
HAL Id: hal-04847747
https://hal.science/hal-04847747v1

Preprint submitted on 19 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dual-Arm Shaping of Soft Objects in 3D Based on
Visual Servoing and Online FEM Simulations

Célia Saghour, David Navarro-Alarcon, Philippe Fraisse, Andrea Cherubini

To cite this version:
Célia Saghour, David Navarro-Alarcon, Philippe Fraisse, Andrea Cherubini. Dual-Arm Shaping of
Soft Objects in 3D Based on Visual Servoing and Online FEM Simulations. 2024. �hal-04847747�

https://hal.science/hal-04847747v1
https://hal.archives-ouvertes.fr


Dual-Arm Shaping of Soft Objects in 3D
Based on Visual Servoing and Online
FEM Simulations

Célia Saghour1, David Navarro-Alarcón2, Philippe Fraisse1 and Andrea Cherubini3

Abstract
In this work, we propose a vision-based and Finite Element Method (FEM) based controller to automate the 3D shaping
of soft objects with dual-arm robots. Our controller relies on a data-based approach to learn how the robot’s actions
result in object deformations, while also running FEM-based simulations to infer the shape of the whole body. These
model-based simulations are used to generate initial shape data, allowing to extract visual features through a Principal
Component Analysis and thus estimate the interaction matrix of the object-robot system. In contrast with most existing
shape servoing controllers, our new model-based approach continuously predicts the object deformations produced by
the robot, which are then compared to the visually observed deformation feedback. This iterative process enables to
correct the deformed mesh model before updating the interaction matrix. To validate this new control methodology,
we present a detailed experimental study with a dual-arm robot and different soft objects, which showcases the
performance of our automatic shaping framework.

Keywords
Shape control; Dual-arm manipulation; Soft objects; Finite Element Method; Jacobian estimation

Introduction
Cables, organic matter like tissues or vegetables, polymer
foams, fabrics, even metal parts are all deformable.
Manipulating such type of materials with robots typically
involves two important aspects: (i) the use of active motions
that produce deformations onto the object, and (ii) the use of
visual feedback to track and control the object’s shape (Zhu
et al. 2022). Traditionally, the shape servoing problem has
been tackled in two dimensions, i.e., by only controlling the
object’s contour as perceived by a monocular camera. The
main complications have been the difficulty to continuously
monitor the changes in the complete surface of an object,
which is typically occluded during its manipulation (Qi et al.
2024).

To address this issue, in this paper we propose a new
framework that enables to actively control the object’s
morphology in three dimensions (3D), see Fig. 1. For that,
we derive an efficient control method that exploits RGB-D
vision and a mechanical model of the object to guide the
shaping actions in 3D. The model is constructed based on
geometric and physical parameters, and is used to predict
the behavior of the object under robotic manipulation. The
model is continuously updated based on deviations between
the predicted object behavior and the visually measured
deformations. This new method builds on our earlier work
(Saghour et al. 2023), by now taking into account the whole
volume of the manipulated body, and not only its partial
visible surface (as done in our previous result).

The advantages of our proposed model-based shape
servoing controller compared to traditional manipulation
approaches can be summarized as follows:

• It provides a consistent 3D representation of the whole
object that allows to implement effective Jacobian

Figure 1. The goal of this work is to control a dual arm robot so
that the current mesh (blue) reaches the target mesh (red) in
3D.

estimation algorithms that compute the relations
between robot motions and deformations, even for
occluded parts of the object;

• It provides a way to virtually (hence, safely) collect
the shape-pose data that is needed to construct latent
feature representations, without the risk of damaging
the object during exploratory testing motions;

• It provides the user with an intuitive interface that
allows to specify the target shape of the task as well

1LIRMM, Université de Montpellier, CNRS Montpellier, France.
2The Hong Kong Polytechnic University, Kowloon, Hong Kong.
3Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, 1,
rue de la Noe, 44321 Nantes, France.

Corresponding author:
Célia Saghour, Université de Montpellier, CNRS Montpellier, LIRMM, 161
Rue Ada, 34095 Montpellier, France.
Email: celia.saghour@lirmm.fr

Prepared using sagej.cls [Version: 2017/01/17 v1.20]



2 IJRR XX(X)

as to visualize the planned and predicted behavior of
the system beforehand.

Related Work

While some works favor physics-based modeling for
accuracy in the prediction of the behavior of soft objects,
other rely on data to track and control the deformation,
without prior knowledge of the object behavior. Both
methods have their benefits and drawbacks. Data-based
methods require training for every new object. On the other
hand, model assumptions and parameters may be inaccurate
for describing deformation.

Various researchers have addressed the development of
data-based approaches for soft object manipulation. For
example, in (Shin et al. 2019) the authors propose two
predictive control algorithms (reinforcement learning and
learning from demonstration) to manipulate tissues with
surgical robots. In (Lee et al. 2022), the robot controller
learns to manipulate DLO through self-supervision, via
Fully-Convolutional Neural Networks. The method in
(Tsurumine et al. 2019) relies on Deep Reinforcement
Learning to make a humanoid robot manipulate clothes. The
authors of (Hu et al. 2019) use a Deep Neural Network to
map the end-effectors motion to the object deformation. In
(Seita et al. 2021), reinforcement learning is used to learn
to manipulate 1D, 2D, and 3D deformable objects into goal
configurations.

Model-based methods typically construct geometric
and/or physical models of the object to predict its
deformation in response to external actions, either in the
form of applied forces or input positions. The authors of
(Ruan et al. 2018) rely on a geometric model and on gradient
descent to predict the shape of deformable objects, given the
robot end-effectors motion. In (Aghajanzadeh et al. 2022b)
and (Aghajanzadeh et al. 2022a), an ARAP (As Rigid As
Possible) model characterizes the behavior of deformable
linear objects (DLO) in 2D. Some other works use FEM
to describe the behavior of the manipulated objects; For
example, in (Ficuciello et al. 2018) an offline visual and
force algorithm is used to estimate the FEM parameters, and
then invert the FEM to compute the necessary robot motions
to shape the object. The authors of (Zimmermann et al.
2021) propose a FEM simulation-based open-loop trajectory
planner for dual arm manipulation of soft objects. Other
models like the Cosserat theory (Azad et al. 2023), or a mass-
spring model can also be used (Andronas et al. 2021) to
model and control the deformation of a soft object. In (Yu
et al. 2023), a simplified energy-based model (Discret Elastic
Rod) is used in addition to a Jacobian mapping between the
end-effectors and the DLO centerline. In (Makiyeh et al.
2023), a mass-spring model is used along Fourier-based
features to control 3D deformations of surfaces.

Other works address the manipulation of non-rigid
objects through visual servoing techniques (Chaumette
2007). In contrast with data-driven approaches, adaptive
visual servoing relies on the local estimation of the
mapping between the robot inputs and the computed visual
features. The main challenge with non-rigid objects is to
encode the object shape with image features, which should

be continually tracked during manipulation. In (Navarro-
Alarcon et al. 2016), an adaptive deformation model for
elastic materials is computed from feature points of interest.
The authors of (Lagneau et al. 2020) shape wires in 3
dimensions, by extracting visual features from a B-spline
model. The visual servoing framework presented in (Shetab-
Bushehri et al. 2022) relies on a 3D lattice representation,
linked to the object by geometrical constraints. The authors
of (Zhu et al. 2020) encode the object via Principal
Component Analysis (PCA) on image contours the object.
Similarly, (Qi et al. 2022) uses contour moments as a
state representation of the manipulated object. In (Zhou
et al. 2024), the authors use a topological latent state
obtained through an auto-encoder as a state representation,
for collaborative manipulation of DLO.

Our aim in this work is to develop a shape servoing
framework that unites the benefits of data-driven methods
(that learns the shape-motion mapping and the visual features
on-the-fly) with those of model-based methods (that provides
a consistent geometric representation of the whole body and
a good approximation of the shape behavior when subjected
to external disturbances).

