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Abstract 17 

Background: Although agricultural health has gained importance, to date, much of the existing research 18 

relies on traditional epidemiological approaches that often face limitations related to sample size, 19 

geographic scope, temporal coverage, and the range of health events examined. To address these 20 

challenges, a complementary approach involves leveraging and reusing data beyond its original purpose. 21 

Administrative health databases (AHDs) are increasingly reused in population-based research and 22 

digital public health, especially for populations like farmers, who face distinct environmental risks. 23 

Objective: We aimed to explore the reuse of AHDs in addressing health issues within farming 24 

populations by summarizing the current landscape of AHD-based research and identifying key areas of 25 

interest, research gaps, and unmet needs. 26 

Methods: We conducted a scoping review and bibliometric analysis using PubMed and Web of Science. 27 

Building upon previous reviews of AHD-based public health research, we conducted a comprehensive 28 

literature search using 72 terms related to farming population and AHDs. To identify research hotspots, 29 

trends, and gaps, we used keyword frequency, co-occurrence, and thematic mapping. We also explored 30 

the bibliometric profile of the farming exposome by mapping keyword co-occurrences between 31 

environmental factors and health outcomes. 32 

Results: Between 1975 and April 2024, 296 publications across 118 journals from 34 countries were 33 

identified, predominantly from high-income countries. Nearly one-third of these publications were 34 

associated with well-established cohorts such as AGRICAN and AHS. The most frequently used AHDs 35 

included disease registers (158/296, 53.4%), electronic health/medical records (124/296, 41.9%), 36 

insurance claims (106/296, 35.8%), population registers (95/296, 32.1%), and hospital discharge 37 

(41/296, 13.9%). Most studies included only adult participants. Fifty studies involved over 1 million 38 

participants. Although a broad range of exposure proxies were used, most studies relied on broad 39 

proxies, which failed to capture the specifics of farming tasks. Research on the farming exposome 40 

remains underexplored, with a predominant focus on the specific external exposome, in particular 41 

pesticide exposure. Furthermore, a limited range of health events have been examined, primarily cancer, 42 

mortality, and injuries. 43 



 

 

3 
 

Conclusions: The increasing use of AHDs holds major potential to advance public health research within 44 

farming populations. However, substantial research gaps persist, particularly in low-income regions and 45 

among underrepresented farming subgroups, such as females, children, and contingent workers. 46 

Emerging issues, including exposure to PFAS, biological agents, microbiome, microplastics, and climate 47 

change, warrant further research. Major gaps also persist in understanding various health conditions, 48 

including cardiovascular, reproductive, ocular, sleep, age-related, and autoimmune diseases. Addressing 49 

these overlooked areas is essential for a more comprehensive understanding of the health risks faced by 50 

farming communities and to guide public health policies. Within this context, promoting AHD-based 51 

research, in conjunction with other digital data sources (e.g., mHealth, social health data, wearable 52 

sensors) and artificial intelligence approaches, represents a promising avenue for future exploration. 53 

 54 

Keywords: farming population; digital public health; digital epidemiology; administrative health 55 

database; farming exposome; review; bibliometric analysis; digital data; data reuse; human health  56 
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Introduction 57 

Background 58 

Public health research seeks to identify and understand the factors that influence population health to 59 

effectively prevent diseases and promote health and well-being for all [1,2]. A broad range of 60 

environmental determinants can impact health across the lifespan. One of the core areas of public health 61 

research, known as the exposome, investigates how cumulative environmental influences contribute to 62 

disease etiology and pathogenesis. [3-18]. The exposome, which complements genomic research, refers 63 

to the comprehensive examination of all environmental exposures experienced throughout an 64 

individual's lifetime, including physical, chemical, biological, psychosocial, and behavioral factors, 65 

from conception to death [3-18]. The exposome classically includes three overlapping domains: the 66 

general external exposome (e.g., climate, built environment), the specific external exposome (e.g., 67 

chemical exposure, lifestyle, occupations), and the internal exposome (e.g., aging, oxidative stress, 68 

metabolism, gut microbiome) [8,14,16,17,19,20]. Understanding the exposome is crucial for enabling 69 

both population-wide and precision prevention [3,21-23]. However, fully describing the exposome is 70 

challenging due to the vast diversity and the temporal and spatial variability of environmental factors 71 

[3]. Public health research in this area requires data on both risk factors and adverse health outcomes to 72 

progress effectively [3,14,24,25]. 73 

The volume of data collected has grown exponentially as the world becomes increasingly reliant on 74 

technology and digitization [26,27]. Data is omnipresent in our everyday lives, leading science towards 75 

data-driven research [27,28], in particular in the health field. The digital transformation in healthcare 76 

has enabled unprecedented data availability, collection, storage, and analysis capabilities, leading to a 77 

paradigm shift in healthcare systems, with entire care pathways becoming digitized [29,30]. Health-78 

related data now represent approximately 6% of all digital data globally, a figure that continues to rise 79 

[31]. This explosion of data has transformed research, providing new opportunities, especially in public 80 

health, to enhance disease understanding and evaluate intervention effectiveness [27,28,32-35]. The 81 

integration of digital technologies and digital data in public health has led to the emergence of “digital 82 

public health”, an evolving field focused on using digital data to achieve public health goals [33,36-41]. 83 
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Public health research is moving from isolated data systems to more integrated, accessible, and reusable 84 

data resources [42]. Reusing data allows researchers to explore various health determinants—including 85 

environmental, occupational, behavioral, and organizational factors, fostering a holistic approach to 86 

disease prevention and health promotion strategies [14]. 87 

Within the digital public health framework, two main types of data are being used, namely primary and 88 

secondary data. Primary data are tailor-made, designed for a specific purpose, and often used once or 89 

repeatedly for the same goal [43-45]. Primary data are the cornerstone of traditional public health policy 90 

and decision-making. These data are derived from several types of studies [46-50], in particular 91 

observational cohorts (e.g., the Framingham Cohort study [51,52]) [46-50,53,54], case-control studies 92 

[46-50], cross-sectional surveys (e.g., the China Health and Retirement Longitudinal Study [55,56]) [46-93 

50,53], and experimental studies [46-50]. Primary data have many advantages [46-50]. They are rich, of 94 

high quality, and designed to answer specific research questions for public health and epidemiological 95 

purposes. Primary data are usually available at the individual level and are derived from studies that 96 

control for certain biases. By contrast, they are cumbersome, time-consuming, and costly to set up and 97 

maintain [53,54,57]. The representativeness of primary data is also limited in size, geographical scope, 98 

and temporal coverage and can erode over time [46-50,53]. Primary data are not free from bias, such as 99 

selection/attrition, healthy worker, recall, or prevarication bias [53,58]. 100 

Unlike traditional public health, digital public health does not rely solely on primary data but takes 101 

advantage of the myriad of existing digital data that have not been generated originally for research 102 

purposes (i.e., secondary data) to overcome some limitations intrinsic to primary data and complement 103 

them [28,43,44,53,59-68]. Indeed, some data can have an additional impact when used beyond the 104 

context for which they were originally created [68,69]. Secondary data are collected for purposes other 105 

than public health or epidemiology and include contextual data (e.g., air quality, climate data) 106 

[14,24,26,29,70-74], person-generated data (e.g., social media, crowdsourcing, mHealth) 107 

[2,24,26,31,43,61,62,73,75-86], synthetic data (e.g., digital twin) [87-91], and administrative health 108 

databases (AHDs) [26,64,68,81,92-102]. 109 

AHD is a broad term encompassing a wide range of routinely collected data on individuals’ health and 110 

sociodemographic information collected for registration, billing, record-keeping, and other 111 
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administrative purposes [26,64,81,93,95,98,100-102]. For this review, based on previous works 112 

[93,95,96,103-105], AHDs included population register, claims database, disease register, electronic 113 

health/medical record, and hospital discharge database that were collected at a local, regional, national, 114 

or international level (Table 1) [26,61,62,93,95,96,100,103-110]. AHDs offer many advantages for 115 

research. Such data is collected as part of routine administrative processes, reducing additional costs for 116 

researchers. AHDs therefore offer relatively inexpensive access to a large number of individuals that can 117 

be tracked over time for several years, guaranteeing the representativeness of the populations studied 118 

[26,54,78,93,95,104,105,111-114]. Data recorded within AHDs is structured, coded in a standardized 119 

way, and less affected by participation and recall biases [54,58,95,106,113,115]. AHDs enable the study 120 

of rare events and populations underrepresented in studies using only primary data [95,111-113]. AHDs 121 

have limitations inherent to their nature, such as the absence of some confounding factors, the limited 122 

granularity of certain information, the data complexity, as well as confidentiality issues 123 

[73,78,93,95,115-125]. 124 

 125 

Table 1. Definition and characteristics of administrative health databases included in this review 126 

 Population register Claims database Disease register 
Electronic 

health/medical record 
Hospital discharge 

database 

Definition/ 
content 

digital 
sociodemographic 
information on the 
residents of a country 

routinely collected digital 
information on individual 
data regarding 
reimbursement, records of 
health services, medical 
procedures, prescriptions, 
and medical diagnoses 

continuous and exhaustive 
digital collection of individual 
data regarding one or more 
health events in a 
geographically defined 
population 

systematized digital 
record of a patient’s 
medical information 
collected in real-time 

digital records of service 
utilization with information 
about patients, their care, 
and their stay in the 
hospital 

Source 
local or national 
authorities 

insurance programs or 
schemes, healthcare 
providers 

healthcare institutions (e.g., 
hospitals) 

hospitals, physicians, 
healthcare centers and 
institutions 

hospitals 

Population 
all individuals residing in 
a country 

all individuals covered by an 
insurance program or 
scheme 

all individuals diagnosed 
with a specific health event 
in a population at a 
geographically defined scale 

all patients using the 
healthcare system 

all patients from a hospital 

Purpose/ 
finality 

for the administrative 
purposes of 
government: to provide 
reliable information 

to store financial and 
administrative information 
for medical insurers’ and 
providers’ use 

for clinical and research 
purposes: to collect 
information about people 
diagnosed with a specific 
health event 

for clinical and billing 
purposes: to document 
patients’ clinical condition 

for billing or accounting 
purposes 

Health event none 
health events covered by 
insurance or a healthcare 
provider 

specific health events (e.g., 
cancer) 

health events requiring 
care that are reported in 
medical records 

health events from 
hospital admission 

 127 

Rationale 128 

AHDs are increasingly employed in population-based health research due to their complementarity with 129 

traditional sources of public health and epidemiological data (i.e., primary data) 130 

[42,59,64,87,93,95,96,126-128]. The reuse of AHDs—referring to their application beyond their 131 
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original or intended purpose—holds major potential to advance public health and epidemiological 132 

research, offering insights that can guide public health decision-making [42,59,64,87,93,95,96,105,126-133 

