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Abstract: Waste minimization is a major way to achieve sustainable development. Electrostatic
separation is already used in the recycling industry for processing certain mixtures of shredded
plastics originating from waste electric and electronic equipment. Standard tribo-electrostatic separa-
tors use electric forces to deflect the trajectories of triboelectrically charged particles in the electric
field generated between two vertical plate electrodes connected to high voltage supplies of opposite
polarities. However, the efficiency of this device is often limited by the impacts between the particles
and the electrodes, which diminish the recovery and the purity of the end product. An innovative
electrostatic separator was specifically designed to mitigate this risk. The innovation lies in using
two rotating co-axial vertical cylindrical electrodes and assisting the movement of the particles with
downward-oriented air flow to reduce their impact on the electrodes and improve the quality of the
recovered products. The aim of this study was to optimize the operation of the patented electrostatic
separator by using experimental design methodology to obtain quadratic polynomial models of the
recovery and the purity of the products as functions of the high voltage applied to the electrode
system and of the air flow through the device. The experiments were conducted with a granular
mixture composed of 88% polypropylene (PP) and 12% high-impact polystyrene (HIPS) particles,
extracted from the recycling process of waste electrical and electronic equipment, and triboelec-
trically charged in a fluidized bed device. A voltage of 50 kV combined with an air flow rate of
1700 m3/min maximized the recovery and the purity of PP and HIPS products collected at the outlet
of the separator. These results open promising prospects for expanding the use of tribo-electrostatic
separation for efficient recycling of granular waste plastics.

Keywords: electrostatic separation; triboelectricity; plastic waste; fluidized bed

1. Introduction

The concept of circular economy, which involves keeping materials and resources in a
closed loop, is intimately related to the development of innovative and efficient physical
and chemical processes aimed at recovering valuable materials from waste streams [1].
This concept, which is most often evoked in relation to the management of waste electrical
and electronic equipment, as analyzed by Ongondo et al. in [2], can also be applied—as
shown by Scarascia-Magnozza et al. [3]—to the use of plastic materials in agriculture. A
systematic literature review of the circular economy in the WEEE industry was published
by Bressanelli et al. [4]. In a recent book that provides a broad overview of sustainability as
applied to plastics [5], Lee Tin Sin and Bee Soo Tueen pointed out that, over recent decades,
the exponential increase in industrial and municipal waste poses significant environmental
and health risks. Addressing the global challenge represented by waste accumulation
and the growing prevalence of a wide diversity of plastics, more particularly those from
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information technology and telecommunication equipment, imposes the integration of ad-
vanced recovery technologies, particularly those utilizing electrical and magnetic methods,
as demonstrated in the study published by Vermesan et al. [6].

Electrostatic separation (i.e., the use of electric forces for particle sorting) is considered
to be a promising technology for the recycling industry. Thus, Tilmatine et al. [7] describe
several “standard” applications of this technology to the selective sorting of the constituents
of plastic/metal, metal/metal, and plastic/plastic mixtures originating from e-waste. In
the book, WEEE Recycling. Research, Development and Policies, Dascalescu et al. authored a
chapter in which they thoroughly reviewed the most widely used electrostatic separation
methods employed for the treatment of this class of waste [8]. In the specific case of waste
plastics, the sorting is achieved by tribo-electrostatic separators, as those described by
Guiqing Wu et al. [9], Silveira et al. [10] or Achouri et al. [11] use the triboelectric effect to
charge the particles in specially designed devices. In some of these devices, reviewed by
Zelmat et al. [12], the tribocharging is mainly due to collisions between particles themselves,
entrained in a turbulent air flow. This is the case of fluidized bed-type devices developed
by Calin et al. [13,14] and cyclone-type devices studied by Dobidba et al. [15] and Zelmat
et al. [16]. In other tribochargers, the impacts between the particles and the walls of the
device influence to a greater extent the outcome of the process, as is the case with the
vibrated-plate and vibrated-tube devices, similar to those investigated by Higashiyama
et al. [17], Blajan et al. [18], and Buda et al. [19]; the rotating-cylinder-type devices designed
by Inculet et al. [20] and Achouri et al. [21]; the rotary-blades-type devices conceived by
Matsushita et al. [22]; or the propeller-type devices proposed by Miloudi et al. [23]. The
choice of the most appropriate tribocharging device depends essentially on the composition
of the granular mixture to be separated [8].

