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Abstract
The physical and chemical properties of atmospheric aerosol particles are crucial in influencing global climate
and ecosystem processes. Given the numerous studies highlighting adverse health effects from exposure to aerosol
particulates, particularly PM, effective air quality management strategies are under consideration (Annesi-
Maesano et al, 2007). Herein, we introduce a predictive model—PmForecast—employing a self-adaptive
LSTM architecture to predict PM2.5 values in the real atmosphere. Specifically, we explore adopting a T-LSTM
model to better benefit from temporal dimensions. PmForecast is strategically designed with four key phases:
preprocessing, temporal attention, prediction horizon, and LSTM layers. By leveraging LSTM’s significant pre-
dictive ability in time-series data, the inclusion of temporal attention enhances the model’s specificity. Temporal
dynamics modeling entails generating insights over time, utilizing temporal attention to extract essential char-
acteristics from historical air pollutant concentrations, with the flexibility to adjust the historical data according
to the forecasting period. To assess PmForecast, we consider measurements collected from the QameleO
network, a sparse network of air-quality micro-stations deployed in Dijon, France. The self-adaptive capabili-
ties of PmForecast allow the model to be dynamically updated, evaluating its performance and continuously
tuning hyper-parameters based on the latest data trends. Our empirical evaluation reports that PmForecast
outperforms the state of the art, achieving notable accuracy in both short-term and long-term predictions.
The PmForecast deployment at scale can serve as a valuable tool for proactive decision-making and targeted
interventions to mitigate the health risks associated with air pollution.
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1 Introduction
Cities and their citizens face critical problems that

result from the growth of industry and urban regions.
As highlighted by the World Health Organization
(WHO) World Health Organization (2006), this growth
represents one of the most significant environmental
health risks and remains a leading cause of mortality.
Specifically, air pollution stands out as a primary con-
tributor to various health issues, including lung cancer
and bronchial asthma (Cohen et al, 2017; Mikati et al,
2018; Philip et al, 2017; Harrison, 2016; Hu et al, 2023).
In addition, air pollution adversely affects both terres-
trial and aquatic ecosystems, leading to environmental
degradation and loss of biodiversity. This highlights

the importance of addressing air pollution to miti-
gate environmental issues effectively (Manisalidis et al,
2020).

Particulate Matter (PM) is a key component of air
pollution found in the atmosphere and classified by
size into PM10, PM2.5, and PM1 categories (based on
micrometer size). PM is known to significantly impact
the cardiovascular and respiratory systems, leading to a
spectrum of health problems (World Health Organiza-
tion, 2006). The finer fraction of PM (PM2.5 and espe-
cially PM1) can penetrate deeply into the lung, posting
detrimental health effects (prabhu and Shridhar, 2019).
Moreover, PM2.5, observed in urban areas (Guo et al,
2024), is enriched in hazardous metals and organic
compounds (Zhang et al, 2020), potentially inducing
additional oxidative stress (Terzano et al, 2010). This
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pollution not only endangers immediate health but also
jeopardizes the long-term sustainability of urban living
environments.

Over the past decades, significant research efforts
have been directed toward air quality forecasting, espe-
cially PM2.5. These studies can be clustered into two
distinct groups. On the one hand, the first group relies
on physical methods, utilizing numerical simulation
models based, among other things, on emission inven-
tories, meteorological fields, physical and chemical
processes for pollutant transport, dispersion, pollutant
aging, and data assimilation (satellite, in situ and
remote sensing networks, etc.) to forecast air qual-
ity (Lee et al, 2017; Ponomarev et al, 2020; Powers
et al, 2017). For instance, Powers et al. (Powers et al,
2017) employed the Weather Research and Forecast-
ing (WRF) model, a widely-used numerical weather
prediction model applied globally with convection-
permitting resolutions such as 3-km grids. While the
WRF Model has demonstrated advancements in oper-
ational forecasting and fine-scale atmospheric simula-
tion, additional challenges in physical models for air
quality forecasting warrant further exploration. These
challenges encompass accurately representing complex
atmospheric processes, integrating real-time observa-
tional data, addressing uncertainties in emission inven-
tories, and optimizing model parameters for improved
predictive capabilities. Investigating these limitations
is essential to enhance the accuracy and reliability of
air quality forecasts. Furthermore, physical models face
constraints related to the quality of pollutant inven-
tory emissions, intricate calculations, and the elevated
uncertainty of forecasted results (Wang et al, 2019). On
the other hand, the second group leverages statistical
algorithms to predict air pollutants from a time series
analysis perspective. Statistical predictive methods are
based on a modeling approach to predict upcoming
air quality, relying on historical PM2.5 time series.
In contrast to physical forecast methods, statistical
approaches involve less computation, as they circum-
vent the intricate mechanisms of pollutant emission,
diffusion, aging, and deposit processes.

