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We introduce a novel subgrid-scale model for shear flows, exploiting the spatial intermittency
and the scale separation between large-scale flows and coherent small-scale structures. The model
is highly sparse, focusing exclusively on the most intense structures, which are represented by
vortons—dynamically regularized quasi-singularities that experience rapid distortion from the large-
scale shear. The vortons, in turn, influence the large-scale flow through the sub-grid stress tensor.
The model displays an interesting transition between two distinct regimes: (i) a laminar regime,
where dissipation is entirely attributed to the large-scale flow, and the vortons dynamics is essentially
diffusive, and (ii) a turbulent regime, in which most of the dissipation arises from the vortons. These
regimes correspond to different scalings of dissipation and the Grashof number as functions of the
Reynolds number, with power-law relationships that resemble those observed in classical turbulence.
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I. INTRODUCTION

Near-wall turbulence arises in many industrial or geo-
physical flows. With respect to other types of turbulence,
it is peculiar in several aspects: (i) it is anisotropic; (ii)
it is very intermittent, both in space and time, and both
at the turbulent transition or later; (iii) it is non-local,
and piloted by interactions between the large-scale shear
and the small-scale turbulent structures. These three as-
pects make its modeling challenging, as traditional large
eddy simulations have difficulties to resolve the near-wall
structures, and traditional RANS model do not capture
the spatial or temporal intermittency.

These observations motivated the introduction of non-
local models, based on the two way coupling between
large-scale shear and small-scale vorticity wave pack-
ets [1, 2]. On the one hand, the action of large scales
onto small scales is described by rapid distorsion theory
(RDT), where small scales are advected and sheared by
the mean shear. On the other hand, the small scales act
on the large scales via the Reynolds stress. The small
scales correspond to debris from coherent vortices gener-
ated in the viscous sublayer, that penetrate in the over-
lap region and provide a continuous forcing allowing to
reach a statistically steady state. In such setting, an-
alytical computations are possible both in 2D and 3D,
and lead to the celebrated log-law of the wall [1, 2] or
to the complete description of equilibrium velocity pro-
files in plane parallel flows [3]. These computations are

limited to the regime where turbulence is weak, so that
non-linear interactions between the small-scale vorticity
packets is neglected. This somehow limits the interest of
the model for larger subgrid-scale modeling applications.

Including non-linear interactions is however challeng-
ing, as it may require the integration of the partial
differential Navier-Stokes equations in 3D, making the
subgrid-scale modeling too computationaly involved to
be of any practical use. In this paper, we show that it is
possible to avoid the appeal to partial differential equa-
tions by using Novikov’s vorton approximation, in which
the small scale vorticity is described by point-like sin-
gularities, named vortons, that interact non-linearly fol-
lowing Biot-Savart law and the discretized inviscid Euler
equation. In such setting, the partial differential equa-
tions can be replaced by a set of coupled ordinary differ-
ential equations that describe the interactions between
the N vortons. This provides the third mechanism that
is missing in the RDT theory of [1–3], opening the way
to interesting applications. Specifically, we show in the
present paper, that using only 27 vortons, we are able to
reproduce several features of near-wall turbulence, such
as the laminar to turbulent transition, or the log-normal
statistics of the energy dissipations.



2

II. NOVIKOV MODEL

A. Equations

Our model builds from Novikov’s model, which belongs
to a more general class of vortex particle methods [4, 5].
In those methods, the vorticity field is discretized into
localized vortices of given circulation that are advected
by the flow. In two dimensions of space, vorticity is a
Lagrangian invariant of Euler equation and discretizing
the vorticity field naturally leads to the famous Onsager
vortex gas model, predicting the condensation of energy
at large scales [6]. In three dimensions however, the vor-
ticity stretching term in the Euler equation (1) changes
the picture.

Dω

D t
= (ω ·∇)u, (1)

= (ω ·∇T)u. (2)

In order to find approximate solutions of Euler equa-
tions (1) and following the ideas of the two dimensional
point vortices, Novikov [7] introduced the vortons model.
These Lagrangian vortex particles, located at position xα

and with circulation (vorticity times a volume) γα gen-
erate a vorticity field of the form

ω(x, t) =
∑
α

γα(t)δ(x− xα(t)). (3)

The velocity field is recovered using Biot-Savart law,

u(x, t) = − 1

4π

∑
α

x− xα

∥x− xα∥3
× γα, (4)

and is by construction divergence-free. The fields (3) and
(4) associated with Euler equation (1) in a Lagrangian
framework yield the time evolution for the variables xα

and γα,

{
ẋα(t) = u(xα, t),

γ̇α(t) = [∇u(xα, t)]γα,
(5)

where the velocity field u(xα, t) and its gradient
∇u(xα, t) are evaluated with (4) but without the α = β
term in the sum in order to avoid the unphysical behavior
caused by the singularity of the model at the origin.

B. Drawbacks of Novikov model and its
modifications

Novikov model presents several flaws:

• the vorticity field (3) is not divergence free.