This new approach enables to control 3D shapes with little
sensor feedback (only a partial view of object observable
with one single vision sensor), and does not require
expressing any explicit force constraint on the model, since
the constraints are entirely geometric. This feature makes our
method intuitive, and the estimation of the inverse Jacobian
relying only on past data makes it adaptable to the behavior
of the object without the need of material parameters nor of
precise modeling of the object behavior.

We also show that we can exploit the tools offered by
Simulation Open Framework Architecture (SOFA)* (Faure
et al. 2012) in different steps of the framework (to generate
data without using the robot, select a target, monitor the
stress, visually correct the model or even reconstruct meshes)
to reduce the need for real life manipulation, preferring
simplified and intuitive use of simulations instead.

Overview of our Framework
Our goal is to generate a sequence of commands for a dual
arm robot to deform and drive the current mesh nodes m to
the target mesh nodes m∗. The target mesh can be chosen in
the simulation, e.g., via keyboard commands.

We assume the following hypotheses:

• The object is already grasped by the robot, and
the positions and orientation of both end-effectors,
denoted rl and rr are known.

• The effect of gravity can be neglected (because the
object is rigid, or light). Hence, given to the end-
effectors poses (rl, rr), precise knowledge of the
material parameters is not necessary to simulate the
object behavior (see Sec. Material Parameters Effect
on Simulations).

• Prior to manipulation, the mesh of the grasped object
is known a priori, or it can be reconstructed.

∗https://www.sofa-framework.org/

Prepared using sagej.cls

https://www.sofa-framework.org/


3

• The color of the object can be segmented from that of
the end-effectors.

• The camera pose in the robot frame is known.
• The object is at least partly in the camera field of view

throughout manipulation.

In contrast with our previous work (Saghour et al. 2023),
here we use simulations to track the shape of the object
online. The object material parameters are not necessary for
manipulation, since the constraints are considered geometric;
yet, they can be used to monitor the deformation. The control
framework is shown in Fig.2. We use tetrahedral mesh nodes
m to represent the shape of the manipulated object, defined
as follows:

m =


m1,x m1,y m1,z

...
...

...
mn,x mn,y mn,z

 ∈ Rn×3. (1)

In addition, we use visual mesh nodes mv from triangular,
surface elements to represent the visible part of the object.

At each iteration i, we deform the object mesh in a
simulator, according to (rl, rr). The simulation runs a
few steps until a state of quasi-equilibrium is reached.
This configuration yields the new mesh nodes. During
manipulation, the point cloud of the new state of the object
pci+1 is retrieved through visual processing and used to
correct the meshes in the simulation. To first initialize the
data matrices, we collect a sequence of shapes (mesh nodes)
with corresponding robot poses, all in simulation. These are
stored in matrices M and ∆R, respectively. These matrices
are then updated at each step of the manipulation with the
latest shape (from simulation) and robot pose variation (from
the robot).

Then, we conduct PCA on M, to obtain the projection
matrix Uk, encoding the features in the reduced space
of k highest variance eigen values. Both the current and
intermediary target mesh nodes m̌i and m̌∗

i are projected
to encode the shape into a smaller number of k features,
respectively si and s∗i . We consider that the mapping between
feature variation δs and robot pose variation δr is locally
linear, via interaction matrix L ∈ Rk×k:

δs = Lδr ∈ Rk. (2)

We estimate the inverse interaction matrix L−1, mapping
robot pose variation to the object’s shape variation, and use
it to compute the control input δr driving the current shape
to the intermediary target. The dual-arm controller computes
the necessary robot joint commands, here denoted as θ̇. This
process is repeated until the target shape is reached.

Simulating Deformations
We use SOFA to run online FEM simulations of the
deformation of the object being manipulated. In the
simulation scene, the deformation model is the tetrahedral
mesh of the object in the robot frame, M. The visual
mesh Mv is imported in SOFA as a visual model.
The tetrahedral mesh DOF are connected to the visual
mesh nodes through SOFA’s mapping functions, so that
the deformation propagates to the visual model. Accurate

mechanical models are complex to define, as they depend on
the material properties and are computationally expensive.
Thus, instead of trying to estimate a precise mechanical
model, we use linear elasticity as a simple approximation
of the mechanical behavior of the manipulated objects and
the robot end-effectors’ poses to run simple and efficient
simulations.

As assumed above, if the object is light or stiff enough,
the effect of gravity on its shape is negligible compared to
the deformation effect produced by the position constraints
imposed by the robot manipulators. Then the material
parameters (mass, Young modulus and Poisson’s ratio) will
not have a significant impact on the simulation (see Sec.
Material Parameters Effect on Simulations), and we can set
realistic default variables. Yet, we can use the knowledge of
the parameters to monitor the internal stress, and to assure
that the object is being manipulated in the elastic domain and
does not undergo irreversible deformations. Then, the mass
of the object can be obtained through the force sensors on
the end-effectors and the Young modulus and Poisson’s ratio
included in the simulator FEM model.

Setting-up the Object Mesh
In the following, we denoted a rigid particle by pr, which
can be moved in the SOFA scene. Specifically, prl and prr
are the rigid particles corresponding to the left and right end-
effectors, respectively (see Fig. 3). A rigid particle is defined
by a position and an orientation as:

pr = [x y z q] , (3)

with q the quaternion representing the end-effector
orientation. We define the contact between the end-effectors
of the robot and the object by a set of mesh nodes, called
holding nodes, and representing the contact between the
mesh and the end-effectors. These nodes are contained in
each of the bounding boxes built around the position of prl
and prr and denoted Hl and Hr respectively (see Fig.3).
Since the object is considered firmly gripped, the mapping
is supposed rigid: when the particles are displaced, the
attached holding nodes are transformed accordingly, and the
rest of the mesh deforms following the FEM. To simulate
the deformation caused by the real end-effectors during
manipulation, we relate prl and prr to the position and
orientation of the actual robot end-effectors rl and rr, or in
general:

r = [x y z ρ] , (4)

with ρ the angle-axis vector representing end-effector
orientation. The whole dual-arm robot pose r is then defined
as:

r = [rl rr] . (5)

The simulation setup presented in this section can be
expanded to any objects for which the meshes are known
or acquired beforehand. Some methods that we developed
to reconstruct the meshes of DLO are presented in Sec.
Simulations for DLO Mesh Reconstruction.

Material Parameters Effect on Simulations
For small displacements (as those applied by our controller),
we have seen empirically that the material parameters (both

Prepared using sagej.cls



4 IJRR XX(X)

Figure 2. Overview of our framework at each iteration i. Given a sequence of past mesh nodes M and corresponding robot poses
∆R, we apply PCA on M, to obtain projection matrix Uk. This is then used to reduce the dimension of M, to estimate L−1, linearly
mapping the features variation to the robot pose variation. With L−1, we compute the robot input δr driving current shape si to
intermediary target s∗

i in the reduced space. The robot input is sent to the dual-arm robot controller to obtain the joint command θ̇.
Once the command is achieved, the new robot pose ri+1 is sent to the simulator, and the simulation runs until quasi equilibrium.
The resulting visual mesh nodes mv

i+1 are compared to the point cloud of the object pci+1 obtained via visual processing, through
Iterative Closest Point (ICP). Correction steps are run until the resulting error is lower than a threshold. Finally, the past data
matrices are updated with the new mesh nodes (from the simulation), and the latest robot pose variation (from the robot). The
whole process is repeated at iteration i+ 1.

Young’s Modulus E and Poisson’s ratio ν) given as input to
the simulator have a small impact on the mesh deformation.
Since the effect of gravity can be neglected (because the
object is rigid, or light), the constraints are solely geometric.
In Fig. 4, we show meshes resulting from simulations, during
which a displacement constraint is applied, with different
parameters E and ν.

