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Abstract

Prior to any numerical development, the paper objective is to answer first to a
fundamental question: what is the mathematical form of the most general data-driven
constitutive model for stable materials, taking maximum account of knowledge from
physics and materials science? Here we restrict ourselves to elasto-(visco-)plastic
materials under the small displacement assumption. The experimental data consists of
full-field measurements from a family of tested mechanical structures. In this
framework, a general data-driven approach is proposed to learn the constitutive model
(in terms of thermodynamic potentials) from data. A key element that defines the
proposed data-driven approach is a tool: the Constitutive Relation Error (CRE); the
data-driven model is then the minimizer of the CRE. A notable aspect of this procedure
is that it leads to quasi-explicit formulations of the optimal constitutive model.
Eventually, a modified Constitutive Relation Error is introduced to take measurement
noise into account.
Keywords: Data-driven modeling, Materials science, Constitutive Relation Error,
Elasto-(visco-)plasticity

Introduction
A first pillar in computational mechanics is a certain abstract representation and under-
standing of the world we live in, in terms of models described by physics laws but also
sometimes debatable theories and knowledge developed over the centuries. In this frame-
work, the equilibrium equations, the compatibility equations and the two principles of the
thermodynamics of irreversible processes constitute a foundation on which, in our opin-
ion, any approach should be based. A second pillar is experimental data and its impact is
continuously increasing nowadays. Data can be of different natures; indeed, it may refer to
the geometry of the studied structure, its loading, or the response of the materials consti-
tuting the structure. Any calculationmodel is situated between these two pillarswithmore
or less weight for one or the other. When the influence of data is largely dominant, and
no questionable hypothesis is added in the modeling, we generally speak of data-driven
approaches. This way, the use of parameterized behavior models from materials science
does not seem to us to be a data-driven approach.
Here, we precisely focus on thematerial.We consider the data-drivenmodeling of stable

complex materials which has become a growing trend. The pioneer works were due toM.
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Ortiz and F. Chinesta and their co-workers [39,41,42,53,57]. In these works, materials
science was either discarded or understated. Further works following this line introduced
a structuration of data [15]. Alternative developments have recently emerged, in which
some physics background is involvedwhen learning the constitutivemodel. Pioneerworks
in this direction are [26,40] and the research topic is evolving fast with various techniques
coupling deep learning and physics information to describe the behavior ofmaterials using
neural networks e.g., [8,28,38,44,55,68,76,78].
Looking deeper in the bibliography of “physics-augmented” learning, in which physics

knowledge (e.g., principles of thermodynamics or symmetries) is integrated in the neural
network architecture, a large list of works is available e.g., [9,31,32,54] to cite some very
recent ones. We may separate contributions depending on the data used. A first set of
contributions aims to train neural networks in a supervised learning procedure with a
strain–stress (or strain-free energy) database generated from a known constitutive model
[3,23,60,76]; nevertheless, getting such measurement couples under complex loading is
hardlypossible inpractice.Another set of contributions addressesunsupervised trainingof
neural networks for constitutivemodeling [8,38,75]; for instance, in theEUCLIDapproach
proposed in [21,75], full-field displacement observations are processed to derive strain
and stress fields employed as the learning input with a loss function that penalizes the
non-satisfaction of equilibrium.
In contrast to the previous pioneer approaches, the aim of this paper is to define a

data-driven mathematical model prior to any numerical development, taking maximum
account of knowledge on physics and materials science. This paper is thus limited to
some fundamental aspects; numerical treatment, which involves solving optimization,
regression and interpolation problems for whichmachine learning tools (and in particular
deep neural networks) complement the more conventional tools, is not covered. Here we
restrict ourselves to stable elasto-(vico)plastic materials under the small displacement
assumption. The central concept of the proposed approach is a tool, referred to as the
Constitutive Relation Error (CRE), the computed data-driven constitutive model being
the minimizer of the CRE.
The CRE has been initially introduced in model verification for linear problems [45].