• the vorton model cannot generate a statistically
steady state. Indeed, for a system of two vortons
obeying (5), Novikov [7] showed that ∥γα(t)∥ di-
verges exponentially with time for a given set of
initial conditions.

• the fields generated by xα, γα with dynamical sys-
tem (5) are not a solution (in the weak sense) of
Euler equations (1) [8].

This last problem precludes the use of Novikov model
to simulate Euler equations. To address this drawback,
a modification of the model was proposed, based on a
remark by [9]. Due to the non-solenoidal character of
the vorticity, solutions of the Novikov model are such
that ω ̸= ∇ × u. As a consequence the Euler equation
(1) and its transposed version (2) are not equivalent. It
turns out that if we now keep ω and u given by (3) and
(4), using the transposed scheme, the system{

ẋα(t) = u(xα, t),

γ̇α(t) = [∇u(xα, t)]
T
γα,

(6)

yields a weak solution [10] of the Euler equations (2)
and conserves key physical quantities such as the total
vorticity [9] or helicity.
However, this modification itself still presents two

drawbacks:

• the transposed vorton model cannot generate a sta-
tistically steady state. Indeed, like in the original
vorton model with N ≥ 2 vortons a random initial
condition, the quantity

Γ(t) =

N∑
α=1

∥γα(t)∥2 (7)

would most surely be divergent in time, making any
turbulent like stationary regime unreachable.

• In its original philosophy, this model is just an al-
ternative way to solve the Euler equations. The
equivalence between this method and the Euler
equation is then guaranteed only in the limit where
one can add indefinitely many vortons in the sys-
tem as time passes by and vortex filaments are get-
ting stretched, resulting in vortons moving apart
far from each other, breaking the continuous line
approximation.

These difficulties combined with the flaws mentioned
earlier restricted the use of this kind of models to simple
situations such as vortex lines interactions or vortex rings
leap-frogging for instance [7].

III. A NEW MODEL FOR SHEAR FLOWS

A. General picture

The new model we consider is based on several ideas,
that are meant to correct the main drawbacks identified
earlier.
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• Idea #1: Sparsity. Instead of considering vor-
tons as elementary blocks used to decompose the
whole vorticity field—which implies the consider-
ation of many vortons—we instead consider that
vortons model the few extreme events of vorticity
arising in the flow, extremes that will be the main
players to pilot the full flow dynamics. In that ap-
proximation, we can keep only a few vortons as
time passes by, as extreme events are by definition
isolated and rare events.

• Idea #2: Regularization. To avoid runaway of
the vorton energy and allow for stationary states,
we introduce an effective size for the vortex cores,
this is done by mollifying the vorticity field

ωη(x, t) = (ζη ∗ ω) (x, t)

=
∑
α

ζη(x− xα(t))γα(t), (8)

where

ζη(x) =
1

η3
ζ

(
x

η

)
, (9)

is an approximation of Dirac mass at scale η. Sev-
eral choices can be made for ζ, see for instance [9].
In the following, we will use the so-called low order
algebraic kernel,

ζ(x) =
3

4π|x|51
(10)

with the pseudo-norm |x|L =
√

∥x∥2 + L2. Using
the low order algebraic kernel, the regularized vor-
ticity ωη and velocity uη now writes

ωη(x, t) =

N∑
α=1

γα
3η2

4π|x|5η
, (11)

uη(x, t) = − 1

4π

N∑
α=1

x− xα

|x− xα|3η
× γα. (12)

• Idea #3: Self-interactions. We assume that
the vortons interact with each other following the
transposed version of Euler equations. Using the
regularization, the transposed scheme written in
terms of rαβ = xα − xβ and γα is

ẋα = − 1

4π

N∑
β=1

rαβ
|rαβ |3η

× γβ

γ̇α = − 1

4π

N∑
β=1

(
γα × γβ

|rαβ |3η

− 3rαβ
|rαβ |5η

(rαβ · (γα × γβ))

)
.

(13)

The new parameter η corresponds to the size of vor-
tices. Allowing this new, unconstrained variable to
be time dependent makes it possible to balance the
vortex stretching term, hence reaching a statisti-
cally stationary regime.

• Idea#4: Dynamical regularization. We assume
that the regularization length scale is dynamically
ajusted, and can either increase under the effect
of viscous diffusion or decrease because of vortex
stretching. The impact of such dynamics can be ob-
tained by integrating the Navier-Stokes equations
written for vorticity,

Dω

D t
=
(
ω ·∇T

)
u+ ν∆ω, (14)

over a ball centered on xα with a radius ϵ ≪ η
and allowing for a time dependent η. Keeping only
the dominant terms in the sums and considering
∆ψη(x) ≈ δ(x) we end up with

ẋα = uη(xα, t), (15)

γ̇α = 3

(
η̇

η
− 5

ν

η2

)
γα + [∇uη(xα, t)]

T
γα. (16)

Viscosity therefore has a damping effect and intro-
ducing a time dependence on η is a way of intro-
ducing a new free parameter and therefore a sup-
plemental constraint on the dynamics.

