
HAL Id: hal-04847457
https://hal.science/hal-04847457v1

Submitted on 23 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

UAS procedures model with system architecture for
safety analysis

Charles Mathou, Kevin Delmas, Pierre de Saqui-Sannes, Jean-Charles
Chaudemar

To cite this version:
Charles Mathou, Kevin Delmas, Pierre de Saqui-Sannes, Jean-Charles Chaudemar. UAS procedures
model with system architecture for safety analysis. 2024 International Conference on Unmanned Air-
craft Systems (ICUAS), Jun 2024, Chania, France. pp.873-880, �10.1109/ICUAS60882.2024.10557098�.
�hal-04847457�

https://hal.science/hal-04847457v1
https://hal.archives-ouvertes.fr


UAS procedures model with system architecture
for safety analysis

Charles Mathou
Fédération ENAC ISAE-SUPAERO ONERA

Université de Toulouse, France
charles.mathou@isae-supaero.fr

Kevin Delmas
ONERA

Toulouse, France
kevin.delmas@onera.fr

Pierre de Saqui-Sannes
Fédération ENAC ISAE-SUPAERO ONERA

Université de Toulouse, France
pdss@isae-supaero.fr

Jean-Charles Chaudemar
Fédération ENAC ISAE-SUPAERO ONERA

Université de Toulouse, France
jean-charles.chaudemar@isae-supaero.fr

Abstract—As the number of unmanned aerial systems (UAS)
keeps increasing, so do the safety risks they pose. One way
of maintaining an acceptable risk level is that operational
procedures are adequately designed and proven. Model-based
approaches involve modeling procedures as a sequence of
tasks with inputs and outputs. These tasks abstract away the
complexity of the subsystem or actor who performs them.
However, UAS procedures typically involve multiple actors
and subsystems, each of which contributes to the risk of the
operation. Accounting for these heterogeneous risk contributors
allows new failure propagation paths to be revealed, understood
and patched, leading to increased safety. In order to achieve
this, we propose a methodology to connect the safety models of
such contributors to our previous procedure models. We discuss
and illustrate this methodology on a medium-sized fixed-wing
UAV. We connect our procedure models to the UAV’s functional
architecture model, and use them to generate minimal sequences
leading to a crash of the UAV. New sequences illustrating the
contribution of the UAV’s architecture are revealed that did not
appear in our previous work on UAS procedures. This provides
an opportunity to explore the contribution of the system’s
architecture to its overall safety through the procedures.

Index Terms—AltaRica, MBSA, UAS, Procedure

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) usually fly in coop-
eration with a ground station and a supervising pilot at a
minimum. This core set of actors and systems is called an
unmanned aerial system (UAS). Typically, UAS can also
interact with external actors such as air traffic controllers,
GPS networks or other UAVs. Each of these actors, and
each of an UAS’s subsystems are exposed to various failures
which can impact the operation as a whole. The failures of
a human pilot are studied in the human factors domain. A
UAS’s autopilot software failures stem from the embedded
software domain. Failures in the communications link are
best studied from an electromagnetic perspective. As such,
the risk contributors to a UAS’s operation are multiple and
diverse in nature. Taking into account such risk contributors
allows for a safer system as safety analyses can reveal new
failure propagation paths.

In order to do so, we chose to approach the problem
of failure propagation through a UAS’s procedures. These
procedures can describe both maintenance and operation.
Operational procedures describe step by step actions to be
taken in various cases ranging from routine or nominal
situations to in-flight emergencies. As such they have to
cover all of the actors, systems and subsystems and their
interactions in the various scenarios they cover. The variety
of actors and subsystems they involve, and the necessary
interactions between those, represent a good opportunity to
explore the mechanisms of failure propagation.

Our aim is thus to leverage our previous work on flight
procedures [1] to propose a methodology allowing to account
for different risk contributors to the UAS’s safety, using
procedure models as a fulcrum. Our objectives is thus to
connect a procedures model to a model of the system whose
procedure are modeled. Once the models are connected, we
intend to leverage their formal, safety-oriented paradigm to
automatically compute minimal sequences of events leading
to undesired states such as a crash of the UAS. Doing so
would allow us to refine our understanding of how system-
level failure events propagate and impact a UAS operation
using the procedure viewpoint.

We use AltaRica to model the procedures and the UAS
functions and hardware. AltaRica tools support Model-Based
Safety Analysis (MBSA) [2] such as the computation of the
smallest sequences of failures leading to undesired events
(called minimal sequences, MSQ). This enables us to assess
the impact of specific failures on the UAV and its operation
from a global perspective.

