
HAL Id: hal-04847860
https://hal.science/hal-04847860v1

Submitted on 21 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Freely floating cylinder on a 3D fluid governed by the
Boussinesq equations

Ewan Contentin, Geoffrey Beck, Ludovic Martaud

To cite this version:
Ewan Contentin, Geoffrey Beck, Ludovic Martaud. Freely floating cylinder on a 3D fluid governed by
the Boussinesq equations. WAVES 2024, Jun 2024, Berlin, Germany. �hal-04847860�

https://hal.science/hal-04847860v1
https://hal.archives-ouvertes.fr


WAVES 2024, Berlin, Germany 1

Freely floating cylinder on a 3D fluid governed by the Boussinesq equations

Ewan Contentin1,∗, Geoffrey Beck1, Ludovic Martaud1

1Rennes University, IRMAR UMR 6625, INRIA centre at Rennes University (MINGuS
project-team), ENS Rennes-École normale supérieure, Rennes, France

∗Email: ewan.contentin@etudiant.univ-rennes.fr

Abstract

We study a model describing the interaction be-
tween waves at the surface of a sea and a freely
floating partially immersed cylinder in the Boussi-
nesq regime. This wave-interaction system can
be reduced to an initial boundary value prob-
lem for the Boussinesq equations in an exterior
domain. The boundary condition depends on
the motion of the floating cylinder which is in
turn determined by a nonlinear ODE with forc-
ing terms coming from the exterior wave field.

Keywords: Fluid-structure interaction, Disper-
sive perturbation of hyperbolic boundary value
problems, Finite volume.

1 Introduction

The mathematical study of floating objects at
the surface of water is a key issue for collecting
water-waves energy. One considers the case of
a rigid cylinder of radius R > 0 with vertical
walls and a flat bottom. Moreover, we will as-
sume that it can only vertically move (see figure
1).

x y

z

Figure 1: Waves propagation with a floating
cylinder in the case where the flow is initially

axisymmetric without swirl.

The propagation domain is divided into two
areas:

• B(0, R) where the floating cylinder is lo-
cated,

• E := R2/B(0, R) where the waves move
freely.

The contact line between the two areas will be
denoted by Γ := B(0, R)∩E . We will denote by

er the outward normal of Γ and

[f ]Γ := lim
h→0

[f(R+ h)− f(R− h)],

denotes the jump at the contact line.

2 Wave-structure model

The motion of the floating cylinder is governed
by the Newton equation

mδ̈ +mg =

∫
B(0,R)

P

ε
, (1)

where δ is the distance of the center of mass to
its equilibrium and P : R+×R2 → R is the pres-
sure at the the surface of the sea. The motion
of the waves is governed by the 2D Boussinesq-
Abbott system

∂tζ + divQ = 0,

Tκ∂tQ+ εdiv
(Q⊗Q

h

)
+ h∇(ζ + P

ε ) = 0,

h := 1 + εζ , Tκ := (1− κ2∇div),
(2)

where ζ : R+×R2 → R is the elevation of waves,
h : R+ × R2 → R is the height of the water
column and Q : R+×R2 → R2 is the discharge.
Note that ε > 0 and κ > 0 are dimensionless
parameters.

The pressure P is unknown under the float-
ing cylinder, the interior domain B(0, R), and
constant equals to the atmospheric pressure in
the exterior domain:

P|E (t, x) = Patm.

The wave elevation ζ is free in the exterior do-
main E but be constraint in the interior domain

ζ|B(0,R)
(t, x) = δ(t) + ζeq , ζeq = ε−1(heq − 1),

with heq the height of the water column at equi-
librium in B(0, R). The pressure P could be un-
derstand as the Lagrange multiplier associated
to the constraint ζ|B(0,R)

= δ + ζeq. Finally to
complete the system, we imposed transmission
conditions at the contact line Γ :
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1. (conservation of the fluid volume)

[Q · er]Γ = 0,

2. (conservation of the energy of the whole
fluid-structure system)[

P

ε
+ ζ + κ2

ζ̈

h
+

|Q|2

2h2

]
Γ

= 0,

3. (no vortex line on the contact line)[
Q

h
× er

]
Γ

= 0.

3 Return to equilibrium

The return to equilibrium corresponds to the sit-
uation where the fluid is initially at rest whereas
the solide is dropped from a position out of equi-
librium. In that case, the flow is axisymmet-
ric without swirl, i.-e. ζ = ζ(t, r) and Q =
q(t, r)er, where r stands for the radial coordi-
nate. In [3] such a configuration was considered
for the hyperbolic nonlinear shallow water equa-
tions (equation (2) with κ = 0). The Boussi-
nesq equations (2) are a dispersive perturba-
tion of the hyperbolic nonlinear shallow water
equations. This dispersive perturbation induces
drastic changes on the behavior and analysis
of the associated initial boundary value prob-
lem. In that situation, the wave-interaction sys-
tem can be reduced to an initial boundary value
problem for the Boussinesq equations (2) in the
exterior domain E with the following boundary
condition

Q|E = −R

2
δ̇er on Γ,

which is in turn determined by a nonlinear ODE
with forcing terms coming from the exterior wave
field. To give this ODE, one first introduce, the
dispersif operators

Rαf = u, ∀α ∈ {0, 1} ,

such that for any f ∈ L2(rdr), u is the H2(rdr)-
solution of{[

1− κ2
(
∂r + α ·

r

)(
∂r + (1− α) ·r

)]
u = f, ∀r > R,

(1− α)u|r=R
+ α∂ru|r=R

= 0.

One can show using the Newton equation (1)
and the dispersion in (2) that the time-depend
variable

z := (δ, ζ) where ζ := lim
h→0

ζ|E (t, R+ h),

is solution of the following ODE

M(z)z̈+ Z(z, ż) =

(
0

fhyd

)
(3)

where

M(z) :=

m+ πR4

8(heq+εδ) + κ2 πR3

heq+εδ κ2 πR2

1+εζ

κ2 −κ
2

(
RK′

1(
R
κ
)

K1(
R
κ
)
+ κ

) ,

is a positive matrix (K1 stands for the modi-
fied Bessel of the second kind), Z is a Lipschitz-
continuous field and the hydrodynamical force
is

fhyd :=

[
R1

(
ζ +

ζ2

2
+ ε

q2

h

)
+ κ2

(
∂r +

·
r

)
R0(

εq2

hr
)

]
r=R

.

Thus, we have written the wave-structure
equations in a such way that there is no need to
compute the pressure exerted at the bottom of
the object which circumvents the main numeri-
cal difficulty. Based on this formulation and in
the spirit of [2], we propose a first order scheme
that involves a generalization of the HLL scheme
with nonlocal flux and a source term to solve
(2) in E , which is coupled to a first order Euler
scheme for the ODE (3). Note that (3) gives the
trace of Q|E and ζ|E on the boundary Γ that is
very helpful.
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