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Abstract

This paper explores the problem of the paving of the union of adja-
cent contractors. The focus is first put on the analysis of the topology
of a set operator, which can be stable or not stable. Then, depending on
the stability of the union operator, solutions are proposed to avoid fake
boundaries in stable and non-stable union of sets. For stable union of sets,
a boundary preserving form will be developed to add a set overlapping the
fake boundary in the expression of the union, whereas for non-stable union
of sets, a boundary approach will be developed to avoid fake boundaries.
Some problem specific solutions are also developed to avoid fake bound-
aries. As an example, an enhancement of the separator on the visibility
constraint is proposed. This avoids fake boundaries while characteriz-
ing the set of non-visible points from an observation point relative to a
polygon.

Keywords— Set methods, Interval analysis, Contractors, Set Inver-
sion, Topology

1 Introduction
Interval Arithmetic and contractor programming have emerged as powerful tools
in the field of robotics [1, 2, 3, 4], offering robust methods for handling uncer-
tainty and performing set-based computations. These techniques have been
widely applied in robotics area such as in localization [2, 5], in path plan-
ning [6, 7], and in control of systems [8, 9].

Interval analysis is a subset of set methods where sets are represented by
intervals. Some operators are defined in classical set theory, such as union,
intersection, complementary of sets and so on [10]. As intervals are representing
sets, these operators are also defined for intervals by interval arithmetic [11].

∗This work has been supported by the French Government Defense procurement and tech-
nology agency (AID)
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Contractors are a mathematical function acting on intervals. They are used
to contract a domain of feasible values relative to a constraint. Denoting by IRn

the set of axis-aligned boxes of Rn, the operator C : IRn → IRn is a contractor
for X ⊆ Rn if it meets the condition Equation (1).

∀[x] ∈ IRn,

{
C([x]) ⊆ [x] (Contractance)

C([x]) ∩ X = [x] ∩ X (Completness)
(1)

A contractor is representing a set as defined in [12]. Set operators are then
defined for contractors as it is for sets. Then contractors can be combined by
computing their union, their intersection, their cartesian product, and so on.

However, while most of these operations are well-defined and straightforward
to implement, the union operation presents unique challenges, particularly when
dealing with non-overlapping sets. The union of adjacent or non-overlapping sets
using contractors can sometimes result in the appearance of fake boundaries at
the interface of these sets. This phenomenon, was first highlighted in [13], and a
solution was proposed using appropriate Disjunctive Normal Forms (DNF) and
Conjunctive Normal Forms (CNF) [14] to avoid these fake boundaries. However,
this solution is not always applicable as sets are not always defined as unions
and intersections of sets.

For instance, set of visible points from an observation point relative to an
obstacle is defined and implemented in [15]. By paving this set, fake boundaries
may appear in the non-visible area. Figure 1 shows an example of the set
of visible points from an observation point relative to a polygon obstacle. The
observation point is shown in red. The set of visible points from this observation
point is shown in blue, the set of non-visible points is shown in pink, and the set
of uncertain points is shown in yellow. The obstacle is shown in black. There is
fake boundaries appearing in the pink area, which are lines of yellow boxes in
the non-visible area.
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Figure 1: Separator on the visibility constraint

This article aims to address the problem of union operations on adjacent
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contractors, with a focus on eliminating fake boundaries. By developing new
techniques for performing union operations on adjacent sets, we seek to minimize
the added pessimism to the results, to improve the efficiency of the paving
algorithm, and to enhance the accuracy and reliability of set-based computations
in robotic applications.

This paper is organized as follows. Section 2 present the problem of the
union of adjacent contractors by an introducing example. Then, Section 3 an-
alyze the problem from a topological point of view, and distinguish stable and
non-stable set operators. Section 4 and Section 5 present the solutions to avoid
fake boundaries in both cases. Section 6 presents an application of the bound-
ary approach on the separator on the visibility constraint. Finally, Section 7
concludes the paper.

2 Problem statement
2.1 Illustrative example
Consider three sets A, B and C defined by Equation (2).

A : {x1 + 3 · x2 ∈ [−∞, 0]}
B : {(x1 + 0.5)2 + x2

2 ∈ [−∞, 4]}
C : {(x1 − 0.5)2 + x2 ∈ [−∞, 4]}

(2)

These sets are shown in Figure 2. The interior of the set is shown in pink,
and the exterior is shown in blue.
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(c) Set C

Figure 2: Sets A, B and C

Define a set Z computed using A, B and C by Equation (3).