The paper is organized as follows: Section II surveys
related work. Section III provides background on procedures.
We present our use-case in section IV, and describe types of
connections in section V. We present our methodology in
section VI. We discuss our results in section VII.



II. RELATED WORK

A. Modeling failure propagation

The STAMP/STPA hazard analysis technique proposed
by [3] is a deductive approach that considers safety in
terms of control rather than failures. Instead of basing the
analysis solely on component failures, they consider controls
themselves as the source of hazard. To that end they develop
a methodology that relies on the identification of potentially
unsafe control actions based on a predefined safety control
structure. This method is however not designed equipped to
provide easy-to-automate, formal safety analyses.

The functional resonance analysis method (FRAM) [4] is
a theoretic method designed to perform accident analysis, but
has since been modified to also allow prospective risk assess-
ments. It allows for the modeling of complex socio-technical
systems through a set of interconnected vertices representing
system functions and a set of their inputs, outputs, resources,
controls, preconditions and time constraints. However, the
specification of the variability of these functions based on
their various inputs still requires further work [5]. Imple-
mentations of the FRAM using various formal tools have
been published, for instance adding formal model checking
[6]. They are however not yet able to deliver the level of
automation we wish for, namely computing MSQ from the
model. In addition the current simulator for FRAM models
requires extensive manual effort to specify the variability
behaviour of system functions as this information is not
stored within the model but hand-provided at the beginning
of each simulation.

The authors of [7] propose to use model-based safety
assessment (MBSA) to perform the risk analysis of UAS
concept of operations. They illustrate it on a loss of sepa-
ration situation between a UAS and another aircraft. In order
to model this scenario, they use the ADF language, and
leverage its formal semantics to generate minimal cutsets
leading to a mid-air collision. While the model itself is
not explicitly stated to represent a procedure, the described
workflow closely resembles one. We build our approach on
this work, using its representation of failure propagation
through the system by means of data-flow components.

B. Connecting models for safety

The approach of connecting models for increased safety
insight is tackled by [8]. In order to maintain consistency
between the MBSE system models and the MBSA safety
models, they investigate the allocation of a system’s func-
tional architecture on its physical architecture. They describe
several ways to specify that allocation, using either syn-
chronisation, functional flows, physical resources or nested
functions. Using the physical resources method, they found
that it restricted the propagation of failures to the functional
layer only, and that the resulting safety model unexpectedly
grew very similar in structure to the system model. The
question of using a mixed approach combining several of the
presented allocation mechanisms remains open. We explore
the use of multiple of the allocations mechanisms they

describe in order to implement the connection between our
two models.

The work presented in [9] introduces the notion of Tiered
Model-Based Safety Assessment. It consists in formalising
the relations between the safety assessments performed on
three distinct views of the system model, called layers. These
layers consist in a physical model, a functional model, and
an operational model. Each layer thus corresponds to a given
safety analysis while retaining the behaviour of the system.
Our approach leverages this work and builds an additional
model layer for the procedures. This extends the scope of
the model to include not only the UAV but also other actors
that might play a part in the execution of procedures.

III. BACKGROUND

This section presents some background on procedures and
introduces the AltaRica DataFlow (ADF) language we used.

A. Structure of a procedure

Operational procedures for UAVs are typically text-based
documents. The procedure itself is a set of actions to be
executed in a specific order by actors of the system. The
authors of [7] model a scenario in which a procedure is
carried out. They also add a set of detection tasks to the
procedure execution tasks. Doing so allows them to account
for the possibility that some actors might fail to recognize
that execution tasks must be performed in the presence of a
procedure-triggering event. This adds more failure scenarios
and thus increases the potential benefit of computing the
minimal set of failures, so-called minimal cutsets, leading
to a given failure condition on their model.

In [1], we proposed a methodology for modeling the
execution of a multiple procedures scenario. To this end, we
extended the structure presented in [7] to account for the fact
that each procedure has its own triggering events and to de-
rive a consistent state for the system when several procedures
are executed. This extended structure is as follows:

1) Initiation section : this section contains the events that
require the application of a procedure. If one of these
events is triggered, then the appropriate procedure must
be executed.

2) Detection section : this section contains information
about which actors can be made aware of the events
of the initiation section, and whether they can fail to
detect them, and in which way.

3) Execution section : this section describes the procedure
tasks to be executed to achieve the stated goal of the
procedure.