• Idea #5: Rapid distorsion by a large-scale
flow. We consider that the vortons are embedded
within a large-scale flow U , with velocity strain
tensor ∇U . Then, we take into account the ac-
tion of the large-scale flow on the vortons through
an additional advection by the large-scale velocity
field and additional stretching by the large-scale
strain-rate tensor. In final, the vortons are then
advected by the field u = uη +U and stretched by

[∇u]
T
= [∇uη]

T
+ [∇U ]

T
.

• Idea #6: Feedback on the large-scale flow. We
consider the feedback of the vortons on the large-
scale flow via the subgrid stress tensor τℓ, where ℓ
is a yet unspecified filtering scale.

B. Application to shear flow

1. Equations

The subgrid-scale model described above is very gen-
eral. We now provide an application of the method to the
transition to turbulence in shear flow. We consider the
simplest possible shear flow, given by the velocity field:

U(x, t) = a(t)

sin (ksz)0
0

 , (17)
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where ks =
2π

Ls
. U(x, t) is divergence-free and is com-

patible with periodic boundary conditions used in nu-
merical simulations. For simplicity, we assume that the
time dependence of the large scale flow is fully encoded
in its amplitude a(t) while its spatial shape remains the
same. We will provide a dynamics for the amplitude a
which involves viscous dissipation, energy exchange with
the small scale vortons and a smooth random forcing
term, needed to reach a statistically steady state. We will
take a forcing of the form f(x, t) = (2/L3)f(t)sin(ksz)ex
where f(t) is a smooth random Gaussian process of av-
erage 0 and standard deviation f0.
We can then write the equation governing the dynam-

ics of vorticity filtered at a scale ℓ. We do so by convolut-
ing the curl of Navier-Stokes equations with a mollifier
Gℓ(x) = 1/ℓ3G(x/ℓ) to obtain :

Dtωℓ = Sℓωℓ +∇× [∇ · τℓ] + ν∆ωℓ +∇× fℓ, (18)

where Sℓ is the filtered shear stress, τℓ = uℓ ⊗ uℓ −
(u⊗ u)ℓ is the sub-grid stress tensor. Exploiting the
scale separation between the vortons scale η and the shear
scale Ls, we can choose η ≪ ℓ≪ Ls, allowing for the ap-
proximations,

fℓ ≈ f ,

Uℓ ≈ U ,

ωℓ ≈ ∇×U .

Under the previous assumptions, the 3D filtered Navier-
Stokes equations (18) satisfied by the large-scale flow re-
duce to a scalar equation for its amplitude a(t). To obtain
the time evolution of a(t), we project equation (18) onto
the large-scale vorticity ωℓ = a(t)kscos (ksz) ey, integrat-
ing over a square box of volume |V| = L3 with L = nLs,
n ∈ N∗ and rescaling by the factor k−1

s (L3/2)−1. This
yields the following equation for a(t):

ȧ = − a

τsν
− 3π2θ

32L3Lsη

N∑
α=1

γα,xγα,z cos (kszα)

+
2

L3
f(t), (19)

where θ ∈ [0, 1] is a coupling parameter depending on
the choice of the filtering function used in (18) and τsν =
(νk2s)

−1 is the large-scale viscous time. The derivation
of the second term on the right-hand side, representing
the contribution of the subgrid stress tensor, is given in
Appendix B.

Taking into account the rapid distorsion of vortons by
the large-scale shear flow, we then obtain the system of
equations governing the vorton dynamics:

ẋα = u(xα, t) +U(xα, t), (20)

γ̇α = 3

(
η̇

η
− 5

ν

η2

)
γα + [∇u(xα, t)]

T
γα

+ [∇U(xα, t)]
T
γα. (21)

In order to close this system, we have to provide the time
evolution for η.

2. Closure for the regularization length

The closure of the system of equation is based on a ki-
netic energy budget between vortons and the large-scale
flow. The (approximate) vorton kinetic energy is com-
puted in Appendix A. It is given by:

Kv =
Γ

64η
, (22)

where Γ is defined in (7). On the other hand, the kinetic
energy of the shear flow integrated over the box of volume
|V| = L3 is,

Ks =
a2L3

4
. (23)

In the inviscid and non-forced case, kinetic energy should
be exchanged between vortons and shear but conserved
overall. We consider then two limiting situations: in the
very viscous limit ν ≫ 1, the regularization length is just
set by viscosity, so that on dimensional ground η̇ ∼ ν/η,
like the core-spreading method [4] (Sec. 5.6.2). In the
inviscid limit ν → 0, the regularization length scale is
evolving in order to keep K = Ks +Kv constant. Patch-
ing the two behaviours, we get the following equation for
η:

η̇ = 2δ
ν

η
− 2η

5Γ

[〈
γ|∇uTγ

〉
+

(
1− 3π

4
θ

)〈
γ|∇UTγ

〉]
, (24)

where δ is a free parameter and we used the shorthand
notation:

⟨γ|Aγ⟩ =
N∑

α=1

γT
αA(xα, t)γα, (25)

for any tensor field A(x, t).

