
HAL Id: hal-04848262
https://hal.science/hal-04848262v1

Submitted on 20 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Graph Neural Networks with maximal independent
set-based pooling: Mitigating over-smoothing and

over-squashing
Stevan Stanovic, Benoit Gaüzère, Luc Brun

To cite this version:
Stevan Stanovic, Benoit Gaüzère, Luc Brun. Graph Neural Networks with maximal independent set-
based pooling: Mitigating over-smoothing and over-squashing. Pattern Recognition Letters, 2025,
187, pp.14-20. �10.1016/j.patrec.2024.11.004�. �hal-04848262�

https://hal.science/hal-04848262v1
https://hal.archives-ouvertes.fr

Graph Neural Networks with Maximal Independent Set-Based
Pooling: Mitigating Over-smoothing and Over-squashing

Stevan Stanovic1, Benoit Gaüzère2, and Luc Brun1

1Normandie Univ, ENSICAEN, CNRS, UNICAEN, GREYC UMR 6072,14000 Caen, France
2INSA Rouen Normandie, Univ Rouen Normandie, Université Le Havre Normandie, Normandie

Univ, LITIS UR 4108,F-76000 Rouen, France

Abstract
Graph Neural Networks (GNNs) have significantly
advanced graph-level prediction tasks by utilizing
efficient convolution and pooling techniques. However,
traditional pooling methods in GNNs often fail to preserve
key properties, leading to challenges such as graph
disconnection, low decimation ratios, and substantial
data loss. In this paper, we introduce three novel
pooling methods based on Maximal Independent Sets
(MIS) to address these issues. Additionally, we provide
a theoretical and empirical study on the impact of
these pooling methods on over-smoothing and over-
squashing phenomena. Our experimental results not only
confirm the effectiveness of using maximal independent
sets to define pooling operations but also demonstrate
their crucial role in mitigating over-smoothing and over-
squashing.

1 Introduction
Graph Neural Networks (GNNs) (Scarselli et al. (2009))
are inspired by Convolutional Neural Networks (CNNs)
and aim to apply representation learning to graphs. At
the core of CNNs are convolution and pooling operations.
Adapting these operations to graphs requires addressing
unique challenges, such as the variable number of nodes,
node order permutations, and structural irregularities.

In GNNs, convolution is primarily carried out through a
message-passing scheme (MPNN) (Gilmer et al. (2017)),

where the new representation of each node is computed
by aggregating features from neighboring nodes in a
permutation-invariant manner (Kipf & Welling (2017)).
Similar to CNNs, pooling operations (Lee et al. (2019))
reduce the size of a graph or compress the entire graph
into a vector (global pooling) after which a Multi-Layer
Perceptron (MLP) makes the final decision.

Despite achieving state-of-the-art results on numerous
graph prediction datasets, GNNs still suffer from
phenomena like over-squashing and over-smoothing,
which limit their predictive abilities, especially when
layers are stacked. Over-smoothing (Rusch et al. (2023a))
occurs when node representations become increasingly
indistinguishable. Over-squashing (Giovanni et al.
(2024); Topping et al. (2022)) arises when long-
range information is compressed, potentially leading to
significant information loss. These issues are primarily
caused by the convolution operation.

After reviewing related works and introducing key
concepts in Section 2, we analyze the impact of
graph pooling operations on over-smoothing and over-
squashing in Section 3. We theoretically and empirically
demonstrate that constrained pooling operators can
mitigate these phenomena. Based on these findings, we
propose several graph pooling approaches using Maximal
Independent Sets (MIS) in Section 4. Insights into
these methods, in comparison to baselines and state-of-
the-art techniques, are explored in Section 5 on graph
classification tasks.

This article extends Stanovic et al. (2023b) and

1

Stanovic et al. (2023a). In addition to the previous
contributions, this work further explores the connections
between pooling and over-squashing/over-smoothing
from both theoretical (Section 3) and experimental
(Sections 5.1 and 5.2) perspectives. Furthermore, we also
provide new experiments measuring the impact of pooling
on graph classification.

2 Related works
A GNN is a function that maps an input graph G(0)

to an output graph G(N) by transforming the graph
representation layer by layer. This process is typically
followed by a decision network d : G(N) → y,
which performs the task-specific decision. As a result,
a GNN generates a series of graph representations
(G(0), . . . ,G(N)). At a layer l, G(l) is derived from G(l−1)

and is defined as G(l) = (V(l), E(l)), where V(l) and
E(l) correspond respectively to the set of vertices and
the set of edges. Similarly, G(l) can be expressed as
G(l) = (A(l),X(l)) where A(l) ∈ Rnl×nl is the weighted
adjacency matrix, nl = |V(l)| and X(l) ∈ Rnl×fl

encodes the vertices’ features, with fl the dimension of
the features. Given a row u in X(l), we denote by x

(l)
u

the attributes of the vertex u ∈ V(l). On one hand,
convolution operations don’t modify V(l) and E(l) but
update feature matrices X(l). On the other hand, pooling
operations aim to reduce the number of nodes and we
assume that the sequence of node sets V(0), . . . ,V(N) is
nested: V(N) ⊂ V(N−1) ⊂ · · · ⊂ V(0). The set of
neighbors of a node v of G(l) is denoted by Nl(v). The
distance between two nodes in graph G(l) is denoted by
dGl

(u, v) and corresponds to the length of the shortest
path between u and v in G(l). This notion is extended
to the distance between two sets A and B contained in
V(l), denoted as dGl

(A,B).
Considering the final graph G(N) of a GNN, node

prediction can be achieved by applying a MLP on each
node while graph-level prediction models require first a
permutation-invariant readout operator (sum, max, mean)
to collapse the set of nodes into a fixed-size vector before
applying a MLP.