Z = (A ∩ B) ∪ (A ∩ C) (3)

This set Z shown in Figure 10c is built on the union of sets A∩B and A∩C
represented in Figure 3a, and Figure 3b.
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(b) Set A ∩ C
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(c) (A ∩ B) ∪ (A ∩ C)

Figure 3: Construction of set Z from A, B and C

Note that these two sets A∩B and A∩C share a common and non-overlapping
boundary. While paving this set Z using the SIVIA algorithm [11], this common
boundary is appearing as shown in Figure 4. This boundary is called a fake
boundary [13] as it is not supposed to belong to Z.
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Figure 4: Paving of set Z

2.2 Paving point of view
As shown in Figure 5, the paving algorithm is unable to classify an inner box
[b] overlapping the fake boundary as fully inside Z. Using contractors defined
for Z, inner parts [b1] = CA∩B([b]), and [b2] = CA∩C([b]) are well classified. The
remaining part [b3] = [b] \ [b1] \ [b2] is classified as unknown and is bisected
until the paving algorithm reaches the desired precision.

To avoid this issue, the paving algorithm has to take into account the fact
that A ∪ A = Rn. With this piece of information, the box [b] can be classified
as fully inside Z in one step.
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Figure 5: Paving of the fake boundary

2.3 Karnaugh map point of view
Karnaugh maps for (A∩B)∪ (A∩C) and Z are respectively shown in Figure 6a
and Figure 6b. The interior is shown in pink, the exterior is shown in blue,
and the boundary is shown in yellow. Although the interior and the exterior of
these two sets are equal, the boundaries differ. The fake boundary appearing
on the paving in Figure 4 is ∂A ∩ B ∩ C and is exactly the difference between
the boundaries of (A ∩ B) ∪ (A ∩ C) and Z.
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(a) Karnaugh map of (A ∩ B) ∪ (A ∩ C)
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(b) Karnaugh map of Z

Figure 6: Comparing Karnaugh maps of (A ∩ B) ∪ (A ∩ C) and Z

2.4 Raised issues
This fake boundary raises two issues. First, it adds pessimism to the results
by classifying boxes around the common boundary as uncertain, whereas they
clearly belong to the union of the two sets. Secondly, this fake boundary slows
down the paving algorithm by unnecessarily bisecting boxes around the fake
boundary.
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3 Stability of set operators
3.1 Topological analysis of set operators
To better understand the issue around the union of adjacent sets, we need to
define some tools to analyze the origin of these fake boundaries. Actually, this
fake boundary may occur when a set operator is Hausdorff-stable, and when it
is not Hausdorff-stable, but solutions to avoid these fake boundaries are not the
same in the two cases.

3.2 Hausdorff distance
Let (S, d) be a metric space. Define the ε-fattening [16] of a set X of S by
Equation (4).

Xε =
⋃
x∈X

{z ∈ S | d(z, x) ≤ ε} (4)
X

Xε

ε

Figure 7: ε-fattening of a set
The Hausdorff distance [16] between two sets X and Y of S is defined by

Equation (5).

dH(X,Y) = inf{ε ∈ R+ | X ⊆ Yε and Y ⊆ Xε} (5)
Introducing the complementary Hausdorff distance defined in Equation (6).

dH(X,Y) = dH(X,Y) (6)
Example 1. Figure 8 illustrate cases where Hausdorff distance and complemen-
tary Hausdorff distance are significant. Figure 8a shows an example of two sets
A and B with dH(A,B) large because of the small part of A far from the main
part, but dH(A,B) is tiny, whereas Figure 8b shows an example where dH(A,B)
is tiny and dH(A,B) is large because of the hole in A.

To take into account the general topology of sets, and to be able to compare
it, the generalized Hausdorff distance is introduced and defined in Equation (7).
It is the maximum between the Hausdorff distance and the complementary
Hausdorff distance.

Hd(X,Y) = max{dH(X,Y), dH(X,Y)} (7)

3.3 Hausdorff stability
Consider two sets X and Y of S. Define two sets X̃ and Ỹ of S close to X and Y
in the generalized Hausdorff definition. Then a binary operator � acting on set
X and Y is stable if it meets condition of Equation (8).