3. Choice of the parameters

There are two free parameters in the model, θ and δ.

• The parameter θ ∈ [0, 1] is a coupling parameter.
We have no physical argument to select a peculiar
value, so we use a choice that simplifies the equa-
tions. Namely, we will take θ = 4/3π to cancel
the contribution from the large-scale field to the
dynamics of the regularization length (24). This
choice simplifies the model and makes the interac-
tion between the large-scale field and the vortons
independent of the choice of the scale filter.

• The parameter δ controls the viscous decay of the
regularization length. In the case δ = 5/2, viscous
diffusion is entirely accounted for by the spreading
of the vortex core, while the vortons intensities γα
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are not affected (21). In the other limiting case,
δ = 0, the vortex core size is not affected by viscos-
ity, viscous dissipation thus only affects the vortons
intensities. Thus, we should have δ ∈ [0, 5/2].

4. Control parameters

As we will see in the following sections, the statistics of
the model are governed by the two physical input param-
eters: the viscosity ν and forcing amplitude f0. These
parameters can be used to build a dimensionless number
usually referred to as the Grashof number

Gr =
2f0
ν2

. (26)

Then, to study the hydrodynamics of the model, we can
define a Reynolds number based on the fluctuations of
the large scale field,

Re =
σaLs

ν
, (27)

where σ2
a = Ea2 is the variance of the shear flow ampli-

tude, depending on f0 and ν. This definition only makes
sense if a reaches a statistically steady state. This will
indeed be the case in both the laminar and turbulent
states described later.

C. Diagnostics and Global quantities

Diagnostics will be made using several global quan-
tities based upon a and the fields uη and ωη. A priori,
these global quantities depend on η and on the configura-
tion {xα,γα}. In practice, observables with a quadratic
dependence on uη and ωη will depend at first order on
Γ =

∑
α ∥γα∥2 and η. This was indeed the case for Kv

given by Eq. (22) This is the case for instance for:

• the vortons dissipation rate that can be computed
using equations (20), (21) and (24) as

K̇v = (3− δ)
5

32

Γ

η3
. (28)

• the global energy dissipation K̇, that can be com-
puted using equations (19) and (28) as

K̇ = f(t)a(t)− ν

[
2π2a2

L3

L2
s

+ (3− δ)
5

32

Γ

η3

]
. (29)

We see that since as δ < 5/2 the contribution of
vortons in the total energy budget (29) is negative.

• the vortons enstrophy

Ω ≡
∫

ω2
η(x, t)

2 d3x ≈ 45

1024

Γ

η3
. (30)

• the vortons mean squared velocity gradient

S2 ≡
∫

(∇uη(x, t))2 d3x ≈ 15

128

Γ

η3
. (31)

Here, it is important to emphasize that since ωη is not
divergence-free, the vortons enstrophy and their mean
squared velocity gradient do not coincide, unlike in solu-
tions of the Navier-Stokes equations.

IV. RESULTS

A. Parameters

In this section, we present the results of simulations of
the model described previously. We simulate N = 33 =
27 vortons in a periodic box of size L = Ls = 1. The
vortons are initially placed on a regular cubic lattice with
3 × 3 × 3 points spaced by h = L/N1/3. The amplitude
of the forcing is chosen as:

f(t) = f0

(
α0 +

√
2

m∑
j=1

[
αjcos

(
2πj

t

Tf

)

+βjsin

(
2πj

t

Tf

)])
, (32)

where Tf is the forcing period, m = ⌊Tf/λ⌋, with 1/λ the
maximum frequency of the forcing. The random part of
the forcing comes from αi, βi, which are independent
and identically distributed Gaussian variables of average
0 and standard deviation 1/(2m + 1). In the end, the
forcing term is smooth given the finite number of modes,
Tf -periodic and of standard deviation f0.
Regarding the parameters, we adopt θ = 4/3π and

δ = 9/4. This last value is chosen so that the dissi-
pation rate of the vortons (28) is indeed given by νS2,
with S2 given by (31). Other parameters are taken as
λ = 1, Tf = 3000λ. The intensities of the vortons are ini-
tialized taking their components as independant random
variables distributed uniformly in [−I, I] with I = 10.
The simulation time is taken as Tf . We integrate the
model using the standard Runge-Kutta method of order
5(4) implemented within the SciPy Python library.

B. Laminar and turbulent regimes.

An interesting feature of this model is the existence
of a transition between two regimes, highlighted by the
ratio of mean energy dissipation at large scale ⟨εa⟩ to the
mean injected power ⟨Pinj⟩ = ⟨a(t)f(t)⟩, as a function
of the Reynolds number, which is shown in Fig. 1. At
low Reynolds number (Re < Rec ≈ 103), this ratio is
close to one, showing that all the dissipation is provided
by the large-scale shear. This is confirmed by time-series
shown in Fig. 2e). In this regime, the regularization
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FIG. 1. Time averaged dissipation rate for the large scale
flow normalized by the average injection rate. The transition
from a laminar state to a turbulent one occurs at Rec ≈ 103.
For Re ≤ Rec the injected power is dissipated by the large
scale flow while in the turbulent regime, energy is dissipated
at smaller, vortons scale.

length grows continuously as the square root of time (Fig.
2a). This means that the dynamics is mostly diffusive.
In analogy with classical turbulence, we can identify this
regime as laminar. At the critical Reynolds number Re =
Rec, there is a sudden drop in the ratio, followed by a
new regime where the ratio is close to 0. This means that
in this regime (Re > Rec), energy is mostly dissipated by
the vortons, as confirmed again in the time series shown
in Fig. 2f). In this regime, the regularization length scale
reaches a statistically stationary value (Fig. 2b). We call
this regime the turbulent regime.