In this example, the displacement is applied on the right
end-effector, with a span of 0.02 m for the translation and
angles of π

10 rad for the rotation on each axis. We find that for
a Young Modulus going from 5e3 Pa to 5e7 Pa, the different
simulations result in a maximum error (norm L2) between
the deformed meshes of 5.3e−5m. This confirms that the
Young’s Modulus does not have a significant impact on the
simulated deformation.

Regarding the Poisson’s ratio, we try out values from
0.1 to 0.45, which can correspond to materials such as
foams, polymers, or metals. The maximum error (norm L2)
between the deformed meshes after application of a same
displacement constraint is emax = 0.07m, corresponding to
a ASE (average sample error, ASE = emax/3n with n the
number of nodes) of 4.22e−5m.

The impact of the Poisson’s ratio is more visible than
that of the Young’s Modulus, but it is still quite small when

related to the whole shape. These simulations show that
for such objects (ones on which gravity can be neglected),
the exact knowledge of the Poisson’s ratio is not necessary
to simulate an approximate behavior of the object, since it
does not have significant effects on the shape when small
displacements are applied.

Initialization
We use simulations to construct the initial sequence of mesh
nodes M, and the corresponding robot pose variations ∆R
for a first estimation of the mapping L−1, as well as for
features extraction. The matrix M is composed of D + 1
different samples of shapes (deformed meshes), so as to have
D variations. To obtain them, we generate random samples
of r, with constraints on the end-effectors distance, to avoid
stretching the object too much.

Examples of generated shapes are shown in Fig. 5. The
D + 1 resulting meshes m̌i ∈ R3n are stored in matrix M:

M = [m̌0 · · · m̌D] ∈ R3n(D+1). (6)

The corresponding poses of the rigid particles [prl,prr] yield
the robot pose variation between iterations i− 1 and i as:

δpr =
[
xi − xi−1 yi − yi−1 zi − zi−1qi · q−1

i−1

]
, (7)

Prepared using sagej.cls



5

Figure 3. Simulation setup. The nodes of the mesh are shown
in white. The frames prl and prr represent the the rigid particles
related to rl and rr respectively, acting on the mesh when
transformed accordingly to the displacements of the
end-effectors. The red lines represent the bounding boxes
around the positions of prl and prr. The holding nodes Hl and
Hr are the red nodes in left and right boxes respectively. The
mesh M is shown in blue on the last row.

Figure 4. Application of the same displacement constraint for
different material parameters (Young’s modulus E and
Poisson’s ratio ν.

which can be mapped to an angle-axis vector δρi to obtain
δri. The D robot pose variations are then stacked into the
matrix ∆R:

∆R =
[
δr1 . . . δrD

]
∈ Rk×D. (8)

Target Selection
In contrast with most works on Deformable Object
Manipulation, the target shape does not have to be reached

Figure 5. Examples of shapes (mesh nodes) obtained via
D = 10 simulations with random rigid particle poses, for a
sponge (left) and for a DLO (right).

beforehand by moving the robot or the object. Instead,
we profit from SOFA: the user can select the target shape
by displacing the rigid particles prl and prl via keyboard
commands. This interface is fast, user-friendly, and does not
require any knowledge on robot control.

Monitoring the Object’s Stress
If the material parameters are known or well estimated,
SOFA can compute the Von Mises stress during simulations.

The Von Mises criterion states that the body will yield if
the applied stress is greater than a critical value σy , called the
yield strength (Armenàkas 2016). The criterion is defined as:

σv ≥ σy (9)

This criterion is used to predict yielding for ductile materials.
The Von Mises stress is represented visually in the SOFA
graphic interface through a color scale (see Fig. 6, where red
indicates higher internal stress). With this tool, the user can
easily monitor if a target shape is hazardous or unreachable.
Besides, it is possible to impose a stress limit on the mesh,
so that:

• During the initial data collection, meshes with high
internal stress are discarded;

• During manipulation, the controller automatically
stops if the internal stress reaches high values, to avoid
damaging the object.

Integrating Visual Feedback

Image Processing
We use the color of the robot’s end-effectors to segment
the object in the RGB image. Since the end-effectors’
color remains unchanged regardless of the object being
manipulated, the image acquisition needs no tuning from one
manipulation to the next. Our setup uses the green color of
the end-effectors, but it is straightforward to replace color
segmentation by markers on the end-effectors, if needed.

The process (shown in Fig.7) starts by extracting the pixels
of both end-effectors, from their known color (see Fig.7(b)).
We remove end-effectors pixels, pixels exterior to the end
effectors, and pixels whose depth is greater than a threshold
(here, 0.5 m more than the nearest end-effector pixel).

We then run Hue Clustering (MacQueen 1967) on the first
image, to extract the dominant color of the remaining pixels
of the RGB image. Another Hue segmentation is applied to

Prepared using sagej.cls



6 IJRR XX(X)

Figure 6. Visual representations of the Von Mises stress on a
mesh in SOFA during target selection. On subfigures (b), (c)
and (d), we circled in red the mesh areas presenting high Von
Mises stress.

Figure 7. Steps of point cloud acquisition. From RGB image,
the robot end-effectors are segmented by color. We take out the
pixels belonging to the end-effectors, the pixels exterior to them,
and the pixels belonging to the background, and obtain the third
picture. The dominant color is then segmented, to get the fourth
picture. We project it in 3D, resulting in the point cloud
expressed in the camera frame (last picture).

each new RGB image to extract the pixels with dominant
color. Finally, these pixels are projected into 3D coordinates
using the camera intrinsic parameters and depth value. The
object point cloud is obtained and transformed to the robot
frame using the transformation matrix T rob

cam to yield pc.

Vision-Based Correction of the Simulated Mesh
We rely on visual feedback to correct the simulation,
following the scheme shown in Fig. 8. The resulting meshes
are denoted mi+1, mv

i+1. Since the camera pose in the robot
frame Frob is known, the transformation from the camera
frame to the robot frame T rob

cam is obtained. Then, the new
point cloud of the object pci+1 is transformed into the robot
frame through the T rob

cam.
We run the open3D implementation† of Iterative Closest

Point (ICP) between pci+1,rob and the visual mesh mv
i+1 to

obtain the transformation Ti+1, from point cloud to mesh.
Given a source and a target set of 3D points, ICP returns a
set of κ correspondences between the two. Naming nq the

number of points in the target set, we define the ICP fitness
fit as:

fit =
κ

nq
∈ [0, 1] (10)

We consider the alignment satisfactory, if the ICP outputs
a fitness value fit > 0.8, i.e. if the point cloud and the
nodes overlap by more than 80%. Otherwise, we conduct a
correction step to improve the similarity between meshes and
visual feedback.

This correction step is outlined in Fig. 9, and detailed
hereby. Using KNN (K-Nearest Neighbors, (Maneewong-
vatana and Mount 1999)) algorithm, we pair the nearest
visual mesh node to the corresponding point of the cloud.
The result is a list of nodes KNN, such that node KNNi ∈
mv is the visual mesh node closest to point pci. We seek the
farthest pair (pcκ,KNNκ), with:

κ ∈ max
κ∈[0,p]

||pcκ − KNNκ||2, (11)

and rename the points: p∗ = pcκ, n∗ = KNNκ. Once n∗ is
defined, we find the holding nodes Hn: The tetrahedral mesh
m is ”sliced” along the plane normal to the end-effectors axis
ppr, with a tolerance (0.01 m) on the distance to the plane, to
include more nodes (see Fig.9(b)). The nodes in Hn are:∣∣ppr · n − ppr · n∗

∣∣ ≤ 0.01,n ∈ m. (12)

Then, the holding nodes Hn are rigidly attached to a particle
prn created at the position n∗, see Fig.9(c). Since the
correction is applied with translation alone, the orientation
of the rigid particle is set to qn = [0, 0, 0, 1]. Finally, we
apply a displacement constraint on the rigid particle prn
to have it reach position p∗. Because of the rigid link,
this displacement is also applied to the nodes in Hn.
The simulation runs and deforms the rest of the geometry
accordingly, resulting in the corrected meshes m̃i+1 and
m̃v

i+1 (Fig. 9(d)).
To avoid disrupting nodes that are already rigidly attached

to an end-effector rigid particle, we ensure that there is no
intersection between the corrective holding nodes Hn and the
end-effectors holding nodes, Hl and Hr. In cases where there
is an intersection, the involved end-effector rigid particle
is the one used to apply the correction (see Fig. 19). The
matrix containing the past mesh nodes M is updated using
the corrected mesh points m̃i+1 for the next iteration, see
Fig.2.