6



B

A

A
dH

(a) Large dH(A,B)

B

A

dH

(b) Large dH(A,B)

Figure 8: Illustration of large Hausdorff and complementary Hausdorff distances

∀η ∈ R, ∃ε ∈ R,

{
Hd(X, X̃) ≤ ε

Hd(Y, Ỹ) ≤ ε
=⇒ Hd(X � Y, X̃ � Ỹ) ≤ η (8)

Example 2. Consider two sets A and B shown in Figure 9a and their respective
Hausdorff-close sets Ã and B̃ shown in Figure 9b.

For the union operator, dH(A ∪ B, Ã ∪ B̃) is small, but dH(A ∪ B, Ã ∪ B̃) is
large as the union of Ã and B̃ generates holes at the common boundary of A and
B. Then Hd(A∪B, Ã∪B̃) is large, and the union operator is not Hausdorff-stable
for these sets, as it does not meet the condition of Equation (8).

Example 3. Consider two sets A and B shown in Figure 9a and their respective
Hausdorff-close sets Ã and B̃ shown in Figure 9b.

For the intersection operator, dH(A ∩ B, Ã∩B̃) is small, but dH(A ∩ B, Ã∩B̃)
is large as the intersection of Ã and B̃ generates residual sets at the common
boundary of A and B. Then Hd(A ∩ B, Ã ∩ B̃) is large, and the intersection
operator is not Hausdorff-stable for these sets, as it does not meet the condition
of Equation (8).

Example 4. Consider the illustrative example presented in section 2. The
union operator between A ∩ B and A ∩ C is Hausdorff stable as the generalized
Hausdorff distance is small. This come from the fact that the same sets A
and its associated Hausdorff-close set Ã, are involved in the computation of
Hd(A ∩ B, Ã ∩ B̃) and Hd(A ∩ C, Ã ∩ C̃).

This Hausdorff stability condition characterizes the fact that a small pertur-
bation on sets will change the topology of the result by opening boundaries or
creating additional ones. It allows identifying topologically different problems.
Adapted solutions for Hausdorff-stable and non Hausdorff-stable problems will
be proposed in the following sections.
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Figure 9: A and B are not Hausdorff-stable for union and intersection operators

4 Stable case solution: Boundary preserving form
In the Hausdorff-stable case, it is possible to change the expression of the com-
puted set Z by adding a set overlapping the fake boundary. This set helps in
the classification of boxes around the fake boundary in the paving algorithm. It
must be chosen such that the interior and the exterior of Z are preserved, but
also its boundary. In this example, the set D = B∩C is added to the expression
of Z which becomes Z′ Equation (9).

Z′ = (A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C) (9)

The Karnaugh map of the set D is shown in Figure 10a, and the paving of
D is shown in Figure 10b. This set ensures that the Karnaugh map of Z′ is the
same as the Karnaugh map of Z shown in Figure 6b. The resulting paving of
Z′ is shown in Figure 10c. There is no more fake boundaries.
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(c) Set Z′

Figure 10: Boundary preserving form

Using the boundary preserving form leads to a correct paving without any
fake boundaries. Therefore, to use this solution, the set boundaries have to
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be analyzed to find the fake boundaries and add a set overlapping these fake
boundaries in the expression of the set to pave. This approach is working but is
problem-specific and needs to be adapted on a case-by-case basis. This method
is well working for Hausdorff-stable operations on sets, as there is the possibility
to add a boundary overlapping set to the computed sets. For non Hausdorff-
stable operators, the boundary preserving form is not possible, and another
approach is needed.

5 Non-stable case: Boundary approach
5.1 Topology of the boundary
Let T = (S, τ) be a topological space. ∀X ∈ S, denote by X the complementary
of X in S, by clS(X) the closure of X in S, by intS(X) the interior of X in S, and
by ∂X the boundary of X in S.

Theorem 1. Let T = (S, τ) be a topological space. Then

∀(A,B) ∈ S2 ∂(A ∪ B) ⊆ ∂A ∪ ∂B

Proof. By definition of the boundary

∀A ∈ S, ∂A = clS(A) ∩ clS(A)

By property, intersection is a subset of each set

∀(A,B) ∈ S2,

{
A ∩ B ⊆ A
A ∩ B ⊆ B

Then

∂(A ∪ B) = clS(A ∪ B) ∩ clS(A ∪ B)
= clS(A ∩ B) ∩ clS(A ∪ B)
= clS(A ∩ B) ∩ (clS(A) ∪ clS(B))
= (clS(A ∩ B) ∩ clS(A)) ∪ clS(A ∩ B) ∩ clS(B)
⊆ (clS(A) ∩ clS(A)) ∪ (clS(B) ∩ clS(B))
= ∂A ∪ ∂B

Theorem 1 demonstrates that the boundary is not preserved over union of
sets as ∂(A∪B) ⊆ ∂A∪ ∂B. This is why the paving of the union of contractors
leads to fake boundaries.

