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Abstract—The DEF-ATC (Differential Error Feedback – Adapt
Then Combine) approach is a novel strategy to address decentral-
ized learning and optimization problems under communication
constraints. The strategy blends differential quantization and error
feedback to mitigate the negative impact of exchanging com-
pressed updates between neighboring agents. While differential
quantization leverages correlations between subsequent iterates,
error feedback (which consists of incorporating the compression
error into subsequent steps) allows to compensate for the bias
caused by compression. In this work, we examine the steady-
state mean-square-error performance of the DEF-ATC approach
in order to uncover the influence of several factors, including
the gradient noise, the network topology, the learning step-size,
and the compression schemes, on the network performance. The
theoretical findings indicate that, under some general conditions
on the compression error, and in the small step-size regime, it
is possible to achieve performance levels comparable to those
obtained without compression. This implies that, despite using
compression techniques to reduce communication overheads, the
performance of the decentralized compressed approach can still
match that of its uncompressed counterpart, which in turn can
match that of centralized learning where all data is aggregated
and processed in a centralized manner.

Index Terms—Error feedback, differential quantization,
communication-efficient learning, decentralized learning, steady-
state performance.

I. INTRODUCTION

In recent years, there has been a growing interest in dis-
tributed machine learning frameworks across both academic
research and industrial applications. This interest is closely
related to their potential to address a multitude of challenges
encountered in various domains, including handling large-scale
data collected in a distributed and streaming manner, privacy
concerns, and the need for collaborative learning in various
fields ranging from healthcare and finance to smart cities and
autonomous systems. One approach to distributed learning is
federated learning where the model parameters are learned
locally from local datasets distributed across various devices
or nodes (such as smartphones), and then these parameters are
transmitted to a central server for aggregation [1]–[3]. On the
other hand, in decentralized learning frameworks, participat-
ing clients communicate directly with their neighboring nodes
in an arbitrary topology without relying on a central server.
This decentralized approach offers advantages in scenarios
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where communication with a server becomes a bottleneck [4]–
[8].

In traditional decentralized implementations, agents need to
exchange parameter vectors at every iteration of the learning
algorithm, leading to high communication costs. To reduce
these costs, a variety of methods have been proposed includ-
ing: i) skipping communication rounds while performing a
certain number of local updates in between [2], [9], [10], and
ii) compressing information by employing either quantization
(e.g., dithered quantizers [11]), sparsification (e.g., rand-k
sparsifiers [7]), or both (e.g., top-c sparsifiers combined with
dithering [12]). In the latter case, compression operators and
learning algorithms are jointly designed to prevent the com-
pression error from accumulating during the learning process
and from significantly deteriorating the performance of the
decentralized approach [7], [8], [13]–[18].

In this work, we examine the steady-state mean-square-
error performance of the DEF-ATC (Differential Error Feed-
back – Adapt Then Combine) diffusion approach, which is
a communication-efficient decentralized approach that was
recently proposed in [17]. The approach is characterized by
the combination of two different concepts, namely, differential
quantization and error feedback, in order to mitigate the
negative impact of compressed communications, instead of
using either of these concepts in isolation as in [8], [10],
[14]–[16], [19]. Differential quantization, which consists of
communicating compressed versions of the differences be-
tween current estimates and their predictions based on previous
iterations, allows to leverage correlations between subsequent
iterates. On the other hand, error feedback, which consists of
locally storing the compression error and incorporating it back
into the next iteration, allows to compensate for the bias caused
by compression. While the work [17] establishes the mean-
square-error stability of the DEF-ATC and shows that, for suf-
ficiently small step-sizes µ, and under some general conditions
on the compression error, it is possible to keep the estimation
errors small (on the order of µ), the current work examines its
steady-state performance. The aim here is to understand how
the main factors, such as gradient noise, network topology,
learning step-size, compression schemes, or other relevant
parameters, affect the network steady-state performance. The
analysis shows that, in the small step-size regime, the iterates
generated by the DEF-ATC achieve the same steady-state per-
formance as the decentralized baseline full-precision approach,