Simulations for DLO Mesh Reconstruction
We now present a pipeline to reconstruct DLO meshes by
using simulations in a way that is similar to our correction
strategy. Many works consider the matter of DLO state
estimation, usually representing DLOs as 1D objects. In
Caporali et al. (2022), deep learning is used to extract
features of a DLO through spline modeling. Wang and
Yamakawa (2023) proposed a method to extract the DLO
skeleton from depth images. Ma and Xiao (2023) conducts
rope diameter estimation by the mean of different image
processing steps. We instead propose to consider the DLO

†http://www.open3d.org/docs/release/tutorial/
pipelines/icp_registration.html, Point-to-plane ICP

Prepared using sagej.cls

http://www.open3d.org/docs/release/tutorial/pipelines/icp_registration.html
http://www.open3d.org/docs/release/tutorial/pipelines/icp_registration.html


7

Figure 8. Process for obtaining the new shape by merging
simulation and visual feedback.

Figure 9. Steps of the visual feedback correction. (a) The mesh
nodes are represented in red, the point cloud in blue. We find
the farthest pair of visual mesh node n∗ and point cloud point
p∗. (b) In the tetrahedral mesh, we select the holding nodes
(Hn, darker green), which are near the plane orthogonal to the
end-effectors axis ppr. (c) A rigid particle prn is rigidly attached
to all the points in Hn, and displaced until p∗. (d) The rest of the
mesh is deformed, resulting in m̃v

i+1.

as a cylinder (3D), and present a few image processing steps
in order to extract the desired parameters (radius and length)
of the considered DLO from camera feedback. The DLO is
already grasped between the end-effectors, and entirely in the
frame of the RGB-D camera. First, the pixels representing
the DLO are segmented from the RGB image, Fig. 10(a). The
largest contour cdlo is extracted (Fig. 10(b)), and considered
as the main DLO body.

Length estimation: A B-Spline interpolation is conducted
on this contour (Fig. 10(c)), to obtain a set of 2D points
constituting the DLO curve. These points are related to their
closest pixel on the RGB image, giving the set of pixels
of coordinates (idlo, jdlo), and then projected into the 3D
space using the corresponding depth d(idlo, jdlo) and the
camera intrinsic parameters. We obtain the set of 3D points
pcdlo ∈ Rd × 3 (see Fig. 10(d)). The length of the DLO is
then computed as:

Figure 10. Extraction of the 3D points constituting the DLO for
length estimation. The body of the DLO is segmented (a), then
the largest contour is found (b). B-spline approximation gives
the 2D curve (c) and is projected in 3D to give pcdlo (d).

Figure 11. Image processing for radius estimation. The largest
circle (green) fitting in the contour (red) is found (a), and the
mask of their intersection is created. These pixels are projected
in 3D (b) and used to estimate the radius of the DLO.

l =

n−1∑
k=0

∥pcdlok+1 − pcdlok ∥. (13)

Radius estimation: We find the largest circle fitting in
the contour cdlo, see Fig.11(a). The pixels contained in the
intersection between this circle and cdlo are projected in 3D
(Fig. 11(b)), also using the corresponding depth d(idlo, jdlo)
and the camera intrinsic parameters and giving the set of 3D
points pcrad. The Euclidean distance between each point in
pcrad is computed as D, and the radius is defined as:

R = max(D)/2. (14)

We obtain the parameters of the DLO, (R,l). Table 1
presents the result of the DLO parameters estimation from
visual feedback for different objects. These results give a
mean error of 7% for the radius and 2% for the length. The
error for the radius is between 0% and 15%. The error for
the length is between 0.8% and 4.5%. We use the python
library gmsh‡ to generate a cylinder from parameters (R, l)
and create the triangle and tetrahedral meshes, as shown in
Fig. 12.

The obtained meshes are cylinders, whereas the DLO
may be deformed and therefore have a non-cylindrical
configuration in its observed state, as seen in Fig.12. Hence,

‡https://gmsh.info/

Prepared using sagej.cls

https://gmsh.info/


8 IJRR XX(X)

Object
Real

radius
Estimated

radius
Real

length
Estimated

length
Rope 3 3 525 530
Foam

noodle 1 30 29 630 625

Foam
noodle 2 30 27 510 487

HIDRIA part 20 17 355 350
Table 1. Result of the DLO parameters estimation on different
objects, values in mm. The real values were measured by hand.
All objects are shown in Fig.14.

Figure 12. DLO meshes generated for different pairs of
parameters (R, l): (a)(R, l) = (0.1, 0.5), (b)(R, l) = (0.05, 0.7),
(c)(R, l) = (0.005, 0.5). Top row shows the visual meshes Mv

0

and bottom row the tetrahedral meshes M0.

Figure 13. Sampling for alignment between the mesh in resting
position and the current configuration of the DLO. (a) shows
pcdlo sampled into ks points (in green). Each sample pi is
associated to the length separating it from the previous sample,
dl(i), and to a rotation from the x-axis, q(i). (b) shows the
corresponding sampling of the mesh m into rigid particles pri.

we need to conduct an extra step to align the meshes with the
current observed DLO.

To this end, we subsample the 3D points constituting
the DLO curve pcdlo (see Fig.10 (d)) down to ks samples.
The length between sample pi and pi−1 is denoted dl(i),
i ∈ [0, ks] and it is calculated using all the points in pcdlo
in between. We take dl(0) = 0 for the first point in pcdlo.
The vector between sample pi and the next point in pcdlo is
also computed and expressed as a rotation from the x-axis
unit vector, and denoted q(i), see Fig.13 (a). The last sample
pks

is the very last point in pcdlo, and its rotation q(ks) is
calculated with the closest point in pcdlo.

A FEM simulation scene is created with the cylindrical
meshes. The tetrahedral mesh of the DLO, M0, is also
sampled: we create ks rigid particles. The rigid particle prk
is created at length dl(k) from the axis of the cylinder, see
Fig.13 (b). Each rigid particle is then rigidly attached to the
mesh nodes around it, similarly to the correction strategy
presented in Sec. Vision-Based Correction of the Simulated
Mesh. Finally, translation to the corresponding sample pk

and rotation q(k) is applied to each rigid particle prk to

Figure 14. Result of the DLO mesh alignment for different
objects. The triangle mesh nodes after alignment are projected
on the corresponding RGB image, in red.

align it with the current configuration of the DLO. The FEM
simulation is run, deforming the mesh parts which are not
rigidly mapped to any rigid particle accordingly, until quasi-
equilibrium is reached. The resulting meshes M and Mv

are obtained. Examples of the resulting alignment of DLO
meshes are compared to the camera view in Fig.14.

The number of samples ks is tuned depending on the
length and shape of the DLO: ks small for short DLO or
smooth curvatures as the foam noodles, and ks bigger for
thin and long objects like the rope. It should also be noted
that in case of thin objects, depth camera precision may
cause the depth map of the DLO to be incomplete - and
possibly miss points on the extracted point cloud. This can
cause some parts of the DLO not to be aligned, as observed
on Fig.14(d).