131]. Although several reviews have previously explored the general use of AHDs in research 134 

[42,95,107,129,132-135], others have focused on their application within specific countries [96,136], 135 

examined individual AHDs [108,137], or investigated their role in studying specific diseases and adverse 136 

health outcomes [44,93,104,138-142]. However, to our knowledge, no study has synthesized how AHDs 137 

are reused for epidemiological and public health research within a specific population group. 138 

To address this gap, we conducted a comprehensive scoping review and bibliometric analysis aimed at 139 

identifying how AHDs are used to address health issues in a specific population. We selected farming 140 

populations as an illustrative example because they present unique health and disease trends [143-147]. 141 

Globally, approximately 27% of the workforce is engaged in occupational farming, and this group is 142 

exposed to numerous risk factors (exposome), including pesticides, biological agents, and limited access 143 

to healthcare [148]. These exposures put them at heightened risk for a wide range of adverse health 144 

outcomes [143,145,147,149]. Although agricultural safety and health have become a major public health 145 

issue in recent decades, most research on the health of farming populations has relied on traditional 146 

epidemiological and community-based studies, which often face limitations in terms of sample size, 147 

geographic scope, temporal coverage, and the range of health events examined [145,150,151]. 148 

In this context, AHDs offer valuable opportunities to enhance public health and epidemiological research 149 

in farming populations by providing broader insights, identifying at-risk subgroups, and informing 150 

health services and policy development [152]. The primary objectives of this scoping review were 151 

twofold: (1) to summarize the current state of AHD-based research in farming populations by examining 152 

which types of AHDs are utilized and why, whether AHDs are integrated with other data sources, which 153 

farming populations have been studied, and what exposures and health outcomes have been explored; 154 

and (2) to identify key areas of interest as well as potential research gaps and unmet needs in this field. 155 

 156 
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Methods 157 

This scoping review was conducted and reported according to the Preferred Reporting Items for 158 

Systematic Reviews and Meta-Analyses extension for Scoping Reviews and evidence maps (PRISMA-159 

ScR) guidelines (Multimedia appendix 1) [153], following a single screening approach. The protocol of 160 

this study was not registered. A seven-step procedure was used: research question formulation, 161 

identifying relevant publications, title review, abstract review, full text review, data extraction, and data 162 

analysis. 163 

To formulate our research question, the Joanna Briggs Institute guidelines were followed, using the 164 

population, concept, and context criteria framework [154]. Our population included all individuals 165 

engaged in farming and all individuals exposed to farming-related exposures. The concepts included all 166 

possible public health and epidemiological research works that involved the study of a health outcome 167 

of interest. The context was the use, in any setting, of at least one of the AHDs as defined in Table 1. 168 

 169 

Search strategy and selection criteria 170 

To develop and validate the search strategy, previous reviews that examined the reuse of AHDs for 171 

population-based research were identified and refined [93,96,103,104]. Our initial search revealed that 172 

electronic health records (EHRs) are often interchangeably referred to as electronic medical records 173 

(EMRs). A distinction between EHR and EMR is sometimes made, with EMR describing patients’ care 174 

from only one practice (e.g., specific encounters in hospitals), contrary to EHR [105]. In that case, EMR 175 

serves as a data source for EHR. This distinction was not considered in this paper. In addition, to ensure 176 

comprehensiveness, the search terms were broadened by searching for their synonyms. For example, 177 

search terms such as “electronic health record”, “digital health record”, “electronic medical record”, 178 

“EHR”, or “EMR” were used as synonyms for electronic health/medical records. A total of 72 terms 179 

pertaining to two categories (farming and AHDs) were used (textbox 1). The search terms were reflective 180 

of our research topic and question. 181 

 182 

 183 
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Textbox 1. Search terms. 184 

Farming 185 

husbandry* OR agriculture* OR farming OR farm* OR agricultural* OR farmworker* 186 

Administrative health databases (combined using AND) 187 

"health record" OR "health records" OR "digital record" OR "digital records" OR "health administrative register" OR "health 188 

administrative registry" OR "health register" OR "health registry" OR "medical register" OR "medical registry" OR "electronic 189 

health record" OR "electronic health records" OR "EHR" OR "EMR" OR "electronic medical record" OR "electronic medical 190 

records" OR "digital medical record" OR "digital medical records" OR "digital health record" OR "digital health records" OR 191 

"health administrative data" OR "health administrative database" OR " health administrative dataset" OR " health administrative 192 

datasets" OR "health administrative databases" OR "administrative health data" OR "administrative health database" OR 193 

"administrative health dataset" OR "administrative health datasets" OR "administrative health databases" OR "insurance data" 194 

OR "insurance database" OR "insurance databases" OR "insurance dataset" OR "insurance claim" OR "insurance claims" OR 195 

"cancer registry" OR "cancer register" OR "health insurance" OR "health surveillance program" OR "health surveillance 196 

programs" OR "Mutualite Sociale Agricole" OR "MSA" OR "health insurance system" OR "record-linkage" OR "population 197 

register" OR "population registry" OR "insurance scheme" OR "social security scheme" OR "hospital discharge" OR 198 

"administrative claim" OR "administrative claims" OR "medical claims" OR "medical claim" OR "electronic claim" OR 199 

"electronic claims" OR "mortality register" OR "mortality registry" OR "mortality record" OR "mortality records" OR "disease 200 

register" OR "disease registry" OR "illness register" OR "illness registry" OR "disorder register" OR "disorder registry" 201 

 202 

To develop the eligibility criteria, an initial search of the literature was conducted on PubMed, with the 203 

review of the first 100 articles that used AHDs for public health and epidemiological research. In our 204 

pilot run, disease/morbidity registers were not considered as AHD because they were created for clinical 205 

and research purposes [47-50,53,76,155,156]. However, because disease registers contain some 206 

information derived from medical records, we decided to consider them as AHD for this review. The 207 

eligibility criteria are presented in Table 2. The search was restricted to original peer-reviewed records 208 

(all types were included) written in English or French but not constrained by the year of publication 209 

[93,106,157]. Publications that examined partly farming populations, with, for instance, studies 210 

reporting health risks for various sectors of activity, were included. 211 

 212 

 213 

 214 
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Table 2. Eligibility criteria for selection of publications 215 

Criteria type Inclusion Criteria Exclusion Criteria 

Article type - Data had to originate at least partly from AHD.  
- Study had to pertain at least partly to the farming population.  
- Study had to relate to public health or epidemiological 
research.  
- Original peer-reviewed publications. 

- Publications not describing the use of AHD.  
- Animal or in vitro studies. 

Language - Publications in English or French. - Publications not in English or French. 

 216 

The final literature search was conducted on both PubMed and Web of Science Core Collection 217 

databases. Regarding Web of Science Core Collection, a topic search was performed. To reduce the bias 218 

induced by daily database changes, all data collection (literature retrieval and data download) was 219 

conducted and completed on the same day, April 15, 2024. Titles, abstracts, and full-text publications 220 

were screened on the basis of pre-established inclusion and exclusion criteria. The inclusion criteria for 221 

each phase of the literature search are detailed in Multimedia appendix 2. When abstracts did not contain 222 

enough information about correspondence to inclusion or exclusion criteria, the article was considered 223 

for full-text review. Reference lists of included publications were not searched, although they might 224 

have also yielded new relevant studies. 225 

 226 

Data collection and processing 227 

Twenty-nine metadata were extracted from each publication included in the scoping review (Table 3). 228 

The data underwent rigorous manual validation, cleaning, and harmonization following a structured 229 

five-step process. First, duplicate items (e.g., keywords, institutions) were removed. Second, leading 230 

and trailing white spaces were eliminated. Third, items were standardized by converting text to 231 

lowercase, with only the first letter capitalized. In the fourth step, items were harmonized to either 232 

singular or plural forms consistently. Finally, synonyms or terms with similar meanings (e.g., “illness” 233 

and “disease”) were unified under a single term. For instance, “Pesticide”, “Pesticide exposure”, and 234 

“Pesticide use” were standardized to “Pesticide”, while “Pulmonary disease copd”, “Copd”, and 235 

“Chronic obstructive pulmonary disease” were unified as “COPD”. For cancer-related keywords, the 236 

11th International Classification of Diseases was used to consolidate varied terms (e.g., “lung cancer”, 237 

“lung cancer risk”, “lung and bronchus cancer”, “lung tumor”, “lung tumour”, “lung neoplasm”, “basal 238 
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cell carcinoma of the lung”), into standard categories (e.g., lung cancer). Quality appraisals were not 239 

performed because they were beyond the aim of this review [106,157]. 240 

 241 

Table 3. List of meta-data of interest to collect from the literature search 242 

Meta-data Fictional example 

Publication year 2024 

Publication type article 

Study name project X 

Goal of the study to study the association between farming and health outcome 

Study type ecological study 

Is the study nationwide? yes 

Digital data used insurance claims 

Goal of the digital data used to identify farmers 

Is active data used? yes 

Active data used clinical examination 

Farming exposure considered farming activity, pesticide compounds 

Number of farming activities studied 10 

Number of pesticide compounds studied 29 

Population adults 

Sex female 

Number of participants included [100-1000[ 

Country France 

Oldest data used 1991 

Most recent data used 2020 

Data follow-up period (in years) 4 

Number of years between the most recent data used and 
publication year 

7 

Disease/Health events Parkinson's disease 

Authors’ names Gauthier J 

Authors’ keywords pesticide 

Authors’ country France 

Authors’ institution Université Grenoble Alpes 

Journal Environmental Health Perspectives 

Funding body MIAI@Grenoble Alpes 

Number of citations 14 

 243 

Data analysis 244 

To analyze the research trends (i.e., hotspots and gaps) on the use of AHDs for public health and 245 

epidemiological research in farming populations, a bibliometric approach was conducted [158-160]. 246 

This analysis examined the number of publications, countries of publications, most active journals, 247 

institutions, authors, funding bodies, subject areas, citations of publications, and keywords of 248 

publications (Figure 1). Seven bibliometric metrics were computed, including the h-, g-, m-, and Y-249 

indices, dominance factor, annual growth rate (AGR), and fractionalized frequency (Multimedia 250 

appendix 3). The h index attempts to measure both the productivity and citation impact of the published 251 

body of work of an entity (e.g., author, institution, journal) [161,162]. It refers to the total number of 252 

publications by a particular entity with at least the same number of citations. The m index is calculated 253 

by dividing the h index by the number of years of an entity’s productive life (e.g., researcher) [161]. The 254 
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g index of an entity corresponds to the largest number g such that the top g publications have at least g2 255 

or more citations together [162]. The Y index refers to the sum of both the total number of first-authored 256 

publications and the total number of corresponding-author publications [163]. The dominance factor 257 