4) Outcome section : this section implements the desired
rationale for computing the status of the system based
on the previous sections across all individual proce-
dures.

The procedures stricto-sensu, as described in the flight
manual, correspond to the sole execution section. The other
sections were added to make the model executable and anal-
yses possible. In the remainder of this article, the procedure
will refer to all four sections of the model.



B. AltaRica DataFlow

Systems are modeled in AltaRica DataFlow (ADF) as a set
of interconnected components. ADF components contains the
following elements, as illustrated in figure 1 :

• flow variables : these input and output variables repre-
sent the interface of the component;

• state variables : these internal variables represent state
information, typically failure modes;

• assertions : they compute the output values based on
the values inputs and state variables;

• transitions : these describe how the component’s state
variables can change;

• events : they trigger the transitions under the proper
circumstances;

More precisely, transitions are said fireable when their
associated guard (a condition over the values of the state
and flow variables) is true. If a fireable transition’s event is
triggered, that transition is fired. Once fired, the values of
the component’s state variables are updated according to the
actions defined by the transition. Finally, the assertions use
the new values of the state variables to compute the new
values of the output flows.

Fig. 1: Model of an AltaRica component.

IV. USE-CASE

The procedures we modeled and analysed are based on
a small UAS. The source material for the procedures is
the UAS’s flight manual. Those procedures were modeled
in the AltaRica DataFlow language, using Satodev’s Cecilia
Workshop software [10].

A. General presentation

Our use case is a fixed-wind UAV with a 3 meters
wingspan, typically flying at 80 km.h−1 to survey linear
infrastructures.

The pilot may take manual control of the UAV using either
the main communications channel (CC communications) or
a back-up radio communications channel (RC communica-
tions). The availability of CC communications enables the
pilot to engage one of several automated flight modes for the
UAV to cruise on autonomously:

• Flight plan or Resume (R): the UAV flies its preset flight
plan, possibly resuming it as it was before an emergency
procedure was executed;

• Go home (G): the UAV returns to its home point and
holds there;

• Land (L): the UAV lands automatically;

• Manual control (MC) : the pilot takes manual control
of the UAV (usually performing a manual landing after-
wards);

• Flight termination (FT): the UAV impacts the ground at
low energy at end of a controlled downward-spiraling
trajectory.

B. UAV system model

The UAV system model is based on the one presented in
[9]. It consists in two layers : physical and functional, each of
them representing a different view of the UAV. It was made
using the ADF language, as were the procedure models we’ll
connect it to.

1) Functional layer: The functional layer can be split in
two, as shown in Figure 2 :

First are the ADF components representing the acquisition
functions for various flight parameters. These components
have an input representing the execution status of the hard-
ware they rely on, as allocated on the available CPUs.
Additional inputs may be specified to account for other
dependencies. More details about this can be found in [9].

Fig. 2: Architectural model of the UAV (functional layer).

Second is the model of the on-board control-loop of the
UAV. It is made of three main components. The Monitoring
component watches the status of the acquisition functions’
outputs. It produces the relevant alarm signal when it detects
a failure among those. These signals then feed into the
Supervision component.Based on what alarms have been
raised, it determines the adequate flight mode for the UAV.
The Supervision’s output feeds into the Trajectory component
along with the outputs of the acquisition functions. These
are used to determine whether the UAV is able to maintain
itself within its flight envelope given its functional status and
current flying mode. This information itself is in turn fed into
the Monitoring component. An additional FTS component
(Flight Termination System, in Figure 2) is activated by
a specific output value of the Supervision component, and
produces an output representing the activation status of the
UAV’s FT flight mode.

2) Physical layer: Shown in Figure 3, the physical layer
provides the resources required to execute the UAV’s func-
tions. It contains ADF components representing the actual
components of the UAV itself, both hardware and software.
These represent sensors, actuators, CPUs, batteries and the



autopilot software of the UAV. It also displays the output
of several components being allocated on either of the two
on-board CPUs. The outputs of the CPUs represent the
execution of the software task associated to the relevant ADF
components on that CPU. These outputs are then carried over
to the functional layer.

Fig. 3: Architectural model of the UAV (physical layer).

C. Procedure models

1) Sample procedures: We have selected three of the
emergency procedures found in our UAV’s flight manual.
These procedures are named after the situation for which
they are designed.

AP Fault (APF): a fault occurs within the auto-pilot; while
the auto-pilot reboots, the UAV switches flight modes to FT
in case that the auto-pilot does not recover. After a succesful
recovery however, the UAV engages the G flight mode.