Controller Design
In this Section, we detail each of the modules which compose
our controller (refer to Fig. 2).

Principal Component Analysis
We start by decreasing the size of past mesh matrix M, via
PCA. First, we shift each column of M by the mean of all
columns, m̄ =

∑
m̌j

D+1 , j = 0, ..., D, to obtain:

Mm = [m̌0 − m̄ · · · m̌D − m̄] ∈ R3n(D+1). (15)

We then compute Q, the covariance matrix of Mm and via
Singular Value Decomposition on Q, the eigenvector matrix
U ∈ R3n×3n. We select the first k columns of U to control
k DOF of our robot. These columns form the projection
matrix Uk ∈ R3n×k, whose columns correspond to the k
principal components (with highest variances) in the dataset,
and therefore determine the directions of highest variability
in the data. Then, at each iteration i, the reduced feature
vector is (Zhu et al. 2020):

si = U⊤
k (m̌i − m̄) ∈ Rk. (16)

Prepared using sagej.cls



9

Estimation of the Inverse Interaction Matrix
The next step consists in estimating the inverse interaction
matrix L−1 needed for control (see (2)). This matrix is
unknown for a non-rigid object, and it should be inverted to
control the robot pose. To this end, we first project the shifted
mesh nodes matrix into the reduced space:

S = U⊤
k Mm ∈ Rk×D+1, (17)

then calculate the variation over a D-dimensional window:

∆S =
[
S1 − S0 . . . SD − SD−1

]
∈ Rk×D. (18)

Finally, the inverse interaction matrix is given by:

L−1 = ∆R∆S† ∈ Rk×k, (19)

with ∆S† the pseudo-inverse of ∆S. The matrix L−1 is re-
computed at each control iteration with the updated matrices
∆S and ∆R to ensure it is locally representative.

Joint Controller
The linear approximation (2) is only valid locally. Therefore,
a control law based on L−1 cannot guarantee convergence
if the initial and final shapes are too different. To solve this,
at each control iteration i we generate an intermediary target
mesh via linear interpolation:

m̌∗
i =

m̌∗ − m̌i

n
(20)

with n big enough to ensure small displacements.
Correspondingly, we project m̌∗

i into the feature vector:

s∗i = U⊤
k (m̌

∗
i − m̄) ∈ Rk. (21)

and compute the desired robot pose variations via:

δri = ΛL−1
i (s∗i − si) ∈ Rk, (22)

with Λ ∈ Rk×k a diagonal matrix of control gains. This
feedback controller guarantees asymptotic convergence of
si to s∗i , in the ideal case that L−1 is perfectly estimated.
The robot pose variation command δr ∈ R12 is mapped to
the joint velocities θ̇ through the standard QP (Quadratic
Programming) optimization problem:

min
θ̇

||Jθ̇ − δr||2

subject to: joint limits.
(23)

We take into account joint limits on position, velocity and
acceleration, and use

J =
[
J⊤
l J⊤

r

]⊤
(24)

with Jl and Jr the Jacobians of the left and right arm.
Once the command has been achieved, the new robot

pose ri+1 is retrieved, and transferred to the simulator: the
rigid particles prl and prr representing the end-effectors
are constrained to reach the same pose. This constraint
is, by proxy, imposed to the corresponding holding nodes
Hl,r, which are rigidly attached to the particles. The rigidly
attached nodes are instantly displaced, but the rest of
the shape needs to be deformed according to this new
disturbance; this is where the FEM simulation runs to deform
the rest of the mesh until quasi-equilibrium is reached, i.e.
until we can consider that m stops varying following:

∥mi+1 − mi∥ ≤ (1e−08 + 0.02∥mi∥) (25)

Figure 15. Example of 3 different simulated experiments. The
two rows show the initial and final configurations of mesh (top)
and robot (bottom) in simulation.

Experiments with the Robot Simulator
In our framework, the use of mesh nodes for shape feedback
allows us to test out the control framework entirely in
simulation, by sending the joint command to the simulator
instead of sending it directly to the robot. This allows feeding
the result of the FEM simulations directly into the data
matrix ∆M, by skipping the vision related steps (point cloud
extraction and correction of the mesh).

Fig. 15 presents the results of some shaping simulations.
These results shows the dual-arm robot reaching successfully
three different target shapes involving different DOFs in
SE(3), and task with translating, bending, twisting, and
stretching. Simulations are also very useful for investigating
more in depth the dimension of the data matrices required in
the framework, which would be cumbersome to do with real
robot experiments. We discuss this in the following.

Choice of the Number of Samples
Let us look at the number of samples D which constitute
data matrices ∆M and ∆R, which respectively contain past
shapes, and corresponding end-effector poses.

Since these data can be collected through simulations, we
run three, with the goal of reaching the target shapes shown
in Fig.15, referred to as target shape 1, target shape 2 and
target shape 3 for columns 1 to 3 respectively. We attempt to
reach each target shape with a variable number of samples,
to explore the impact of D on the controller’s success. The
experiments are repeated thrice, with different initialization
data for each trial. We consider as failed an experiment
which has not reached the acceptable error threshold after
200 iterations of the control loop. The results are summarized
in Table 2.

The simulated experiments show that a number of samples
too small (13) or too high (40) leads to some experiments
not converging. Indeed, the number of samples too small
will lead to little variety, thus a bad representation of the
available motions; on the contrary, too many samples imply
losing local information about motion.

In terms of performances, by comparing the cases of
D = 15 and D = 25, we notice that the lesser the samples,
the fastest the computations. Keeping all of this in mind, it
appears that choosing a number of samples between 15 and
25 would be a good trade-off between performance, locality
while reducing the risk of under-representing the available
motions. To ensure not an under-determined (similarly to
experiments with D = 13), we choose D = 17 for real robot
experiments.

Prepared using sagej.cls



10 IJRR XX(X)

D Target shape Average total
time (s) Successes

13 1 50 2/3
13 2 64 3/3
13 3 105 2/3
15 1 48 3/3
15 2 64 3/3
15 3 104 3/3
25 1 81 3/3
25 2 71 3/3
25 3 119 3/3
40 1 114 3/3
40 2 89 3/3
40 3 - 0/3

Table 2. Simulated experiments with different number of
samples. D = 15 and D = 25 both give a 100% success rate
on the three trials.

Choice of the Number of Features
It is not required for the interaction matrix L to be square. It
is then worth questioning how many features are needed to
represent the shape of an object. Therefore, in this section,
we investigate the significance of the number of visual
features and its impact on the command computations. We
recall that the visual features are obtained after PCA on the
past data matrix, see equation 16.

Since it is custom in visual servoing to consider a number
of features at least as great as the number of DOF controlled
Chaumette (2007) (to avoid redundant visual data), here,
[rl, rr], our first choice is to consider k = 12 features.

To verify the validity of this choice, we conduct a series
of simulations. As metric, we use the explained variance,
which indicates how much each of the principal components
encodes the dataset variation. The variance of the i-th
principal component is defined, for a column vector of size
3p, as:

var(λi) =
λi

λ1 + λ2 + . . . + λ3p
(26)

with λi the eigenvalue associated with the i-th principal
component resulting from the SVD (refer to Sec. Principal
Component Analysis). This metric allows to compare their
significance, thus their encoding of useful information about
the shape. We then observe the explained variance of the
principal components, resulting from the PCA during 4
different trials, and summarize it in Table 3. For each trial,
the PCA is performed on a new set of D = 17 randomly
generated samples. For principal component i, Cumulative
proportion of explained variance is given by:

CP (i) =

i∑
n=1

var(λn) (27)

As Table 3 shows, more than 90 % of the shape is encoded
by 6 to 8 principal components, but 10 to 12 principal
components represent a variance close to 1, giving the best
representation of the data. These simulations comfort us in
the choice of taking k = 12 features for our control strategy.