Graph convolution The graph convolution operation
is generally formalized using a MPNN (Gilmer et al.

(2017)). Let’s define a diffusion matrix C(l) that encodes
the set of nodes sending messages to each node in G(l),
a non-linear, element-wise activation function σ, and
a learnable matrix W(l). By restricting the messages
to node representations and defining the aggregation
function as a sum, a MPNN can be expressed as:

X(l+1) = σ(C(l)X(l)W(l)) (1)

The matrix C(l) is known as a graph shift operator
(GSO) (Dasoulas et al., 2021). A matrix C(l) is a GSO
if and only if C(l)

ij = 0 for i ̸= j and (i, j) ̸∈ E(l).

Graph pooling To ensure a graph-level predictive
model, a GNN needs to condense the entire graph into a
fixed-size vector in a permutation-invariant manner. This
operation, known as readout or global pooling, can be
defined using basic statistics (sum, mean, maximum) or
more intricate methods (Zhang et al., 2018). Applying
global pooling thus summarizes a sophisticated graph
representation into a simple vector, which leads to an
inherent loss of information. To mitigate this loss,
hierarchical pooling computes a gradual reduction in the
size of the input graph. Moreover, using a convolution
operation as a low-pass filter results in storing a reduced
amount of information on the same set of nodes. This
information redundancy can be counterbalanced by using
hierarchical pooling (Lee et al., 2019; Ying et al., 2018).

Consider a graph G(l) = (A(l),X(l)), and its pooled
equivalent G(l+1) = (A(l+1),X(l+1)), the relationship
between them can be expressed using the reduction matrix
S(l) ∈ Rnl×nl+1 , where nl represents the size of G(l)

and nl+1 represents the size of G(l+1). S(l)(i, j) ̸= 0
indicates the association between node vi ∈ V(l) to the
node vj ∈ V(l+1). Given S(l), most of pooling methods
express the feature and adjacency matrices X(l+1) and
A(l+1) of G(l+1) as:

X(l+1) = S(l) ⊤X(l) (2)

A(l+1) = S(l) ⊤A(l)S(l) (3)

Eq. 2 defines the feature vector associated with each
surviving vertex vi as a weighted sum of the features of
the vertices vj ∈ V(l), for which S

(l)
j,i ̸= 0. From Eq. 3,

we get A(l+1)
i,j =

∑nl

r,s A
(l)
r,sS

(l)
r,iS

(l)
s,j . Hence, if S(l) is a

2

binary matrix, two surviving vertices i and j are adjacent
in the reduced graph if there are at least two adjacent non-
surviving nodes r and s, where r merges to i (S(l)

r,i = 1)

and s merges to j (S(l)
s,j = 1).

Graph pooling methods can be roughly divided into two
main families: cluster-based and node-drop approaches.
Cluster-based pooling methods (Ying et al., 2018) define
S(l) as a cluster assignment matrix. Generally, the number
of clusters is defined a priori, which prevents adapting
the pooling step to the size of input graphs. When S(l)

encodes a fuzzy clustering, these methods often result
in dense or even complete graphs, hence limiting the
relevance of structural information.

An alternative strategy involves selecting a set of
nodes to survive to the next layer. Such methods
are known as Top-k or node-drop methods (Gao & Ji,
2019). The selection can be based on a learned score
associated with each node, where the k nodes with the
highest scores are selected for the next layer. In Gao
& Ji (2019), unselected nodes are dropped, resulting in
information loss and potentially leading to disconnected
graphs G(l+1). Recently, to address these issues, another
strategy was proposed by Stanovic et al. (2023b) and
Bacciu et al. (2023). This strategy conditions the selection
of surviving nodes on satisfying a Maximal Independent
Set (MIS) condition. An MIS on nodes of a graph
G(l) = (V(l), E(l)) is a subset M ⊂ V(l), where no two
nodes in M are adjacent, and every node in V(l) \ M is
adjacent to at least one node in M . First condition allows
to guarantee a well-distributed sampling of surviving
nodes while the second condition ensures that G(l+1) is
connected. A related but alternative strategy, proposed
by EdgePool (Diehl et al., 2019), involves selecting edges
rather than nodes.

Over-smoothing Over-smoothing refers to the
phenomenon where node representations converge
to vectors whose values are independent of initial node
features. Over-smoothing can be measured by the mean
Dirichlet energy (Rusch et al., 2023a), defined for graph
G(l) as E(X(l)) = Tr((X(l))TLX(l))/|G(l)| where L is
the Laplacian associated with C(l) (Eq. 1). This measure
evaluates the discrepancy between adjacent nodes in the
graph. A low Dirichlet energy can be reached when
stacking convolutional layers. As a consequence, nodes

must encode the information associated with large and
overlapping sets of nodes in the initial graph. When the
convolutional layers act as low pass filters (Balcilar et al.,
2021) such as GCN, the resulting node representations
provide only a basic representation of the topology
of the graph. More specifically, Li et al. (2018) have
shown that, using the Kipf & Welling (2017) convolution
scheme, that this type of convolution operation can be
viewed as a special form of Laplacian smoothing which
converges to a linear combination involving the square
root of the node degree. Recently, several solutions have
been proposed to mitigate over-smoothing in GNNs. For
instance, GCNII (Chen et al. (2020)) employs initial
residual connections and adaptive feature control to
preserve the original features of nodes throughout the
layers. Another approach, GraphCON-GNN (Rusch et al.
(2022)) utilizes a dynamic system inspired by oscillators,
where neighboring nodes influence each other without
leading to complete homogeneity of their representations.
Lastly, G2-GNN (Rusch et al. (2023b)) introduces a
gradient-based gating mechanism that dynamically
regulates information flow.