(DF) refers, for a particular researcher, to the proportion of multi-authored publications as specific 258 

author’s rank to the total number of multi-authored publications [164]. The fractional frequency (FF) 259 

intends to reflect/measure an author’s contribution. The AGR refers to the variable’s change in 260 

percentage as a year-over-year statistic [165]. The most up-to-date journals’ impact factors and ranks 261 

were retrieved manually using the Journal Citation Report in April 2024. 262 

Spearman correlations were calculated to examine the association between the number of publications 263 

and GDP (gross domestic product), population size [166], as well as the total labor force, number of 264 

researchers in R&D (research and development) (per million people), fertilizer consumption (in both % 265 

of fertilizer production and kilograms per hectare of arable land), agricultural land (km2), agricultural 266 

land (% of land area), land under cereal production (hectares), permanent cropland (% of land area), 267 

cereal production (metric tons), crop production index, food production index, livestock production 268 

index, cereal yield (kg per hectare), female employment in agriculture (% of female employment), male 269 

employment in agriculture (% of male employment), employment in agriculture (% of total 270 

employment), and agriculture, forestry, and fishing, value added (% of GDP). These country 271 

characteristics were obtained from the World Bank. When available, the most recent country 272 

characteristic (e.g., GDP) was used. 273 

Research trends, including hotspots and gaps, were investigated with keyword frequency, co-occurrence 274 

(counting of paired keywords), and thematic mapping analyses. Thematic mapping and keyword co-275 

occurrence network are two complementary but distinct approaches that serve different purposes and 276 

offer different insights. In summary, thematic mapping is more focused on the strategic positioning of 277 

research themes within a field, while keyword co-occurrence networks emphasize the relationships and 278 

connections between specific keywords in the literature [158,167]. Both methods complement each 279 

other and are usually used to provide a more comprehensive understanding of research landscapes. The 280 

co-occurrence of two keywords was defined by the frequency with which they appear together in 281 

publications and was quantified using association strength (AS) or equivalent index, calculated as 282 
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𝐴𝑆𝑖𝑗 =
𝑐𝑖𝑗

2

𝑐𝑖𝑐𝑗
 , where 𝑐𝑖𝑗 is the number of publications in which keywords i and j co-occur, while 𝑐𝑖 and 283 

𝑐𝑗 are the number of publications in which each keyword appears, respectively [158,167]. AS measures 284 

how close two keywords are to each other. An AS value of 1 indicates keywords always appear together, 285 

while 0 indicates they never co-occur. These keyword co-occurrences can be visualized using a co-286 

occurrence network graph, where a vertex/node represents a keyword, the size of the node represents 287 

the keyword frequency, and the edge represents the association between two keywords [158,167]. Based 288 

on the keyword co-occurrence network graph, a community detection procedure can be used to identify 289 

groups of words highly associated with each other [158,167]. In other words, equivalent keywords, 290 

based on AS, can be grouped together to identify research themes [158,167]. A strategic diagram or 291 

thematic map is based on Callon’s centrality (x-axis) and Callon’s density (y-axis) [158,167]. Callon’s 292 

centrality measures the degree of interaction of a theme with other themes. It is defined as 293 

𝐶𝑎𝑙𝑙𝑜𝑛′𝑠 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 = 10 × ∑ 𝐴𝑆𝑘ℎ, where k is a keyword belonging to a theme and h is a keyword 294 

belonging to another theme [158,167]. Callon’s centrality can be interpreted as an indicator of the 295 

importance of a particular topic within the broader/overall research landscape. Callon’s density measures 296 

the internal strength of a theme. It is defined as 𝐶𝑎𝑙𝑙𝑜𝑛′𝑠 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 100 × ∑
𝐴𝑆𝑖𝑗

𝑤
, where i and j are 297 

keywords belonging to the same theme and w is the total number of keywords in a theme [158,167]. 298 

Callon’s density serves as a metric for assessing the progression and maturation of that topic [158,167]. 299 

A strategic diagram is divided into four quadrants according to Callon’s centrality and density values, 300 

which correspond to four types of topics. Hotspots or hot topics are defined by both a high density and 301 

centrality value (upper right quadrant), while basic topics are defined by a high centrality value but a 302 

low density value (lower right quadrant). Peripheral topics are defined by both low centrality and density 303 

values (lower left quadrant), while niche topics are defined by low centrality and high density values 304 

(upper left quadrant) [158,167]. 305 

To focus on agricultural/farming exposome research, a bibliometric profile/picture of the “farming 306 

exposome” was constructed, which restricts the exposome concept to environmental exposures specific 307 

to farming populations [152,168]. This bibliometric farming exposome picture examined co-308 
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occurrences between keywords related to potential risk factors and specific health events (e.g., cancers, 309 

reproductive disorders). 310 

The bibliometric analysis was conducted and reported according to the preliminary guideline for 311 

reporting bibliometric reviews of the biomedical literature (BIBLIO) (Multimedia appendix 4) [169]. 312 

All analyses were performed using R software 4.3.2® (R Core Team, Vienna, Austria) for Windows 313 

10©. The bibliometric analysis was performed using the bibliometrix R package version 4.1.4 [170].  314 

 315 

Results 316 

Overview 317 

After excluding 4485 irrelevant records, 296 publications were analyzed (Figure 1). The majority were 318 

articles (293/296), with a small number of reviews (2/296) and editorial materials (1/296) (Table 4). 319 

Only one-third of the publications were open access (Table 4 and Multimedia appendix 5). The average 320 

publication age was 14.2 years, ranging from the oldest in 1975 [171] to the most recent in April 2024 321 

[152]. Since 1975, there has been a steady increase in publications utilizing AHDs to address health 322 

issues in farming populations, with an AGR of 5.2%. Notably, almost one-third of these articles (91/296) 323 

were published in the last five years, highlighting the rising interest in AHD-based public health research 324 

in this population (Multimedia appendix 6). Collectively, the publications received 9379 citations, 325 

averaging 31.7 citations per publication. Multimedia appendix 7 presents the historical direct citation 326 

network. The body of work involved 1225 authors from 338 institutions, with 1882 author appearances 327 

and an average of six authors per paper (Table 4). There were four (4/296, 1.4%) single-author 328 

publications. On average, each paper cited 30 references. 329 

Studies were led by authors from 34 countries, predominantly high-income nations, with 24.3% of 330 

studies (72/296) involving multi-country collaborations (Multimedia Appendix 8). US-based authors 331 

contributed the most publications (91/296, 30.7%), followed by France (71/296, 24.0%) and Finland 332 

(35/296, 11.8%). US authors also had the most citations (3495/9379, 37.2%), with France and Finland 333 

ranking second and third, respectively.  334 
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The 25 most-cited publications, appearing in 17 different journals, received between 83 (83/9379, 0.9%) 335 

and 485 (485/9379, 5.2%) citations (Multimedia appendix 9) [150,172-196]. Of these, ten were 336 

published before 2000, another ten between 2000 and 2010, and five after 2010. Most of these studies 337 

focused on cancer risk (16/25, 64%), while others investigated neurodegenerative disorders (5/25, 20%), 338 

respiratory conditions (2/25, 8%), and multiple health outcomes such as sleep disorders, mental health, 339 

and musculoskeletal disorders (2/25, 8%). 340 

For details on the most productive countries, prolific authors, active journals, institutions, and funding 341 

bodies, please refer to Multimedia Appendix 10.  342 
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Figure 1. PRISMA-ScR flow chart depicting the literature search and the evaluation process for finding 343 

relevant records. 344 

AHD : administrative health database. 345 

The search, conducted on April 15, 2024, in PubMed and Web of Science, had no date restrictions. 346 

  347 
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Table 4. Main characteristics of the included publications 348 

Description Results 

Timespan 1975-2024 

Publication type   

    total 296 (100%) 

    article 293 (99.0%) 

    review 2 (0.7%) 

    editorial material 1 (0.3%) 

Number of open access publications 107 (36.1%) 

Document average age (years) 14.2 

Annual growth rate (%) 5.20 

Publication citation   

    Number of citations 9379 

    Average citations per publication 31.7 

    Average citations per year per publications 2.02 

Number of references 8814 

Journal   

    Number of journals 118 

    Average number of publications per journal 1.86 

    Average number of citations per journal 79.5 

Author   

    Number of authors 1225 

    Number of single-authored publications 4 

    Author appearances 1882 

    Average number of co-authors per publication 6.36 

    Average number of publications per author 0.24 

    International co-authorships % 24.3 

    Number of author's keywords 576 

Author's country   

    Number of author's country 34 

    Average number of publications per country 2.86 

    Average number of citations per country 436.0 

Author's institution   

    Number of author's institutions 338 

    Average number of publications per institution 3.11 

    Average number of citations per institution 101.3 

Author's funding body   

    Number of funding bodies 181 

    Average number of publications per funding body 2.48 

    Average number of citations per funding body 77.7 

 349 

Study characteristics 350 

Table 5 provides an overview of the included publications. Longitudinal study designs were the most 351 

common, including retrospective cohorts (129/296, 43.6%) and prospective cohorts (56/296, 18.9%). 352 

Case-control studies (62/296, 20.9%), cross-sectional studies (39/296, 13.2%), and ecological studies 353 

(17/296, 5.7%) were less common (Multimedia appendix 11). A few studies (10/296, 3.4%) utilized 354 

multiple study designs [188,194,197-204]. 355 

The median follow-up period was 9.5 [IQR: 5-17 years]. On average, there was a 7-year gap [90% CI: 356 

3-14] between the most recent data used and the year of publication, with considerable variation 357 

depending on the publication year (Figure 2). The oldest data was from 1801 [205], and the most recent 358 

data was from 2022 [206]. Notably, one-third of the data used were from before 2000, while nearly 359 
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three-quarters were from before 2015 (Multimedia appendix 6). Only ten studies used data from the last 360 

five years (since 2020), while 80 used data from the last ten years (since 2015). 361 

Studies were conducted on all continents, but most participants were from Europe (249/296, 84.1%), 362 

followed by North America (85/296, 28.7%), Asia (24/296, 8.1%), Oceania (17/296, 5.7%), Africa 363 

(4/296, 1.4%), and Central and South America (4/296, 1.4%). France (70/296, 23.6%) and the US 364 

(67/296, 22.6%) were the most represented countries, followed by Finland (36/296, 12.2%), Sweden 365 

(32/296, 10.8%), Denmark (28/296, 9.5%), and Norway (26/296, 8.8%) (Figure 3 and Multimedia 366 

appendix 12). Most studies had a regional or local scope (177/296, 59.8%), in particular traditional 367 

epidemiological studies, such as AGRICAN (Agriculture and Cancer) [207] and AHS (Agricultural 368 