The laminar to turbulent transition is also observed in
the behavior of other global variables, such as the mean
regularization length as a function of Reynolds number,
see Figure 3. In the laminar regime, its value is mainly
constrained by the finite simulation time Tf as it grows
continuously, while in the turbulent regime, it scales as
a power law ⟨η⟩ ∼ Reα with α ≈ −0.42. We also observe
the transition in the relation between Reynolds number
scaling and the Grashof number shown in Fig. 4. At
low value of Reynolds and Grashof, the scaling is linear,
while at higher values of the Grashof number, the scal-
ing is different with Re ∼ Grα with α ≈ 0.53. In steady
state turbulence, it is observed [11] that the variance of
the velocity field becomes independent of viscosity in the
limit of vanishing viscosity. In our model, this would
be verified if α = 1/2 as if Re ∼ Grα we should have
σa ∼ fα0 ν

1−2α. As shown in Fig. 4, the scaling expo-
nent fitted on our simulations results is close to 1/2 but
slightly larger (the 95% confidence interval does not in-
clude 1/2).

C. Dynamics in the laminar regime

We can further explore the dynamics of the model in
the laminar regime by simplifying the equations, neglect-
ing the vortons-vortons interactions and the retroaction
of the vortons on the large-scale flow. The system then

reduces to

ȧ = − a

τsν
+

2

L3
f(t), (33)

η̇ = 2δ
ν

η
, (34)

ẋα = U(xα, t), (35)

γ̇α = 3(2δ − 5)
ν

η2
γα +∇UT(xα, t)γα. (36)

In order to simplify future computation, we will also
consider that the large scale flow is overdamped, yielding,

a(t) = arms

(
f(t)

f0

)
with arms = (1/4π2)(L2

s/L
3)(2f0/ν) the standard devia-

tion of a. Under these assumptions, the Reynolds number
should thus behave in the laminar regime as,

Re =

(
Ls

L

)3
Gr

4π2
. (37)

The scaling derived in equation (37) is indeed consis-
tent with the numerical results shown in Fig. 4, with
the Reynolds number scaling as the Grashof number for
Gr < Grc ≈ 105.
Time dependence of various physical quantities, such

as the regularization scale, and the forcing terms are
computed in Appendix C. Using these estimates, we
find that the vortons kinetic energy Kv = Γ/(64η)

, energy dissipation K̇v = (3− δ)
5

32

Γ

η3
or enstrophy

Ωv = 45Γ/(2048η3), are thus respectively behaving as

t
9δ−15

2δ , t
7δ−15

2δ and t
7δ−15

2δ when t → ∞. Energy would
thus decrease with time in the laminar regime if δ < 15/9
while energy dissipation or enstrophy would decrease if
δ < 15/7. With our choice of δ = 9/4, both Kv and K̇v

should increase indefinitely at large times which is unre-
alistic. However, one should keep in mind that the reg-
ularization length η increases indefinitely and eventually
becomes larger than the size of the periodic box L which
is not physical. As η increases, the vortons field is not
concentrated at small scales anymore (the cutoff wave
number in the energy spectrum is 1/η). Consequently,
the increase of the vortons kinetic energy is likely due
to the progressive accumulation of energy at larger and
larger spatial scales. We represent the expected dynam-
ics at large timescales on Fig. 2c,d) for the energy of
the vortons and their energy dissipation. These laws are
indeed well verified.

D. Dissipation rate

One of the main features of homogeneous and isotropic
turbulence [11] is that the energy dissipation rate be-
comes independent of viscosity in the limit of vanishing
viscosity, and that it should scale with the cube of the
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FIG. 2. Time series of regularization length (a, b), kinetic energy (c, d) and viscous dissipation and injected power (e, f) in
the laminar (left column: a, c, e) and turbulent (right column: b, d, f) regimes. The two regimes are both illustrated by
the results of a single simulation with control parameters ν = 10 (respectively ν = 10−9) and f0 = 10 (respectively f0 = 1)
for the laminar (turbulent) regime. The first row (a,b) shows the time series of the regularization length. In the laminar
regime (a), its dynamics matches the prediction f1(t) = η0ψ(t) (represented by the dash-dotted black line, slightly offset for
readability) while it reaches a stationary mean value in the turbulent regime (b). The second row (c,d) shows the time series
of both the large-scale kinetic energy (blue line) and of the vortons kinetic energy (orange line). In the laminar regime (c),
the kinetic energy of the vortons follows well the expected dynamics at large timescales represented by the dash-dotted black

line (f2(t) = (1/64η0)(I
2/4)ψ(t)