Over-squashing Over-squashing is defined as the
GNN’s inability to transfer information between two
distant nodes. However, as the depth of the
network increases the size of receptive fields increases
exponentially, causing distant node information to be
squashed by information from other nodes. The distance
between nodes can be measured by their commute times.
Giovanni et al. (2024) proved that higher commute times
lead to greater over-squashing. These commute times,
or more generally communication between nodes, may
be significantly influenced by bottlenecks in the graph,
which are related to the negative curvature of the graph
structure (Topping et al., 2022). Recent methods, based
on curvature, have been proposed to address both over-
smoothing and over-squashing issues (Fesser & Weber,
2024).

3

3 Over-smoothing and over-
squashing in graph pooling

Consider a sequence of graphs G(0), . . . ,G(N) produced
by a GNN. For a given layer l and a graph G(l) =
(V(l), E(l)) we define the reduction window of v ∈ V(l),
denoted RW (l)(v), as the set of vertices in V(l−1) used
to compute the feature of v at layer l. Additionally, we
assume that for any v ∈ V(l), v ∈ RW (l)(v) and that
reduction windows constrain the reduced graph as follows
for any u, v in V(l):

dGl−1
(RW (l)(u), RW (l)(v)) ≤ 1 ⇔ u ∈ Nl(v)

In other words, two adjacent or overlapping reduction
windows at layer l − 1 induce adjacent vertices at layer
l, and vice versa.

This definition creates a parent-child relationship
between v ∈ V(l) and its corresponding nodes in
RW (l)(v). The transitive closure of these relationships
connects any layer with the base-level graph and is
referred to as a receptive field:

Definition 1 Let G(0), . . . ,G(N) denote a sequence of
reduced graphs. The receptive fields at level l are defined
for any vertex v ∈ V(l) as:

RF (l)(v) =
⋃

u∈RW (l)(v)

RF (l−1)(u)

with RF (1)(u) = RW (1)(u)

If G(0), . . . ,G(N) is built using only pooling operations
(see Eq. 2 and 3), we can ensure that the set of reduction
windows defined at each layer l forms a partition of
V(l−1) by ensuring that each row of S(l) contains exactly
one non-zero value. This leads to the following result
(see, e.g., Jolion & Montanvert (1992)):

Remark 1 If the set of reduction windows computed at
any level l forms a partition of V(l−1), then the set of
receptive fields forms a partition of V(0).

Note that the above hypothesis can be weakened: If
the set of reduction windows are disjoint at all levels,
then the associated receptive fields are also disjoint. In
such cases, the features of vertices defined at level l

are computed on disjoint supports, and over-smoothing
is unlikely unless the features of vertices are strongly
correlated (e.g., uniform) in the base-level graph.

In classical GNNs, the sequence of graphs is built using
graph convolutions with overlapping reduction windows.
However, if we assume that the sequence G(0), . . . ,G(N)

is built by alternating a GSO with a pooling operation
based on a Top-k approach (Section 2), we can still define
reduction windows as the neighborhoods augmented with
the central vertex. In this case, we have the following
result (see Brun (2023), Proposition 7):

Proposition 1 Given a sequence of reduced graphs
G(0), . . . ,G(N) built by alternating one-hop GSO
convolutions with Top-k poolings, we have the following
property: At any level, two vertices are non adjacent if
and only if their associated receptive fields are disjoint
and non-adjacent.

This property is weaker than Remark 1. However,
it shows that by alternating convolution and pooling
operations, we obtain vertices computed on disjoint
supports at each layer, as long as the reduced graph is not
complete. Over-smoothing is also attenuated in this case.

We proposed in Stanovic et al. (2023a,b) different
strategies for defining a graph hierarchy. Reduction
windows produced by these strategies satisfy the
following conditions at any layer l and for any vertex
w ∈ V(l):{

RW (l)(w) = {w} or
RW (l)(w) = {w, v1, . . . , vn} with ∀i, dGl−1

(w, vi) = 1
(4)

where dGl−1
(., .) denotes the distance within the graph

G(l−1).
As mentioned in Section 2, over-squashing is related to

the number of layers needed to combine information from
two distant vertices. When using only pooling operations,
this number of layers corresponds to the layer at which
two given vertices can be merged into a single receptive
field (Brun, 2023):

Proposition 2 For a decimation scheme that satisfies
Eq. 4 we have for any vertex w surviving at level l in the
hierarchy:

∀(u, v) ∈ RF (l)(w)
2

dG0(u, v) ≤ 2 ∗ 3l − 1

4

According to Proposition 2, two vertices u and v
cannot be merged into a single receptive field before

reaching level m ≥ log3

(
dG0 (u,v)+1

2

)
. Furthermore,

under the assumption that pooling operations shrink all
distances, it can be shown (Brun, 2023) that m =
O(log3(dG0

(u, v))). Thus, the number of layers required
to connect two vertices is proportional to the logarithm of
their distance. This contrasts with scenarios using only
convolution operations, where the required number of
layers increases linearly with distance. The effect of over-
squashing induced by a too important number of layers is
thus strongly attenuated.

When combining convolution and pooling operations,
two non-adjacent vertices have disjoint receptive fields
(Proposition 1). Therefore, two vertices can merge their
values at layer m only if they are represented at this
layer either by a single vertex (indicating they belong
to the same receptive field) or by two adjacent vertices.
In the first scenario, an upper bound on m is provided
by Proposition 2. In the second scenario, two adjacent
vertices at layer m have either adjacent or overlapping
receptive fields in G(0) (Proposition 1). Consequently,
the distance between these two vertices is bounded by
twice the upper bound from Proposition 2 and we obtain

m ≥ log3

(
dG0

(u,v)+2

4

)
. Thus, using a combination

of convolution and pooling operations leads to similar
conclusions regarding over-squashing as those derived
from using pooling operations alone.