A diverse range of statistical methods, encompass-
ing both linear and nonlinear algorithms, has found
widespread application. Common approaches include
the utilization of Machine Learning (ML) algorithms,
such as Support Vector Regression (SVR) (Zhu and
Hu, 2019) and Autoregressive Integrated Moving Aver-
age (ARIMA) (Che Lah et al, 2023), which are
notable for their linear characteristics. For instance,
Bassirou Ngom et al. (Ngom et al, 2021) present a
unique integration of system observations from var-
ious stations with a multi-agent simulation, provid-
ing a model for assimilating PM10 pollution data
through a real-time simulation based on the autoregres-
sive ARIMA method. Additionally, Gaussian Process
Regression (GPR) (He et al, 2023), gradient boosting
(XGBoost) (Li et al, 2022), Artificial Neural Net-
work (ANN) (Guo et al, 2023b; He et al, 2022; Guo
et al, 2023a) and deep learning algorithms, like Recur-
rent Neural Networkss (RNNs) (Tu and Wu, 2022)

offer effective solutions, leveraging the power of non-
linearity to capture complex (or non-linear) relation-
ships in diverse datasets. Some studies, such as (Guo
et al, 2020, 2023c), show that combining correla-
tion analysis with ANNs and wavelet-enhanced ANNs
(WANNs) effectively reveals both linear and nonlinear
relationships between air pollution indices (API) and
meteorological variables.

Among these, RNN methods have attracted consid-
erable attention from researchers due to their capac-
ity to improve the correlation between input and
output data and the time-dependent nature of the
data. Several scientific studies highlight the exceptional
ability of RNN-based models to capture temporal
dependencies within PM2.5 input data, making them
effective tools to predict PM2.5. Significant research
efforts have been directed toward air quality forecast-
ing, utilizing Gated Recurrent Unit (GRU) (Zhang
et al, 2022b; Panneerselvam and Thiagarajan, 2023)
and particularly LSTM (Alhirmizy and Qader, 2019;
Gangwar et al, 2023; Zaree and Honarvar, 2018; Bui
et al, 2018). Zhang Qi et al. (Zhang et al, 2022a)
stand out by integrating domain-specific features and
a hybrid CNN-LSTM structure, achieving superior
accuracy in fine-grained air pollution estimation and
predicting compared to compatible baselines. Verma
Ishan et al. (Verma et al, 2018) introduce a bidirec-
tional LSTM model to predict PM2.5 severity levels.
The approach significantly improves prediction accu-
racy by leveraging an ensemble of 3 bidirectional LSTM
and incorporating weather data across multiple loca-
tions in New Delhi. Yi-Ting Tsai et al. (Tsai et al,
2018) introduce an approach utilizing RNN with LSTM
using US Environmental Protection Agency (EPA)
data, effectively predicting PM2.5 values for the next 4
hours at 66 monitoring stations in Taiwan with promis-
ing results. (Erbiao and Guangfei, 2023) proposes an
innovative hybrid self-attention model LSTM, which
bridges the gap by efficiently predicting long-term
PM2.5 concentrations in classrooms, outperforming
existing methods, and significantly reducing computa-
tional complexities. Moreover, Abimannan et al. (Abi-
mannan et al, 2020) propose a model based on LSTM
/ Multivariate Variate Regression -MVR- to improve
PM2.5 prediction accuracy, particularly during summer
and winter. Comparative analysis with LSTM reveals
that the proposed LSTM/MVR model’s efficiency pre-
dict hourly PM2.5 with higher precision.

Despite the notable progress in air quality pre-
dictions using LSTM-based models, the field faces
persistent challenges and limitations (Srivastava and
Kumar Das (2023)). In particular, the accuracy of
predictions hinges heavily on the quality and repre-
sentativeness of sequential data, with incomplete or
biased datasets, potentially compromising model per-
formance. Additionally, while LSTM models excel in
capturing temporal dependencies, they may encounter
difficulties with abrupt data changes or outliers, neces-
sitating further refinement for robust predictions.
Finally, deploying such models at scale requires careful
considerations for computational efficiency and online
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processing, especially in urban areas where a significant
volume of data could be generated and collected.

In response to the challenges described above,
we present our Temporal LSTM forecasting model
(PmForecast), designed specifically to address the
complexities of urban air quality prediction. In addi-
tion to leveraging the strengths of standard LSTM
architecture, our model adeptly captures temporal
dependencies and integrates mechanisms to address
data quality issues, thus enhancing predicting accu-
racy. Furthermore, the embedded temporal mechanism
in our model contributes to robust and sustainable
long-term predictions. A notable aspect is our utiliza-
tion of locally available and cost-effective sensors from
existing devices. This approach not only enriches the
model’s adaptability but also enhances its accessibility.
Through meticulous optimization of the PmFore-
cast model, we aim to surpass traditional simulation
methods, providing a resource-efficient alternative that
reduces both time and energy consumption, ultimately
establishing a local real-time framework. Extensive
testing and validation have demonstrated the high
accuracy of our PmForecast model in long-term
forecasting, outperforming existing models and con-
tributing to the advancement of sustainable and precise
air quality predictions for urban communities.