i.e., the diffusion ATC (Adapt-Then-Combine) approach [4],
[5], where no communication compression is performed. Now,
since the uncompressed decentralized ATC approach achieves
the same network steady-state mean-square-error performance
as the centralized solution (where all data is aggregated and
processed in a centralized manner) [5, Chap. 12], this implies
that the DEF-ATC approach matches the performance of
centralized learning in the small step-size regime. Simulations
illustrate the theoretical findings and the effectiveness of
DEF-ATC, revealing that, in the small step-size regime, it is
possible to achieve the same performance as the uncompressed
centralized system without relying on a central processor and
by using a finite number of bits.

II. PROBLEM SETUP AND ALGORITHMIC FRAMEWORK

We consider the same decentralized optimization problem
and algorithmic framework as in [17].

Decentralized optimization: We consider single-task or
consensus-based optimization problems of the form:

wo = argmin
w2RM

Jglob(w), Jglob(w) , 1

K

KX

k=1

Jk(w), (1)

where K is the number of agents in the network, w 2 RM

is the parameter of interest, and Jk(w) : RM ! R is
a differentiable convex cost associated with agent k. It is
expressed as the expectation of some loss function Lk(·)
and written as Jk(w) = ELk(w;yk), where yk denotes
the random data (throughout the paper, random quantities
are denoted in boldface). The expectation is computed over
the data distribution. In the stochastic setting, when the data
distribution is unknown, the risks Jk(·) and their gradients
rwJk(·) are unknown. In this case, instead of using the true
gradient, it is common to use approximate gradient vectors of
the form \rwJk(w) = rwLk(w;yk,i) where yk,i represents
the data observed at iteration i [5], [20].

In order to solve problem (1), we employ the DEF-ATC
approach proposed in [17] and listed in Algorithm 1. At
each iteration i, each agent k in the network performs three
steps. In the first step, which corresponds to the adaptation
step, agent k updates its estimate wk,i�1 to an intermediate
estimate  k,i using its approximation for its own gradient
(µ > 0 is a small step-size parameter). Note that replacing
the step-size µ by µ/⇣ is necessary to compensate for the
impact of the damping coefficient ⇣ 2 (0, 1] on the algorithm’s
learning rate. The coefficient is used in the compression
step (5) to control the network stability in scenarios where
compression leads to network instability. The second step
is the compression step where agent k first computes a
compressed message �k,i that encodes the error-compensated
difference  k,i � �k,i�1 + zk,i�1 (using a randomized com-
pression operator Ck(·) satisfying Property 1), and broadcasts
it to its neighbors. Note that Nk denotes the set of nodes
connected to agent k by a communication link (including
node k itself). Then, agent k updates the compression error
vector zk,i according to (4) and produces, for each neighbor `,

Algorithm 1: DEF-ATC (differential error feedback -
adapt then combine)

Input: initializations wk,0 = 0, �k,0 = 0, and
zk,0 = 0, step-size µ, mixing parameter �,
damping coefficient ⇣, combination matrix A.

for i = 1, 2, . . . , on the k-th node do
Adapt: update wk,i�1 according to:

 k,i = wk,i�1 �
µ

⇣
\rwJk(wk,i�1) (3)

Compress and broadcast:
• generate �k,i = Ck( k,i � �k,i�1 + zk,i�1) and

broadcast it to neighbors Nk

• update the compression error:

zk,i = ( k,i � �k,i�1 + zk,i�1)� �k,i (4)

• upon receiving the compressed vectors �`,i from
neighbors ` 2 Nk, reconstruct according to:

�`,i = �`,i�1 + ⇣�`,i, ` 2 Nk (5)