In this section, we showed that the control framework
could, with the exception of the modules involving visual
feedback, be validated through simulations only, allowing us

Number of principal
components (k) 6 8 10 12

Trial 1 0.89 0.97 0.99 0.99
Trial 2 0.89 0.96 0.98 0.99
Trial 3 0.9 0.98 0.98 0.99
Trial 4 0.9 0.97 0.97 0.99
Average 0.9 0.97 0.98 0.99

Table 3. Cumulative proportion of explained variance for
different number of principal components, for different trials.

Figure 16. Different foam objects used for the experiments.
Left to right: sponge, convoluted foam, thin convoluted foam.
Bottom: foam noodle.

to tune most parameters offline, and to avoid cumbersome
tests on the real robot.

Experimental Results
We conducted experiments with different foam objects, of
varying shapes, densities and rigidities (see Fig.16). The
source code for robot manipulation is available on our gite.
A video of the experiments can be found at here.

Experiments with Unknown Material
Parameters
In a first series of experiments, we ignore the Young’s
modulus, Poisson’s ratio, and material density and set them
to default values in SOFA: E = 2.5e6 Pa, ν = 0.3 and ρ =
10 kg.m−3 respectively. The experiments consist in shaping
the object held by the robot arms into a target shape. The
deformation of the object is observed through a RGB-D
camera, Intel Realsense D435.

At each control iteration i, the displacement of the end-
effectors of the robot from the previous iteration is applied
to the FEM simulations, to obtain deformed mesh mi.
Meanwhile, the point cloud of the deformed object pci is
extracted, and ICP returns Ti, the transformation from pci to
best fit mv

i . If the ICP fitness is less than 0.8, we perform the
correction step explained in Sec. Vision-Based Correction of
the Simulated Mesh. The resulting mesh is m̃i.

We consider the shape error at iteration i as the error norm
between the transformed corrected mesh nodes and the target
mesh nodes, in meters:

ei = ∥m∗ − T −1
i m̃i∥, (28)

and stop the manipulation when the error is below a threshold
set to e = 0.05 m.

Fig. 17 and 18 show the experiments, which are also
summarized in Tab. 4. In the figures, the blue points represent

Prepared using sagej.cls

https://gite.lirmm.fr/csaghour/rkcl-bazar-flex-app/-/tree/FEM_integration/share/script/Servoing_FEM
https://youtu.be/T2TgUn3M5Ts


11

Figure 17. Experiments with the sponge. First column: initial shape of the mesh (blue) compared to target shape (red), both
projected on the RGB image. Second column: obtained final shape. Third column: evolution of error e during the experiments, until
threshold e < 0.05m (red dotted line) is reached.

the corrected mesh nodes projected on the RGB image. The
red points represent the target mesh nodes, also projected on
the image.

Fig. 17 presents different experiments with the sponge.
They include bending around different axes and torsion

(third row). All succeed in reaching the target shape. The
fourth row experiment also presents convergence to the target
shape, despite the robot end-effectors visually occlude parts
of the object. Fig. 18 shows different experiments with other
foam objects. On the error plot of the second experiment with

Prepared using sagej.cls



12 IJRR XX(X)

Figure 18. Experiments with two convoluted foams and a foam noodle. First column: initial shape (blue) and target shape (red).
Second column: final shape compared to the target. Third column: evolution of error e until threshold e < 0.05 is reached.

the thin convoluted foam, presented on the second row of the
figure, the task error e oscillates due to the ICP converging
alternatively to different transformations. Since the data
matrix M is not directly impacted by the result of ICP, the
control algorithm manages nonetheless to decrease the task
error, until convergence. Additionally, one can observe that

on the last experiment with the foam noodle (fifth row), the
initial mesh is not exactly aligned with the point cloud of
the object. Yet, the shift between the two is corrected during
manipulation.

Fig. 20 presents the results of experiments with the
foam noodle reaching the same target shape with different

Prepared using sagej.cls



13

Figure 19. Two correction steps of the mesh nodes (blue) with the point cloud of the object (red), after ICP alignment (left) during
an experiment with a noodle foam. The first correction involves holding nodes (green) that intersect with the left end-effector holding
nodes; the rigid particle representing the left end-effector prl is then the one used to apply the correction to reach p1∗. The second
correction involves the corrective rigid particle prn that is translated to p2. The final result after both actions is shown on the right.

Object Experiment Tasks

Sponge

1 Bending

2
Compression with

rotation
3 Torsion

4
Bending

(around y-axis)

5
Bending with

rotation

Thin convoluted
foam

1
Bending with
rotation

2 Stretching
Convoluted

foam
1 Bending, spinning
2 Torsion

Foam noodle
(DLO)

1
Out of plane
deformation

2
Out of plane
deformation,
with rotation

Table 4. Summary of the experiments performed.

Figure 20. Experiments showing how tuning the ICP fitness
threshold may ensure adequate visual feedback correction. The
first row shows the final shape in blue, compared to the target
shape in red, projected on the RGB image. In orange are circled
the difference misalignment between the mesh and the object.
The second row shows the evolution of the ICP fitness score
during the experiments, with the correction steps circled in
green. The third row shows the evolution of the error during the
experiments, reaching the threshold e < 0.05.

thresholds of ICP fitness, resulting in different occurrences
of the correction step. We can observe that with a higher
threshold - and therefore more correction steps during
the experiment - the final shape of the mesh resembles
more the observed one. It is then necessary to tune the
threshold of the ICP fitness accordingly to obtain adequate
visual feedback correction. Fig. 19 shows an example of
consecutive correction steps of the initial ICP alignment.

Stress Monitoring Experiments
In this section, we present a bending experiment with
simultaneous stress monitoring. The object used in this
experiment is a planar test tube 3D-printed in Polylactic acid
(PLA). The Young’s modulus, Poisson’s ratio and density
of PLA are known and set in SOFA accordingly: E =
3120MPa, ν = 0.36 and ρ = 1240kg/m3 respectively.

We study the evolution of the deformation with the value
of the stress applied to it, following a typical strain-stress
relationship for ductile materials. At first, the deformation
is elastic, and the object comes back to its original shape
when the applied stress returns to zero. When the applied
stress exceeds a first threshold (orange dotted line in Fig.21),
the deformation becomes plastic. From there, even when the
stress diminishes again, the object will remain deformed: it
is permanently damaged. Finally, when the stress reaches the
plastic limit (red dotted line in Fig.21), the object will reach
its rupture point and break.

In Fig. 22 we present three experiments with the same
target shape. During the experiment, we plot the Von Mises
stress at each node. In the first experiment, a stress limit is
applied, to ensure that the deformation stays in the elastic
domain. In the second one, we allow the object to be
damaged (i.e. the deformation is in the plastic domain)
but apply a stress limit to avoid breaking. Finally, the last
experiment shows the manipulation without stress limit. For
each experiment, the evolution of the Von Mises stress is
plotted (first row), and we show the resulting shape of object
after experiment (second row). These experiments show that
with our framework, if the material parameters are known,
applying a stress limit during manipulation can avoid the
damaging and/or breaking of the object manipulated.

Time Performances
One important aspect highlighted by these experiments is the
time performance: with the simulations running in real time,
shaping an object can take between 2 to 8 minutes depending
on the complexity of the task and object considered.

Prepared using sagej.cls



14 IJRR XX(X)

Figure 21. The goal of this experiment is to drive the initial
shape (blue) to the target shape (red). We monitor the internal
stress to observe the three types of deformation: elastic (blue),
plastic (green) and finally, fracture (red). In the elastic region,
the body recovers its original shape when the stress is
released, whereas in the plastic region, the deformation is
irreversible, until fracture is reached.