The structure of the manuscript sections is
described as follows: Section 2 delves into a detailed
explanation of the methodology employed. Section 3
outlines the instruments used and the associated data.
Following that, Section 4 presents and discusses the
experimental outcomes derived from our proposed
model. We conclude and suggest potential avenues for
future research in Section 5.

2 Forecasting Particulate Matter
with PMForecast
As we embark on the pivotal task of predicting

PM2.5 concentrations for both immediate and future
time frames in urban environments, the foundation of
our approach is rooted in the strategic choice of a
neural network architecture. Our conviction in the rel-
evance of the LSTM model stems from its exceptional
ability to discern and interpret temporal patterns, a
crucial aspect in unraveling the intricate dynamics of
air quality. By harnessing the power of LSTM architec-
ture, our model, PmForecast, stands as a testament
to our commitment to precision in predicting.

Figure 1 depicts an overview of the PmFore-
cast framework developed in this study. The proposed
model consists of four primary phases: preprocessing,
temporal attention, prediction horizon, and LSTM lay-
ers. The network is fueled by historical observations,
and the outputs encompass the temporal dynamics of
the predicted values. Observations are recorded by the
sensor every 15 minutes, amounting to four times per
hour. To reduce granularity, we resample the data to
one point per hour, given the expectation of minimal
change within a 60-minute time frame. Additionally,

the model can operate online by evaluating and retrain-
ing at specified intervals, contingent upon available
data.

2.1 LSTM Model
Our goal centers on optimizing ML algorithms

for superior performance, with a specific focus on
deep learning techniques, particularly RNNs, which
have demonstrated effectiveness in processing sequen-
tial data. However, traditional RNNs face challenges
in long-term prediction tasks, prominently contending
with issues such as gradient disappearance (Noh, 2021).
This phenomenon occurs during the RNNs training
process, when the loss function gradients concerning
network parameters diminish significantly as they are
back-propagated through time.

To address this challenge, advanced variants like
LSTM models introduce mechanisms, including gating,
to enhance the accuracy of long-term predictions—an
essential consideration in our work specifically focused
on air quality forecasting. In an LSTM cell, three
gates—the input, forget, and output gates—play a
crucial role in mitigating the challenges posed by gra-
dient disappearance (Le and Zuidema, 2016). For a
comprehensive understanding of the architecture and
functioning of LSTM models, we recommend referring
to the seminal work by Hochreiter and Schmidhu-
ber (Hochreiter and Schmidhuber, 1997). Leveraging
the LSTM model as the foundational model, we aim to
achieve optimal performance among various machine
learning algorithms, specifically including GRU, GPR,
XGBoost, and ARIMA.

2.2 Temporal Dynamics Modeling
Afterward, the network structure needs to be opti-

mized in terms of time, cost, and performance. To
achieve this, we aim to leverage Time-Focused Insight
Generation. Inherently considering temporal correla-
tions of historical air pollutant data helps to improve
performance.

Temporal Attention
We proficiently capture the essential characteristics

from historical environmental data through tempo-
ral windows whose duration is dynamically adjusted
depending on how far ahead the prediction is being
made.

Subsequently, we utilize the LSTM layer to extract
temporal information from these mapped features. In
time series, incorporating time-variant features is piv-
otal for capturing effective temporal dynamics. We
systematically extract supplementary time-related fea-
tures due to their strong influence on PM predictions
such as (i) weekdays versus weekends related to traffic
and industrial emissions and (ii) hours of a day related
to hourly emission strength modification and the rise
of the boundary layer height (i.e. the lower part of the
atmosphere influenced by the Earth’s surface) influenc-
ing the dilution of particles in the atmosphere over the
course of the day.
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Fig. 1: The comprehensive framework of PmForecast designed for air pollution prediction is outlined,
comprising four key steps: data pre-processing, temporal attention to mitigate gradient disappearance, a flexible
prediction horizon for dynamic future forecasting, and layers employing Long Short-Term Memory (LSTM)—the

trainable component. Further details are provided in Section 2.1. The term ’Environmental data’ pertains to
data previously collected and utilized by the model for training purposes.

Recognizing the significance of these temporal fac-
tors, we seamlessly integrate them as essential features
in our model’s input by merging them with the mea-
surements. When optimizing temporal history for pre-
diction, one question arises: How much of the historical
environmental data should be considered?