Precisely, the CRE is built on the separation of the governing equations of the mechanical
or physical problem, defined over the space-time domain: equilibrium and compatibility
equations on the one hand, and constitutive equations on the other hand. In contrast to
the constitutive relations which are empirical and strongly depend on experimental data,
the other equations can be qualified as “exact”. Suitable approximations should thus be
constructed that “exactly” satisfy the “exact equations”; their quality can be assessed by
measuring the mismatch in constitutive equations by the CRE tool. Among the numer-
ous works on CRE for model verification, one can mention the reviews available in the
book [48], and the chapters [12,49]. Direct applications of the CRE for model updat-
ing in elasticity and elastodynamics have been performed in the 1990s, in the context
of parametrized constitutive relations; one can cite [6,10,22,25,43]. An extension of the
CRE to unreliable data by using a modified formulation (mCRE) has been introduced in
[13,46] for the updating of vibration models. Since then, numerous further works have
been performed over the years for model updating and validation for linear or nonlinear
materials, in quasi-statics but also in dynamics e.g., [2,7,11,16,17,19,37,59,66,72] to cite
a few of them. Recent applications to sequential data assimilation and structural health
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monitoring by complementing mCRE with Kalman filtering have also been investigated
lately [18,58].
Like all inverse problems, data-driven material modeling is characterized by an over-

abundance of data and therefore leads to the solution of ill-posed problems. CRE was
primarily used to provide a solution to such problems (in fact to the usual family of ill-
posed problems called standard), in situations where the constitutive relation was known;
the goal was then to identify or update the associated parameters. The experimental data
derived from full-field measurements (even though sparser measurements can also be
considered) is related to the family of structures tested, made from the same material
and subjected to different loads. Here, we show that the CRE framework can again be
used to calculate the data-driven model that is defined for stable materials by thermody-
namic potentials, the calculated potentials being the CRE minimizer. The advantage of
the approach is the use of an error metric which is directly focused on what needs to be
learnt, that is the constitutive relation. To start, we consider linear and nonlinear elastic
materials with convex energy, for which the CRE approach gives original solutions. This
approach is compared with that proposed in the pioneer work [41].
For elasto-(visco-)plastic materials, materials science is a great help. The very common

internal variables framework may be advantageously used but data-driven approaches
involve two main difficulties. First, the hidden internal state variables are not known a
priori, nor is their number.Moreover, they are not intrinsic, and transformations on these
variables leading to the samematerial model are possible. This is why, for stable materials
with a convex energy,we introduce the so-callednormal formulationof thehidden internal
variables resulting from a transformation of these variables while satisfying, of course, the
twoprinciples of the thermodynamics of irreversible processes. In addition,we followwhat
is classically done in materials science to describe stable elasto-(visco-)plastic materials
by referring to the sub-family of standard materials introduced in [29]. It follows that
the mathematical shape of data-driven models for stable elasto-(visco-)plastic materials
is defined by only one convex function. This formulation, both normal and standard, is
at the core of the proposed data-driven CRE approach. A unique solution is given to the
standard ill-posed problems, as the minimizer of the CRE functional; it is defined by its
own constitutive relation, which differs from the reference relation. The optimal data-
driven model is then computed by a constrained minimization of the CRE using convex
optimization.
Eventually, we consider noisy data. Following [33,71], we assume that the main source

of noise comes from full-field measurements. A modified Constitutive Relation Error
(mCRE) is then introduced, still for elasto-(visco-)plastic materials, and developments are
very similar to the case of noiseless data for the derivation of a data-driven constitutive
model.
To close this introduction, let us mention that some first numerical investigations from

the CRE-based strategy have been conducted for particular situations in [8,9], using input
convex neural networks (ICNNs) to represent the learnt thermodynamic potentials (so-
calledNN-mCREstrategy).Wealsomention that the generalized standardmaterial frame-
work which is considered in this work is closely related to the (more general) GENERIC
thermodynamic framework introduced in [27,67,70] and developed in solid mechanics in
[63]; it was used in several works for data-driven modeling e.g., [14,32].
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Preliminaries: standard ill-posed problems and CRE concept
Material identification requires to solve problems with over-abundant data i.e., ill-posed
computational problems. It is well-known that the classical formulation of such problems,
without adding any regularization process, does not admit a solution.We will see that the
Constitutive Relation Error (CRE) is able to give a solution, the constitutive relation being
relaxed.

Notations

The tested structure we shall study occupies the domain � ⊂ R3 with boundary ∂�, a
typical point in � being denotedM. The vectors, for instance displacements or velocities,
are denoted by U , V , etc. Linear operators or second-order tensors, for instance strain
or stress tensors, are written εε, σσ , etc. More complex tensors or operators are written
in bold text, such as the Hooke tensor which is written K. This previous notation is also
used for the different sets or spaces e.g., R3.
The Euclidean transpose is denoted by the superscript T , so that the scalar product

between vectors V and W reads VTW . If there is no ambiguity, this scalar product can
also be written V · W . Work and power bring into play the trace operator such that:

Tr[σσεε] =
∑

i,j∈{1,2,3}
[σσ ]ij[εε]ij (1)

In this paper, we shall consider small perturbations which means that the different con-
figurations occupied by the structure can be replaced by the initial configuration �. To
fix ideas, the tested structure is placed in an environment characterized by:

• a displacement Ud on the part ∂1� of the boundary ∂� (Ud ∈ [H1/2(∂1�)]3);
• a surface force Fd on the part ∂2� of the boundary ∂� (Fd ∈ [H−1/2(∂2�)]3);
• a body force f d over � (here we take f d = 0 for the sake of simplicity).