(5δ−15)
δ (1 + t(t + Tf )/((2m + 1)τ2Γ))). The last row (e,f) depicts the energy budget with the

dissipation from the large-scale flow (blue line), that from the vortons (orange line) and the time-averaged injected power
(dashed horizontal black line). In the laminar regime, energy injection is mostly balanced by dissipation at large scale while
in the turbulent regime, energy injection is balanced by dissipation at small scales, i.e. by the vortons. Additionally, the
dissipation from vortons matches well with the expected dynamics at large timescales represented by the dash-dotted black line

(f3(t) = (15/128η30)(I
2/4)ψ(t)

(3δ−15)
δ (1 + t(t+ Tf )/((2m+ 1)τ2Γ)))

images/eta.pdf

FIG. 3. Mean regularization length as a function of the
Reynolds number. Each dot corresponds to a single simula-
tion, with given values of viscosity ν and forcing amplitude f0
(f0 being represented by the dot color). Two regimes can be
identified, separated by a critical Reynold number Rec ∼ 1000
where the regularization length either grows as the square
root of time in the laminar regime (low Reynolds numbers) or
reaches a stationary mean value in the turbulent regime (high
Reynolds numbers). The black dashed line is a fit of a power
law < η >∼ Reα in the turbulent regime, with fitted exponent
α = −0.42. For Re ≤ Rec, η behaves as

√
η20 + 4(1− δ)νt.

The finite values observed here are due to the finite time of
the simulation and are indeed independent of the forcing am-
plitude f0.

images/Gr_Re.pdf

FIG. 4. Reynolds number Re = σaLs/ν as a function of
Grashof number Gr = 2f0/ν

2. Each dot corresponds to a
single simulation, with given values of viscosity ν and forcing
amplitude f0 (f0 being represented by the dot color). The
dotted and dashed lines are power law fits of the two regimes
(laminar and turbulent). The fitted exponents are α = 0.98
for the laminar regime and α = 0.53 for the turbulent regime.
The scaling for the laminar regime match the prediction (37).

standard deviation of the velocity field. This is indeed ob-
served in numerical simulations [12] or experiments like
the von Karman flow [13]. In the case of shear flows,
this scaling depends on the boundary conditions, via the
state of the surface [14]: for rough surfaces, this scaling is
indeed observed, while for smooth surfaces, present data
only evidence a slow decay with with decreasing viscosity,
possibly corresponding to logarithmic corrections.
In the present case, the energy dissipation comes from

two sources ε = εa+εv, where εa denotes the dissipation
coming from the large scale shear, while εv corresponds
to the dissipation due to the vortons. Normalizing by
σ3
a/Ls, we then get:

⟨ϵ⟩
σ3
a/Ls

=
2π2L3

Re
+

1

Re

(
Ls

σa

)2

(3− δ)
5

32

〈
Γ

η3

〉
. (38)

The first term scales as the inverse of the Reynolds num-
ber and corresponds to the large-scale dissipation. The
second term represents the contribution of the vortons.
These two contributions are plotted in Figure 2 both in
the laminar and the turbulent regime. Before the tran-
sition, the dissipation due to the large scale flow indeed
dominates, while in the turbulent regime, the vortons
dissipation dominates. This two regimes pilot the be-
haviour of the total energy dissipation as a function of
the Reynolds number, shown in Fig. 5.
Before the transition, the normalized dissipation rate

indeed behaves as the inverse of the Reynolds number,
while in the turbulent regime, we observe a slower power
law decay, with a higher dispersion, which may be due to
slower convergence, see below. This second regime can be
fitted with a power law with a small exponent α = −0.06,
that could be the signature of logarithmic corrections.
The scatter observed in the turbulent regime may be

traced to the high intermittency of the energy dissipa-
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images/diss.pdf

FIG. 5. Rescaled total dissipation rate as a function of the
Reynolds number. Similarly to turbulent flow, the dissipation
rate scales as the cube of the velocity field variance. In the
laminar regime, the rescaled dissipation scales as Re−1 (the
fitted coefficient is α = −1.00), while in the turbulent regime,
we get a smaller exponent (α = −0.06), the data points being
quite scattered.

images/pdf_diss.pdf

FIG. 6. (a) Standardized probability density function (pdf)
of the dissipation rate logarithm for different Reynolds num-
ber in the turbulent state. The dashed black line correspond
to to the normal distribution. The blue, orange, green and
red lines respectively corresponds to Re = 8.84 · 103; 9.84 ·
107; 1.32 · 1012; 1.67 · 1014. (b) Time series of the dissipation
rate (for Re = 1.32 · 1012), showing its highly intermittent
dynamics characterized by strong bursts of dissipation sepa-
rated by relatively quiescent time intervals.

tion, in analogy with what is observed in homogeneous
isotropic turbulence [11]. In our case, again in agreement
with homogeneous isotropic turbulence[13], the statistics
of energy dissipation can be well approximated by a log-
normal random distribution, see Fig. 6.