An extensive sensitivity analysis, in which different
lag times were tested, reveals that the lag time should
be dynamically adjusted based on the prediction’s
time horizon to obtain the most accurate PM predic-
tions. For one-hour-ahead forecasting, our experimen-
tal results indicate that setting alagconstant at 3 hours
consistently produces optimal outcomes. This choice
was derived through extensive experimentation, where
we tested various lag times, training our model with
different historical data windows [1, 3, 6, 9, 12]hours,
and evaluating their prediction accuracy using metrics
like Coefficient of determination (R2) and Root Mean
Square Error (RMSE). The 3-hour window consis-
tently produced the lowest prediction errors, indicating
optimal performance for capturing relevant tempo-
ral patterns. Further validation confirmed that adding
more historical data did not significantly improve
accuracy, and shorter windows led to higher errors,
establishing the 3-hour window as the best balance for
accurate predictions. For extended prediction horizons,
the same experiments were conducted. As the predic-
tion time extends, the lag time incrementally increases,
following the empirical relationship we derived, encap-
sulated in Formula 1. Specifically, for every 6-hour
extension in the prediction horizon, the increment in
the lagt results in the incorporation of additional past
observations, enhancing performance.

lagt = lagconstant + round
(

pret
lagrate

)
(1)

Equation 1 is derived from our experimental find-
ings, which suggest a dynamic relationship between the
prediction horizon and the optimal lag time. It is cru-
cial to highlight that, in our experiments, pret denotes
the prediction period and the constant lagrate is set at
6, representing increments based on predictions made
every 6 hours.

Prediction Horizon Strategies
We formulate a strategy tailored to meet long-

term prediction demands. Subsequently, our framework
excels at forecasting air pollution intervals based on
user preferences, specifically for the next few days
with a time stamp interval of 1 hour. The mecha-
nism dynamically updates the ground truth data, lag
time observations, and the output unit according to
the user’s preferences. This process is visually repre-
sented as the Prediction Horizon in Figure 1. When
the user modifies preferences, online updates reconfig-
ure the pre-processing and dynamics of the temporal
attention mechanism to align with the new purpose.
Then, the model is retrained.

3 Sensor Deployment
This section provides detailed information of the

observations used to feed our model (QameleO net-
work in Dijon), including their acquisition and pre-
processing.

3.1 The QameleO Network
QameleO is a inexpensive air quality micro-station

developed by two research teams in the Univer-
sity of Burgundy and Institut de Recherches pour le
Développement (IRD) (Martiny et al, 2023). QameleO
microstations measure the mass concentrations within
PM1, PM2.5, PM10 fractions along with meteorological
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variables, such as temperature and relative humid-
ity. The measurements are consistently available every
15 minutes, aligning with the time-step of the sta-
tions of the approved air quality monitoring association
(AASQA : Association agréée de surveillance de la
qualité de l’air) and operated by regional governments
in the Dijon Metropolis.

QameleO micro-stations have supported tests
in the laboratory and outdoors, in the frame of a
national evaluation exercise leaded by the LCSQA
(Central Laboratory of Air Quality Surveillance) in
July 2018. This proficiency testing of micro-sensors
systems, referred to as the EAµC field campaign,
enabled to compare the QameleO micro-station to 15
other micro-sensors and to the BAM1020 reference
analyser, measuring the PM2.5 fraction, for 2 entire
weeks and at the same location/station. These tests
established that the QameleO micro-station can sat-
isfactorily reproduce the temporal dynamics of the PM
mass concentrations (Crunaire et al, 2018; Redon et al,
2018).

In particular, for PM2.5, the correlation coefficient
between the micro-station and a referenced station is
+0.73, which is a significant score at a 99% level accord-
ing to the Bravais-Pearson statistical test, and a mean
bias of −2.71µg/m3.

In Dijon Metropolis, the POPSU (Plateforme
d’Observation et de Stratégies Urbaines) program has
been a real opportunity to deploy the QameleO net-
work in a real urban environment (cf. Figure 2). The
QameleO microstations were implemented like mete-
orological stations, all under the same conditions: at
3 meters high, with a similar Sun Exposition. There
are 12 QameleO micro-stations implemented in Dijon
Metropolis. Of the 12 micro-stations, four of them
cover a complete year (from November 2020 to Octo-
ber 2021) of measurements as the network has been
deployed in progressive phases. These four specific sta-
tions are located within the city in Port du Canal,
Hoche, Carnot, and Janin, representative of diversified
urban conditions (traffic : Carnot and Hoche, urban
background: Port du Canal and Janin).

PmForecast was used on each station indepen-
dently to test its efficiency.

3.2 Data Preprocessing
The data preprocessing stage is crucial in improv-

ing the quality and suitability of the data set for
comprehensive analysis. It involves a meticulous pro-
cess of cleaning, transformation, and organization to
ensure data accuracy and consistency while eliminating
errors. QameleO dataset is validated and corrected
for the concentrations of the PM mass according to the
Isolation Forest (IF) method developed by the Univer-
sity of Burgundy. The Isolation Forest algorithm is an
unsupervised machine learning technique specifically
designed for anomaly detection. It works by isolating
observations through a random selection of features
and split values, efficiently identifying anomalies due to
their distinct nature. (Martiny et al, 2023) employed

this method to identify and correct anomalous concen-
tration values of the mass of PM, ensuring the precision
and reliability of the data set that we used in our study.
Addressing missing values is a crucial step before diving
into data analysis. Despite the QameleO microsta-
tions offering a relatively consistent dataset for air
quality assessment, with an average of approximately
%5 missing values over a year time series, ML methods
require a dataset without gaps. To meet this criterion,
we applied a 12-hour moving average.