Standard ill-posed problems

Commonly in material identification, the displacement field Ud is obtained from full-
field measurements for which very efficient techniques are available today (see [33,71]).
Moreover, boundary data is overabundant such that:

∂1� ∪ ∂2� = ∂�; ∂1� ∩ ∂2� ≡ ∂12� �= ∅ (2)

which characterizes a standard ill-posed problem. These conditions are notmandatory for
the use of the CRE concept, but they give certain properties that can help the calculation
process. Of course, they can be extended to mixed boundary conditions. Incomplete
conditions can also be introduced, but for this last case, the computational problem is no
more standard.
In general, the part of the boundary where displacement full-field measurement takes
place is also free, and therefore belongs to the part ∂12� of the boundary where force
is also known. A very common situation in identification problems is that the force is
known over the entire boundary, eventually free on some parts, and the displacement
field is measured on a part of the boundary. If the intersection of the parts of the boundary
where the displacement is prescribed (∂1�) and the force is given (∂2�) is empty, i.e.
∂12� = ∅, the computational problem becomes well-posed if the boundary conditions
cover the entire boundary; it has a solution for classical material models.
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Remark 1 Weemphasize that awell-posedproblem in elasticity, for example, is a problem
for which the boundary conditions are such that it exists a unique solution for any consti-
tutive relation. In other words, the knowledge of the boundary conditions does not give
any information about the constitutive relation. This explains why one uses, in material
identification, boundary conditions leading to an ill-posed computational problem.

Let us introduce UK
ad the space of kinematically admissible displacement fields:

UK
ad ≡ {

U s.t. U ∈ [H1(�)]3, U |∂1� = Ud
}

(3)

This affine space can be written:

UK
ad = UK

0 + UK
ad,0 (4)

whereUK
0 ∈ UK

ad is a particular admissible displacement field, andUK
ad,0 is the associated

vectorial space.
Now, let us consider the space of statically admissible stress fields:

SS
ad ≡ {

σσ s.t. σσ ∈ [H(div ,�)]3, divσσ = 0 over�, σσn|∂2� = Fd
}

(5)

which can be defined from the principle of virtual works:∫

�

Tr[σσεε(U )]d� =
∫

∂2�
Fd · UdS ∀U ∈ US

ad,0 (6)

thanks to the virtual displacement space:

US
ad,0 ≡

{
U s.t. U ∈ [H1(�)]3, U |∂1�\∂12� = 0

}
(7)

It follows the fundamental property of standard ill-posed problems:

Property 1 For standard ill-posed problems, one has:

UK
ad,0 ⊂ US

ad,0 (8)

The Constitutive Relation Error

Let us consider the simple situation of elastic materials which may be linear or nonlinear;
one has:

σσ = K(εε) over� (9)

where the Hooke operator K is supposed to be known for the moment. An alternative
formulation following J.J. Moreau’s work [64] is to describe the elastic material behavior
thanks to two potentials �(εε) and �∗(σσ ) which are dual convex functions. This duality
is defined by the work bilinear form:

(εε, σσ ) ∈ E × F �−→
∫

�

Tr[σσεε]d� ∈ R (10)

One has the following well-known property:

Property 2 Let � and �∗ be two dual convex functions related to the work bilinear form.
The CRE functional is then defined as:

E2
CRE(U, σσ ) ≡ �(εε(U )) + �∗(σσ ) −

∫

�

Tr[σσεε(U )]d� ≥ 0 ∀(εε, σσ ) ∈ E × F (11)

Moreover, (i) and (ii) are equivalent:

(i) σσ = K(εε) over �

(ii) ECRE(ν, σσ ) = 0
(12)
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ECRE is the global Constitutive Relation Error.
The classical formulation of the computational problem does not admit a solution for

ill-posed problems.The main interest of the CRE method is to give a solution to such
ill-posed problems by relaxing the constitutive relation. This is defined by:

(UK , σσ S) ∈ UK
ad × SS

ad ≡ arg min
(ŨK ,σ̃σ S )∈UK

ad×SS
ad

E2
CRE(Ũ

K , σ̃σ S) (13)

The value of the minimum E2
CRE(U

K , σσ S) is not equal to 0 in general for ill-posed com-
putational problems.
Let us note that in the specific case of a linear elastic material behavior with