Theorem 2 present the general formula for the union of the boundary of two
sets.
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Theorem 2. Let (S, τ) be a topological space. Then

∀(A,B) ∈ S2 ∂A ∪ ∂B = ∂(A ∪ B) ∪ ∂(A ∩ B) ∪ (∂A ∩ ∂B)

Proof. Theorem 2 is proven in [17].

From Theorem 2, it is clear that union of boundaries is not the boundary of
union. This is the reason why Z and (A ∩ B) ∪ (A ∩ C) do not have the same
boundaries when paving these sets. An illustration of Theorem 2 is shown in
Figure 11.

(a) Set A and B (b) Decomposition of ∂A ∪ ∂B

Figure 11: Illustration of Theorem 2

Remark 1. When A ∩ B = ∅ and ∂A ∩ ∂B = ∅ in Theorem 2, the union
of boundaries is the boundary of union. This is the case where the sets are
non-overlapping with no common boundary.

5.2 Boundary approach
To get rid of this fake boundary, a boundary approach can be used. This
approach consists in computing the boundary of the set Z. This boundary will
separate an inner and an outer subpaving. The classification of the resulting
subpavings as inside or outside is done using a predicate. Boundary approach
method was first introduced in [18] to speed up the solving of set inversion
problems.

First, ∂Z has to be expressed from set A, B, and C without the fake bound-
ary. Figure 12 and Figure 13 respectively show Karnaugh maps and paving of
intermediate sets involved in the building of ∂Z. Then, ∂Z is computed as the
union of these boundaries, and it matches the Karnaugh map of Z shown in
Figure 6b.
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Figure 12: Karnaugh map of the boundaries

−2 0 2

x1

−3

−2

−1

0

1

2

3

x
2

(a) ∂A ∩ B ∩ C

−2 0 2

x1

−3

−2

−1

0

1

2

3
x
2

(b) ∂A ∩ B ∩ C

−2 0 2

x1

−3

−2

−1

0

1

2

3

x
2

(c) A ∩ ∂B
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(d) A ∩ ∂C

Figure 13: Building the boundary of Z

Then using a predicate, the connected subsets separated by ∂Z are classified
as inside or outside. This predicate is based on the expression of Z of Equa-
tion (3), and is tested on box corners until an in and an out points are found.
Then, boxes containing each point are classified as in and out boxes, and the
information is propagated near to near without crossing the boundary. Finally,
each box is classified as in, out or uncertain.

Figure 14a shows ∂Z built from boundaries shown in Figure 14b, and the
resulting paving of Z, which is classified using the subpaving coloration method.
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(b) Z

Figure 14: Boundary approach

This boundary approach is efficient to get rid of fake boundaries. Set Z is
computed from the union of two separators, SA∩B, and SA∩C, and this union is
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reinforced by a contractor on the boundary C∂Z.

Remark 2. This method is also working for the Hausdorff-stable case, but it is
more efficient to use the boundary preserving form presented in Section 4, as the
contractor on the boundary is not easy to define, and the subpaving coloration
method is not needed.

6 Application
6.1 Boundary approach application to the separator on

the visibility constraint
Separator over the visibility constraint, as implemented in [15], suffer from this
fake boundaries when it deals with polygon obstacles. In fact, the contractor
on the visibility constraint is defined for an obstacle segment. The extension to
polygons involves the union of non-visible areas relative to each segment, and
this union leads to fake boundaries.