The separation of the tribocharged particles is achieved in the electric field generated
by various electrode configurations, energized from DC high voltage power supplies [24].
The voltage is typically higher than 30 kV and may largely surpass 100 kV (absolute values)
in industrial electrostatic separators. In this way, the intensity of the electric field, roughly
expressed by the ratio between the applied voltage and the distance between the electrodes,
is strong enough to guarantee that the electric forces can drive the particles to distinct
collecting compartments, in function of the polarity and the level of the charge they carry.
The particle size, shape, and mass also influence the particle trajectories.

The rotating-roll-type and the free-fall-type electrostatic separators are the most used
for selective sorting of granular waste plastics, as explained by Tilmatine et al. [25]. The
industrial application of the former type is somewhat hampered by the fact that the
granular mixture should be fed as a monolayer on the surface of the grounded roll-electrode
that introduces the particles in the electric field zone [8]. The latter type of electrostatic
separators, where the particles fall freely in the electric field generated between vertical or
slightly inclined plate electrodes, allows for relatively higher hourly throughputs demanded
by the industry.

Despite their mechanical simplicity and modest power requirements, the use of a
free-fall separator is also affected by some restrictions, related to the lack of controllability
of gravitational force, which is stronger than the Coulomb force for large-sized particles and
impedes the separation efficiency, as argued by Calin et al. [26]. Another major drawback of
free-fall tribo-electrostatic separators is related to the impact of the particles on the vertical
electrodes to which they are attracted. These impacts cause either strong rebound, the
consequence of which is their deviation to the compartment of the collector dedicated to
the other plastic product, or their attachment to the electrode, in the form of a layer of fine
particles, which leads to a reduction in the electric field. In both cases, the efficiency and
purity of the separation will be affected.

Inclined, segmented, and screen mesh-type electrodes are sometimes utilized to avoid
or at least reduce the impact effect, as shown by Dascalescu et al. [8], Dobidba et al. [15],
and Lingtao Zhu et al. [27]. The use of vertical, rotating cylindrical electrodes is another
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way to mitigate the impact effect, as suggested by Touhami et al. [28], Reriballah et al. [29],
and Kimi et al. [30].

In an electrostatic separator for granular materials, recently patented by Dascalescu
et al. [31], the electric field is generated between two rotating co-axial vertical cylindrical
electrodes. The main innovation lies in the fact that the movement of the particles is assisted
by downward-oriented air flow to reduce their impact on the electrodes and improve the
quality of the recovered products.

The separator was designed to be able to adjust several process control variables,
including the high voltages applied to the electrodes and the air flow rate. The aim of
this study was to optimize the operation of the patented electrostatic separator. To attain
this goal, the design of the experiment methodology [32] was used to obtain quadratic
polynomial models of the recovery and the purity of the products as functions of the high
voltage applied to the electrode system and of the air flow through the device. The results
of this experimental study are expected to pave the way to the industrial application of the
novel air-assisted tribo-electrostatic separator.

2. Materials and Methods
2.1. Experimental Set-Up

The electrostatic separator is used to sort, separate, and collect the particles triboelec-
trically charged by collisions between themselves or with the PMMA walls of a fluidized
bed device (Figure 1).
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Figure 1. Photograph of fluidized bed triboelectric charger. Figure 1. Photograph of fluidized bed triboelectric charger.

Air is injected into the 85 mm × 85 mm × 280 mm fluidized bed chamber using
a 1.5 kW blower, controlled by a variable speed drive within a range from 1000 rpm to
4000 rpm. The fluidized bed is equipped with a porous ceramic plate to ensure uniform air
distribution through a honeycomb structure. A textile filter is also placed at the top of the
chamber to prevent particles from escaping. In this experiment, a charging time of 5 min
was used to allow the particles to be well charged before the separation process began.

The principle of the patented air-assisted tribo-electrostatic separator is shown in
Figure 2. The stainless steel hopper of a vibratory feeder receives the charged particles and
diffuses them using the air flow descending between the two co-axial cylindrical electrodes.