4 Maximal Independent Sets and
Graph Poolings

We consider a finite set X with a corresponding
neighborhood function N defined on X such that
each element of X is its own neighbor. A Maximal
Independent Set (MIS) is a subset J ⊂ X that satisfies
the following two conditions:

∀(x, y) ∈ J 2 : x /∈ N (y) (5)
∀x ∈ X − J ,∃y ∈ J : x ∈ N (y) (6)

The elements of J are referred to as surviving elements
or survivors. Eq. 5 specifies that two adjacent elements

cannot both be selected (or survive) at the same
time. Eq. 6 guarantees that at least one surviving
element exists in the neighborhood of each non-surviving
element. From a subsampling perspective, Eq. 5 and 6
prevent both oversampling and undersampling, ensuring
a uniform distribution of surviving elements throughout
the structure.

A MIS can be computed using the Meer’s parallel
algorithm (Meer (1989)). In Meer’s algorithm, a specific
value vx is assigned to each element x within the set
X . If J denotes a current independent set of X , Meer’s
algorithm iterates over the set X − N (J), where N (J)
denotes the neighbors of J , until the independent set
becomes maximal. More precisely, for each iteration
a vertex x is added to J iff vx is maximum among
x’s neighbors not in N (J). The algorithm concludes
when it is no longer possible to add any remaining nodes
to J without violating Eq. 5 and 6. By construction,
each element of J represents a local maximum at a
particular iteration. Consequently, the final set produced
by the algorithm can be interpreted as a maximal weight
independent set.

Given a graph G = (V, E), if we set X = V and
N (x) equals to the neighborhood of vertex x in G, Meer’s
algorithm produces a maximal independent vertex set. If
we set X = E , and N (e) equals to the set of edges
incident to one of the two nodes of e ∈ E , Meer’s
algorithm produces a maximal matching of G.

4.1 Maximal Independent Sets for Graph
Pooling

In Stanovic et al. (2023b), we introduced MIVSPool, a
pooling method based on a Maximal Independent Set
(MIS) defined on the graph’s vertex set. A similar
method was proposed by Bacciu et al. (2023), using
a MIS computed on the k-hops neighborhood of G(l).
These methods assign a learnable projection score to
each vertex to select the most relevant ones for a
specific task. However, if two adjacent vertices have
identical scores, the selection becomes indeterminate. An
alternative strategy is to merge similar nodes, reducing
information loss from combining dissimilar vertices.
Drawing from Haxhimusa (2007), we recall three edge-
based learnable pooling methods from Stanovic et al.

5

(2023a), where A(l+1) is obtained using Eq. 3.

Maximal Independent Edge Set (MIES) Since each
level of a hierarchical pooling represents a level of
abstraction from the initial graph, we define the similarity
score between two vertices x

(l)
u and x

(l)
v at level l as:

s
(l)
uv = exp(−∥W(l) · (x(l)

u − x
(l)
u)∥2) where W(l) is

a learnable matrix. The MIES then corresponds to a
maximal weight matching computed on G(l) using this
score. The resulting set of edges is denoted J (l). This
method, denoted MIESPool, can be viewed as a parallel
version of EdgePool (Diehl et al. (2019)), utilizing non-
oriented edges. Additionally, Landolfi (2022) proposed
another parallel version of EdgePool.

Maximal Independent Edge Set with Cut (MIESCut)
: The MIES method has two main drawbacks: First, many
vertices that are not adjacent to J (l) may be duplicated
in the subsequent layer, resulting in a low decimation
ratio (less than 50%). This does not ensure adequate
abstraction at the final layer when a fixed number of
layers is used. Second, the size of a maximal matching
is typically much smaller than the edge set, and the
attributes of the reduced graph are computed solely using
the scores of the selected edges (see below). This
limitation reduces the number of scores available for
back-propagation, consequently diminishing the quality
of the learned similarity measures.

Let J (l) denote the maximal weighted matching at
layer l. Each vertex that is not incident to J (l) is adjacent
to at least one vertex that is. To increase the decimation
ratio, we associate isolated vertices with contracted ones
by selecting, for each isolated vertex u, an edge euv where
suv is maximal and v is incident to J (l). This results in a
spanning forest of G(l), consisting of isolated edges, stars
(trees of depth one with a central vertex), and paths of
length 3. The latter represents sequences of four vertices
that exhibit strong similarities to their adjacent vertices
along the paths. In such a configuration, we cannot elect
a surviving vertex such that the three remaining non-
surviving vertices are directly adjacent to it. To satisfy the
constraints stated in Eq. 4, we discard the middle edge of
such paths from J (l), thereby creating two isolated edges.

Attribute updates using MIES and MIESCut At each
layer l, MIES and MIESCut define a spanning forest J (l)

of G(l) composed of: isolated vertices (only for MIES),
isolated edges, and stars (only for MIESCut). After the
contraction of J (l), the vertex attributes of G(l+1) are
updated as follows:

• For isolated vertices: The attributes defined at level l
are simply duplicated at level l + 1.

• For an isolated edge euv: Both u and v play a
symmetric role, and we arbitrarily assume that u
survives at the next layer. Its features are set to
x
(l+1)
u = s

(l)
uvx

(l)
uv where:

x(l)
uv = (x(l)

u + x(l)
v) / 2 (7)

Note that Eq. 7 preserves the symmetry between u
and v.