CC COMM LOSS (CCL): CC comms are disrupted, on
either the uplink or downlink (RC comms are unaffected by
this event); the UAV switches to G while the pilot monitors
the UAV’s trajectory using a specific video feed. The pilot
takes manual control of the UAV after it arrives at its home
point, and lands it himself.

F/CTL FAULT (FCR): the controller for the UAV’s rudder
fails; an emergency notification is sent from the UAV to
the pilot while the UAV engages the FT mode. If aware
of the emergency, the pilot takes manual control and must
compensate for the UAV’s lack of control to land the UAS
as safely as possible.

2) Procedure model: Figure 4 shows one of the procedure
models we later extend with the UAV model. That model
was made using the methodology presented in [1]. It models
the CCL procedure described above. The CCL component
is the initiating event, which can be detected by either the
pilot (CCL Detect PIC) or the UAV (CCL Detect UAV).
The procedure then executes based on the detection status and
the initial conditions. Components CCL G and CCL Man
respectively represent the activation of the Go home or
Manual control control modes.

V. TYPES OF CONNECTIONS

There are two broad categories of mechanisms that can
be used to connect elements of our models. The work in [8]
describes similar mechanisms for connecting models through
what they call allocations. However, they intend to use only
one at a time for all model connections. Our approach is

Fig. 4: ADF model of the CCL procedure.

to explore which mechanism is best adapted based on the
element to connect, so we do not limit ourselves to a single
type.

A. Dependency

this connection describes the functional dependency of an
element A on another element B. A requires an input from
B in order to produce an output value. This dependency
can be further refined with regards to the behaviour of A
on receiving an input from B. Formally, this distinction is
not on the connection itself, which is specified by textually
or graphically connecting two ports together, but rather on
the behaviour of the component on the receiving end of that
connection.

• value dependency : A uses the input from B directly for
computing its output values;

• state dependency : A can be led to perform state transi-
tions upon receiving specific values from B.

A value dependency in ADF is first specified graphically,
as shown in figure 4. For instance CCL Man depends on
CCL Land through its input. The specific behaviour as-
sociated to this dependency is then described within the
dependent component itself, using the ADF code syntax as
shown in the excerpt below:
current_exec = case I = Idle : Idle,

[...] else Success;
In this example, the output value of the component,

current exec is computed based on a pattern matching (key-
word case{}) of the component’s input and state variables.
The code above shows that if the input I is received with
value Idle, the component produces the output value Idle as
well. If I differs from Idle, the pattern matching continues
with other values and variables.

We can also refine the dependency connection based on its
necessity:

• exclusive dependency : A needs this input from B only;
• optional dependency : A needs this input from one of

several input sources, of which B is but one.

In ADF, an input port can only be connected to a single
output port. In order to get around this, we use a typical
approach of aggregating several inputs through a modeling
artefact component, as shown in figure 5. The component
TCorTM produces a Boolean value representing whether or
not either the TC or TM functions of the drone are non-
nominal, and feeds this output into the procedure detection
components monitoring this condition.



Fig. 5: ADF implementation of an optional dependency.

B. Synchronisation
A synchronisation connects two model elements through

events. It allows to tie together the occurrence of several
events across the model. There are several types of synchro-
nisations, however we only present here the two types we
used for our models.

• strong synchronisation : in a strong synchronisation H
of events A and B, H is available if and only if both
A and B are available. Firing H triggers both A and B.
Neither A nor B can be fired independently of the other.

• soft synchronisation : firing a soft synchronisation S of
events A and B triggers any event synchronised in S that
is fireable. If A is fireable, but not B, firing S will fire A
but not B. As for a strong synchronisation, none of the
synchronised events are fireable independently of S.

VI. CONNECTION METHODOLOGY

With these connections in mind, we can now look at
our models and search for matching sections and elements
between them. In doing so, we will be identifying which
elements to connect using the previously described patterns,
and which elements can be set apart as ’unrelated’. This
methodology is aimed at connecting various types of models
to a procedures model that follows a given structure We
will thus use that structure to facilitate the identification
of matching sections and components. Figure 6 shows an
overview of the connections we made for the CCL procedure.
They are described in more detail below.

Fig. 6: Overview of connections between the CCL procedure
model and the UAV system model.