Combine: Update local model according to:

wk,i = (1� �)�k,i + �
X

`2Nk

ak`�`,i (6)

an estimate �`,i by using the received vector �`,i according
to (5). Observe that implementing the compression step in
Algorithm 1 requires storing the previous compression error
zk,i�1 and the previous estimates {�`,i�1}`2Nk by agent k.
The compression step is followed by the combination step (6)
where agent k combines the reconstructed vectors {�`,i}`2Nk

using a set of combination coefficients {ak`} and a mixing
parameter � 2 (0, 1]. The resulting vector wk,i is the estimate
of wo in (1) at agent k and iteration i. As for ⇣, the parameter �
in (6) can also be used to control the network stability.
The combination coefficients {ak`} are chosen such that, by
collecting them in a matrix A = [ak`], the (k, `)-th entry of the
matrix is zero if nodes k and ` are not neighbors, i.e., ak` = 0
if ` /2 Nk, and A satisfies the following conditions [21]:

A1K = 1K , 1>
KA = 1>

K , ⇢

✓
A� 1

K
1K1

>
K

◆
< 1, (2)

where 1K represents the K ⇥ 1 vector of all 1’s, and ⇢(·)
denotes the spectral radius of its matrix argument.

Observe that, in the absence of compression (i.e., when the
operator Ck(·) is replaced by the identity operator and the
stability parameters ⇣ and � in (5) and (6) are set to 1), we
obtain the diffusion ATC-type approach for solving (1) [4],
[5]. Therefore, Algorithm 1 can be seen as a communication-
efficient variant of the Adapt-Then-Combine (ATC) approach.
To mitigate the negative impact of compression, the approach
uses differential quantization and error-feedback.

Compression operators: Compression is performed through
the application of a mapping C : RM ! RM , where C(x) rep-



resents a compressed version (e.g., a finite-bit representation
or a sparsified version) of the original message x. In this study,
we assume that each agent k employs randomized compression
operators satisfying the following general property.

Property 1. (Unbiasedness and bounded variance). The
randomized compression operator Ck(·) at agent k satisfies
the following conditions:

E[x� Ck(x)] = 0, (7)
Ekx� Ck(x)k2  �2

c,kkxk2 + �2
c,k, (8)

for some �2
c,k � 0 and �2

c,k � 0, and where the expectation is
evaluated with respect to the randomness of Ck(·).

Property 1 is satisfied by many compression operators of
interest in decentralized learning such as rand-c, gradient spar-
sifier, QSGD, probabilistic ANQ, and probabilistic uniform
quantizer – see Table 1 in [16] for details.

III. MEAN-SQUARE-ERROR PERFORMANCE

A. Mean-square-error stability
The work [17] examined the steady-state average squared

distance between the random estimates wk,i generated by
Algorithm 1 and wo, namely, lim supi!1 Ekwo � wk,ik2,
under the following assumptions on the risks {Jk(·)} and on
the gradient noise processes {sk,i(·)} defined as [5]:

sk,i(w) , rwJk(w)� \rwJk(w). (9)

Assumption 1. The individual costs Jk(w) are assumed to be
twice differentiable and convex with at least one of them being
strongly convex. It follows that Jglob(w) is twice-differentiable
and strongly convex. It is further assumed to satisfy:

0 < ⌫IM  r2
wJ

glob(w)  �IM , (10)

for some positive parameters ⌫  �. For two matrices X and
Y , the notation X � Y means that X � Y is positive semi-
definite.

Assumption 2. The gradient noise process defined in (9)
satisfies for k = 1, . . . ,K:

E[sk,i(wk,i�1)|{�`,i�1}K`=1] = 0, (11)
E[ksk,i(wk,i�1)k2|{�`,i�1}K`=1]  �2

s,kkewk,i�1k2 + �2
s,k,
(12)

for some �2
s,k � 0, �2

s,k � 0, and where ewk,i = wo�wk,i.