Health Study) [172], which used AHDs to identify potential individuals for inclusion and/or enrich their 369 

cohorts. 370 

Most studies included 1000 to 10000 participants (67/296, 22.6%), followed by studies with 10000 to 371 

100000 participants (65/296, 22.0%) and 100000 to 1 million participants (53/296, 17.9%) (Table 5). 372 

Larger studies (≥1 million participants) accounted for 16.9% (50/296). Smaller studies, with 100 to 1000 373 

participants, were less common (47/296, 15.9%), and very few (8/296, 2.7%) had fewer than 100 374 

participants. Most studies included adult participants (284/296, 95.9%). 169 studies examined males 375 

(169/296, 57.1%), 130 at females (130/296, 43.9%), and 188 at both sexes (188/296, 63.5%), but 108 376 

studies (108/296, 36.5%) did not specify the participants' sex. 377 

Over half of the studies (156/296, 52.7%) aimed to explore the relationship between farming activities 378 

(e.g., dairy farming) and health events, while 131 studies (131/296, 44.3%) focused on individual 379 

characteristics like occupation, age, sex, and socioeconomic status (Multimedia Appendix 13). Among 380 

those examining individual characteristics, farming was often considered broadly and compared to other 381 

occupations (95/131, 72.5%). Conversely, in studies investigating health outcomes specifically related 382 

to farming activities, agriculture was treated as a broad category in only 27.6% (43/156) of the cases. 383 

Most studies used the general population or other non-farming groups as the reference category, without 384 

differentiating farmers by job role (e.g., farm managers vs. farmworkers). Descriptive statistics and 385 

multivariable regression were the most commonly employed methods. Notably, only two studies (2/296, 386 

0.7%) incorporated artificial intelligence (AI) in their analysis [208,209]. 387 
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There were few studies that investigated health outcomes in farmers' family members or non-farmers 388 

exposed to farming. Only three studies (3/296, 1.0%) focused on health events in farmers' partners 389 

[177,210,211], five (5/296, 1.7%) on farmers’ children [179,212-215], and six (6/296, 2.0%) on non-390 

farmers exposed to farming-related risks [209,216-221]. There were eleven studies that explored health 391 

risk in migrant workers. 392 

Some publications reported findings from the same cohorts (Multimedia appendix 14). The ten most 393 

prolific cohorts included France-based AGRICAN (18/296, 6.1%) [207], the US-based AHS (17/296, 394 

5.7%) [172], NOCCA (Nordic Occupational Cancer Study) (12/296, 4.1%) from Nordic countries 395 

(Finland, Denmark, Norway, Sweden and Iceland) [189], France-based TRACTOR (Tracking and 396 

monitoring occupational risks in agriculture) (7/296, 2.4%) [222], and CNAP (Cancer in the Norwegian 397 

Agricultural Population cohort) (7/296, 2.4%) [182]. Other notable cohorts included the US-based UFW 398 

(United Farm Workers of America) (6/296, 2.0%) [223], France’s BALISTIC (5/296, 1.7%) [224], the 399 

international (29 countries) consortium AGRICOH (4/296, 1.4%) [150,225], AIRBAg (4/296, 1.4%) 400 

from France [226], and the US-based NAWS (National Agricultural Workers Survey) (3/296, 1.0%) 401 

[227]. Among these top ten cohorts, only NOCCA, UFW, and TRACTOR exclusively used AHDs.  402 
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Table 5. Characteristics of the 296 included studies (1975-2024). 403 

Characteristic n (%) 

Research goal   

    Study the association between farming and health event 156 (52.7) 

    Study the association between individual characteristics and health event 131 (44.3) 

    Other research goal 9 (3.0) 

Study design   

    Retrospective cohort 129 (43.6) 

    Case-control study 62 (20.9) 

    Prospective cohort 56 (18.9) 

    Cross-sectional study 39 (13.2) 

    Ecological study 17 (5.7) 

    Multiple designs 10 (3.4) 

    Review 2 (0.7) 

    Perspective 1 (0.3) 

Geographical scope  

    Nationwide 117 (39.5) 

    Regional/local 176 (59.5) 

Temporal scope (years, mean [IQR])  

    Follow-up period 9.50 [IQR: 5.00-17.0] 

    Gap between latest data used and publication year 7.21 [IQR: 5.00-9.00] 

Population   

    Adult 265 (89.5)  

    Adult and child 19 (6.4)  

    Child 8 (2.7)  

    Not reported 1 (0.3) 

Sex  

    Female 130 (43.9) 

    Male 169 (57.1) 

    Female and male 188 (63.5) 

    Not specified 108 (36.5) 

Number of participants  

    > 1e6 50 (16.9) 

    [1e5-1e6[ 53 (17.9) 

    [1e4-1e5[ 65 (22.0) 

    [1000-1e4[ 67 (22.6) 

    [100-1000[ 47 (15.9) 

    [10-100[ 8 (2.7) 

    Not reported 3 (1.0) 

AHD type   

    Disease register 158 (53.4) 

    Electronic health/medical record 124 (41.9) 

    Insurance claim 106 (35.8) 

    Population register 95 (32.1) 

    Hospital discharge 41 (13.9) 

AHD use   

    Obtain information on socio-demographics 272 (91.9) 

    Obtain information on health event 269 (90.9) 

    Identify farmer 147 (49.7) 

    Identify individual 140 (47.3) 

    Obtain information on occupations 117 (39.5) 

    Exposure assessment 57 (19.3) 

    Obtain information on farming activity 43 (14.5) 

    Other usage 14 (4.7) 

 Note: AHD: administrative health database, IQR: interquartile range. 404 

 405 

AHD use 406 

There was a high heterogeneity in the coding systems used and the granularity of the information 407 

available regarding health events (outcomes), population, and exposure determinants, depending on the 408 

AHD and study considered. Regardless of the publication reviewed, AHDs and other datasets were never 409 
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reported as adhering to the FAIR principles (findable, accessible, interoperable, and reusable data) [228-410 

230]. In addition, none of them could be considered as FAIR because, with a few exceptions (e.g., [222]), 411 

most AHDs were not precisely described and data availability statements were rare. Furthermore, mainly 412 

due to privacy concerns, AHDs were not available in open and free access.  413 

The most commonly used AHDs were disease registers, used in over half of the studies (158/296, 414 

53.4%), followed by electronic health/medical records (124/296, 41.9%), insurance claims (106/296, 415 

35.8%), population registers (95/296, 32.1%), and hospital discharge records (41/296, 13.9%) (Table 5). 416 

Among disease registers, cancer (120/158, 75.9) and mortality registers (75/158, 47.5%) were the most 417 

frequently used (Multimedia appendices 11 and 15). Nearly one-third of the studies (91/296, 30.7%) 418 

relied on a single AHD, with disease registers being the most common (38/91, 42%), followed by 419 

insurance claims (29/91, 32%), electronic health/medical records (18/91, 20%), population registers 420 

(5/91, 5%), and hospital discharge records (1/91, 1%). Other types of digital data were used less 421 

frequently, including pesticide registration records (13/296, 4.4%), job-exposure matrices (12/296, 422 

4.1%), crop-exposure matrices (11/296, 3.7%), pesticide use records (8/296, 2.7%), climate data (7/296, 423 

2.4%), and air quality data (2/296, 0.7%). While contextual data were sometimes used (9/296, 3.0%), 424 

person-generated data, smart agriculture data, and omics were never utilized. 425 

The AHDs and other digital data were primarily used to obtain socio-demographic information 426 

(272/296, 91.9%) and health event data (269/296, 90.9%). They were also used to identify farmers 427 

(147/296, 49.7%) or individuals (140/296, 47.3%), gather occupational information (117/296, 39.5%), 428 

assess exposure (57/296, 19.3%), obtain data on farming activities (43/296, 14.5%), or track climate 429 

conditions (7/296, 2.4%).  430 

Nearly two-thirds of the studies (181/296, 61.1%) relied exclusively on digital data (AHDs or other), 431 

while more than a third (112/296, 37.8%) incorporated self-reported information/active data (requiring 432 

active participant involvement) as part of epidemiological cohorts. A total of 111 studies (111/296, 433 

37.5%) used participant-completed questionnaires (paper or electronic) to gather socio-demographic 434 

data and confounding factors (98/296, 33.1%), assess exposure (96/296, 32.4%), and/or collect health 435 

information (83/296, 28.0%). Some information was obtained through interviews (44/296, 14.9%) or 436 

clinical examinations (32/296, 10.8%). Biological monitoring (24/296, 8.1%) and airborne monitoring 437 
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(2/296, 0.7%) were sometimes employed, whereas no study reported dermal monitoring (Multimedia 438 

appendix 16). 439 

Among all the AHDs used, the Mutualité Sociale Agricole (MSA) is a singularity. To the best of our 440 

knowledge, it is the only AHD specifically dedicated to the entire farming population of a country. 441 

Indeed, MSA is the French national insurance scheme that covers the entire farming workforce (5% of 442 

the overall French population) [115,128]. MSA was used in 60 studies (60/296, 20.3%). These studies 443 

were often part of cohorts with multiple publications, such as AGRICAN (18/60, 30%), TRACTOR 444 

(7/60, 12%), BALISTIC (5/60, 8%), AIRBAg (4/60, 7%), AMI (Aging Multidisciplinary Investigation) 445 

(2/60, 3%) [151], BM3R (2/60, 3%) [231], FERMA (risk factors of the rural environment and allergic 446 

and respiratory disease) (1/60, 2%) [232], and Phytoner (1/60, 2%) [233]. Of these, TRACTOR was the 447 

only cohort using exclusively MSA data [222]. 448 

 449 

Farming exposure 450 

A variety of exposure proxies were used to assess farming-related exposure. The most common proxy 451 

was job title, which generally referred to whether the individual was a farmer (184/296, 62.2%). Other 452 

proxies included specific farming activities, such as dairy or crop farming (111/296, 37.5%), general 453 

pesticide exposure (yes/no) (62/296, 20.9%), and exposure to specific pesticide compounds (e.g., 454 

glyphosate or paraquat) or pesticide classes (e.g., insecticides) (51/296, 17.2%) (Multimedia appendices 455 

11 and 17). The number of farming activities studied ranged from just one (e.g., [226]) to 78 [222], with 456 

an average of 8 farming activities per study. Similarly, the number of pesticide compounds assessed 457 

ranged from one (e.g., [234]) to 943 [235], with an average of 42 pesticides per study. Only one study 458 

investigated the mixture effect of exposure to multiple pesticide combinations on human health [236]. 459 

Investigations into other chemical exposures were also limited, with only two papers each addressing 460 

silica exposure [237,238] and air pollution [194,217] (2/296, 0.7%). Notably, no studies examined 461 

exposure to per- and polyfluoroalkyl substances (PFAS) or micro- and nano-plastics. Research on the 462 

broader farming exposome was rare (5/296, 1.7%) and typically used farming activities as proxies (e.g., 463 