V. DISCUSSION

We have introduced a new subgrid-scale model of shear
flows, exploiting the spatial intermittency and the scale
separation between the large-scale flow and the coherent
small-scale structures. The subgrid-scale model is very
sparse, as only the most intense structures are considered,
that are modeled via vortons, representing dynamically
regularized quasi-singularities subject to rapid distorsion
by the large-scale shear, and which retroact on this large-
scale flow via the subgrid stress. The model displays an
interesting transition between two regimes: (i) a lami-
nar regime, in which all the dissipation is accounted for
by the large-scale flow, and the vortons dynamics is es-
sentially diffusive; (ii) a turbulent regime, in which most
of the dissipation is produced by the vortons. These two
regimes correspond to different scalings of the dissipation
and the Grashof number as a function of Reynolds, with
power laws that resembles the laws observed in classical

turbulence. In this preliminary validation, we neglected
the feedback on the profile shape of the large-scale flow
by introducing an ad-hoc forcing. This situation is per-
haps more realistic in geophysical flows, where external
forces such as solar irradiance and the Coriolis force de-
termine velocity and temperature gradient that do not
deviate too much from quasi-geostrophy and adiabatic
profile, at least in the midlatitudes. In the case of shear
flows forced by boundary conditions (Couette flow) or via
a constant pressure gradient (Poiseuille), we know that
this condition is not realistic, as the turbulent fluctua-
tions are known to flatten the global shear in the middle
of the domain. Even if we consider the layer just above
the boundary layer, it is well known that the velocity
profile switches from linear to logarithmic. As discussed
in [1–3], this effect can be explained via rapid distorsion
theory, that predicts that the x − y component of the
subgrid stress tensor scales inversely with the local large-
scale shear, leading to the log-law of the wall after inte-
gration. Due to our approximation, we cannot capture
this effect here, but it would be interesting to generalize
our model to take into account the local shear. Note
that all the computations made in [1–3] use localized
Gaussian wave-packets of vorticity, that are very close
in spirit to our quasi-singularities. The main difference
comes from our dynamical regularization which may in-
troduce new effects. Another interesting generalization
would be towards geophysical flows, and especially local-
ized extreme events such as convective storms. Indeed,
individual convective cells are relatively sparse, and move
within the ”synoptic” (large-scale) wind and temperature
fields, while interacting with nearest neighbors. If condi-
tions are favorable, they can further organize into clusters
known as mesoscale convective systems [15], which can
produce significant hazard. An example of such severe
storms are ”derechos” which are long-lived MCS produc-
ing widespread severe surface wind gusts [16]. To deal
with convective systems, one needs to add the coupling
between temperature and velocity, as well as moisture
effect. Work is currently in progress to generalize our
model to describe such type of coherent structures.
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Appendix A: Kinetic energy

To derive the kinetic energy of the vortons field, we
can first derive the expression for the energy spectrum of
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the vortons field,

E(ρ, t) =
1

2

∫
S2(0,ρ)

∥û(k, t)∥2dk. (A1)

To do so, let us first write the Fourier transform of the
vortons velocity field:

ûmη (k) = −εm,n,p
i

4π

knηK1(η|k|)
|k|

N∑
α=1

e−ik·xαγpα, (A2)

where K1 is the second type modified Bessel function
of order one and εm,n,p is the Levi-Civita symbol. We
then obtain the one dimensional energy spectrum (A1):

E(ρ, t) =
[ηρK1(ηρ)]

2

2π

23Γ +
∑
α,β
α̸=β

(γα · γβ)ϕ1 (2πρ∥rαβ∥) +
γα · rαβ
∥rαβ∥

γβ · rαβ
∥rαβ∥

ϕ2 (2πρ∥rαβ∥)

 (A3)

with Γ =
∑

α ∥γα∥2 and

{
ϕ1(z) = z−3

(
(z2 − 1) sin z + z cos z

)
,

ϕ2(z) = z−3
(
(3− z2) sin z − 3z cos z

)
.

(A4)

The total kinetic energy energy of the vortons induced
field is given by the integral of Eq. (A3) along ρ. This
integral cannot be computed analytically for a finite η
except for the first term, which is the dominant one for
the total kinetic energy in the small η limit since it is
independant of ρ. The dominant contribution to kinetic
energy thus writes

Kv =
Γ

64η
. (A5)

Appendix B: Derivation of the subgrid stress tensor
term in the large-scale flow amplitude equation

As explained in section III B 1, we obtain the time evo-
lution of the large-scale shear amplitude by computing:

k−1
s (L3/2)−1

∫
V

(18) · ey cos (ksz) dx. (B1)

To compute specifically the contribution of the subgrid
stress tensor, we begin by noting that∫

(cos (ksz) ey) · (∇× [∇ · τℓ]) dx

= −k2sℜ (τ̂ℓ
z,x (ksez)) , (B2)

where we used two integration by parts, τ̂ℓ being the
Fourier transform of the subgrid stress tensor whose com-
ponents are written as exponents. As the only non-zero
component of the large scale velocity field is Ux, we get

