proposed approach (GCC∗) on (Aner,Xℓℓm), exceeds all other methods,
including KNN graph-based clustering. In the BBC News dataset, GCC∗ achieves
a remarkable NMI of 95.12%, demonstrating that the incorporation of the sim-
ilarities of the named entities into the graph structure significantly improves
clustering performance. A similar pattern is seen in other datasets, such as ML-
SUM, where GCC∗ achieves an NMI of 72.42%. The results of spectral clustering
using different adjacency matrices A show that simply using Aknn or Aner is
not sufficient to achieve good clustering performance. The main challenge lies in
the structure of these adjacency matrices, which fail to capture meaningful rela-
tionships for clustering in certain scenarios. Indeed, the use of Aknn often results

Table 2. Clustering performance on four datasets averaged over 20 runs

Method Input BBC MLSUM PubMed ArXiv-10
ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

Kmeans Xco 43.91 27.16 13.47 24.86 0.60 0.40 44.16 14.12 8.77 37.54 29.80 12.30
DKmeans Xco 66.45 56.11 47.73 25.63 0.61 0.42 44.83 7.86 1.89 41.23 31.19 16.67
DCN Xco 58.58 40.49 25.95 26.87 2.01 0.99 45.69 15.41 8.45 35.85 27.56 12.63
Kmeans Xℓℓm 93.01 87.34 91.01 75.62 66.28 62.60 63.25 27.02 23.58 69.08 60.11 51.74
DKmeans Xℓℓm 85.51 75.10 73.62 75.01 58.25 57.41 55.54 17.85 13.90 69.26 59.62 51.71
DCN Xℓℓm 86.76 72.78 71.85 70.14 52.99 49.04 58.71 25.44 18.32 66.45 56.11 47.73
Spectral Aknn,ℓℓm 34.11 19.32 3.82 31.90 0.9 0.10 40.01 0.08 0.06 14.86 5.32 0.6
Spectral Aner,ℓℓm 35.01 20.01 7.87 31.33 1.23 0.20 39.93 0.20 0.0 20.01 6.31 2.12
PCKmeans Aknn,Xℓℓm 70.85 73.00 63.89 70.01 49.00 45.80 60.01 24.24 22.87 68.12 60.90 52.14
PCKmeans Aner,Xℓℓm 70.88 73.06 64.01 70.71 49.87 45.88 60.21 24.89 23.06 69.01 61.90 52.34
GCC(knn,co) Aknn,Xco 88.76 76.26 75.97 25.20 0.60 0.71 63.02 25.20 24.78 60.12 47.75 39.08
GCC(ner,co) Aner,Xco 95.43 86.18 89.27 27.69 2.91 3.80 63.00 25.23 24.80 60.01 49.57 40.01
GCC(knn,ℓℓm) Aknn,Xℓℓm 95.82 87.41 90.12 76.56 67.12 64.99 65.00 28.34 25.00 70.33 60.70 52.01
GCC∗ Aner,Xℓℓm 97.61 95.12 96.66 88.32 72.42 74.58 65.10 29.04 25.00 73.2 63.98 55.8
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in too many links between nodes, leading to a densely connected graph. This
excessive connectivity diminishes the quality of the clusters as many unrelated
points are grouped together. For example, on the BBC dataset, spectral clus-
tering with Aknn,ℓℓm achieves an ARI of only 3.82%, highlighting the negative
impact of overly dense connections. However, although Aner captures entity-level
information, it tends to produce a sparse graph, especially in large and diverse
documents. This sparseness leads to weakly connected clusters, as seen in the
PubMed dataset, where spectral clustering with Aner yields an NMI close to
zero. The poor performance of spectral clustering emphasizes the need for more
balanced graph structures that reflect both semantic and entity-level similarities.

Quality of embedding. We evaluate the quality of the embedding through
the visualization of the truth classes using UMAP (default parameters) based
on Xℓℓm ∈ Rn×d and YpW ∈ Rn×k which is derived from GCC∗. It is remarkable
to observe the quality of class separability that we illustrate in Figure 4.

Fig. 4. UMAP projection of the cluster embeddings obtained with GPT (Xℓℓm) com-
pared to those obtained on YpW derived from GCC∗.

5 CONCLUSION

This study introduces an innovative method for document clustering that in-
tegrates NER and LLM embeddings in the attributed graphs framework. By
building a document graph using entity similarities and incorporating contex-
tual embeddings, our approach outperformed traditional clustering techniques.
The application of GCN facilitates the simultaneous optimization of embeddings
and clustering, leading to more effective grouping of semantically similar docu-
ments.

Future work could focus on exploring whether specific types of named en-
tities (e.g., organizations, locations, or events) are more relevant than others
for certain clustering tasks. This direction could provide more refined document
groupings and reveal the underlying thematic relationships driven by particular
entity types.
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