A. Initiation section

any model element from the additional model whose
failure corresponds to a procedure-initiating event can thus
be matched to the initiation component modeling that event.
The CC COMM LOSS (CCL) procedure described in IV-C1
is initiated by the loss of either the telecommand (TC) or
telemetry (TM). Those functions are represented in our UAV
model by the TCAcquisition and TMTransmission compo-
nents respectively (highlighted in red in figure 6). Those func-
tions are in turn allocated to the physical layer, respectively
on the Receiver and Transmitter components (figure 3). The
failure of any of these four components must thus trigger the
CCL procedure.

Since we are considering failures events, it might seem
relevant to use synchronisations to connect those components.
In that case, we should then connect the CCL procedure
initiating event to our four components’ respective failure
events. However, since the initial state of all components
is the nominal state, the transitions labeled by the failure
event is fireable. Indeed the guard of this transition is that the
component’s state is that the component be nominal. As such,
regardless of the synchronisation we choose to implement,
firing that synchronisation of our five events would fire all
five events, meaning both TC and TM are lost simultaneously,
across both the physical and functional layer. This introduces
a coupling that is not realistic.

Thus, we must use a dependency connection (also called
driver-driven. The dependency connection is directional :
there is a component that sends an output flow, and a
component that receives it as input. We will say that the
receiving component is driven by the sending component,
which drives the receiving component. In order to under-
stand which component should be driven in a dependency
connection, we have to remember why we are connecting
models. The purpose of this approach is to model the impact
of the system on the procedures. Failures occurring within
the system were modeled at a high degree of abstraction
in the procedures model, and were given a more concrete
representation in the system model. As a consequence, we
want the failures stemming from the more detailed model,
the system model, to drive the failures occurring within the
more abstract model, which is the procedures model. Thus,
the driven component here is the CCL procedure initiating
event, being driven by the four failure events of the system
model.

Since there are four driving events here, we must use
an optional dependency connection between each TM/TC
system component and the CCL procedure initiating com-
ponent. That way, the CCL procedure initiating event will
activate when either of the four TM/TC system components
fails. When those components fail, they produce a non-
nominal output value. We thus implement a behaviour in
our CCL initiating component, where if any of the four
values it receives from the TM/TC system components is
non-nominal, it activates.

If a procedure initiating event can be traced to the failure
of a single other component, it might be thought that this



connection might then be implemented using a synchroni-
sation. For instance, the APF procedure (loss of auto-pilot)
could be linked to the failure of the only autopilot component
in our model. However, the autopilot component in the UAV
model might produce an erroneous output without failing,
for instance if its resource itself fails. This would result in
a situation where the APF procedure should be activated
because the autopilot has been lost, but where it isn’t because
that loss does not result from a failure of the aupilot itself.
This emphasizes the need of implement connections for
failure events using the dependency connection.

B. Detection section

corresponding elements in the additional model represent
monitoring, alarm or watchdog functions and/or components.
In this case, we can choose either a synchronised or depen-
dency approach.

Failure events can be synchronised between two matching
alarms in each model, once established that the failure events
lead to consistent output values in both models. This typically
requires that failure modes and output values domain between
the two alarms are similar. In addition, it also requires that
any dependency one alarm might have on another component
be also a dependency of the second alarm. For instance,
consider the situation where a procedure alarm has no de-
pendency (other than the component it monitors), and its
corresponding system alarm has a dependency to another
system component representing that alarm’s power supply. If
the power supply component fails, the system alarm produces
a non-nominal value, but that will be not be matched by the
procedure alarm. The later will still produce a nominal output
as neither it or the component it monitors have failed. In order
to ensure the validity of that synchronisation, the procedure
alarm component must be made functionally dependent on
the power supply component of the system model in the same
manner as the system alarm is.

We can also use the dependency connection. The procedure
alarm can be made directly dependent of the system alarm,
by altering its behaviour so that it copies the output value of
the system alarm to the corresponding value of the domain
value for the procedure model. This simplifies the connection
as it requires only one dependency compared to the previous
approach which requires at least one synchronisation and as
many dependencies as the system alarm has. However, the
functional status of the driven alarm might end up being
inconsistent with the driving alarm. Indeed, if the system
alarm fails, this affects its output, which then affects the
procedure alarm’s own output through the flow connection.
The procedure alarm’s how internal state does not change
and thus remains nominal, which makes it inconsistent with
that of the system alarm.