Sustainability 2024, 16, 11142 4 of 12

Attracted by the aluminum electrodes of opposite polarities, the particles adhere to their
surfaces. Particles of opposite polarity to the outer electrode are drawn into the peripheral
compartments and the others into the inner compartments of the collector. The cyclone-type
suction device then transfers the particles to separate trays.

Sustainability 2025, 17, x FOR PEER REVIEW 4 of 13 
 

Air is injected into the 85 mm × 85 mm × 280 mm fluidized bed chamber using a 1.5 
kW blower, controlled by a variable speed drive within a range from 1000 rpm to 4000 
rpm. The fluidized bed is equipped with a porous ceramic plate to ensure uniform air 
distribution through a honeycomb structure. A textile filter is also placed at the top of the 
chamber to prevent particles from escaping. In this experiment, a charging time of 5 min 
was used to allow the particles to be well charged before the separation process began. 

The principle of the patented air-assisted tribo-electrostatic separator is shown in Fig-
ure 2. The stainless steel hopper of a vibratory feeder receives the charged particles and 
diffuses them using the air flow descending between the two co-axial cylindrical elec-
trodes. Attracted by the aluminum electrodes of opposite polarities, the particles adhere 
to their surfaces. Particles of opposite polarity to the outer electrode are drawn into the 
peripheral compartments and the others into the inner compartments of the collector. The 
cyclone-type suction device then transfers the particles to separate trays. 

 
Figure 2. Schematic representation of air-assisted electrostatic separator equipped with two rotating 
vertical cylindrical electrodes. 1: Vibratory feeder; 2: internal cylindrical electrode; 3: high voltage 
supply; 4: collecting system; 5: external cylindrical electrode. (red dots: negatively-charged particles; 
blue dots: positively-charged particles). 

In the particular embodiment of the principle of the newly patented electrostatic sep-
aration method, the electric field is generated between two rotating co-axial vertical cylin-
drical electrodes, (2) and (5) in Figure 2. The internal electrode (2), with a of radius 12.5 
cm, is connected to a high voltage supply (3) of positive polarity and the external electrode 
(5), with a of diameter 50 cm, is grounded. At the upper end of the separator, a vibratory 
feeder (1) receives the particles previously charged in the fluidized bed device and—by 

Figure 2. Schematic representation of air-assisted electrostatic separator equipped with two rotating
vertical cylindrical electrodes. 1: Vibratory feeder; 2: internal cylindrical electrode; 3: high voltage
supply; 4: collecting system; 5: external cylindrical electrode. (red dots: negatively-charged particles;
blue dots: positively-charged particles).

In the particular embodiment of the principle of the newly patented electrostatic
separation method, the electric field is generated between two rotating co-axial vertical
cylindrical electrodes, (2) and (5) in Figure 2. The internal electrode (2), with a of radius
12.5 cm, is connected to a high voltage supply (3) of positive polarity and the external
electrode (5), with a of diameter 50 cm, is grounded. At the upper end of the separator, a
vibratory feeder (1) receives the particles previously charged in the fluidized bed device
and—by means of a conical diffuser—introduces them as a cylindrical curtain at mid-
distance from the two electrodes. In the descending air flow generated by the cyclones of
the collecting system (4), the particles are subjected to the combined action of electrical,
gravitational, and aerodynamical forces.

Attracted by the cylindrical electrodes of opposite polarity, some of the particles adhere
to their surfaces, from which they are removed by rotating brushes (not represented in
Figure 2). The other particles, in function with the polarity of their charge, are directly
collected into either the peripheral or the inner compartment of the collector.
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2.2. Experimental Procedure

Mixtures of granules of irregular shapes and with sizes ranging between 2 mm
and 5 mm (Figure 3), consisting of 88 g of polypropylene (PP) and 12 g of high-impact
polystyrene (HIPS), were triboelectrically charged in the fluidized bed device. The different
colors of PP (orange) and HIPS (black) facilitate the visual evaluation of the quality of the
products of the electrostatic separation process.
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Figure 3. The shape and size of the (1) HIPS and (2) PP granules used in the experimental study of
the air-assisted tribo-electrostatic separation process.

Particle size plays a crucial role in the tribocharging stage achieved in the fluidized
bed tribocharger. It can influence the fluidity of the fluidized bed and the distribution of
electrical charges, which impact the separation of particles according to their response to
the electrostatic field. By choosing a specific particle size range (2 mm to 5 mm), this study
takes into account the effect of size on electrostatic separation in the separator.