• For the center u of a star: We generalize Eq. 7 and
set the new attribute of u as the sum of the attributes
associated with each selected edge incident to u.
This sum is normalized by the total of the similarity
scores of all selected edges incident to u:

x(l+1)
u =

1∑
v|euv∈J (l) s

(l)
uv

∑
v|euv∈J (l)

s(l)uvx
(l)
uv (8)

Maximal Independent Directed Edge Set (MIDES)
MIESCut performs three operations: the computation of
a maximal weight matching, the assignment of nodes
not incident to a selected edge, and the splitting of
paths of length 3 into two isolated edges. Instead of
these three steps, we propose to adopt the Maximal
Independent Directed Edge Set (MIDES) reduction
scheme as suggested in Haxhimusa (2007). This
reduction scheme allows us avoid the splitting of paths of
length 3. To do this, we need to consider oriented edges
and split an edge euv into two: eu→v and ev→u. At layer
l, for each eu→v ∈ E(l), their neighborhood corresponds
to every edge either leaving u or v or arriving at u. More
formally, the neighborhood of G(l) is defined as:

N (l)(eu→v) = {eu→v′ ∈ E(l)}∪{ev→v′ ∈ E(l)}∪{ev′→u ∈ E(l)}
(9)

If we compare the neighborhoods of (9) and that of
MIES, the major difference is that MIDES excludes

6

edges heading towards v in its neighborhood, leading to
an asymmetry in selection and therefore creating stars
centered on v. Indeed, computing a MIS on a directed
edge set with the particular neighborhood of (9) is one of
the two main principles of the MIDES algorithm.

Like our two previous methods, we assign a score to
each oriented edge. We set s(l)uv = exp(−∥W(l) · (x(l)

u −
x
(l)
v) + b(l)∥), where b(l) is a bias term that introduces

asymmetry, such that s(l)uv ̸= s
(l)
vu if x(l)

u ̸= x
(l)
v .

Let us consider the set of directed edges D(l) generated
through the application of a MIDES on G(l) using our
score. This set establishes a spanning forest on G(l),
comprising isolated nodes, isolated edges, and stars.

• For isolated vertices: As in MIES, the features of
such vertices are copied.

• For an isolated directed edge ev→u ∈ D(l): We
choose u as the survivor and update its features as
follows:

x(l+1)
u =

s
(l)
vu · x(l)

u + s
(l)
uv · x(l)

v

s
(l)
uv + s

(l)
vu

(10)

Given ev→u ∈ D(l), we notice that s
(l)
vu > s

(l)
uv ,

implying that more importance is assigned to the
surviving node u. This update can be viewed as an
extension of Eq. 7 using the asymmetric scores s

(l)
uv

and s
(l)
vu.

• For a star centered on u: We extend the method used
for isolated edges and define the feature of u as the
mean value of its incident selected edges:

x(l+1)
u =

1

N

∑
v|ev→u∈D(l)

s
(l)
uvx

(l)
v + s

(l)
vux

(l)
u

s
(l)
uv + s

(l)
vu

(11)

with N = |{v ∈ V(l) | ev→u ∈ D(l)|.

Let us note that the attribute updates of MIVS, MIES,
MIESCut, and MIDES can be performed in parallel using
Eq.2 through an appropriate setting of the matrix S(l)

(Stanovic et al. (2023b,a)).

0 25 50 75 100 125 150 175 200
Diameter of a linear graph

2

4

6

8

N
u
m

b
e
r

o
f

la
y
e
rs

 n
e
e
d

e
d

GCN + MIES

GCN + MIDES

GCN + MIVS

GCN + MIESCut

MIES

MIDES

MIVS

MIESCut

Figure 1: Number of layers required to combine features
of distant vertices.

5 Experiments

5.1 Over-squashing

To measure the over-squashing phenomenon in GNNs
based on convolution and/or pooling operations, we
generate linear graphs with varying diameters. We assign
the features (1, 0) and (0, 1) to the two degree-1 vertices,
while all other vertices are set to (0, 0). Our goal is to
observe the number of layers required for a vertex to have
both non-null features (with a threshold set at 10−5)

We consider the following methods: GCN convolution
(Kipf & Welling (2017)), MIVSPool (Stanovic et al.
(2023b)), MIESPool, MIESCutPool, and MIDESPool
(Section 4), as well as alternating GCN convolution
and pooling (GCN+MIESPool, GCN+MIVSPool,
GCN+MIESCutPool, and GCN+MIDESPool). Note
that Top-k methods, which discard non-selected vertices
(Section 2), may eliminate one of the degree-1 vertices,
thereby preventing feature combination. Dense pooling
methods (e.g., Ying et al. (2018)) create a complete
graph, thereby providing such a vertex at the first pooling
layer.

The number of layers required for GCN to combine
the features of degree-1 vertices is not shown in Fig. 1 to
avoid overwhelming other curves. However, we observe
a linear relationship between the required number of
layers and the graph diameter. For all other methods, the
logarithmic relationship between node distance and the
required layers, as stated in Section 3, is confirmed.

7

0.0 0.2 0.4 0.6 0.8 1.0
Average size of receptive fields

5

4

3

2

1

0

1

D
ir

ic
h
le

t
e
n
e
rg

y
 (

lo
g

1
0

 s
ca

le
)

GCN

Diffpool

MIES

MIDES

MIESCut

MIVS

Figure 2: Dirichlet energy computed using GCN and pure
pooling methods on random graphs.

0.0 0.2 0.4 0.6 0.8 1.0
Average size of receptive fields

4

3

2

1

0

1

D
ir

ic
h
le

t
e
n
e
rg

y
 (

lo
g

1
0

 s
ca

le
)

GCN

Diffpool

MIES

MIDES

MIESCut

MIVS

Figure 3: Dirichlet energy computed using GCN and pure
pooling methods on Cora dataset.