[152]). 464 
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Few studies explored exposure to physical agents, with five studies (5/296, 1.7%) focusing on radiation 465 

[187,218,239-241]. No studies investigated the effects of climate change on farmers' health. Exposure 466 

to biological agents was rarely studied as well, with just three papers (3/296, 1.0%) addressing 467 

mycotoxins [241-243]. Finally, only three studies (3/296, 1.0%) examined psychological factors related 468 

to farming exposure [244-246]. 469 

 470 

Health events 471 

The most frequently studied health events were cancer (142/296, 48.0%), followed by mortality (44/296, 472 

14.9%), injuries (38/296, 12.8%), workplace accidents (32/296, 10.8%), respiratory disorders (30/296, 473 

10.1%), neurodegenerative diseases (28/296, 9.5%), and mental health issues (26/296, 8.8%) 474 

(Multimedia appendices 11 and 18). Less studied conditions included cardiovascular diseases (16/296, 475 

5.4%), autoimmune disorders (11/296, 3.7%), musculoskeletal disorders (11/296, 3.7%), reproductive 476 

disorders (3/296, 1.0%), sleep disorders (1/296, 0.3%), and frailty (1/296, 0.3%). Notably, no studies 477 

explored the farming microbiome. 478 

Among cancers, lung cancer was the most commonly investigated (43/142, 30.3%), followed by prostate 479 

cancer (38/142, 26.8%), leukemia (37/142, 26.1%), colorectal cancer (35/142, 34.6%), multiple 480 

myeloma (35/142, 34.6%), non-Hodgkin lymphoma (35/142, 34.6%), bladder cancer (31/142, 21.8%), 481 

and brain cancer (31/142, 21.8%) (Multimedia appendix 19). Respiratory disorders were primarily 482 

focused on asthma (15/30, 50%) and COPD (chronic obstructive pulmonary disease) (14/30, 47%). 483 

Parkinson’s disease was the most studied neurodegenerative condition (16/28, 57%), followed by 484 

multiple sclerosis (6/28, 21%). Fewer publications examined Alzheimer’s disease (2/28, 7%) and 485 

amyotrophic lateral sclerosis (2/28, 7%) (Multimedia appendix 20). In the mental health field, suicide 486 

(12/26, 46%) and depression (8/26, 31%) were the most investigated issues (Multimedia appendix 21). 487 



 

 

24 
 

Figure 2. Number of year between the most recent data used and publication for all included articles (1975-2024). 488 

Points refer to the average number of years (or gap) between the most recent data used and publication (x-axis) for each publication year (y-axis). Error bars 489 

refer to the 90%CI of the number of years between the most recent data used and publication. 490 
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Figure 3. World map of the number of publications per country of the farming population studied between 1975 and 2024. 492 

 493 



 

 

27 
 

Keyword analysis 494 

Following an initial extraction of 1259 authors' keywords, manual harmonization was performed. 495 

Duplicate keywords were removed through singular/plural standardization (130/1259, 10.3%) and 496 

through synonym unification and grouping of cancer-related terms (553/1259, 43.9%). This yielded a 497 

final set of 576 harmonized keywords (576/1259, 45.8%), which were all used in subsequent analyses 498 

to prevent selection bias. 499 

On average, each publication included 8.90 keywords [90% CI: 0-17], although 35 publications (35/296, 500 

11.8%) lacked any keywords, in line with the journal guidelines. Keyword analysis confirmed prior 501 

findings regarding farming exposure and health outcomes, as shown in Figure 4. It also provided deeper 502 

insights into emerging research hotspots, trends, and gaps. 503 

Of the total 576 keywords, 301 (301/576, 52.3%) appeared only once, while 68 (68/576, 11.8%) were 504 

mentioned at least 10 times. More frequently used keywords included 39 that appeared at least 20 times 505 

(39/576, 6.8%) and 11 keywords that featured in at least 50 publications (11/576, 1.9%). The 50 most 506 

frequent keywords were mentioned in at least 17 publications (17/296, 5.7%), while the top 10 appeared 507 

in at least 51 publications (51/296, 17.2%) (Multimedia appendix 22). The most frequently cited 508 

keyword was “cancer” (150/296, 50.7%), followed by “mortality” (96/296, 32.4%), “pesticide” (88/296, 509 

29.7%), “occupation” (82/296, 27.7%), “farmer” (77/296, 26.0%), “agriculture” (74/296, 25.0%), 510 

“exposure” (57/296, 19.3%), and “epidemiology” (57/296, 19.3%). 511 

In terms of overall citations, “cancer” (5766/9379, 61.5%), “pesticide” (3569/9379, 38.1%), and 512 

“mortality” (3097/9379, 33.0%) were the most cited. Over the past decade, the frequency of the top five 513 

keywords has drastically increased (Multimedia appendix 23). Notably, keywords like “cancer,” 514 

“mortality,” “occupation,” “pesticide,” “agriculture,” and “farmer” have been consistently present in 515 

publications spanning at least 30 years (not necessarily consecutively) (Multimedia appendix 24). In the 516 

last decade, emerging keywords such as “big data,” “administrative health database,” “dust,” and “BMI” 517 

(body mass index) have gained prominence (Multimedia appendix 25).  518 
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Figure 4. Wordcloud of the most frequent keywords among the 296 papers published between 1975-519 

2024. 520 

The larger the font size, the greater the frequency of the keywords. 521 

 522 

 523 

Keyword co-occurrence 524 

A keyword co-occurrence network illustrating the frequency of keyword co-mentions in publications 525 

was constructed, thereby revealing relationships and conceptual connections (Figure 5). In this network, 526 

nodes/vertices represent keywords, with their sizes indicating frequency, while edges denote co-527 

occurrences. The network's density and arrangement reveal topic interconnectivity, with larger vertices 528 

representing more frequently mentioned keywords. The network visualization helps identify clusters of 529 

related topics and highlights core research areas. 530 
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Using a community detection algorithm (spin-glass model with simulated annealing), four distinct 531 

clusters or communities of keywords were identified. Each cluster groups keywords that are often 532 

mentioned together, with stronger internal associations and weaker connections to keywords in other 533 

clusters. 534 

The top keywords for each cluster were “cancer” (red cluster), “pesticide” (purple cluster), “mortality” 535 

(green cluster), and “exposure” (blue cluster). The red cluster highlights associations between various 536 

types of cancer, reflecting the fact that studies investigating cancer risks often examine multiple types 537 

of cancer. The green cluster links “mortality” with terms like “mental health”, “injury”, and “animal 538 

farming”, explained by the association between workplace accidents, mental health issues (e.g., suicide), 539 

animal farming, and mortality. In the purple cluster, “pesticide” connects with “occupational exposure” 540 

and “farming activity”, emphasizing that pesticide exposure is primarily studied in occupational settings 541 

across different types of farming. The blue cluster connects “exposure” to terms like “neurodegenerative 542 

disease”, “respiratory disorder”, “cardiovascular disorder”, “risk factor”, “air pollution”, “age”, and 543 

“diet”, indicating the study of various risk factors in relation to several health events. These clusters 544 

highlight current research hotspots that focus on four main interconnected themes: the associations 545 

between risk factors, pesticide exposure, farming activities, and a range of diseases. 546 

 547 

Thematic mapping - research hotspots 548 

Figure 6 presents a thematic map that illustrates current research trends. Thematic mapping visualizes 549 

the relationship between research themes or topics, enabling the identification of trends, emerging areas, 550 

and gaps in the literature. The result is a strategic diagram that shows how themes relate to each other 551 

and their relevance within a specific field. The graph is divided into four quadrants, categorizing topics 552 

based on their relevance (x-axis, Callon’s centrality) and maturity (y-axis, Callon’s density) within the 553 

broader research landscape. Each circle represents a theme or topic (i.e., a cluster of equivalent 554 

keywords), with the circle size corresponding to the frequency of the keywords associated with that 555 

theme. 556 

The upper-right quadrant represents “hot topics”, which are both highly relevant and mature in the 557 

research landscape. Four key hot topics drive AHD-based public health research in farming populations. 558 
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These include one focused on cancer research, another on respiratory disorders, and a third 559 

encompassing neurodegenerative diseases, workplace accidents, injuries, and mental health issues. The 560 

final hot topic involves large-scale studies in France and Europe using big data and insurance claims. 561 

The lower-right quadrant contains “basic topics”, which are relevant but not yet mature in the research 562 

landscape. Only one such theme emerged: research related to pesticide exposure, mortality, and farming. 563 

In the upper-left quadrant, “niche themes” refer to mature research topics that have not yet achieved full 564 

relevance. Three niche themes were identified: the first involves studies examining aging and research 565 

conducted in Norway; the second focuses on reproductive disorders and parental exposure, a theme 566 

poised to potentially evolve into a hot topic. The final niche theme covers genetics and metabolism. 567 

Finally, the lower-left quadrant contains “peripheral topics”, which represent either emerging or 568 

declining themes with low relevance and maturity. Four peripheral topics were observed, primarily 569 

centered around research on ocular disorders, the use of electronic health/medical records, and studies 570 

conducted in India. 571 

This thematic map helps highlight both well-established and emerging areas of research, as well as gaps 572 

that may be ripe for future investigation.573 
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Figure 5. Keyword co-occurrence network of the 296 articles published between 1975-2024. 574 

AAW: workplace accident, COPD: chronic obstructive pulmonary disease, CVD: cardiovascular disorder, MSD: musculoskeletal disorder, SES: socio-economic 575 

status, US: United States of America. 576 

Each vertex/node represents a keyword, while edges represent the co-occurrence between keywords. Two keywords are connected when they co-occur in the 577 

same publication, and the size of each vertex indicates the frequency of a keyword—larger vertices represent more frequently mentioned keywords. Keywords 578 

with the same color (cluster) represent a research area. 579 
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Figure 6. Thematic mapping - research hotspots based on keywords from the 296 articles published between 1975-2024. 581 

AAW: workplace accident; COPD: chronic obstructive pulmonary disease, EHRs: electronic health records, EMRs: electronic medical records. 582 

The graph shows how themes relate to each other and their relevance within a specific field. This graph is divided into four quadrants, categorizing topics based 583 

on their relevance (x-axis, Callon’s centrality) and maturity (y-axis, Callon’s density) within the broader research landscape. Each circle represents a theme or 584 

topic (i.e., a cluster of equivalent keywords), with the circle size corresponding to the frequency of the keywords associated with that theme. 585 



 

 

34 
 

  586 



 

 