To obtain an accurate assessment of the purity of the separated products, it would
be ideal to analyze all the particles recovered in a collecting compartment, but this pro-
cedure would be extremely time-consuming. A material divider (Figure 4) was used
for extracting 5 g samples representative of the collected products and simplifying the
purity measurement. The orange (PP) and black (HIPS) granules contained in a sample
were manually sorted and then distinctly weighted for estimating the purity of the col-
lected products. Each time, the experiments were triplicated to allow for the statistical
interpretation of the results.
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Environmental conditions during the experiments were kept relatively stable, with a
relative humidity of 57% ± 1.5% and a temperature of 18.2 ◦C ± 0.4 ◦C. The steps of the
experimental methodology were as follows:

(1) Turn on the variable air flow rate.
(2) Switch on the high voltage (HV) power supply.
(3) Use an electronic balance with a resolution of 0.01 g to measure the total mass of the

product recovered from each box.
(4) Take samples of the recovered product from each bucket to determine their purity

using the method described above.

In the first series of preliminary experiments, the air flow rate F was gradually in-
creased from 1200 m3/min to 2200 m3/min, and the applied high voltage U was progres-
sively adjusted to values ranging from 20 kV to 70 kV.

In the second series of experiments, carried out in accordance with a centered-faced
composite factorial design, the two factors under studies were fixed at three distinct levels,
1500 m3/min, 1700 m3/min, and 2200 m3/min, for the air flow F, and 30 kV, 50 kV, and
65 kV, for the applied high voltage U. This part of the study was conducted in accordance
with the experimental design methodology [32], which offered the possibility of selecting
the number and conditions of tests to be carried out according to a precise objective. This
approach made it possible to take several factors into account at the same time, to reduce
the dispersion of the results associated with measurement and to evaluate the effects of
factors and their interactions.

Thus, using this methodology, the process under study was modeled using statistical
and analytical rules, which enabled the minimization of the experimentation time, as well
as the detection and quantification of the measurement errors. Based on the experimental
data, the MODDE 5.0 software (Umetrics, Sweden) [33] built regression models using MLR
(multilinear regression) or PLS (partial least squares) algorithms. It also enabled the search
for the optimum point using the so-called “Simplex” methodology.

The mass of the two types of particles that were present in the samples extracted from
each compartment was measured using an electronic balance and the purity and recovery
were calculated using the following formulas:

PHIPS(%) =
MHIPS
Mtotal

× 100 (1)

PPP(%) =
MPP

Mtotal
× 100 (2)

RHIPS(%) =
MHIPS

∑ MX
× 100 (3)

RPP(%) =
MPP

∑ MX
× 100 (4)

MHIPS: Is the mass of the product HIPS.
MPP: Is the mass of the product PP.
Mtotal : Is the total mass in the collector.
MX : Is the mass of product x (PP or HIPS) collected in the different collectors.
Quadratic mathematical models for each response were obtained by analyzing the

composite factorial design data using MODDE 5.0 software (Umetrics, Sweden) [33]. These
models were evaluated using the following two indices: R2, which measures their fit to the
experimental data, and Q2, which measures their predictive capacity for new conditions.
Values close to 1 for these metrics indicate good quality models.
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3. Results

Preliminary tests were carried out (Table 1) to select and evaluate the feasibility of
the electrostatic separation (Figure 5) and establish the domain of variation for the applied
high voltage U and the air flow F.

Table 1. Preliminary tests.

Test
U

(kV)
F

(m3/min)

PP HIPS

Rec
(%)

Pur
(%)

Rec
(%)

Pur
(%)

1 20 1200 29.0 33.2 34.1 41
2 25 1300 36.3 41.5 42.5 51
3 30 1400 43.6 49.8 50.8 61
4 35 1500 59.9 58.1 60 72
5 40 1600 45.4 51.9 44.1 53
6 45 1700 51.7 59.0 47.5 57
7 50 1800 68.7 78.5 35 42
8 55 1900 45.4 51.9 37.5 45
9 60 2000 35.2 40.5 32.5 39

10 65 1900 46.3 52.9 60.8 73.7
11 * 70 2100 / / / /
12 * 75 2200 / / / /

* No separation occurred in these situations.
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At 35 kV and above, the performance of the separator improved considerably. Recov-
ery results are particularly satisfactory in the 35 kV to 65 kV range at flow rates between
1500 rpm and 1900 rpm. To optimize the operation of the separator, a face-centered com-
posite experimental design was conducted using MODDE 5.0 software. The results of
the experiments reported in Table 2 were processed with MODDE 5.0 software to obtain
quadratic polynomial models, including first-order interactions.