0.0 0.2 0.4 0.6 0.8 1.0
3.0

Ratio of the size of k-hops to the size of the graph

2.5

2.0

1.5

1.0

0.5

0.0

0.5

D
ir

ic
h
le

t
e
n
e
rg

y
 (

lo
g
1

0
 s

ca
le

)

GCN

GCN + MIES

GCN + MIDES

GCN + MIESCut

GCN + MIVS

Figure 4: Dirichlet energy computed using alternating
GCN and pooling methods on random graphs.

5.2 Over-smoothing

To evaluate the over-smoothing effect, we generate 100
random binomial graphs, each with 100 vertices and a
fixed mean degree of 10. Vertices are assigned random
vectors of dimension 32, drawn from a continuous
uniform distribution in [0, 1]. For each graph, we apply a

0.0 0.2 0.4 0.6 0.8
Ratio of the size of k-hops to the size of the graph

5

1.0

4

3

2

1

0

D
ir

ic
h
le

t
e
n
e
rg

y
 (

lo
g

1
0

 s
ca

le
)

GCN

GCN + MIES

GCN + MIDES

GCN + MIESCut

GCN + MIVS

Figure 5: Dirichlet energy computed using alternating
GCN and pooling on Cora dataset.

0.0 0.2 0.4 0.6 0.8 1.0
Average size of receptive fields

2.0

1.5

1.0

0.5

0.0

0.5

1.0

D
ir

ic
h
le

t
e
n
e
rg

y
 (

lo
g

1
0

 s
ca

le
)

GCN

GCNII

G2-GCN

GraphCON-GCN

MIES

MIDES

MIESCut

MIVS

Figure 6: Comparison on random graphs between pooling
methods and graph convolution methods designed to
reduce over-smoothing.

0.0 0.2 0.4 0.6 0.8 1.0
Average size of receptive fields

1

0

1

2

3

D
ir

ic
h
le

t
e
n
e
rg

y
 (

lo
g

1
0

 s
ca

le
)

GCN

GCNII

G2-GCN

GraphCON-GCN

MIES

MIDES

MIESCut

MIVS

Figure 7: Comparison on Cora dataset between pooling
methods and graph convolution methods designed to
reduce over-smoothing.

GNN with up to 50 layers and measure the mean Dirichlet
Energy (Section 2) at each layer.

Different pooling methods exhibit varying decimation
ratios, and GNNs abstract graph information at different

8

rates. To compare the Dirichlet Energy across different
GNNs, we plot it according to the ratio of the mean size
of the receptive fields at different layers to the graph size.
For pure convolution methods, we calculate the ratio of
the mean size of k-hops at layer k to the graph size. We
apply the same approach for DiffPool (Ying et al. (2018)),
which generates a dense aggregation matrix and receptive
fields that approximate the complete graph at the first
iteration. All computed values are normalized between
0 and 1 by dividing by the graph size. Additionally,
to compare pooling strategies rather than aggregation
functions, we standardize the aggregation function of all
pooling methods to a simple mean.

Fig. 2 displays the mean value (averaged over 100
graphs) of the mean Dirichlet Energy (log scale) for GCN
(Kipf & Welling (2017)) and pure pooling methods. We
observe an abrupt drop in energy for the GCN method
when the mean size of the hops reaches 100% of the
vertex set. The MIVS curve shows a slight decrease as
the mean size of the receptive fields increases. Edge-
based pooling methods (MIDES, MIESCut, and MIES)
exhibit a more significant decrease, with MIESCut having
the lowest curve, yet remaining above GCN. These
decreases may be partially attributable to the computation
of larger means based on data from the same distribution.
DiffPool generates an almost connected graph with highly
overlapping receptive fields, which accounts for its abrupt
drop in Dirichlet Energy (Section 3).

Fig. 3 illustrates the same curves computed on
the largest connected component of the Cora graph
(McCallum et al., 2000), which contains 2485 nodes
and 10138 edges. Following the approach proposed in
Rusch et al. (2023a), we replace the original one-hot
features with random vectors of dimension 32. The curves
for MIVS, MIES, and MIDES exhibit a slight decrease
relative to the size of the receptive fields but remain above
the GCN curve. The MIESCut curve is positioned below
the others and is close to GCN, even dipping below it for
the ratio x = 0.5. This occurs because MIESCut does not
permit isolated vertices, thereby enforcing convergence to
the mean and reducing Dirichlet Energy. As previously
noted, DiffPool’s Dirichlet Energy remains below all
other curves.

Fig. 4 and 5 present the same plots for random graphs
and the Cora dataset, utilizing alternating convolution
(Kipf & Welling (2017)) and pooling operations at each

layer. Since all methods incorporate pooling operations,
the curves are plotted based on the mean size of the
k-hops. In the case of small random graphs (Fig. 4),
all methods except MIESCut mitigate over-smoothing
compared to GCN. The slightly lower Dirichlet Energy
for MIESCut at x = 0.1 is likely due to insufficient
decimation to counterbalance the effects of double
averaging at each layer.

On the large Cora graph (Fig. 5), all pooling methods
except MIVS mitigate the over-smoothing induced by
GCN. For large graphs, MIVS generates stars within
reduced graphs (Haxhimusa (2007)), drastically reducing
the decimation ratio, which becomes insufficient to
counterbalance the aggregation effects of convolution
operations. This phenomenon is unique to MIVS and does
not occur in small to medium graphs, such as the random
graphs (Fig. 4).