35 
 

Bibliometric farming exposome 587 

In order to identify research trends and gaps in the farming exposome literature, a bibliometric keyword 588 

co-occurrence analysis was conducted to explore the farming exposome by examining the co-occurrence 589 

between keywords associated with potential risk factors and specific health outcomes. This analysis was 590 

restricted to exposome-related and health event-related keywords. Out of 576 keywords, 130 were 591 

related to the exposome (130/576, 22.6%), among which 93 were related to the specific external 592 

exposome (e.g., pesticide), 19 to the general external exposome (e.g., climate), and 18 to the internal 593 

exposome (e.g., oxidative stress). There were also 70 health event-related keywords (e.g., brain cancer) 594 

(70/576, 12.2%). 595 

The results of this analysis are synthesized in Table 6 and Multimedia appendix 26, with each cell 596 

representing the percentage of occurrences of an exposome-related keyword (e.g., air pollution) in all 597 

publications mentioning a specific health event-related keyword (e.g., Alzheimer’s disease). For 598 

example, a value of 33.3 indicates that an exposome-related keyword appeared in 33.3% of all 599 

publications mentioning a specified health event-related keyword. To facilitate interpretation and ease 600 

the reading of Table 6, exposome-related keywords were categorized into 19 groups (e.g., chemical 601 

agent), and health event-related keywords into 20 groups. 602 

Distinct keyword exposome profiles were developed for each health event-related keyword (Multimedia 603 

appendices 27-52), as illustrated in Figure 7 for mental health disorders. Most exposome-related 604 

keywords associated with mental health disorder-related keywords pertained to the type of occupations 605 

as well as chemical, lifestyle, socio-economic, and psychological factors. Cancer-related keywords were 606 

associated mostly with keywords related to the internal (sex) and specific external exposome (chemical 607 

agents, lifestyle, and type of occupation). Autoimmune disease-related keywords co-occurred mostly 608 

with external exposome-related keywords (chemical agents, lifestyle, type of occupations, and socio-609 

economic factors). Neurodegenerative disease-related keywords were associated mostly with keywords 610 

related to the specific external exposome (lifestyle, chemical agents, and type of occupations). 611 

Reproductive disorders co-occurred mostly with internal (sex, BMI) and specific external exposome-612 

related keywords (chemical agents and type of occupations). Both musculoskeletal disorder and injury-613 

related keywords were associated with keywords from all three exposome components, in particular sex, 614 
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type of occupations, lifestyle, biomechanical factors, chemical agents and psychological factors. 615 

Infectious disease-related keywords co-occurred with specific external exposome keywords (biological 616 

agents and type of occupations), while respiratory disorder-related keywords were associated mostly 617 

with internal (sex) and specific external exposome-related keywords (lifestyle, chemical and biological 618 

agents, and type of occupations). Cardiovascular disorder-related keywords were associated with 619 

keywords from all three exposome components, in particular the sex, type of occupations, lifestyle, 620 

chemical agents, and socio-economic and psychological factors.  621 
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Figure 7. Chord diagram of keyword co-occurrence between potential risk factor and mental health 622 

disorder keywords from the 296 articles published between 1975-2024. 623 

BMI: body mass index, psy: psychological, SES: socio-economic status. 624 

On the top half of the chord diagram are disease-related keywords, while exposome-related keywords 625 

are displayed on the bottom half. Each chord or link indicates that an exposome-related keyword was 626 

mentioned with a disease-related keyword (co-occurrence) at least once in the same publication. The 627 

chord color differs from one exposome-related keyword to another.  628 

 629 
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Table 6. Co-occurrence between exposome category-related keywords and health event category-related keywords among the 296 articles published between 630 

1975 and 2024. 631 

Health event 
Internal exposome Specific external exposome General external exposome 

Age Sex BMI BP Heredity Ethnicity Hormone Menopause Metabol. OS Inflam. Lifestyle Chem. Bio. Biomech. Occup. Phys. SE Psy. 

Cardiovascular disease 5.88 11.8 5.88 5.88 0 5.88 0 0 0 0 0 11.8 29.4 0 11.8 23.5 0 29.4 17.6 

Work-related disease 0 20 0 0 0 0 0 0 0 0 0 0 20 20 20 40 0 20 0 

Autoimmune disease (IBD, RA, vasculitis, NR) 0 0 11.1 0 0 0 0 0 0 0 0 22.2 44.4 0 0 55.6 0 22.2 0 

Cancer 3.62 27.5 2.17 0 0.73 1.45 3.62 0.73 2.9 0.73 0 17.4 51.4 7.25 1.45 58.7 5.8 8.7 0 

Dental health 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 50 0 

Ocular disorder 16.7 0 0 0 0 0 0 0 0 0 0 16.7 16.7 0 0 0 0 0 16.7 

Frailty 50 0 50 0 0 0 0 0 0 0 0 100 50 0 0 0 0 0 50 

Anemia 100 100 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 

Infectious disease 

(malaria, Lyme disease, tuberculosis, 

toxoplasmosis, NR) 

0 7.14 0 0 0 7.14 0 0 0 0 0 21.4 21.4 50 7.14 28.6 0 14.3 7.14 

Injury (includ. workplace accident and disability) 4.26 8.51 2.13 0 0 2.13 0 2.13 0 0 0 12.8 14.9 2.13 14.9 23.4 2.13 4.26 6.38 

Chronic kidney disease 0 0 0 0 0 0 0 0 0 0 0 0 100 66.7 0 0 33.3 0 0 

Mental health (depression, suicide, NR) 9.52 4.76 4.76 0 0 0 0 0 0 0 0 28.6 23.8 0 4.76 33.3 4.76 23.8 28.6 

Metabolic disorder (diabetes, dysthyroidism, NR) 11.1 0 11.1 11.1 0 11.1 0 0 0 0 0 33.3 44.4 0 11.1 44.4 11.1 0 22.2 

Mortality 4.17 17.7 0 0 1.04 0 1.04 2.08 0 0 0 17.7 55.2 8.33 4.17 54.2 5.21 17.7 2.08 

Musculoskeletal disorder 

(arthritis, low-back pain, NR) 
7.14 14.3 7.14 0 0 0 0 0 0 0 0 14.3 21.4 7.14 14.3 42.9 7.14 0 21.4 

Neurodegenerative disease 

(AD, ALS, MND, MS, PD, NR) 
6.06 0 0 0 3.03 6.06 0 0 12.1 6.06 0 21.2 48.5 6.06 0 36.4 0 9.09 3.03 

Sensory impairment 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 

Reproductive disorder 

(birth defects, infertility, spontaneous abortion, NR) 
0 28.6 14.3 0 0 7.14 7.14 0 7.14 0 0 7.14 35.7 7.14 0 64.3 0 7.14 0 

Respiratory disorder 

(allergy, asthma, COPD, pneumonia, sarcoidosis, 

NR) 

5.88 11.8 8.82 2.94 0 5.88 0 0 5.88 0 2.94 47.1 35.3 11.8 2.94 35.3 0 8.82 5.88 

Skin disorder (dermatitis, NR) 0 50 0 0 0 0 0 0 0 0 0 50 50 0 0 50 0 0 0 

Note: AD: Alzheimer’s disease, ALS: amyotrophic lateral sclerosis, Bio.: biological agent, Biomech.: biomechanical factor, BMI: body mass index, BP: blood 632 

pressure, Chem.: chemical agent, COPD: chronic obstructive pulmonary disease, IBD: inflammatory bowel disease, includ.: including, Inflam.: inflammation,  633 

Metabol.: metabolism, MND: motor neuron disease, MS: multiple sclerosis, NR: not reported, Occup.: occupation, OS: oxidative stress, PD: Parkinson’s disease, 634 

Phys.: physical agent, psy: psychological factor, RA: rheumatoid arthritis, SE: socio-economic factor. 635 
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Each cell refers to the number of times (in %) an exposome category-related keyword (e.g., chemical agent) was mentioned among all publications in which a 636 

health event category-related keyword (e.g., cancer) appeared. 637 
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Discussion 638 

 639 

Main findings 640 

This review provides the first comprehensive and objective synthesis of research on the use of AHDs to 641 

address health issues in farming populations. It identifies major contributors, key publications, and 642 

existing research gaps while also suggesting future directions for leveraging AHDs to study health issues 643 

in farming populations. Overall, findings indicate that only a small part of the exposome and a limited 644 

range of health events have been examined within farming populations through the reuse of AHDs. 645 

 646 

Current trends in AHD use for public health research in farming populations 647 

Research utilizing AHDs in farming populations has been predominantly conducted in developed 648 

countries [150,225], with the US (e.g., [172,223,227]), France (e.g., [207,222,224]), Canada (e.g., 649 

[145,186,195]), and Scandinavian nations (e.g., [182,189])—Denmark, Finland, Norway, and 650 

Sweden—leading the field. This dominance is linked to considerable funding from these regions and 651 

international collaborations. Scandinavian countries are particularly advanced in AHD use, offering 652 

databases that are highly complete, accessible, and well-integrated into public health research. AHDs 653 

from Denmark, Sweden, Canada, and France also provide comprehensive data on a patient’s digital 654 

trajectory within their respective health systems [93,98,104,108,113,115,128,247]. France stands out 655 

further, with an AHD dedicated specifically to the entire farming population (MSA). This may explain 656 

the frequent large-scale and long-term studies from these countries, some of which included over 100 657 

000 participants. However, many studies still had a regional focus, partly due to the use of AHDs by 658 

traditional epidemiological studies like AGRICAN [207] and AHS [172], which rely on limited 659 

resources [47-50,53,54,57]. These studies often used AHDs to identify farming populations for inclusion 660 

or to supplement cohort data. The international AGRICOH consortium, initiated by the US National 661 

Cancer Institute (NCI) and the International Agency for Research on Cancer (IARC), includes 11 of the 662 

29 cohorts identified in this review [150,225]. However, several cohorts in AGRICOH were not 663 

identified, potentially due to lack of publications, language barriers, or limited use of AHDs. There were 664 
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many publications associated with these well-established cohorts, for which many of the most prolific 665 

authors were working [172,182,189,207,222-227]. 666 

The most frequently used AHDs in farming population health research were disease registers followed 667 

by electronic health/medical records and insurance claims. More than two-thirds of the studies used 668 

disease registers, in particular cancer and mortality registers. This is not surprising since disease registers 669 

are created for clinical and research purposes with continuous, exhaustive, and optimal digital collection 670 

of individual data regarding one or more health events in a geographically defined population [53,105]. 671 

The coding systems and the granularity of information related to health outcomes, populations, and 672 

exposure determinants varied widely across studies. Most studies used AHDs to collect socio-673 

demographic and health event information (e.g., [222]).  674 

There was no consensus on the best methods or proxies to assess farming exposure. A variety of exposure 675 

proxies and determinants were used across studies, with indirect methods being the most common. Many 676 

studies dichotomized proxy, for example, classifying individuals as farmers or non-farmers or as 677 

pesticide-exposed versus non-exposed. In nearly two-thirds of the included studies, job title (i.e., “being 678 

a farmer”) served as the primary exposure proxy. About one-third of studies took into account specific 679 

farming activities (e.g., dairy farming, crop farming) to reflect the diversity of farming practices. This 680 

approach is a valuable proxy for agricultural exposure, offering a broader representation of the farming 681 

exposome, which involves multiple stressors beyond just pesticides [147,152,188,201,248,249]. 682 