For the factors considered in the present study, the quadratic model of the responses
will take the following form:

y = a0 + a1 U* + a2 F* + a12 U*F* + a11 U*2 + a22 F*2 (5)

In this formula, U* and F* are the normalized centered values of the high voltage U
and of the air flow F, defined as follows:

U* = (U − Uav)/∆U; F* = (F − Fav)/∆F (6)

with:
Uav = (Umax + Umin)/2; ∆U = (Umax − Umin)/2; (7)

Fav = (Fmax + Fmin)/2 ∆F = (Fmax − Fmin)/2 (8)
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where Uav, Umax, and Umin are, respectively, the average, maximum, and minimum values
of the applied high voltage U; Uav, Fmax, and Fmin are, respectively, the average, maximum,
and minimum values of the air flow F; ∆U is half of the interval of variation in the applied
high voltage U; and ∆F is half of the interval of variation in the air flow F.

These models, characterized by high R2 (i.e., excellent fit to the experimental data),
and Q2 (i.e., good predictive capacity) (Figure 6) represent the recovery and purity of the
products as functions of the voltage U* and the air flow F* (Figures 7 and 8).

RPP = 84.18 + 0.92 U* − 2.54 F* + 0.05 U*F* − 18.41 U*2 −2.52 F*2 (9)

Table 2. The recovery and purity rates obtained for PP and HIPS in each of the 11 runs of the
face-centered composite experimental design.

Test
U

(kV)
F

(m3/min)

PP HIPS

Rec
(%)

Pur
(%)

Rec
(%)

Pur
(%)

1 35 1500 50.9 62.1 60.0 72.3
2 65 1500 50.9 58.2 57.5 69.1
3 35 1900 45.5 52.0 62.5 75
4 65 1900 46.3 53 60.8 73.3
5 35 1700 53.4 61.1 60.8 73.7
6 65 1700 55.1 63.0 60 72.6
7 50 1900 80.1 91.6 43.3 52
8 50 1700 85.1 97.3 50 60
9 50 1900 80.5 92.1 43.3 52.7

10 50 1700 84.8 97.1 47.5 57.4
11 50 1700 84 96 45.8 55.6
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RHIPS = 45.8 − 0.48 U* + 1.32 F* + 0.04 U*F* + 8.6 U*2 + 0.16 F*2 (10)

PPP = 97.04 + 0.27 U* − 3.95 F* + 0.49 U*F* − 22.02 U*2 − 2.35 F*2 (11)

PHIPS = 56.42 − 1.05 U* − 3.95 F* − 0.05 U*F* + 0.47 U*2 − 1.62 F*2 (12)

PP achieved a remarkable purity of 97.3%, at a recovery rate of 83.2%. For HIPS, a
mass of 7.2 g was recovered from 12 g contained in the input, at a purity of 75%.
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4. Discussion

In the triboelectric series, PP tends to be negative relative to HIPS [3]. This indicates
that when they are rubbed together, HIPS usually gains a positive charge while PP usually
gains a negative charge. Neither the design, nor the operating conditions of the fluidized
bed tribocharger were optimized for processing this specific granular mixture. By enhancing
the efficiency of the triboelectric charging, it is expected to improve the performances of
the electrostatic separation process, too. One solution would be the use of HIPS walls to
facilitate the triboelectric charging of PP particles, which represent 88% of the mixture
and have fewer chances to collide with the HIPS particles, which represent only 12% of
the in-feed. To increase the role of particle–wall collisions in the tribocharging process,
the authors have designed a device consisting of a multitude of propeller-type elements,
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entrained by an epicyclical train. The device is still under testing and the results will be
presented in a forthcoming paper.