Before providing a brief description of the theoretical find-
ings in [17], it is worth mentioning that the mean-square-error
stability and performance analyses exploit the eigenstructure
of the combination matrix A satisfying (2). It can be shown
that this matrix has a Jordan decomposition of the form
A = V✏JV �1

✏ , where [5]:

V✏ = [↵1K |VR], J =


1 0
0 J✏

�
, V �1

✏ =


↵1>

K

V >
L

�
, (13)

with ↵ = 1/
p
K and J✏ a Jordan matrix with eigenvalues

(which may be complex and have magnitude less than one)

on the diagonal and ✏ > 0 on the super-diagonal [5]. The
parameter ✏ is chosen small enough to ensure ⇢(J✏) + ✏ < 1.

Under Assumptions 1 and 2, a network of K agents running
the compressed decentralized Algorithm 1 with:

1) combination matrix A satisfying (2),
2) compression operators {Ck(·)} satisfying Property 1 with

the absolute compression noise terms �2
c,k / µ2,

3) in the presence of the relative quantization noise (i.e.,
�2
c,k 6= 0): stability parameters ⇣ 2 (0, 1] and � 2 (0, 1]

satisfying the two following conditions:

kJ 00
✏ k+ 4v21v

2
2�

2
c,max⇣

2kI � J 0
✏k2 < 1, (14)

2⇣2kI � J 0
✏k2

1� kJ 00
✏ k

+ 2�2
c,max⇣

2v21v
2
2

�
1 + k2I � J 0

✏k2
�
< 1,

(15)
where:

J 0
✏ , [(1� �)IK�1 + �J✏]⌦ IM , (16)

J 00
✏ , [(1� �⇣)IK�1 + �⇣J✏]⌦ IM , (17)

v1 , kV�1
✏ k, v2 , kV✏k, �2

c,max , max1kK{�2
c,k},

�11 is some positive constant that depends on ⌫, k ·k and
⌦ represent the 2-induced matrix norm and the Kronecker
product operation, respectively.

4) in the absence of the relative quantization noise: stability
parameters ⇣ and � set to 1,

is mean-square-error stable for sufficiently small step-size µ,
namely, it holds that [17, Theorem 1]:

lim sup
i!1

Ekwo �wk,ik2 = O(µ), k = 1, . . . ,K, (18)

for small µ. This result shows that, despite the gradient
and compression noise processes, the error variance of the
communication-efficient decentralized Algorithm 1 relative to
the solution wo enters a bounded region whose size is on the
order of µ. In the current work, we shall assess the size of
this mean-square-error by deriving a closed-form expression
for the network mean-square-deviation (MSD) defined by [5]:

MSD , µ lim
µ!0

 
lim sup
i!1

1

µ

 
1

K

KX

k=1

Ekwo �wk,ik2
!!

.

(19)
That is, we shall assess the size of the constant multiplying
µ in the O(µ) term. This closed form expression will reveal
how the step-size µ, the data characteristics (captured by the
second-order properties of the costs and second order moments
of the gradient noises), the compression error (captured by the
parameters �2

c,k and �2
c,k), and the network topology (captured

by the combination coefficients ak`) influence the network
mean-square-error performance. Furthermore, by analyzing
this expression, we will be able to compare the performance
of different approaches, such as the DEF-ATC, the decentral-
ized uncompressed ATC, and the centralized uncompressed
approach given by [5, Chap. 5]:



wcent
i = wcent

i�1 �
µ

K

KX

k=1

\rwJk(w
cent
i�1), (20)

where wcent
i is the estimate of wo at iteration i and where the

superscript “cent” is used to indicate that the iterate is for the
centralized solution. Observe that each agent at each iteration
in (20) needs to send its data (or its gradient approximation)
to a fusion center, which performs the aggreagation in (20)
and then sends the resulting estimate wcent

i back to the agents.