Farming activity information was often derived from digitalized data, such as agricultural censuses or 683 

self-reported data from mandatory insurance enrollments [152]. Many studies combined AHDs with 684 

self-reported data (e.g., questionnaires) (e.g., [172,207]), which allowed for more comprehensive data 685 

collection but tended to restrict the scope to regional studies due to resource constraints. These studies 686 

typically yielded high-quality data, with more potential confounders considered compared to studies 687 

relying solely on AHDs. Most studies using self-reported data focused on single exposures, mainly 688 

pesticides, with only one addressing multi-exposure to pesticides [236]. Biological monitoring and 689 

airborne chemical sampling were rarely conducted, likely due to practical and financial constraints and 690 

the short half-lives of most pesticides [250]. Dermal chemical monitoring has not been reported, even 691 

though it is the main exposure route for pesticides [251]. The high number of studies investigating 692 
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exposure to pesticides may be explained by the fact that AHS focuses on pesticide applicators and their 693 

spouses [172] and because many pesticides have human adverse health effects such as neurotoxicity or 694 

endocrine disruption [252-256]. Beyond pesticides, farmers face exposure to other chemicals [257], such 695 

as air pollution, micro- and nanoplastics [258-263], as well as biological agents (e.g., endotoxins, 696 

zoonoses) [264-266], physical agents (e.g., UV radiation, noise, vibrations) [187,267], biomechanical 697 

factors (e.g., repetitive movements, heavy load, working posture) [198,268,269], and psychosocial 698 

stressors [270-274], which have been less studied than pesticides. Despite these multiple exposures, the 699 

broader farming exposome remains understudied. 700 

In addition to AHDs, some studies integrated other secondary data, such as climate data [187,275], air 701 

quality data [194,217], job-exposure matrices (JEMs) [212,276,277], or crop-exposure matrices [278]. 702 

JEMs provide exposure level estimates for various chemicals and stressors based on job categories 703 

[250,279]. Although JEMs can provide valuable exposure data, they often lack the specificity of 704 

individual-level data, making it difficult to account for task-specific risks, temporal variations, and the 705 

inclusion of specific worker subgroups like females [250,279-282]. The lack of a universal standard for 706 

JEMs further complicates their application, which may explain why many studies still rely on self-707 

reported data for more accurate exposure assessment, despite the risk of recall bias [250,279-282]. 708 

The health outcomes studied were predominantly cancer (e.g., [145,150,151,171-175,177-709 

179,182,183,185,189,190,196,207,210-212,223]), mortality (e.g., [173,186,194,195,202,205]), 710 

workplace injuries (e.g., [198,208]), respiratory disorders (e.g., asthma and COPD) (e.g., 711 

[151,180,181,213,224,226]), neurodegenerative diseases (e.g., Parkinson's disease) (e.g., 712 

[111,151,176,184,187,188,193,197,201,248,249,283]), and mental health issues (e.g., [151,244,273]), 713 

which represent focal points within the research field. This is not surprising because many well-714 

established cohorts centered on cancer research, in particular AGRICAN [207], CNAP [182] and 715 

NOCCA [189]. In addition, arsenic and inorganic arsenic compounds are classified as carcinogenic to 716 

humans by IARC [252,253,284], while malathion, glyphosate, diazinon, DDT and occupational 717 

exposures in spraying and application of non-arsenical insecticides are classified as probably 718 

carcinogenic to humans (group 2A), and several other pesticides are ranked as possibly carcinogenic to 719 

humans (group 2B), such as tetrachlorvinphos and parathion. Regarding mortality, it is often cancer and 720 
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suicide mortalities that are investigated [186,195,202,244]. Furthermore, several pesticides are 721 

neurotoxic [252,255], but existing studies focused mainly on Parkinson’s disease and multiple sclerosis, 722 

with a paucity of data on Alzheimer’s disease and other neurodegenerative diseases [147,283]. In 723 

contrast, certain areas, such as cardiovascular diseases (e.g., [151,194,203,227,285,286]), autoimmune 724 

disorders (e.g., [168,219,237]), musculoskeletal disorders (e.g., [192,204,245,287,288]), reproductive 725 

disorders (e.g., [242,289,290]), sleep disorders (e.g., [191]), aging-related conditions (e.g., [151,291]), 726 

hearing impairment [267,292], and the microbiome [8,293-298], remain underexplored, despite their 727 

potential relevance to farming populations. 728 

 729 

Challenges of reusing AHD for public health research in farming populations 730 

Each AHD presents unique advantages and limitations. For example, large sample sizes and a large 731 

number of available health events are strengths, while generalizability and the absence of key 732 

confounders are challenges [64,93,95,105,115]. Access to AHDs is frequently restricted by a variety of 733 

factors, including governance and technical barriers such as language, data structure, interoperability, 734 

and coding systems. Additional challenges stem from the type of AHD (e.g., insurance claims or cancer 735 

registers), inadequate documentation (e.g., absence of a data dictionary), limited accessibility due to 736 

costs or conditions, as well as jurisdictional and legal constraints [30,62,64,81,113,115]. Identifying the 737 

optimal AHD for a given research question is also complex, especially when considering the 738 

heterogeneity in coding systems and country-specific data structures. In countries like Scandinavia, 739 

Canada, and France, individual identifiers facilitate data linkage across multiple AHDs, enhancing 740 

research opportunities [93,104,113,115,128,247]. However, many AHDs are not research-ready and 741 

require significant processing, cleaning, and understanding before they can be analyzed 742 

[93,105,113,222,299]. Another major challenge is the long lag between data access, analysis, and 743 

research publication. On average, studies used data that were seven years old at the time of publication, 744 

largely due to delays in data access, administrative approvals, and the need to prepare complex datasets 745 

for analysis [223,300]. For instance, the TRACTOR project took two years to clean and prepare its 746 

dataset for research use [222]. These delays are compounded by the time required to conduct statistical 747 

analyses and prepare manuscripts for publication, as well as review and publication times (delay from 748 
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submission to acceptance and from acceptance to publication). Another limitation of AHDs is the lack 749 

of detailed exposure data. AHDs rarely include exposure information due to their administrative focus, 750 

requiring researchers to supplement with additional data sources, such as JEMs or self-reported data. 751 

When exposure information is recorded in AHDs, it is often too generalized, typically only reflecting 752 

broad job classifications, such as farming, without specifying detailed activities or stressors. There are 753 

some exceptions, such as MSA data, which captures a wider range of specific farming activities (e.g., 754 

dairy farming) [222]. However, exposure to specific stressors (e.g., chemical compounds) is largely 755 

absent from AHDs. 756 

The reference populations used in farming studies vary, which precludes direct comparisons and limits 757 

the generalizability of the findings. For example, AGRICAN used the general population as a reference 758 

[207], while TRACTOR used a farming population [152,168]. Studies also differ in their focus on 759 

specific farming populations, such as the entire agricultural workforce [207], farm managers [152], or 760 

pesticide applicators [172], which may lead to distinct exposure profiles that influence health outcomes 761 

because these farming populations have different socioeconomic status, experiences, and behaviors. 762 

Hence, to avoid or lessen bias, some studies focused on specific farming populations [152,172]. 763 

Moreover, the scope of farming populations included in studies is often limited, omitting subgroups like 764 

farm families, nearby residents, or consumers exposed to agricultural products, which limits the broader 765 

application of the findings. In addition, farming practices can vary significantly between countries and 766 

studies, and there is no international standardized classification for farming activities. In some cases, 767 

farming categories are derived from legal or administrative sources, as seen in the MSA data 768 

[152,168,283]. This lack of standardization limits the comparability and generalizability of findings 769 

across studies. In addition, the generalizability of the findings to other countries when using AHDs may 770 

be limited because of the differences in healthcare systems [93]. 771 

There are several well-known limitations of AHDs that complicate the investigation of health outcomes 772 

[301]. Health events captured in AHDs are typically limited to those requiring medical attention, which 773 

may not reflect the true incidence of diseases. Additionally, the level of detail varies across diseases, 774 

even within the same AHD [92]. Although diagnostic accuracy is generally higher in disease registers, 775 

these are often geographically limited and cover only a subset of health conditions. For example, in 776 
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France, cancer registers only cover 23 out of 96 administrative regions [155]. In addition, certain 777 

conditions, such as depression, are not covered by any registers. Identifying health outcomes in AHDs 778 

often requires complex algorithms that combine data from multiple sources, such as drug 779 

reimbursements, disease declarations, or medical procedures [104,105,128,152,302-304]. Additionally, 780 

inconsistencies in case definitions and algorithms across studies and countries hinder the ability to 781 

compare and pool risk estimates [104,302,304]. Some AHDs also lack critical clinical information, such 782 

as laboratory results and genetic data [115,128,305], and the recorded diagnosis or treatment date may 783 

not correspond to the actual onset of the disease. Furthermore, diagnosis codes are not always indicative 784 

of a confirmed diagnosis. 785 

 786 

Emerging opportunities and research needs 787 

While AHDs are well-utilized in certain countries, there are underexplored opportunities in regions like 788 

the UK, where AHDs exist but are underutilized for research [113]. For low- and middle-income 789 

countries, the development and access to AHDs remain limited, and international support is needed to 790 

expand this research infrastructure. As already reported [306], here is also a notable lack of sex-specific 791 

data, even though occupational exposures and health outcomes can vary significantly between sexes due 792 

to genetic, physiological, psychological, and behavioral factors [307-311]. Future research should 793 

address these disparities to provide a more comprehensive understanding of health risks in farming 794 

communities. Although there are inherent delays in using AHDs due to the time required for data 795 

generation, consolidation, and access, we advocate for the continued publication of studies, even those 796 

using older data. Historical data remain vital for better understanding long-term health trends, 797 

particularly for diseases like cancer, where tumor initiation can span decades [312,313]. Editors should 798 

encourage the publication of studies using older datasets, especially when addressing long-term health 799 

outcomes (e.g., cancer, neurodegenerative diseases) or when recent data are not available [312]. 800 

None of the analyzed AHDs fully adhere to the FAIR principles, possibly because most were developed 801 

prior to the establishment of these principles in 2016 [228-230]. Moreover, the assessment of AHD FAIR 802 

compliance relied solely on information presented in publications, which may not provide a 803 

comprehensive evaluation. Nevertheless, there is a critical need to advocate for the integration of FAIR 804 
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principles within AHDs to enhance public health research [228-230]. Currently, the landscape is 805 

favorable for data reuse, particularly with initiatives like the forthcoming European Health Data Space 806 

