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The 2024 Nobel Prize in Physics has been awarded to John J. Hopfield and Geoffrey E. Hinton for their 
pioneering contributions to harnessing principles from physics to establish foundational methods in 
machine learning. Their work catalysed ground-breaking computing concepts, establishing the ba-
sis for unconventional computing architectures that directly exploit the physics of their underlying 
hardware. Today, these novel paradigms promise to drive next-generation hardware with enhanced 
performance and efficiency, while advanced neural network architectures open doors to transforma-
tive scientific discoveries. In this review, we outline the broader context of their contributions to un-
conventional computing and emphasize the integration of physics-based concepts in modern machine 
learning architectures.
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The human brain, a biological mar-
vel, has inspired the development 
of physical computers with extraor-

dinary capabilities. Notably, it is highly 
energy-efficient, capable of complex pro-
blem-solving, supports creativity and can 
solve certain problems with remarkable 
reliability. Research into brain function 
has long had two interwoven goals: to un-
derstand the brain itself, and to develop 
technologies that mirror its capabilities. 
This dual interest has influenced gene-
rations of scientists, including the 2024 
Nobel laureates in Physics, Geoffrey 
Hinton and John Hopfield, whose 
work has highlighted the profound link 
between brain-inspired computing and 
fundamental physical principles [1, 2].  
Early computing began with special-pur-
pose devices that leveraged analogue 
physics to perform calculations, usual-
ly with a rather direct mapping of the 
computational task onto the physical 
laws of the machines. This approach, 
though relatively simple to implement, 
limited such devices in their ability to 
evaluate/solve/compute/mimic specific 
functions to the ones embedded in their 
physical construction. The breakthrough 

in general-purpose computing emerged 
with Alan Turing's concepts, which abs-
tracted computation using binary logic 
[3]. By reducing computation to simple, 
hence more readily reproducible opera-
tions, Turing’s model made computing 
robust against physical imperfections, 

enabling the development of reliable 
hardware that operated largely inde-
pendent of the specifics of the under-
lying physics.
However, this direct task-mapping ap-
proach, linking computational objec-
tives to Turing algorithms, diverges 
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significantly from the mechanisms underlying human 
intelligence. This discrepancy has intrigued researchers 
seeking to bridge the gap between conventional computing 
and brain function. Santiago Ramón y Cajal’s pioneering 
studies in neuroscience (for which he received the Nobel 
Prize in Physiology or Medicine in 1906) provided an initial 
view of the brain’s network structure, hypothesizing how 
neural connections could grow to support learning [4]. Later, 
McCulloch and Pitts associated neural function with com-
putation using Boolean logic, interpreting neurons' binary 
firing patterns as a justification for representing neural ac-
tivity in symbolic terms [5]. While this approach integrated 
computer science with networked computation, it failed to 
capture the deep connections to physics.
Improved understanding of the distributed, interactive na-
ture of brain function started to increasingly highlight the 
parallels to physical systems. In the 1980s, a seminal analo-
gy connected fundamental computing operations to atomic 
spin-spin interactions [6, 7]. Early researchers recognized 
that Ising models, where spins could point up or down, evolve 
toward stable configurations through the minimization of 
free energy. The resulting spin patterns are influenced by the 
topology of interactions, the initial spin states, and random 
fluctuations akin to the effects of a temperature, yielding 
highly robust configurations. John Hopfield extended this 
concept to memory storage in neural networks. In these bina-
ry memory systems, each memory corresponds to a specific 
spin configuration [2] and a spin network can store a variety 
of memories due to multiple stable configurations. Hopfield 
showed how to design these spin-spin interactions, or the 
network topology, such that inherent physics establish these 
memories as stable points positioned at local minima within 
the system’s energy landscape [8], c.f. Fig. 1A. When the sys-
tem is initialized from a partial state, it naturally relaxes to the 
closest stable configuration, restoring the intended memo-
ry. Hopfield networks thus enable memory retrieval 
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from incomplete inputs, offering a unified 
framework for neuro-inspired memory 
reconstruction, Ising spin system dyna-
mics, and bistable network interactions. 
This achievement underscores the deep 
link between neuro-inspired compu-
ting, memory dynamics, and physical 
systems [9].
Geoffrey Hinton’s Boltzmann machine ex-
pands the use of these concepts by leve-
raging concepts of statistical mechanics. 
The Boltzmann machine is also based on 
an Ising system connected in such a way 
that it searches for low-energy configu-
rations to represent meaningful content 
again as stable configurations. Drawing 
on the idea of an energy landscape, each 
stable network state corresponds to a 
point with an associated energy level. 
The machine seeks configurations that 
minimize this energy, akin to how physi-
cal systems settle into stable, low-energy 
states. However, Boltzmann machines in-
corporate a "temperature" concept, using 
simulated annealing to explore network 
configurations by initially allowing more 
randomness (high temperature) and then 
gradually cooling (lowering randomness). 
This process helps avoiding poor solutions 
by enabling the system to escape local en-
ergy minima. The Boltzmann machine 
exemplifies how the principle of energy 
minimization combined with thermal 
fluctuations can bridge the gap between 
physics and artificial intelligence in the 
context of probabilistic learning models, 
and the approach has been foundational 
for deep learning architectures, particu-
larly in unsupervised learning.

The legacy of Hopfield networks and 
Boltzmann machines has significantly 
motivated the fields of artificial intelli-
gence, machine learning and unconven-
tional computing using physics. Their 
work contributed to the development of 
deep neural networks that are now widely 
used. In particular, Hopfield's initial pu-
blication was pivotal, sparking interest 
in optical neural networks and leading 
to the first experimental realization of a 
Hopfield network [10] just two years later 
– using optics (c.f. Fig. 1B). Driven by the 
urgent need for new and efficient neu-
ro-inspired physical computing engines, 
optical neural networks flourish again to-
day. The 2024 Nobel Prize in Chemistry 
awarded to Demis Hassabis and John 
Jumper for their work on AlphaFold 
highlights the importance of Hinton’s 
and Hopfield’s work for novel computing 
concepts. Including an energy landscape 
model of protein folding, AlphaFold 2 
exemplifies the application potential of 
the computational techniques pioneered 
by the early neural network architectures. 
Beyond this, neural network methodo-
logies permeate nearly every scientific 
discipline, driving advancements in 
automated optical design, enabling the 
rapid simulation of complex optical 

systems and creating breakthroughs in 
computational imaging. Thus, the com-
bined legacy of Hopfield networks and 
Boltzmann machines continues to inform 
advancements in artificial intelligence, 
illustrating the profound connections 
between physics and computational in-
telligence. 
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Figure 1. A The energy contour map for a two-neuron network, i.e. two-spin Ising 
model. Arrows indicate the relaxation-direction towards the two memories stored in 
the Hopfield network’s energy minima. Picture reproduced with permission from J.J. 
Hopfield. B The almost immediate implementation of a Hopfield network demonstrates 
the legacy of Hopfield’s work: connecting computing and physics. Photo: courtesy D. 
Psaltis. See also Ref. [10] 