B. Mean-square-error performance
Due to space limitations, we only list the main results of

the analysis without showing the proof details. The arguments
are along the lines developed in [5, Chaps. 9–11], [22] for
uncompressed diffusion strategies with proper adjustments to
handle communication-efficient learning. We focus on the
steady-state mean-square-error performance of Algorithm 1
under Assumptions 1 and 2 and the following two smoothness
assumptions on the risks {Jk(·)} and the gradient noise
processes {sk,i(·)}.

Assumption 3. It is assumed that each Jk(w) satisfies the
following smoothness condition:

krwJk(w
o +�w)�rwJk(w

o)k  k�wk, (21)

for small perturbations k�wk and  � 0.

We refer to the individual gradient noise process in (9) and
denote its conditional covariance matrix by:

Rs,k,i(wk,i�1) , E
⇥
sk,i(wk,i�1)s

>
k,i(wk,i�1)|{�`,i�1}K`=1

⇤
.

(22)
We assume that, in the limit, the following moment matrices
tend to constant values when evaluated at wo:

Rs,k , lim
i!1

Rs,k,i(w
o). (23)

Assumption 4. It is assumed that each Rs,k,i(w) satisfies the
following smoothness condition close to the limit point wo:

kRs,k,i(w
o +�w)�Rs,k,i(w

o)k  sk�wk✓, (24)

for small perturbations k�wk, and for some constant s � 0
and exponent 0 < ✓  4.

Theorem 1. (Mean-square-error performance). Consider a
network of K agents running the compressed decentralized
DEF-ATC Algorithm 1 with a combination matrix A satisfy-
ing (2). Assume that the individual costs, Jk(w), satisfy the
conditions in Assumptions 1 and 3. Assume further that the
gradient noise processes satisfy Assumption 4 and Assump-
tion 2 with the fourth-order moment condition:

E[ksk,i(wk,i�1)k4|{�`,i�1}K`=1]  �4
s4,kkewk,i�1k4 + �4

s4,k,
(25)

where �4
s4,k � 0 and �4

s4,k � 0. Assume that the compression
operators {Ck(·)} satisfy Property 1 with the fourth-order
condition:

Ekx� Ck(x)k4  �4
c4,kkxk4 + �4

c4,k, (26)

where �4
c4,k � 0 and �4

c4,k / µ4 � 0. In the absence of the
relative quantization noise term (i.e., �2

c,k = 0, �4
c4,k = 0, 8k),

let the stability parameters be such that � = ⇣ = 1. In the
presence of the relative quantization noise, let ⇣ 2 (0, 1] and
� 2 (0, 1] be such that the two conditions in (14) and (15),
and the following two conditions are satisfied:

kJ 00
✏ k+ 128v41v

4
2�

4
c4,max⇣

4kI � J 0
✏k4 < 1, (27)

8⇣4kI � J 0
✏k4

(1� kJ 00
✏ k)3

+ 16�4
c4,maxv

4
1v

4
2⇣

4
�
1 + k2I � J 0

✏k4
�
< 1,

(28)
where �4

c4,max , max1kK{�4
c4,k}. Then, it holds that:

MSD (19)
=

µ

2K
Tr

0

@
 

KX

k=1

Ho
k

!�1 KX

k=1

Rs,k

!1

A , (29)

where each Ho
k is given by the value of the Hessian matrix

at the minimizer, namely, Ho
k = r2

wJk(w
o), and where Tr(·)

denotes the trace operator.

Proof. Due to space limitations, the proof is omitted.