[314-316]. Data reuse extends beyond mere access; it encompasses data discovery, a fundamental aspect 807 

of FAIR that involves recognizing the existence of databases [228-230]. To facilitate this, the creation 808 

of data catalogs is essential [228]. Numerous data repositories, such as Re3Data [317], Zenodo [318], 809 

CANUE [319], Figshare [320], “Epidémiologie – France” [321], data.gouv [322], Dataverse [320], or 810 

Data Europa [320], already exist. In addition, specialized multidisciplinary open-access and peer-811 

reviewed journals like Scientific Data and Data in Brief publish datasets [318]. A dataset search can also 812 

be conducted using Google [323]. However, the documentation and access conditions for datasets can 813 

highly vary across inventories, complicating the selection process for researchers. The absence of 814 

indicators or scores for data reusability further hampers efforts to identify the most suitable datasets for 815 

specific research questions [45,69]. To our knowledge, no comprehensive catalog of AHDs currently 816 

exists to date. An online inventory of AHDs, modeled after existing resources like 817 

OccupationalCohorts.net [324], OccupationalExposureTools.net [325], and TEDI (Toxicological and 818 

Exposure Database Inventory) [10], could greatly enhance research endeavors. The motivation for 819 

analyzing AHDs often stems from the data they contain. Consequently, as data availability increases, 820 

researchers will be better positioned to formulate research questions and engage in a parallel process of 821 

“datagraphy” or “datagraphic search” akin to traditional bibliographic research. The objective of 822 

“datagraphy” would be to determine which datasets are best suited for addressing specific research 823 

questions, highlighting the need for accessible catalogs to support this goal. 824 

There is also an opportunity to integrate other secondary data, such as person-generated data (e.g., 825 

mobile health, social media, digital footprints, wearable sensors), contextual data (e.g., climate and air 826 

quality), and smart agriculture data [2,83,84,326-328]. These datasets, largely untapped in farming 827 

population research, could provide new insights into health outcomes and environmental exposures 828 

[101]. 829 

Nationwide studies using big data were a hotspot. AI, such as machine learning (ML), is particularly 830 

useful for analyzing big data and holds substantial promise for future research [329-331], particularly 831 

for identifying predictors of health outcomes in farming populations [332]. To date, AI has been 832 
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underutilized, with only two studies using it, one for identifying occupational injuries in agriculture 833 

[208] and one reviewing the development of chronic kidney disease risk prediction models [209]. 834 

Incorporating AI, along with cohort enrichment and interdisciplinary expert interpretation, could open 835 

new avenues for research. 836 

Many studies continue to examine agriculture as a broad category, highlighting the need for more 837 

detailed investigations into specific farming activities and tasks [147,152,188,201,248,249]. Our 838 

analysis reveals major research gaps in understanding environmental and occupational exposures among 839 

farming populations, particularly with regard to emerging concerns like PFAS, biological agents, 840 

micro/nanoplastics, and the impact of climate change. Climate change is a critical issue for agriculture, 841 

as it may drive shifts in pests, diseases, and farming practices [274,333-339]. Parental exposure appears 842 

to be a theme that will soon become a hot topic. Further research is also needed to explore the farming 843 

exposome, particularly focusing on the “mixture effects” of multiple simultaneous exposures [340,341]. 844 

Omics data, which has not been utilized in farming population studies to date, represents a promising 845 

avenue for future research since genetics and metabolism were found to be a niche theme. Omics data 846 

refers to the large-scale datasets generated from various omics technologies that analyze biological 847 

molecules (e.g., genomics, transcriptomics, proteomics, metabolomics), which provide comprehensive 848 

insights into different biological layers and processes [11,342,343]. 849 

To enhance the characterization of farming exposome research using keyword analysis, there is a 850 

pressing need for standardized keyword reporting. We advocate for the development of a standardized 851 

approach to reporting keywords in scientific journals, including defining a minimum set of information 852 

(e.g., study type, health outcome, population studied, data sources, positive/negative/null associations) 853 

and adopting a list of standardized terms. Though challenging, this approach would improve literature 854 

searches, make data more comparable and FAIR [228-230], and lead to more efficient, frugal (less time 855 

and energy spent to identify relevant information) and accurate synthesis of the scientific literature, such 856 

as in reviews and bibliometric analyses. 857 

The prominence of topics such as cancer, neurodegenerative diseases, mortality, injuries, and mental 858 

health issues underscores the need for targeted prevention strategies. The thematic map analysis 859 

indicates that reproductive disorders (e.g., birth defects, endometriosis, infertility) are on the verge of 860 
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becoming a central research focus. Emerging and understudied health conditions, including ocular 861 

disorders, autoimmune diseases (e.g., inflammatory bowel disease, rheumatoid arthritis), sleep disorders 862 

(e.g., sleep apnea), cardiovascular diseases, and musculoskeletal conditions (e.g., low back pain), 863 

warrant increased attention and further research. Aging-related health issues such as frailty also 864 

represent promising avenues for future research, particularly given the growing aging population and 865 

associated healthcare challenges [24]. 866 

 867 

Limitations 868 

The findings of this review should be considered in view of their limitations. Because of time and 869 

resource constraints, a single screening approach was used, with only one author (PP) conducting the 870 

review and bibliometric analysis. While single screening is an efficient use of time and resources, there 871 

is a higher risk of missing relevant studies than when using dual screening [344,345]. However, when 872 

completed by an experienced reviewer familiar with the research topic, the proportion of missed studies 873 

is limited and estimated to be around 3% [344]. Therefore, we cannot exclude the possibility that some 874 

studies may have been missed. Nevertheless, we are confident that none of these methodological 875 

limitations would change the overall conclusions of this work. Our restriction on articles published in 876 

English and French may have inadvertently excluded potential relevant publications. We cannot exclude 877 

the possibility that publications using AHDs for addressing health issues in farming populations may 878 

have been missed if there was no mention of AHD in the publications’ titles and abstracts. However, it 879 

is important to mention that our search strategy was similar to recent reviews that specifically examined 880 

the use of AHDs for population-based research [93,96,103,104]. We further broadened our search by 881 

including synonyms to improve the comprehensiveness of our literature search. Some details and 882 

specificities on the AHDs and other digital data used may be limited since only information reported in 883 

each study was used. Shortcomings inherent to bibliometric analysis cannot be excluded. Some authors 884 

may have duplicate names, and namesakes could exist. This limitation could not be prevented as a unique 885 

author identifier (e.g., ORCID number) was not available. Self-citation could not be identified. 886 

While our keyword analysis helped map the farming exposome in AHD-based public health research, 887 

this profile is incomplete and potentially biased. Because our review focused on AHD-based studies, we 888 
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likely missed relevant epidemiological studies not using AHDs, leaving gaps in our understanding of 889 

the full farming exposome across public health. Additionally, the variability in keyword reporting 890 

practices across journals introduced bias into our keyword analysis. Some journals limit the number of 891 

keywords, and the lack of standardized keyword ontologies adds further variability. To mitigate this bias, 892 

we manually harmonized the keywords (e.g., use of one unique term for a given entity). While this 893 

approach is time-consuming, it allows for a more accurate analysis. For instance, if this approach was 894 

not performed, the same entity could be designated by various terms that would have been considered 895 

separate entities/terms, potentially resulting in underestimates (e.g., in the number of publications). 896 

Despite these challenges, the findings from our scoping review were consistent with the keyword 897 

analysis. 898 

Notwithstanding the aforementioned limitations, most of which are inherent to all scoping reviews and 899 

bibliometric analyses [93,96,103,104,158-160], we are confident that our findings can provide a 900 

comprehensive picture of what has been published until now (the current state of research and general 901 

trends) regarding the use of AHDs for addressing health issues in farming populations. This study may 902 

lay the groundwork for researchers to quickly identify research priorities and emerging research trends 903 

investigating health issues in farming populations using AHDs. 904 

 905 

Conclusions 906 

Technological advancements have greatly increased the volume of research data available, positioning 907 

AHDs as critical resources for population-based public health studies [41]. Our review underscores the 908 

broad public health implications of AHDs, providing actionable insights for researchers, physicians, and 909 

policymakers (Textbox 2). Addressing the identified research gaps is crucial to comprehensively 910 

understanding health risks in farming populations. 911 

 912 

 913 

 914 

 915 

 916 
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 917 

Textbox 2. Take-home messages. 918 

Farming population 919 

Research focusing on low- and middle-income countries, as well as on underrepresented subgroups within farming 920 

communities (e.g., females, children, and contingent workers), remains insufficiently developed. These areas warrant further 921 

investigation to ensure more comprehensive insights. 922 

 923 

AHD use  924 

The use of AHDs in public health research among farming populations is expanding, offering major potential to enhance 925 

epidemiological studies and inform public health decisions. Promoting AHD-based research, alongside the integration of other 926 

secondary data and AI approaches, represents a promising direction for future exploration. There is also a need to promote 927 

FAIR principles. Creating an AHD catalog/inventory could be a solution that would allow researchers to conduct “datagraphic 928 

search” akin to traditional bibliographic research. 929 

 930 

Farming exposure 931 

Published studies on farming-related exposures often rely on broad proxies like job titles, neglecting to capture the nuances of 932 

specific agricultural tasks. While pesticide exposure remains a predominant research focus, emerging concerns such as PFAS, 933 

biological agents, micro/nanoplastics, and the effects of climate change require urgent attention. The farming exposome remains 934 

underexplored, despite its potential to uncover important associations between risk factors and a diverse range of health 935 

outcomes. 936 

 937 

Health outcomes 938 

Cancer, respiratory diseases, neurodegenerative disorders, and mental health issues are among the most frequently studied 939 

health outcomes in farming populations. However, significant gaps exist in understanding other critical conditions such as 940 

cardiovascular diseases, reproductive disorders, ocular conditions, autoimmune diseases, musculoskeletal disorders, age-941 

related health issues, and microbiome impacts. Addressing these overlooked areas is essential for a more complete 942 

understanding of the health risks faced by farming communities. 943 

 944 

The insights derived from AHDs can inform meaningful recommendations for policymakers and guide 945 

future research directions, ultimately aiding health services and health policy development. Our findings 946 

underscore the necessity of comprehensive, interdisciplinary approaches to better understand and 947 

mitigate the health risks encountered by farming populations. Such efforts will improve data 948 
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comparability and research quality while also supporting the formulation of targeted prevention 949 

strategies. This, in turn, will enhance health outcomes for farming populations and promote the 950 

sustainability of agriculture in an increasingly dynamic environment. The findings from this review offer 951 

insights that are not only relevant to farming populations but also potentially generalizable to other 952 

populations.   953 
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