Figure 15a shows an illustration of the separator on the visibility constraint
as implemented in [15]. For each obstacle segment is defined three segments
defining visible and non-visible parts of the space. For segment e1 is defined
relative to the observation point p, the oriented half space on the left of segment
a, the one on the left of segment b, and the same for segment c. It is the same
for the set of visible points for segment e2 defined by half planes on the left of
segments d, e, and f . The set of masked points from p by e1 and e2 i then the
union of these two sets A1 and A2. Paving this separator shows a fake boundary
as shown in Figure 15b.
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(c) Boundary approach

Figure 15: Separator on the visibility constraint using the boundary approach

To avoid this problem, the boundary approach can be applied. The set of
masked points from observation point p relative to segments e1 and e2 should
be defined by half planes on the left of segments a, b, e, and f . The simplifi-
cation of c = −d has to be taken into account while contracting to avoid this
fake boundary. This simplification is based on algebraic topology [19] in which
boundary simplifications are defined and used. Figure 15c shows the paving of
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this separator using the boundary approach. There is no longer fake boundaries
appearing.

Remark 3. This could be done by hand, but neither [15] nor this work propose
an automatic boundary simplification to avoid fake boundaries in union of ad-
jacent sets. Therefore, it is necessary to find solutions that are problem-specific
in order to avoid fake boundaries.

6.2 Toward a generic implementation of the separator on
the visibility constraint

In the case of the visibility constraint another approach to solve this problem
can be proposed. The set of visible points from an observation point relative to
a shape Y can be defined by :

S = {x ∈ R2,∃α ∈ [α] | α · x ∈ Y} (10)

Denoting by f the homothety of expression Equation (11).

f : R3 7→ R2

(x, α) → α · x
(11)

The set S can be then defined as the projection of f(Y) for α ∈ [0, 1]. List-
ing 1 show the implementation of this separator using the Codac Library [20].
Figure 16a shows the paving of this implementation of the visibility constraint.
The comparison with Figure 16b, where the classical implementation of this
constraint from [15] on the same obstacle polygon is shown, validates that the
problem of fake boundaries is avoided with this method.

1 import codac as cd
2

3 # Set Y definition
4 polygon = [[1, 2.5], ... ]
5 Sy = cd.SepPolygon(polygon)
6

7 # Set Z definition
8 f = cd.Function("x", "y", "a", "(a*x,a*y)")
9 Sz = cd.SepInverse(Sy, f)

10

11 # Projection of for a in [0, 1]
12 epsilon = 0.1
13 Sx = cd.SepProj(Sz, cd.Interval(0, 1), epsilon)

Listing 1: Separator on the visibility constraint using Codac Library
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(b) Classical implementation

Figure 16: Generic SepVisible implementation

Figure 17 shows the paving of the visibility separator on the same obstacle
presented in Figure 1, but there is no fake boundary appearing. This method is
then more efficient than the classical implementation of the visibility constraint.
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Figure 17: Separator on the visibility constraint on a room

Remark 4. The separator representing the obstacle could be any separator.
However, the separator must be on a closed form with an interior. This method
is not applicable to segments or open polygons for instance. But the advantage
of this approach is that it can be applied to an ellipsis obstacle.

Remark 5. It exists polygons such that the separator on the visibility constraint
is not generating fake boundaries. In these cases the classical implementation
proposed in [15] is more efficient than the proposed approach as the algorithm
used to project a separator is based on contractors over quantifiers which requires
bisections [12, 21]. Figure 18 shows the comparison between the classical and
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the projection approaches on the paving of a visibility separator without fake
boundaries.
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(b) Classical implementation

Figure 18: Generic implementation of the separator on the visibility constraint

7 Conclusion
In conclusion, this work has highlighted the problem associated with the union
of adjacent contractors. Paving the union of these contractors creates fake
boundaries that add pessimism to the results and increase the computation
time.

This problem occurs in two cases, when an operator applied to sets is
Hausdorff-stable, and when it is non-Hausdorff-stable. An approach for Hausdorff-
stable is to use a boundary preserving form by adding sets overlapping the fake
boundary in the expression of the paved set. For non-Hausdorff-stable opera-
tors, a boundary approach is proposed to get rid of this fake boundary.

The result shows that both these approaches are efficient in fake boundary
avoidance. The drawback of these methods is that they are problem-specific,
they need to be tuned for each problem, and this paper does not provide an
automatic way to remove fake boundaries.

Finally, a generic implementation of the separator on the visibility constraint
has been proposed. This approach shows that sometimes the fake boundary
problem can also be avoided by expressing the problem differently. There are,
nevertheless, cases in which no false boundary appears in the classical implemen-
tation of the separator on the visibility constraint. In these cases, the classical
implementation is more efficient than the proposed method, since the latter in-
volves the projection of a separator, which is computationally time-consuming.
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