In figure 6, the Monitoring component contains a set of
alarms, each of which monitors one of the inputs of the
component (these inputs are the outputs of the function
components directly above). In order to connect the proce-
dure alarm CCL Detect UAV to the corresponding alarm of
Monitoring, we use ADF code to specify the adequate flow

connection, and adapt the behaviour of CCL Detect UAV
using code as described in V-A.

C. Execution section

Due to the high diversity of both the procedure tasks
and additional model elements that can be modeled, the
correspondence of procedures to additional model elements
based on the execution section is harder to define. It must be
performed with great attention to the nature of each execution
task from the procedures model. In our case, the execution
tasks describing the activation of a specific flight mode cor-
respond to the execution status of the Trajectory component
under the assumption that the Supervision component has
commanded the flight mode corresponding to the original
component in the procedures model. This illustrates how
correspondences are not necessarily trivial and must reflect
the system’s behaviour. The privileged connection here is the
dependency connection. We use it to implement two main
connections.

First are the information flows, going mostly from the pilot
(represented through the pilot tasks of the procedures model)
to the UAV (the system model). Those typically represent the
pilot giving the UAV a specific command, such as ”Switch to
manual control”. In this type of dependency the pilot task is
the driving component. When the Supervision component of
the UAV receives a manual control command (represented by
the successful execution of the corresponding pilot task in the
procedures model), it produces an output to reconfigure the
UAV in accordance with the pilot’s order. As the current flight
mode is stored in a state of the Supervision component of our
system model, this dependency leads to a state transition and
is thus a state dependency.

The other main connections in the execution section are the
execution status of flight modes executed by the UAV. These
are sent from the system model where the Trajectory com-
ponent computes the quality of the trajectory based on the
current flight modes and available UAV functions. They are
received by procedure tasks. Those components are driven by
the Trajectory component and reflect the UAV’s performance
of a given flight mode, they are value dependencies.

D. Outcome section

The outcome section of our procedures’ structure is en-
tirely a modeling artefact, and performs calculations based
on the the execution status of the previous sections. As such
it may have an equivalent in the additional model if the
latter already contains modeling artefacts performing similar
calculations. At this point, it is not relevant to connect those
sections.It might however be relevant to compare their results
in order to perform some consistency checks.

For instance, in our UAV’s architectural model, the Trajec-
tory component can determine whether the UAV remains in
its flight envelope or if it deviates from it. If our procedures
model indicates an all-clear outcome while the Trajectory
component indicates an out-of-envelope trajectory, we know
our model is inconsistent.



E. Unrelated components

Finally, not all components in either model necessarily cor-
responds to an element in the other model. Some elements in
the additional model do not connect to any in the procedures
model yet they are still required because they are essential
to the additional model itself. Elements of the procedures
model may not connect to the additional model, for instance
because they would belong to another model. Typically, pro-
cedure task components representing tasks performed by the
pilot may not have any corresponding components with our
UAV’s functional architecture, but would connect to a second
additional model describing a human factors perspective of
the pilot.

VII. RESULTS AND ANALYSIS

Our connected models contains 162 individual compo-
nents, 62 for the procedures (of which 26 can fail) and 106 for
the UAV (of which 42 can fail). 119 lines of code complete
the specification of flow patterns. This enables us to represent
three procedures connected to their UAV model. The Cecilia
workshop can generate fault trees and compute relevant
failure probabilities (provided that individual components
are given quantitative failure rates). However, our primary
interest rests in computing the qualitative safety indicator of
minimal sequences (MSQ). These are the smallest sequences
of events that can lead to an undesired event. We illustrate
the reach of such an analysis by computing MSQ for the
Crash outcome of our procedures-based scenarios, taking into
account behavior of the UAV’s functional architecture.

A. Model validation

Before we can perform this analysis, we must validate the
connection of our models. This consists in verifying that our
models behave consistently with regards to each other. To do
so, we execute a scenario using the Cecilia workshop’s built-
in step-by-step simulator. We manually trigger an initiating
event and ensure that model correspondences behave as
expected. We also check for inconsistencies that may occur
between the two models. Such an inconsistency manifests as
our procedure and system model providing diverging results
regarding the outcome of a failure. For instance, if at the
end of a simulation the Supervision component commands
the UAV in the GoHome flight mode and the Trajectory
component indicates the the UAV can maintain its flight
path, but the procedure model indicates that the UAV is
crashed, there is an inconsistency in our models. Thus, we
want to ensure that commands issued from the procedure are
treated accordingly in the UAV model, and conversely, that
detection and execution data sent from the UAV model to the
procedures are processed as expected.