Let us analyze the time performances of our framework,
on the sponge experiments in Fig. 17. The duration differs
depending on the complexity of the target and of the initial
error, but we can compare the average duration of one control
iteration. An iteration is composed of four steps:

• Simulation (SIM) : application in the FEM simulation
of the displacement constraint from the robot poses,
until quasi-equilibrium is reached;

• Image processing (IMPROC): acquisition of the object
point cloud;

• Correction (CORREC): execution of ICP and - if
needed - correction;

• Control (CTRL): update of data matrices and PCA,
estimation of the inverse interaction matrix, computa-
tion of the command (Sec. Controller Design), sending
the command to the robot, performing the command
and acquiring the new robot poses.

Fig. 23 shows the average duration of each of these steps,
for experiments (numbers corresponds to top to bottom of
Fig. 17), and Table 5 summarizes the duration of each step,
averaged over all five experiments. We see that the average
duration of a single iteration is close to 3s, with the biggest
part of it dedicated to the simulation step (almost 2s). The
second most time-consuming step is control, which takes
about one second per iteration. This step depends on the
gains of the robot, since it waits for the motion of the end-
effectors to be concluded, before obtaining the new poses.
Point cloud acquisition takes around 0.045s on average. ICP
algorithm runs quite quickly compared to the rest, with an
average time bellow 0.02s when no correction step is needed.
However, this time increases quickly with the correction
step, since additional simulations are needed. For instance,
regarding the last experiment in Fig.20, which required
several correction steps, we obtain an average time on the
whole experiment for the correction step of 0.0168s per
iteration, versus 0.751s in average for the steps where a
correction simulation is needed.

In summary, besides the code not being optimized, the
controller is mostly slowed by the FEM simulations. One
way of speeding them up, is to study the effect of the mesh

Figure 22. Different stress monitoring experiments. In the first
experiment (first column), the deformation of the object stays
elastic during manipulation, and the shape of object after
experiment goes back to its original shape. In the second
experiment (middle column), the deformation is plastic: the
object is permanently damaged even after relaxation of the
applied stress. The last experiment (last column) is conducted
without stress limit, with the deformation going beyond plastic
domain and breaking the object.

Figure 23. Average time per iteration of the steps for the five
sponge experiments shown in Fig. 17.

size on the framework performance. We conduct additional
experiments with meshes of different sizes (see Fig. 24).
In Fig. 25, we plot the duration of the simulation and
correction steps, as well as the average duration of one
displacement constraint generated for the data initialization
(named initialization step).

These experiments show that the simulation time largely
depends on the size of the meshes, for the initialization and
simulation steps. Both take an average time of 0.5 s for a
mesh made of 100 nodes, and between 2 and 3 s for a mesh
of 374 nodes. The correction step time is, in total, lower,
as it is not performed often. In the sponge experiments, the
tetrahedral mesh used for the computations contains 579
nodes and 1628 elements, which is quite significant, and
which explains the slow pace of the simulations and as a
result, of the iterations. Yet, it is important not to reduce too
much the size of the mesh, so as to not lose shape data (e.g.,
note the curvature difference between the meshes of Fig. 24).
It is also important to keep in mind that the least the number
of elements, the more rigid the mesh. Choosing the size of
the tetrahedral mesh consists in finding a satisfying trade-off
between shape details, computation time and rigidity. The
whole code could also be optimized to be faster, using multi
threading for instance. The present work was more focused

Prepared using sagej.cls



15

Experiment SIM IMPROC CORREC CTRL
1 1.950 0.043 0.018 1.091
2 1.893 0.045 0.016 0.905
3 1.782 0.045 0.016 0.935
4 1.808 0.044 0.017 0.873
5 1.985 0.046 0.031 0.984

Average 1.884 0.045 0.02 0.958
Table 5. Average time per iteration of the steps for the
experiments presented in Fig. 17.

on the methodology, but this should be kept in mind for
future work.

Conclusion and Discussion

In this article, we presented a framework for shaping soft
objects, based on both visual-servoing and model-based
methods. We use PCA to reduce the dimension of the
object, and we estimate a linear local mapping between
past features and corresponding robot poses. Further, we
represent the object by a visual (triangular) and a tetrahedral
mesh, to estimate the deformation of the object with regards
to the motions of the end-effectors at every step, through
FEM simulation. We validate our framework in a series of
experiments by shaping various objects in 3D.

One of the limitations of our framework is that it
requires meshes of the objects; yet, in industry, CAD models
of manipulated objects are usually available. Otherwise,
one can rely on one of the many existing methods for
reconstructing meshes from scans or point clouds. In
addition, we do not require exact knowledge of the material
parameters for objects that are light and/or rigid, making
the effect of gravity on the shape negligible compared to
the effect produced by the robot position constraints. While
it was the case for the objects used in our experiments
(Sec. Experiments with Unknown Material Parameters),
this can be limiting. Indeed, the material parameters and
object weight should be known if gravity significantly
affects the shape, or if the user wants to monitor stress
during manipulation. Also note that the assumption of linear
elasticity cannot be applicable to all objects; this could cause
the FEM deformation estimation to diverge from the real
observed object behavior. In the experiments we showcased,
however, we demonstrate that our framework succeeds in
multiple shaping tasks for various soft objects, in 3D, with no
knowledge of the material. In all these cases, linear elasticity
gives a good enough approximation, without needing a
complex numerical model.

We also presented a thorough study of the time
performances of our framework. As presented, to date, the
framework run time is quite slow. Future work should involve
code optimization, to allow faster running, by possibly
reducing the size of the meshes while constructing them. For
this purpose; we also aim at investigating the use of existing
SOFA plugins, especially the Model Order Reduction (Goury
and Duriez (2018)) for faster computations, or the SoftRobots
plugins (Coevoet et al. (2017)) allowing to use an inverse
model to solve constraints. Investigation of other types
of objects (e.g., fabrics) and models (e.g., non-linear,
anistotropic) could also be interesting.

Figure 24. Meshes of different sizes for the foam noodle.

Figure 25. Average duration of an iteration for different mesh
sizes.

Acknowledgements

This work was supported by ANR (PEPR PC2 PI2-IMM Organic
Robotics) under grant 22-EXOD-0003, and in part by the Research
Student Attachment Programme 2022/23 of The Hong Kong
Polytechnic University (PolyU).

References

Aghajanzadeh O, Aranda M, López-Nicolás G, Lenain R and
Mezouar Y (2022a) An offline geometric model for controlling
the shape of elastic linear objects. In: 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS). pp. 2175–2181. DOI:10.1109/IROS47612.2022.
9981466.

Aghajanzadeh O, Picard G, Ramon JAC, Cariou C, Lenain R and
Mezouar Y (2022b) Optimal deformation control framework
for elastic linear objects. In: 2022 IEEE 18th International
Conference on Automation Science and Engineering (CASE).
pp. 722–728. DOI:10.1109/CASE49997.2022.9926528.

Andronas D, Kampourakis E, Bakopoulou K, Gkournelos C,
Angelakis P and Makris S (2021) Model-based robot control
for human-robot flexible material co-manipulation. In: 2021
26th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA ). pp. 1–8. DOI:10.1109/
ETFA45728.2021.9613235.

Armenàkas AE (2016) Advanced mechanics of materials and
applied elasticity. CRC Press.

Azad A, Quentin H, Faiz BA and Véronique P (2023) Optimal
cosserat-based deformation control for robotic manipulation of
linear objects. In: 2023 IEEE/ASME International Conference
on Advanced Intelligent Mechatronics (AIM). pp. 381–388.
DOI:10.1109/AIM46323.2023.10196216.

Caporali A, Zanella R, Greogrio DD and Palli G (2022) Ariadne+:
Deep learning–based augmented framework for the instance
segmentation of wires. IEEE Transactions on Industrial
Informatics 18(12): 8607–8617. DOI:10.1109/TII.2022.
3154477.