τ̂ℓ
z,x ≈ Ûx

ℓ u
z
η,ℓ − ̂(Uxuzη)ℓ + ûxη,ℓu

z
η,ℓ − ̂(uxηuzη)ℓ. (B3)

With Eq. (A2) we have,

Ûxuzη(k)=
a

2i

[
ûzη (k − ksez)

−ûzη (k + ksez)

]
(B4)

which vanishes when evaluated at k ∝ ez because
εz,z,p = 0 in (A2). Assuming further that (Uuη)ℓ ≈
Uℓuη,ℓ, we are left with the computation of

τ̂ℓ
z,x (ksez)= ûxη,ℓu

z
η,ℓ (ksez)

− ̂(uxηuzη)ℓ (ksez) . (B5)

By definition of the filtered velocity field, writing p =
ksez, one has

τ̂ℓ
z,x (p) =

∫
gℓ(q,p)û

x
η(q)û

z
η(p− q)dq, (B6)

where gℓ(q,p) =
[
Ĝ(ℓq)Ĝ(ℓ(p− q))− Ĝ(ℓp)

]
and Gℓ is

the filtering function. Injecting the Fourier transform of
the velocity field and rescaling the integration variable
by η, one obtains,

τ̂ℓ
z,x (p) =

ε1,m,nε3,α,β
(4π)2η

∑
j1,j2

e−ip·xi2γj1,nγj2,β

×
∫
gℓ

(
q

η
,p

)
qmqα

|q||ηp− q|
K1 (|q|)K1 (|ηp− q|)

×e−i
q·rj1j2

η dq (B7)

where we have used ε3,α,β (ηpα − qα) = −ε3,α,βqα be-
cause p ∝ ez. Then, we choose to mollify at a scale
ℓ = η such that ℓ≪ Ls and we keep only the leading or-
der term in ℓ/Ls. Moreover, considering that η is small
compared to the average distance between two vortons,
we keep only the resonant term j1 = j2 = j in the sum.
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This yields

τ̂ℓ
z,x (p)=

ε1,m,nε3,α,β
(4π)2η

∑
j

e−ip·xjγj,nγj,β

×
∫ [

Ĝ(q)2 − 1
] qmqα

|q|2
K1 (|q|)2 dq. (B8)

Then, as G is a real radial function, its Fourier transform
is also isotropic, so we end up with

τ̂ℓ
z,x (p)=

1

4πη

∑
j

e−ip·xjγj,zγj,x

×
∫ ∞

0

[
1− Ĝ(r)2

]
r2K1 (r)

2
dr. (B9)

The value of the remaining integral depends on the choice
of the mollifier, and is between 0 and 3π2/32. We there-
fore introduce a parameter θ ∈ [0, 1] which will play the
role of a coupling parameter between small scales and
large scales such that the integral is equal to (3π2/32)θ.
Therefore,

ℜτ̂ℓz,x (kse3) =
3πθ

128η

N∑
α=1

γα,zγα,x cos (kszα) , (B10)

which yields the second term in the right-hand side of the
amplitude equation (19) by substituting (B10) in (B2)
and dividing by ks(L

3/2).

Appendix C: Expected dynamics in the laminar
regime

We can compute analytically the expected dynamics
of several variables related to the vortons in the laminar

regime. Vortons are advected by the shear flow only (35)
and in particular,

zα(t) = zα(0). (C1)

Writing ψ(t) =
√
1 + 4νδt/η20 , Eq.(34) solves as

η(t) = η0ψ(t), (C2)

and for i = 1, 2,

γα,i(t) = γα,i(0)ψ(t)
3(2δ−5)

2δ , (C3)

while

γα,z(t) = ψ(t)
3(2δ−5)

2δ

(
γα,z(0)

+γα,x(0)
2π

Ls

∫ t

0

a(s) cos

(
2π

Ls
zα(s)

)
ds

)
. (C4)

Recalling that zα(t) = zα(0) and taking random initial
intensities following a uniform law given by γα,i(0) ↪→
U
(
−I/(2

√
N), I/(2

√
N)
)
, we end up with

EΓ(t)=
I2

4
ψ(t)

3(2δ−5)
δ

×

[
1 +

2

2m+ 1

t2

τ2Γ

m∑
j=0

sinc2
(
jπt

Tf

)]
, (C5)

where sinc(x) = sinx/x and τΓ =
√
12πL3ν/(Lsf0) and

we also assumed that N ≥ 33. At large time, the sum in
Eq. (C5) behaves approximately (graphically) as 1/2(1+
Tf/t), while ψ(t) ∼

√
t. We then get:

EΓ(t) ∝
t→∞

t
10δ−15

2δ ,

Kv(t) ∼ EΓ(t)/ψ ∝
t→∞

t
9δ−15

2δ ,

K̇v ∼ Ω(t) ∼ EΓ(t)/ψ3 ∝
t→∞

t
7δ−15

2δ . (C6)
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