B. Computation and analysis of the Minimal Sequences

Table I below shows the sequences computed in 30 seconds
on a 8-core CPU clocked at 2.5 GHz. We computed the
sequences leading to the Crash outcome for each procedure
individually, then for the three procedures together. We first
computed sequences on the procedures model alone, i.e.,

without taking account the contribution of the connected
model. We computed the sequences taking into account the
functional layer of our UAV model. Finally, we ran the
computation on the procedures model and the physical layer
of the UAV model.

No results are shown for sequences containing only one
failure as there are none. Indeed, each procedure requires at
least one event to be initiated. As such, for the outcome of
any procedure to be Crash, at least one other failure as to
occur, leading to the absence of 1st-order sequences.

Adding up the number of sequences leading to the crash
of individual procedures may not yield the indicated subtotal,
as is the case for the procedures and physical layer analysis.
That is because a same sequence causes more than one proce-
dure to end in the Crash outcome. Therefore, these sequences
are identified as oMSQ for each individual procedure.

Reviewing the computed sequences provides several levels
of information. First of all, the size (so-called order) of the
shortest sequences as well as their number provides a first
idea of the procedure’s robustness, which can be used in order
to assess its overall safety.

Order of cut sequence
Analysis scope Initiating fault 2 3

Procedures alone

AP fault 2 8
CC comm loss 8 4

F/CTL fault (rudder) 2 24
Total 12 34

Procedures and
functional layer

AP fault 36 16
CC comm loss 48 32

F/CTL fault (rudder) 6 32
Total 90 80

Procedures and
physical layer

AP fault 58 78
CC comm loss 86 220

F/CTL fault (rudder) 23 56
Total 145 336

TABLE I: Number of minimal sequences for each procedure.

Having the detailed sequences of event leading to undesir-
able outcomes may help guide designers’ effort to improve
the safety of their procedures and/or system. In the sequence
{TMTransmission.loss, Elevator.err}, the loss of telemetry
from the UAV (TMTransmission.loss) leads it to return above
its home point. The failure of the telemetry later prevents
the UAV from warning the pilot when the elevator gets stuck
(Elevator.err), which then prevent the pilot from performing
a successful landing, and crashes the UAV.

The number of sequences itself can also be leveraged
to a useful purpose. By counting the number of sequences
each specific events appears in, and by identifying to which
component or subsystem each event belongs to, critical
sections of the system may be identified, thus enabling efforts
to be prioritized where most needed.

Our connected models could also be leveraged to perform
an analysis similar to the Failure Mode Effects and Analysis
(resp. Failure Mode Effects Summary) when focusing on
the failures of the physical layer’s components (resp. the
impacts of the failures of the physical layer’s components on
the functional/procedure layers). We remind that an FMEA
consists in reviewing exhaustively the failures of a system’s



components and subsystems, and asses their impact on it.
Using our connected modes, we can explore automatically
the effect of simple failures of procedures, functions or
physical items, whether nominal or emergency, and thus add
a complement of information that might not be trivial.

C. Lessons learnt

1) Scope of the model: As things stand, our models thus
provide an account of the UAV’s functional and physical
architecture impact on the safety of operational procedures.
However, some inconsistencies persist. They are similar in
nature to what is described in VII-A, and stem from the
limited number of procedures we modeled. Furthermore, we
have only considered the impact of the UAV’s architecture,
but as mentioned earlier, risk contributors in an UAV op-
eration are many and diverse. Connecting additional safety
models representing in detail the pilot or the support services
used by the UAS would bring new failure modes and failure
propagation paths.

2) Modeling process: In addition, we have introduced
sequential behaviour in our model, in order to be able to
compute the outcome of the scenario as well as to follow
the propagation of flows step-by-step. This however also
introduced the need to establish a priority relation between
the transitions of our model components. This aspect of our
methodology requires further work as a different priority
model could induce significant changes in the dynamic of
the model, and thus impact the results yielded by the safety
analysis.

While using the ADF language to implement the methodol-
ogy we presented on our use-case, we have found some lim-
itations. ADF lacks some inheritance and genericity features
that would have been particularly useful. Indeed, changing
domain values or even simply adding a value to a domain
requires significant rewriting effort across most of the com-
ponents that use that domain. This slows down both the
modeling and analysis process. Using higher order program-
ming languages, model elements could be specified much
more generically, both in terms of structure and behavior.
The ALPACAS project [11] proposes a DSL based on Scala
and could be the foundation of such an effort.