In the final stage, where a few minor missing values
persisted around 0.8% to 0.9% percent, we opted for
forward filling, replacing each missing value with the
most recent observed value in the dataset. Achieving
uniformity in the dimension values is crucial for mean-
ingful analysis. To ensure this, we employed Min-Max
Normalization, a technique that scales the dimension
values to a range between 0 and 1. This normalization
process contributes to equitable data representation, a
fundamental aspect of robust analysis. The final ver-
sions of the datasets are prepared for four sites: Station
1 (Canal), Station 2 (Hoche), Station 3 (Carnot), and
Station 4 (Janin). We include measurements spanning
9.5 months in the training sets and 2.5 months in the
testing sets for all stations.

3.3 Model Hyper-parameters
In our pursuit of creating an optimal configura-

tion for the LSTM model, the fundamental aspect of
our goal is to minimize hardware requirements and
employ a lightweight model while maximizing per-
formance. The number of hidden units and layers
within a neural network are crucial hyper-parameters
that significantly impact the model’s capacity and
complexity. We strongly emphasize achieving a del-
icate balance between the model’s capacity and the
potential risks of over-fitting or under-fitting. In this
endeavor, we carefully considered the unique charac-
teristics of the problem and dataset, ensuring that
our model is not only efficient but also tailored to
the specific challenges posed by the given context.
Our investigation comprehensively assesses how vary-
ing numbers of hidden layers and units impact the
model’s performance. Conducting an exhaustive anal-
ysis, we explored multiple unit configurations within
the range of [32, 64, 128, 256], along with variations in
the number of layers ranging from 1 to 5. Model eval-
uation was performed using R2 and RMSE metrics
for four sites in both train and test datasets. Ulti-
mately, we determined that the optimal architecture
for our LSTM model comprises 2 hidden layers with
128 units each, utilizing the Relu activation function.
The model was trained using the mean squared error
Mean Square Error (MSE) for the loss function, chosen
for its effectiveness in regression tasks.

During the training phase, it is crucial to spec-
ify hyper-parameters that significantly influence the
performance of deep learning models. Firstly, the learn-
ing rate, a parameter that determines the size of the
steps taken during the model optimization process,
was set at 10−3, after evaluating values within the
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Fig. 2: Locations of Air Pollution Monitoring Micro-Stations in Dijon. The blue circles in the black box
correspond to the four QameleO stations used in this study (Martiny et al, 2023)

range [10−1, 10−2, 10−3, 10−4]. Next is the batch size,
representing the number of data samples processed
in one iteration during model training. A carefully
chosen batch size of 48 was implemented, indicating
that the model processed 48 (equivalent to 2 × 24
hours) training examples per iteration. Lastly, the
epoch parameter, denoting the number of complete
passes through the entire dataset during model train-
ing, was set to an extensive value of 200. This choice
allowed the model to iterate through the entire train-
ing datasets 200 times, capturing intricate patterns and
enhancing overall performance.

To avoid overfitting and promote model generaliza-
tion, the Early Stop technique was used. This involved
monitoring the model’s performance on a validation
set during the training process and interrupting train-
ing once the performance ceased to improve or started
to degrade, effectively preventing unnecessary further
training.

3.4 Dynamic Datasets & Online Model
Calibration

Our model is designed for monthly updates, as
we typically observe minimal changes within a one-
month timeframe. Embracing a dynamic approach, the
model undergoes regular fine-tuning of its hyperparam-
eters based on processed information. It continuously
assesses performance metrics, such as accuracy (R2)
and root mean square error (RMSE), selectively incor-
porating updates when improvements are detected.
This iterative process ensures efficient training over the
specified timeframe, maintaining the model’s currency,
and optimizing the latest data trends.

Furthermore, any changes in user preferences can
be applied online, allowing the model to be quickly
recalibrated to better suit user needs. The adaptability
of this approach allows our model to respond effec-
tively to evolving patterns and progressively improve
its performance over time.

4 Experimental Results
A thorough series of assessments were conducted to

comprehensively present our results. Beginning with an
evaluation of hourly prediction precision for the Canal
site, we then delve into an in-depth analysis of extend-
ing time-frame predictions across all sites. Following
this, we undertake a comparative study involving vari-
ous popular ML algorithms for time-series forecasting.
Additionally, we assess the feasibility of multi-task
prediction. Finally, we examine the time-consuming
aspects across each phase of our framework.

4.1 Precision of Air Pollution
Forecasting

One of the main objectives of this research is to
achieve high precision in the prediction of air pollution,
and in particularly PM2.5. The experimental results
displayed in Figure 3 provide a visual representation of
PM2.5 readings over time for the Canal site, illustrat-
ing both predicted and ground truth values from the
train dataset and test dataset. In a specific time-frame,
Figure 4 showcases the ground truth and predicted
values for the test set on 24th and 25th July 2021.