Prepared using sagej.cls



16 IJRR XX(X)

Chaumette F (2007) Visual Servoing, chapter 6. John Wiley and
Sons, Ltd. ISBN 9780470612286, pp. 279–336. DOI:https:
//doi.org/10.1002/9780470612286.ch6.

Coevoet E, Morales-Bieze T, Largilliere F, Zhang Z, Thieffry M,
Sanz-Lopez M, Carrez B, Marchal D, Goury O, Dequidt J et al.
(2017) Software toolkit for modeling, simulation, and control
of soft robots. Advanced Robotics 31(22): 1208–1224.

Faure F, Duriez C, Delingette H, Allard J, Gilles B, Marchesseau
S, Talbot H, Courtecuisse H, Bousquet G, Peterlik I et al.
(2012) Sofa: A multi-model framework for interactive physical
simulation. Soft tissue biomechanical modeling for computer
assisted surgery : 283–321.

Ficuciello F, Migliozzi A, Coevoet E, Petit A and Duriez C (2018)
Fem-based deformation control for dexterous manipulation of
3d soft objects. In: 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, pp. 4007–
4013.

Goury O and Duriez C (2018) Fast, generic, and reliable control and
simulation of soft robots using model order reduction. IEEE
Transactions on Robotics 34(6): 1565–1576. DOI:10.1109/
TRO.2018.2861900.

Hu Z, Han T, Sun P, Pan J and Manocha D (2019) 3-d deformable
object manipulation using deep neural networks. IEEE
Robotics and Automation Letters 4(4): 4255–4261. DOI:
10.1109/LRA.2019.2930476.

Lagneau R, Krupa A and Marchal M (2020) Automatic shape
control of deformable wires based on model-free visual
servoing. IEEE Robotics and Automation Letters 5(4): 5252–
5259.

Lee R, Hamaya M, Murooka T, Ijiri Y and Corke P (2022) Sample-
efficient learning of deformable linear object manipulation in
the real world through self-supervision. IEEE Robotics and
Automation Letters 7(1): 573–580. DOI:10.1109/LRA.2021.
3130377.

Ma Z and Xiao J (2023) Robotic perception-motion synergy for
novel rope wrapping tasks. IEEE Robotics and Automation
Letters .

MacQueen J (1967) Classification and analysis of multivariate
observations. In: 5th Berkeley Symp. Math. Statist. Probability.
University of California Los Angeles LA USA, pp. 281–297.

Makiyeh F, Chaumette F, Marchal M and Krupa A (2023) Shape
servoing of a soft object using fourier series and a physics-
based model. In: IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems. pp. 6356–6363.

Maneewongvatana S and Mount DM (1999) Analysis of
approximate nearest neighbor searching with clustered point
sets. arXiv preprint cs/9901013 .

Navarro-Alarcon D, Yip HM, Wang Z, Liu YH, Zhong F, Zhang
T and Li P (2016) Automatic 3-d manipulation of soft objects
by robotic arms with an adaptive deformation model. IEEE
Transactions on Robotics 32(2): 429–441. DOI:10.1109/TRO.
2016.2533639.

Qi J, Ma G, Zhu J, Zhou P, Lyu Y, Zhang H and Navarro-Alarcon
D (2022) Contour moments based manipulation of composite
rigid-deformable objects with finite time model estimation
and shape/position control. IEEE/ASME Transactions on
Mechatronics 27(5): 2985–2996. DOI:10.1109/TMECH.2021.
3126383.

Qi J, Zhou P, Ran G, Gao H, Wang P, Li D, Gao Y and Navarro-
Alarcon D (2024) Model predictive manipulation of compliant

objects with multi-objective optimizer and adversarial network
for occlusion compensation. ISA Transactions 150: 359–373.
DOI:https://doi.org/10.1016/j.isatra.2024.05.015.

Ruan M, McConachie D and Berenson D (2018) Accounting for
directional rigidity and constraints in control for manipulation
of deformable objects without physical simulation. In: 2018
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). pp. 512–519. DOI:10.1109/IROS.2018.
8594520.

Saghour C, Célérier M, Fraisse P and Cherubini A (2023) Visual
servoing for dual arm shaping of soft objects in 3d. In: IEEE-
RAS 22nd International Conference on Humanoid Robots
(Humanoids).

Seita D, Florence P, Tompson J, Coumans E, Sindhwani V,
Goldberg K and Zeng A (2021) Learning to rearrange
deformable cables, fabrics, and bags with goal-conditioned
transporter networks. In: 2021 IEEE International Conference
on Robotics and Automation (ICRA). pp. 4568–4575. DOI:
10.1109/ICRA48506.2021.9561391.

Shetab-Bushehri M, Aranda M, Mezouar Y and Ozgur E (2022)
Lattice-based shape tracking and servoing of elastic objects.
arXiv preprint arXiv:2209.01832 .

Shin C, Ferguson PW, Pedram SA, Ma J, Dutson EP and Rosen
J (2019) Autonomous tissue manipulation via surgical robot
using learning based model predictive control. In: 2019
International conference on robotics and automation (ICRA).
IEEE, pp. 3875–3881.

Tsurumine Y, Cui Y, Uchibe E and Matsubara T (2019) Deep
reinforcement learning with smooth policy update: Application
to robotic cloth manipulation. Robotics and Autonomous
Systems 112: 72–83. DOI:https://doi.org/10.1016/j.robot.2018.
11.004.

Wang T and Yamakawa Y (2023) Edge-supervised linear object
skeletonization for high-speed camera. Sensors 23(12). DOI:
10.3390/s23125721.

Yu M, Lv K, Wang C, Jiang Y, Tomizuka M and Li X
(2023) Generalizable whole-body global manipulation of
deformable linear objects by dual-arm robot in 3-d constrained
environments. arXiv preprint arXiv:2310.09899 .

Zhou P, Zheng P, Qi J, Li C, Lee HY, Duan A, Lu L, Li Z,
Hu L and Navarro-Alarcon D (2024) Reactive human–robot
collaborative manipulation of deformable linear objects using a
new topological latent control model. Robotics and Computer-
Integrated Manufacturing 88: 102727.

Zhu J, Cherubini A, Dune C, Navarro-Alarcon D, Alambeigi F,
Berenson D, Ficuciello F, Harada K, Kober J, Li X, Pan J,
Yuan W and Gienger M (2022) Challenges and outlook in
robotic manipulation of deformable objects. IEEE Robotics &
Automation Magazine 29(3): 67–77. DOI:10.1109/MRA.2022.
3147415.

Zhu J, Navarro-Alarcon D, Passama R and Cherubini A (2020)
Vision-based manipulation of deformable and rigid objects
using subspace projections of 2d contours. Robotics and
Autonomous Systems .

Zimmermann S, Poranne R and Coros S (2021) Dynamic
manipulation of deformable objects with implicit integration.
IEEE Robotics and Automation Letters 6(2): 4209–4216. DOI:
10.1109/LRA.2021.3066969.

Prepared using sagej.cls


	Introduction
	Related Work
	Overview of our Framework
	Simulating Deformations
	Setting-up the Object Mesh
	Material Parameters Effect on Simulations
	Initialization
	Target Selection
	Monitoring the Object's Stress

	Integrating Visual Feedback
	Image Processing
	Vision-Based Correction of the Simulated Mesh
	Simulations for DLO Mesh Reconstruction

	Controller Design
	Principal Component Analysis
	Estimation of the Inverse Interaction Matrix
	Joint Controller

	Experiments with the Robot Simulator
	Choice of the Number of Samples
	Choice of the Number of Features

	Experimental Results
	Experiments with Unknown Material Parameters
	Stress Monitoring Experiments
	Time Performances

	Conclusion and Discussion