3) Analysis: Finally, we focused our modeling efforts in
providing the support necessary to perform safety analyses
based on the computation of MSQ, which are a quantitative
safety artefact. While those are indeed a relevant safety
indicator in many regulations and standards, qualitative safety
are of paramount importance. The Cecilia Workshop we used
provides some support for quantitative safety analysis, but we
did not pursue this objective. Thus, further work is required
on that front to yield satisfactory quantitative results from
our current methodology.

VIII. CONCLUSION

A UAS is composed of heterogeneous elements whose
failures during the operation are multiple and diverse in
nature. Understanding how these failures contribute to the
risk of an operation is essential to assess the safety of a UAS,

and may help UAS designers to comply with regulator’s
requirements.

Having identified operational procedures as a keystone of
any UAS operation, we proposed a methodology to connect
domain-specific safety models relating to the UAV operation
to the procedure models we developed. Doing so allows us
to bring more detailed knowledge of a specific section of
the system and assess how it contributes to the risk of the
operation. We implemented this methodology on a medium-
sized UAS using the AltaRica DataFlow language. Using the
Cecilia Workshop built-in tool, we illustrated the benefits
of our approach by explaining how automatic analyses like
minimal sequences computation can support safety analyses.

However, our methodology does not yet preclude entirely
the possibility of inconsistencies between two connected
models. Further work is thus required in order to identify
and eliminate those, as well as to extends the scope of the
analyses we perform to include quantitative safety indicators.
Furthermore, the implementation of our methodology in the
AltaRica DataFlow language emphasised the benefit to be
had from using higher-order functions and mechanisms such
as genericity and inheritance.

ACKNOWLEDGMENT

This work was supported by the Defense Innovation
Agency (AID) of the French Ministry of Defense (research
project CONCORDE N° 2019 65 0090004707501).

REFERENCES

[1] C. Mathou, K. Delmas, J.-C. Chaudemar, and P. de Saqui-Sannes,
“Modeling uas flight procedures for sora safety objectives,” in 2023
IEEE International Systems Conference (SysCon). IEEE, 2023, pp.
1–8.

[2] S-18 Aircraft and Sys Dev and Safety Assessment Committee,
Guidelines and Methods for Conducting the Safety Assessment
Process on Civil Airborne Systems and Equipment, dec 1996.
[Online]. Available: https://doi.org/10.4271/ARP4761

[3] T. Ishimatsu, N. G. Leveson, J. Thomas, M. Katahira, Y. Miyamoto,
and H. Nakao, “Modeling and hazard analysis using stpa,” 2010.

[4] E. Hollnagel and O. Goteman, “The functional resonance accident
model,” Proceedings of Cognitive System Engineering in Process
Plant, 01 2004.

[5] Q. Yang and J. Tian, “Model-based safety assessment using fram for
complex systems,” in Saf. Reliab. Complex Eng. Syst.-Proc. 25th Eur.
Saf. Reliab. Conf. ESREL, 2015, pp. 3967–3974.

[6] Q. Yang, J. Tian, and T. Zhao, “Safety is an emergent property:
Illustrating functional resonance in air traffic management with formal
verification,” Safety science, vol. 93, pp. 162–177, 2017.

[7] P. Bieber, C. Seguin, V. Louis, and F. Many, “Model based safety
assessment of concept of operations for drones,” in Congrès Lambda
Mu 20 de Maı̂trise des Risques et de Sûreté de Fonctionnement, St
Malo, France, 10 2016.

[8] M. Machin, E. Saez, P. Virelizier, and X. de Bossoreille, “Modeling
functional allocation in altarica to support mbse/mbsa consistency,”
in Model-Based Safety and Assessment: 6th International Symposium,
IMBSA 2019, Thessaloniki, Greece, October 16–18, 2019, Proceedings
6. Springer, 2019, pp. 3–17.

[9] K. Delmas, C. Seguin, and P. Bieber, “Tiered model-based safety
assessment,” in Model-Based Safety and Assessment: 6th International
Symposium, IMBSA 2019, Thessaloniki, Greece, October 16–18, 2019,
Proceedings 6. Springer, 2019, pp. 141–156.

[10] “Cecilia workshop.” [Online]. Available: https://satodev.com/en/our-
products/cecilia-workshop/

[11] M. Buyse, R. Delmas, and Y. Hamadi, “Alpacas: a language for
parametric assessment of critical architecture safety,” in 35th Euro-
pean Conference on Object-Oriented Programming (ECOOP 2021).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.