Following the assessment of model performance pre-
sented in Tables 1 and 2, it is essential to delve into the
specific evaluation metrics employed. The assessment
includes not only RMSE and R2, but also incorpo-
rates other key performance metrics, such as MSE,
Mean Absolute Error (MAE), and Weighted Aver-
age of Absolute Percentage Error (WMAPE). RMSE
quantifies the average magnitude of prediction errors,
providing a comprehensive measure of model accuracy.
MSE offers a similar insight without considering the
square root, emphasizing larger errors. MAE repre-
sents the average absolute difference between predicted
and actual values, offering a robust measure of model
precision. R2 gauges the share of correctly predicted
instances, providing a holistic view of model effective-
ness. WMAPE, calculated as the weighted average of
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Fig. 3: Hourly temporal prediction of PM2.5 levels over time for Canal site. The dotted lines correspond to the
observed values and are representative of the true values during the training (blue) and prediction (golden)
periods. The solid lines correspond to the PM2.5 predicted during the training (salmon) and the prediction
(green) periods. The dashed vertical green line indicates the division between the training and test datasets.

Fig. 4: Hourly temporal prediction of PM2.5 levels
over time over the Canal site, forecasting 2-day

predictions for July 24th (Saturday) and July 25th
(Sunday), 2021. The golden solid line represents the
predicted values and the dotted green line represents

the truth values for the test set.

absolute percentage errors, offers a nuanced perspec-
tive by considering the significance of errors across
different prediction scenarios. These metrics under-
score the model’s robust performance across diverse
evaluation criteria for training and test datasets.

The predictions show remarkable precision, achiev-
ing an impressive R2 of approximately 100% and
substantial RMSE ranging from 0.36 to 0.77 µg/m3 in
the train and test sets at all stations, respectively. This
signifies a robust correlation between predicted and
measured PM2.5, highlighting the model’s exceptional
predictive capabilities for the subsequent hour. The

combination of high R2 and low RMSE underscores the
reliability and precision of the model in capturing and
forecasting target values. Specifically, we note metrics
with values less than 0.43µg/m3, 0.6µg/m3, and 11%
for MAE, MSE, and WMAPE, respectively. In the con-
text of our study, it is essential to acknowledge that
our experimental setup involves small test datasets and
a model of relative simplicity. In light of these con-
siderations, it is observed that RMSE exhibits a lower
value in the test dataset in comparison to the training
dataset, which is a general trend observed in machine
learning experiments.

While all results demonstrate significance, the
notable prominence of the Canal station in the test
set and the Carnot station in the train set as the
most favorable matches suggesting the best alignment
between observed and predicted values at these spe-
cific locations (Tables 1 and 2). Bold values in these
tables highlight the highest performance across all
sites. Despite local attributes such as unique environ-
ment leading to different emission sources as well as
their diurnal variations, geographical, or meteorolog-
ical conditions inherent to each station, the model
is surprisingly performing well across all sites. This
robust adaptability underscores the model’s effective-
ness across diverse environmental conditions within
this city. More metropolises need to be tested to
confirm this behavior with probably more contrasted
typology (rural vs urban).
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Table 1: Evaluation metrics (RMSE, MAE, MSE, R2, WMAPE) for prediction results during the training
period for the 4 QAMELEO stations (Canal, Hoche, Carnot, Janin) focusing on 1-hour predictions with a

history of 3 hours. Bold values indicate the best performance across all sites.
Train-set RMSE MAE MSE R2 WMAPE

(µg/m3) (µg/m3) (µg/m3) (%) (%)
Canal 0.566 0.352 0.320 99.5 0.043
Hoche 0.768 0.428 0.590 98.6 0.078
Carnot 0.438 0.262 0.192 99.3 0.054
Janin 0.626 0.414 0.392 99.4 0.047

Table 2: Evaluation metrics (RMSE, MAE,MSE,R2, WMAPE) for prediction results during the testing period
for the 4 QAMELEO stations (Canal, Hoche, Carnot, Janin) focusing on 1-hour predictions with a history of 3

hours. Bold values indicate the best performance across all sites.
Test-set RMSE MAE MSE R2 WMAPE

(µg/m3) (µg/m3) (µg/m3) (%) (%)
Canal 0.353 0.238 0.125 99.4 0.049
Hoche 0.393 0.241 0.154 98.2 0.106
Carnot 0.357 0.200 0.164 98.7 0.071
Janin 0.444 0.179 0.197 97.4 0.061

4.2 Extended Time-frame Prediction
In Figure 5, we assess the accuracy of PM2.5 pre-

dictions in the train and test sets across datasets
from the four stations, ranging from 1 to 72 hours
into the future. Figure 5a depicts the computed score,
representing the average over the prediction period.
Leveraging hourly predictions with adaptable horizons
for the near future, we conducted an examination
to evaluate performance across various timeframes—
specifically [1, 6, 12, 24, 48, 72] hours for all stations.
This resulted in [1, 6, 12, 24, 48, 72] hours of prediction
values for each time horizon. To provide an example,
when forecasting PM2.5 levels for the next 12 hours, the
model generates a predicted value for each hour within
this period, amounting to 12 values for this configu-
ration. The R2 score for the entire 12-hour prediction
horizon is subsequently calculated by averaging these
12 R2 values.