Fig. 6 and 7 compare our pooling methods and
GCN with convolution techniques that mitigate over-
smoothing, using random graphs and the Cora dataset,
respectively. The methods compared include GCNII
(Chen et al., 2020), GraphCON-GCN (Rusch et al., 2022)
and G2-GCN (Rusch et al., 2023b). Note that GCNII
requires the feature dimension of a node to match the
number of vertices in the graph, and all methods were
re-evaluated under this condition. In both figures, G2-
GCN and GraphCON-GCN remain unaffected by over-
smoothing. In contrast, GCNII is more sensitive to
over-smoothing but stabilizes its Dirichlet energy as the
size of k-hops increases. Additionally, the Dirichlet
energy of MIVS is higher than that of convolution
methods designed to mitigate over-smoothing. Except
for MIESCut, the energies of the other pooling methods
exceed those of GCNII or are comparable to G2-GCN
and GraphCON-GCN. This highlights the effectiveness
of our pooling methods in mitigating the effects of over-
smoothing.

5.3 Graph classification
We evaluate our contributions on five graph classification
datasets. D&D (Dobson & Doig, 2003) involves
classifying proteins as either enzymes or non-enzymes.
NCI109 (Wale et al., 2008) contains small molecules
associated with their activity against ovarian cancer. The
datasets REDDIT-BINARY, REDDIT-5K, and REDDIT-

9

Table 1: Average classification accuracies of ours methods. Highest accuracies are highlighted in bold while the
second highest accuracies are in blue. ± denotes the 95% confidence interval of classification accuracy.

Ours Methods D&D NCI109 REDDIT-
BINARY

REDDIT-5K REDDIT-12K

GCN+MIVSPool 76.35± 2.09 72.09± 1.27 88.73± 4.43 52.17± 1.90 46.50± 3.04
GCN+MIESPool 77.17± 2.33 73.43± 2.27 88.08± 4.55 54.40± 1.27 47.33± 3.37
GCN+MIESCutPool 77.74± 2.85 71.81± 2.19 86.47± 4.57 53.45± 0.91 47.51± 3.05
GCN+MIDESPool 76.52± 2.21 71.49± 1.77 88.40± 4.74 53.62± 1.35 46.51± 3.40

Linear+MIVSPool 74.11± 2.69 70.13± 2.04 86.85± 5.17 53.12± 1.39 45.96± 2.95
Linear+MIESPool 75.95± 3.14 68.86± 2.78 87.38± 4.33 52.74± 1.56 45.79± 2.95
Linear+MIESCutPool 75.72± 2.77 68.95± 1.92 83.62± 6.83 53.42± 1.11 46.39± 3.37
Linear+MIDESPool 75.75± 1.89 66.59± 2.06 85.77± 5.21 52.64± 1.33 44.89± 3.08

Table 2: Average classification accuracies through various pooling methods in comparison with our best method.
Highest accuracies are highlighted in bold while the second highest accuracies are in blue. ± denotes the 95%
confidence interval of classification accuracy.

Methods D&D NCI109 REDDIT-
BINARY

REDDIT-5K REDDIT-12K

Baseline 76.29± 2.33 73.37± 1.90 87.07± 4.72 52.34± 2.97 47.45± 2.89
GCN+gPool 75.61± 2.74 67.78± 1.61 84.37± 7.82 50.41± 1.44 44.00± 2.92
GCN+SagPool 76.15± 2.88 68.40± 1.59 85.63± 6.26 50.84± 0.93 44.64± 2.82
GCN+EdgePool 72.59± 3.59 72.69± 2.47 87.25± 4.78 48.90± 2.12 43.25± 2.45
Our best method 77.74± 2.85 73.43± 2.27 88.73± 4.43 54.40± 1.27 47.51± 3.05

12K (Yanardag & Vishwanathan, 2015) comprise social
graphs of online Reddit discussions, categorized into two,
five, and eleven community classes, respectively. The
model architecture and training procedure follow those
described in Stanovic et al. (2023a).

We evaluate the performance of our pooling methods
on classification tasks in Table 1 by testing two
configurations: one alternating between convolution and
pooling, and one with a simple linear layer followed
by pooling. The highest classification accuracy is
consistently achieved with pooling methods combined
with convolution, demonstrating the added value of
convolutions. However, the difference between the two
configurations often falls below the standard deviation.
This suggests, firstly, that there is some redundancy
between the two successive aggregation steps performed
by convolution and pooling. Secondly, we anticipate that
further work on the aggregation step of pooling methods
may improve the classification accuracy of pure pooling

methods, aiming to achieve results comparable to those
of the combined convolution and pooling approaches.

In Table 2, we compare the best accuracy achieved
by one of our methods (from Table 1) with four state-
of-the-art methods for each dataset: Baseline (K blocks
of GCN), gPool (Gao & Ji, 2019), SagPool (Lee et al.,
2019), and EdgePool (Diehl et al., 2019). We observe
that the baseline results are quite good without pooling,
underscoring the challenge of designing effective pooling
methods. Alternative pooling methods often yield lower
accuracy than GCN, with Top-k methods leading to
significant information loss. For each dataset, the highest
accuracy is attained by one of our GCN+pooling methods,
surpassing the baseline. On the D&D dataset, all our
GCN+pooling methods outperform GCN, whereas only
one method does so on the NCI109 dataset, likely due to
the small size of its graphs.

10

6 Conclusion
This paper presents innovative pooling methods based
on maximal independent sets for GNNs, effectively
addressing the limitations of traditional pooling
approaches. These methods mitigate several drawbacks
of GNNs by elucidating the relationships between
receptive fields at various levels of hierarchical pooling.
Our theoretical and empirical studies validate the
effectiveness of these methods, marking a significant
advancement in the field of GNNs and opening new
avenues for future research.