While expressions (14), (15), (27), and (28) reveal the
influence of the relative quantization noise term (captured
by {�2

c,max,�
4
c4,max}) on the network stability, and how this

influence can be mitigated by properly choosing the damping
coefficient ⇣ and the mixing parameter �, expression (29)
reveals explicitly the influence of the step-size µ, the data char-
acteristics (through the Hessian matrices Ho

k ), and the gradient
noise (through the covariance matrices Rs,k) on the network
MSD performance. Note first that the performance of the
uncompressed diffusion ATC approach (with a combination
matrix satisfying (2)) is also equal to (29) [5, Sec. 12.1]. This
implies that, despite using compression techniques to reduce
the communication overhead, the performance of the DEF-
ATC matches that of its uncompressed counterpart. From [5,
Sec. 12.1], we also know that the performance of the central-
ized implementation (20) is equal to (29). This implies that,
for sufficiently small step-sizes, the decentralized compressed
DEF-ATC algorithm can achieve the same performance as the
uncompressed centralized solution (20) without relying on a
fusion center, and by reducing considerably the communica-
tion costs compared to the uncompressed decentralized variant.

IV. SIMULATION RESULTS

To illustrate the theoretical findings, we adopt in our simula-
tions the same experimental setup as in [17]. In particular, we
consider the same 50-node mean-square-error (MSE) network
as in [17, Fig. 1]. Each agent is subjected to streaming data
{dk(i),uk,i} related according to a linear regression model of
the form dk(i) = u>

k,iw
o
k+vk(i) for some 5⇥1 vector wo

k with
vk(i) denoting a zero-mean measurement noise. The cost over
the MSE network is defined by Jk(w) =

1
2E|dk(i)�u>

k,iw|2.
The processes {uk,i,vk(i)}, the model parameters {wo

k}, and
the matrix A satisfying the conditions in (2) are generated
using similar settings as in [17]. We implement two unbi-
ased compression schemes: i) the QSGD scheme [3], which



Fig. 1. (Left) Performance of DEF-ATC for two different values of µ
(µ0 = 0.003) when QSGD and variable-rate probabilistic uniform (�2

c,k =

µ2) compression operators are used. Red and black curves correspond to
the standard diffusion ATC approach and the centralized solution (20),
respectively. Dashed curves correspond to the analytical expression (29).
(Right) Evolution of the average number of bits per node, per component,
when the variable-rate probabilistic uniform quantizer is used.

transmits the norm with high precision and randomly rounds
the components to s-bit representations [3] (in this case,
�2
c,k = min(Ms2 ,

p
M
s ), �2

c,k = 0 [16]); and ii) the variable-
rate probabilistic uniform quantizer [15], which incorporates
dithering into the uniform quantization scheme (in this case,
�2
c,k = 0, �2

c,k = M�2

4 , where � is the quantization step).
For the variable-rate probabilistic uniform quantizer, we set
the stability parameters � = ⇣ = 1 and the quantization
step � such that �2

c,k = µ2. For the QSGD compression
operator, we set s = 2, ⇣ = 1, and � = 0.7. We report
the network MSD learning curves 1

K

PK
k=1 Ekwo�wk,ik2 in

Fig. 1 (left) for two different values of the step-size. Results
are averaged over 100 Monte-Carlo runs. We observe that the
theoretical model (29) matches well the actual performance
of the network running the decentralized compressed DEF-
ATC approach. Furthermore, we report in Fig. 1 (left) the per-
formance of the uncompressed ATC approach (which can be
obtained from Algorithm 1 by setting ⇣ = � = 1 and replacing
the compression operator by identity) and the performance
of the centralized solution (20). As predicted by Theorem 1,
in the slow step-size regime, the compressed decentralized
solution is able to attain the same performance (29) as the
centralized one.

To illustrate the efficiency of the DEF-ATC in terms of
communication savings, we report in Fig. 1 (right) the average
number of bits per node, per component, when the variable-
rate probabilistic uniform quantizer is employed. As it can be
observed, for the two different values of µ, we approximately
obtain the same finite average number of bits in steady state
(approximately 4.2 bits/component/iteration are required). We
recall from [17] that the QSGD scheme with s = 2 would
require 8.4 bits/node/component/iteration (assuming that the
number of bits required to encode a scalar with high precision
is 32), which is almost two times higher that the one obtained
when the variable-rate probabilistic uniform quantizer is used.
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