As the prediction period extends, a noticeable
decrease in accuracy for each individual hour is
observed, as depicted in Figure 5. Another noteworthy
phenomenon emerges with the extension of the time
horizon, where the performance decreases for a spe-
cific time compared to a shorter future prediction. For
instance, with a 24-hour forecasting horizon, the accu-
racy for the first hour drops to approximately 91.5%,
while a 1-hour forecasting horizon achieves a higher
accuracy of approximately 99%. In particular, for the
48-hour horizon, R2 drops to 0.4 for all sites in both
the train and test periods, indicating a limitation in the
model’s ability to predict PM levels beyond 36 hours.

This observed behavior aligns with the common
phenomena noted in both physical and numerical mod-
els Zhao et al (2023). While the results showcase
the model’s ability to generalize and provide reliable
forecasts for the near future, challenges arise when
forecasting for more extended timeframes.

(a)

(b)

Fig. 5: Performance Evaluation of Long-Term PM2.5

Forecasting Across Multiple Sites: (a) Accuracy
Assessed by R2 % metrics, and (b) Root Mean

Squared Error RMSEµg/m3. The solid lines with
stars denote the performance on the training sets,

while the dashed lines represent the performance on
the test sets. Each of the four stations is distinguished
by a unique color: Canal (red), Hoche (blue), Carnot

(green), and Janin (grey).
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4.3 Method Comparison Study
Our study considered a diverse set of widely-

recognized time series data forecasting algorithms,
including Gaussian Process Regression (GPR), Gated
Recurrent Units (GRU), XGBoost, ARIMA, and Stan-
dard LSTM. We evaluate these ML algorithms to
forecast PM2.5 levels over 1- and 12-hour periods, care-
fully examining their performance over time across four
different sites. The consistent findings across these sites
lead to a comprehensive analysis presented in Table 3,
showcasing the effectiveness of each algorithm in meet-
ing our forecasting objectives. GRU demonstrates
performance very close to PmForecast, attributed
to their similar architectures and shared algorithms
in RNN models. However, PmForecast consistently
outperforms GRU, displaying superior results. ARIMA
excels in the short term, providing accurate predic-
tions, but its computational demands increase for
longer forecasting horizons, leading to less efficient
performance. XGBoost, despite its stability and rapid
training times, falls short compared to RNN-based
algorithms. GPR achieves high rankings on training
data but delivers less favorable outcomes on the test
set. While the Standard LSTM demonstrates good
performance, PmForecast consistently outperforms
it, with distinctions becoming more pronounced for
extended forecasting horizons beyond 12 hours. Fol-
lowing comprehensive experimentation and evaluation,
the PmForecast model emerges as the most effec-
tive choice. PmForecast exhibits better performance
achieving shallow RMSE values of 0.357 for 1-hour
and 1.635 for 12-hour forecasts on the Carnot site test
dataset. The temporal mechanism embedded in our
PmForecast framework endows PmForecast with
superior predictive capabilities among the evaluated
algorithms, establishing it as a pivotal asset in our
quest for precise PM predictions.

4.4 Multi-Tasks Model
Multi-task prediction offers efficiency, optimal

resource utilization, and enhanced decision support,
establishing itself as a valuable approach to air pollu-
tion prediction. Our research involved a comprehensive
multi-task forecasting strategy, concurrently address-
ing the prediction of 3 major pollutants—PM1, PM2.5,
and PM10—as well as temperature and humidity.
Figure 6 visually presents these correlations, illus-
trating the strong alignment between measured and
predicted values for the next hour across the three PM
fractions at the Canal station. While the single-task
prediction model slightly outperformed the multi-task
approach with a correlation of about 99% for PM2.5

in one-hour prediction, it is important to highlight
that the multi-task strategy using the PmForecast
approach demonstrated remarkable efficiency in cap-
turing the essence of the PM fraction’s behavior with
an evaluation metric for R2 around 98% for all frac-
tions. Equally impressive correlations were noted for

other features, closely aligning with this value. More-
over, this robust performance was not limited to a spe-
cific dataset. Indeed, the correlation results remained
consistent across the three additional sites further
affirming the effectiveness of our multi-task forecasting
methodology.

The overall efficiency and comprehensive insights
provided by the multi-task approach, particularly with
the PmForecast method, underscore its value and
efficacy in capturing the complex behaviors of various
PM fractions. This intriguing finding emphasizes the
potential of the multi-task strategy as an effective alter-
native, providing comparable predictive accuracy while
incorporating multiple parameters in the forecasting
process.

4.5 Time Overhead for Model Training
& Inferences

The PmForecast model displays variable time
consumption across its key steps, as detailed in Table 4,
utilizing an Apple M1 chip with 16GB of memory. The
data pre-processing stage, involving one sample con-
sisting of 5 measurements and 2 temporal features (day
of the week and hour of the day), exhibits swift effi-
ciency. Tasks include converting the timestamp from 15
seconds to hourly datasets and handling missing values
using a moving average algorithm, achieving a latency
of 61 seconds for the entire dataset in one station.