Acknowledgements: This work was supported by
French ANR grant #ANR-21-CE23-0025 CoDeGNN
and was conducted using HPC resources from GENCI-
IDRIS (Grant 2022-AD011013595) as well as computing
resources from CRIANN (Grant 2022001, Normandy,
France).

References
Bacciu, D., Conte, A., & Landolfi, F. (2023).

Generalizing downsampling from regular data to
graphs. AAAI, 37, 6718–6727.

Balcilar, M., Guillaume, R., Héroux, P., Gaüzère, B.,
Adam, S., & Honeine, P. (2021). Analyzing the
expressive power of graph neural networks in a spectral
perspective. In ICLR.

Brun, L. (2023). Pooling properties within the
Graph Neural network framework. Technical
Report ENSICAEN. URL: https://www.
normastic.fr/wp-content/uploads/
2024/01/smoothing_squashing.pdf.

Chen, M., Wei, Z., Huang, Z., Ding, B., & Li, Y. (2020).
Simple and deep graph convolutional networks. In
ICML (pp. 1725–1735). PMLR volume 119.

Dasoulas, G., Lutzeyer, J. F., & Vazirgiannis, M. (2021).
Learning parametrised graph shift operators. In ICLR.
OpenReview.net.

Diehl, F., Brunner, T., Le, M. T., & Knoll, A. (2019).
Towards graph pooling by edge contraction. In

ICML 2019 Workshop on Learning and Reasoning with
Graph-Structured Data.

Dobson, P. D., & Doig, A. J. (2003). Distinguishing
enzyme structures from non-enzymes without
alignments. J. of molecular biology, 330, 771–783.

Fesser, L., & Weber, M. (2024). Mitigating over-
smoothing and over-squashing using augmentations of
forman-ricci curvature. In Proc. of the Second Learning
on Graphs Conference (pp. 19:1–19:28). PMLR
volume 231.

Gao, H., & Ji, S. (2019). Graph u-nets. In ICML (pp.
2083–2092). PMLR volume 97.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O.,
& Dahl, G. E. (2017). Neural message passing for
quantum chemistry. In ICML (pp. 1263–1272). PMLR
volume 70.

Giovanni, F. D., Rusch, T. K., Bronstein, M., Deac, A.,
Lackenby, M., Mishra, S., & Veličković, P. (2024).
How does over-squashing affect the power of GNNs?
Transactions on Machine Learning Research, .

Haxhimusa, Y. (2007). The structurally Optimal
Dual Graph Pyramid and its application in image
partitioning volume 308. IOS Press.

Jolion, J., & Montanvert, A. (1992). The adaptive
pyramid: A framework for 2d image analysis. CVGIP
Image Underst., 55, 339–348.

Kipf, T. N., & Welling, M. (2017). Semi-supervised
classification with graph convolutional networks. In
ICLR.

Landolfi, F. (2022). Revisiting edge pooling in graph
neural networks. In ESANN.

Lee, J., Lee, I., & Kang, J. (2019). Self-attention graph
pooling. In ICML (pp. 3734–3743). PMLR volume 97.

Li, Q., Han, Z., & Wu, X. (2018). Deeper insights
into graph convolutional networks for semi-supervised
learning. (pp. 3538–3545). volume 32.

McCallum, A. K., Nigam, K., Rennie, J., & Seymore, K.
(2000). Automating the construction of internet portals
with machine learning. Inf. Retr., 3, 127–163.

11

Meer, P. (1989). Stochastic image pyramids. Computer
Vision, Graphics, and Image Processing, 45, 269–294.

Rusch, T. K., Bronstein, M. M., & Mishra, S. (2023a).
A survey on oversmoothing in graph neural networks.
CoRR, abs/2303.10993.

Rusch, T. K., Chamberlain, B., Rowbottom, J., Mishra, S.,
& Bronstein, M. M. (2022). Graph-coupled oscillator
networks. In ICML (pp. 18888–18909). PMLR volume
162.

Rusch, T. K., Chamberlain, B. P., Mahoney, M. W.,
Bronstein, M. M., & Mishra, S. (2023b). Gradient
gating for deep multi-rate learning on graphs. In ICLR.
OpenReview.net.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M.,
& Monfardini, G. (2009). The graph neural network
model. IEEE Trans. Neural Networks, 20, 61–80.

Stanovic, S., Gaüzère, B., & Brun, L. (2023a). Maximal
independent sets for pooling in graph neural networks.
In GbRPR (pp. 113–124). Springer volume 14121 of
LNCS.

Stanovic, S., Gaüzère, B., & Brun, L. (2023b). Maximal
independent vertex set applied to graph pooling. In S+
SSPR (pp. 11–21). Springer volume 13813 of LNCS.

Topping, J., Giovanni, F. D., Chamberlain, B. P., Dong,
X., & Bronstein, M. M. (2022). Understanding over-
squashing and bottlenecks on graphs via curvature. In
ICLR.

Wale, N., Watson, I. A., & Karypis, G. (2008).
Comparison of descriptor spaces for chemical
compound retrieval and classification. Knowledge and
Information Systems, 14, 347–375.

Yanardag, P., & Vishwanathan, S. (2015). Deep graph
kernels. In Int. Conf. on Knowledge Discovery and
Data Mining (pp. 1365–1374). ACM.

Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., &
Leskovec, J. (2018). Hierarchical graph representation
learning with differentiable pooling. In NeurIPS (pp.
4805–4815).

Zhang, M., Cui, Z., Neumann, M., & Chen, Y. (2018).
An end-to-end deep learning architecture for graph
classification. AAAI, 32, 4438–4445.

12