Higher purities and recovery rates (sometimes beyond 95%) are constantly reported in
the literature [8–11]. Nevertheless, in practically all cases, the experiments were performed
with balanced binary mixtures (50% polymer A + 50% polymer B), for which tribocharging
is facilitated by the fact that the A and B particles have equal chances to collide with
particles of different nature. When the mixture was composed of several plastics, two,
three, or four successive tribo-electrostatic separations were needed to obtain good quality
products. The experiment described in the paper was conducted with a strongly unbalanced
mixture of 88% PP + 12% HIPS, for which standard tribo-electrostatic separation techniques
would not be effective as the minority of the HIPS particles achieve very high levels
of charge, would collide with the electrode of opposite polarity, and be deviated to the
wrong collecting compartment. The download-oriented air flow between the co-axial
cylindrical electrode impedes such collisions and entrains the charged particles to the
appropriate collectors.

The results obtained from this study reveal that the two parameters analyzed, namely
the applied high voltage U and the air flow F, have a significant influence on the efficiency
of electrostatic separation. The coefficients of U2 are higher than those of U in mathematical
models (6)–(9). This explains, for instance, the parabolic aspect of the curves in Figure 7,
which express the variation in the recovery as a function of the applied voltage U. Con-
versely, the quasi-linear aspect of the curves expressing the recovery as a function of the
air flow F reflects the fact that the coefficients of F2 are higher than those of F in (6) and
(7). The coefficients of UF in the mathematical models are relatively low but point out the
existence of an interaction between the applied voltage U and the air flow F on the recovery
and purity and of the obtained products. Thus, as expected, the effects of the voltage U are
stronger at low values of air flow F, and the effects of flow rate F are stronger for the low
values of the applied voltage U.

By using the response surface modeling methodology, the optimum operation point
was reached with a voltage of 50 kV and a flow rate of 1700 m3/min. These values
were obtained for a mixture characterized by a well-defined granule size range (2 mm to
5 mm) and a quite particular composition (88% PP and 12% HIPS). The optimum values
will be different for granular mixtures having different compositions and granulometric
characteristics.

5. Conclusions

The results presented in this paper demonstrate that the use of tribo-electrostatic sepa-
ration techniques represents a sustainable approach to resource recovery. The high recovery
and purity rates of the plastics collected at the outlet of the separator foster the manage-
ment of the waste-derived raw materials. The more waste plastics are recovered, the less
their environmental impact is and the more sustainable the production and consumption
practices become.

The specific conclusions of the experimental study conducted on a waste plastic
mixture composed of 88% PP and 12% HIPS can be formulated as follows:

(1) The design of the new tribo-electrostatic separator enables better control of particle
trajectories in the electric field generated between the two vertical co-axial cylindrical
electrodes. By adjusting the air flow and the electric field intensity in the active zone
of the separator, it is possible to reduce the number of particles that inappropriately
impact the electrodes, and hence improve the quality of the recovered products.

(2) The response surface methodology employed for the design of the experimental study
enabled the optimization of the operation of a newly patented electrostatic separator,
which is expected to be an efficient tool for the processing of waste granular plastic
mixtures in the recycling industry.

(3) For PP, the optimum results (purity: 97.3%; recovery: 83.2%) were obtained for an ap-
plied voltage of 50 kV and an air flow rate of 1700 m3/min. The performance indexes



Sustainability 2024, 16, 11142 11 of 12

for HIPS were less satisfactory (less the 75% for both the purity and the recovery),
but these results were obtained without any attempt being made to maximize the
efficiency of the triboelectric charging. Therefore, it can be considered that they open
promising prospects for using tribo-electrostatic separation for efficient recycling of
granular waste plastic.

Further research should be conducted to optimize the operation of the fluidized bed
device and evaluate other potential triboelectric chargers (vibratory-type, rotating-cylinder-
type, cyclone-type). Several technical solutions are under investigation to facilitate the direct
transfer of the granular mixture from the outlet of the triboelectric charger to the input of the
air-assisted electrostatic separator. The robustness of the air-assisted tribo-electrostatic sep-
aration needs to also be investigated, to evaluate—on the one hand—the sensibility of the
outcome of the process for possible fluctuations of the control variables (applied high volt-
age and air flow), and—on the other hand—the influence of un-controlled “noise factors”,
such as the variability of the composition of the in-feed waste plastic mixtures, or changes
in the environmental conditions (temperature and relative humidity of ambient air).
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