In contrast, the temporal mechanism, which oper-
ates on the entire dataset, introduces a favorable
latency of less than 1 second, reflecting the simplic-
ity associated with handling temporal aspects. The
training phase for one epoch requires 5.0 milliseconds,
emphasizing the computational demands involved in
optimizing the model parameters. The complete model
training process, from raw data to a trained model,
takes 250 seconds, with a configuration of 200 epochs
and an early stopping mechanism set for a patience of
30 epochs.

Recalibration configuration times vary depending
on the horizon time. For instance, for 12-hour pre-
diction points, the latency of a fully trained model
is 283 seconds. Subsequently, predicting air pollution
levels for a one-hour horizon demonstrates remarkable
efficiency, with a latency of 375 milliseconds for 2400
samples. For the same number of samples but a longer
horizon, such as 12 hours, the latency increases to 481
milliseconds.

These temporal benchmarks offer insights into
the computational performance of the PmForecast
model, essential to assess its feasibility in online appli-
cations.

5 Conclusion
The study is dedicated to crafting an accurate

air pollution predicting model, focusing primarily on
PM2.5. The wide spectrum of forecasting algorithms
explored includes GPR, GRU, XGBoost, ARIMA, and
Standard LSTM. In this comprehensive evaluation, the
PmForecast model, an advanced iteration of LSTM,

9



Table 3: Assessing our Model’s Predictive Performance at the Carnot Site Using Diverse Machine Learning
Algorithms on the Test Dataset. Bold values indicate the best performance across all methods.

Forecasting 1-Hour 12-Hours
Methods RMSE MAE R2 RMSE MAE R2

(µg/m3) (µg/m3) (%) (µg/m3) (µg/m3) (%)
GRU 0.424 0.240 98.2 1.648 1.022 70.0
GPR 0.615 0.351 96.2 3.182 1.495 11.0

XGBoost 0.437 0.237 98.1 1.874 1.083 65.1
ARIMA (VARMAX) 0.587 0.483 96.5 2.425 1.675 41.5

LSTM 0.422 0.256 98.2 1.731 1.019 70.2
PmForecast 0.357 0.164 98.9 1.635 0.954 73.7

(a) (b)

Fig. 6: Performance assessment through Gaussian distribution for multi-tasking at the Canal Site with varied
meteorological data. (a) Examination of the correlation between observed and predicted values for the training
set. (b) Investigation of the correlation between observed and predicted values for the test set. The truth and

predicted values are illustrated with dotted and solid lines, featuring "T" and "P" in the labels, respectively. The
colors represent the five measurements in our data: PM1 (purple), PM2.5 (red), PM10 (green), temperature

(orange), and humidity (blue).

emerges as the unequivocal top performer, achieving
superior accuracy rates of 98.9% and 73.7% for 1-hour
and 12-hour forecasting periods, respectively. Through
meticulous assessments conducted across various sites
and forecasting horizons, PmForecast consistently
proves to be the most effective choice, showcasing its
unparalleled predictive capabilities.

In the context of multi-task predicting, which
includes PM1, PM2.5, PM10, temperature, and humid-
ity, the single-task model slightly outperforms in
PM2.5 prediction. However, the PmForecast multi-
task approach stands out for its remarkable efficiency,
achieving high correlations of more than 98% for all
PM fractions. This efficiency is particularly valuable for
dynamic applications, as highlighted by varying time
consumption metrics. PmForecast excels in terms
of computational efficiency during data pre-processing
and demonstrates low-latency predictions, reinforcing
its potential for time-sensitive scenarios.

In conclusion, the PmForecast model not only
stands out as a robust and versatile solution for accu-
rate particulate matter prediction but also exhibits

notable efficiency gains. Its implications for online
monitoring and decision-making are underscored by
its superior performance and computational efficiency,
making it a valuable tool in air pollution forecasting
applications.

Future Work
In the current and near future, our strategy involves

deploying our lightweight air pollution forecasting
model on a Tensor Processing Unit (TPU) micropro-
cessor to achieve enhanced computational efficiency
and enable in situ predictions by colocating the fore-
casting service and the sensors. We will implement
regular in situ retraining strategies to keep the model
updated with the latest data, ensuring continual rel-
evance. Additionally, our focus is on developing an
integrated spatio-temporal model that considers the
interplay of diverse datasets, aiming for a more com-
prehensive understanding of air quality patterns.
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Table 4: Time latencies for each step of the procedure in PmForecast.
Step Latency (s)

Data pre-processing (8810 samples) 61
Temporal Mechanism (total data) 0.075

Training (1 epoch) 0.005
Train Full Model (full model from scratch to 1 point prediction for 1 station) 212

Online Model Recalibration (from 1 to 12 time points) 253
Prediction (1 time point for 2400 samples) 0.375

Inference Duration per Horizon (12 time points for 2400 samples) 0.481
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