σσ = Kεε, K being the Hooke elasticity tensor, corresponding potentials read �(εε) =
1
2
∫
�
Tr[Kεεεε]d� and �∗(σσ ) = 1

2
∫
�
Tr[K−1σσσσ ]d�, which yields:

E2
CRE(U, σσ ) = 1

2

∫

�

Tr[(σσ − Kεε(U ))K−1(σσ − Kεε(U ))]d� (14)

Computation of the optimal solution (UK , σσS)

In this section, we deal with how to practically compute the optimal solution of (13) for
ill-posed computational problems.
From Property 1, we get the following decoupling property for any admissible pair

(ŨK , σ̃σ S) ∈ UK
ad × SS

ad :

E2
CRE(Ũ

K , σ̃σ S) = J1(Ũ
K ) + J2(σ̃σ S) (15)

with:

J1(Ũ
K ) ≡ 1

2

∫

�

Tr[εε(ŨK )Kεε(ŨK )]d� −
∫

∂�\∂1�
Fd · ŨKdS

+ 1
2

∫

∂�\∂1�
Fd · UK

0 dS

J2(σ̃σ S) ≡ 1
2

∫

�

Tr[σ̃σ SK−1σ̃σ S]d� −
∫

�

Tr[σ̃σ Sεε(UK
0 )]d�

+ 1
2

∫

∂�\∂1�
Fd · UK

0 dS

(16)

Indeed, for a given UK
0 ∈ UK

ad , we have Ũ
K − UK

0 ∈ UK
ad,0 ⊂ US

ad,0 which yields:
∫

�

Tr[σ̃σ Sεε(ŨK )]d� =
∫

�

Tr[σ̃σ Sεε(UK
0 )]d� +

∫

∂�\∂1�
Fd · (ŨK − UK

0 )dS (17)

The decoupling property (15) is classical for well-posed computational problems (defining
potential and complementary energies), butwe just showed that it is also valid for standard
ill-posed problems. It yields that the minimization (13) results in the solution of two
independent minimization problems. Moreover, instead of solving the J2-problem, we
can compute its displacement formulation obtained thanks to a new dualization; defining

J S1 (Ũ
S) = �(εε(ŨS)) −

∫

∂2�
Fd · ŨSd� (18)

and denoting by US the minimizer of J S1 over US
ad,0, we get σσ S = K(εε(US)).

Consequently, to compute the minimizer (UK , σσ S) of the CRE in UK
ad × SS

ad , one
computes the displacement pair (UK ,US) which is easy. Of course, the classical finite
element method can be used to perform these minimizations.
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Data-drivenmaterial modeling—elastic materials
The CRE-method is now developed for stable elastic materials in order to learn (9) (K is
not given any more). First, we clearly specify the information which is available.

Available information

Experimental data

We consider a series of tested structures i ∈ Ntest which occupy the same domain �. For
each tested structure, the experimental data is:

Ud(i) over ∂1�; Fd(i) over ∂2� (19)

Additional knowledge frommaterials science

The considered environment is such that the studied material can be supposed stable. It
follows that the behavior of the material can be described by two dual convex functions
� and �∗, the duality being defined by the work bilinear form. These two functions can
be written:

�(εε) =
∫

�

ψ(εε)d�; �∗(σσ ) =
∫

�

ψ∗(σσ )d� (20)

where ψ and ψ∗ are two dual convex functions related to the local work bilinear form.
These define the elastic material behavior as:

σσ = ∂ψ

∂εε
; εε = ∂ψ∗

∂σσ
(21)

Moreover, ψ(εε) is an energy and thus satisfies to:

ψ ≥ 0; ψ(0) = 0;
∂ψ

∂εε
(0) = 0 (22)

The last relation means that the stress σσ is zero when the strain εε is also zero.
The corresponding admissible space forψ is denoted byψ. It follows that the additional

knowledge coming from materials science is reduced to:

ψ∈ψ (23)

where ψ is a convex subset.

Optimal data-driven material model

Definition of the computed data-drivenmodel

The computed data-driven model is the minimizer of the CRE for the family of tested
structures. First, one defines the following CRE for a given material model (described by
the thermodynamic potential ψ ∈ ψ):

E2
CRE(ψ) ≡ 1

Ntest

∑

i∈Ntest

E2
CRE

(
ψ ;UK (i), σσ S(i)

)
(24)

with
(
UK (i), σσ S(i)

)
= arg min(

ŨK (i),σ̃σ S (i)
)
∈UK

ad (i)×SS
ad (i)

E2
CRE

(
ψ ; ŨK (i), σ̃σ S(i)

)
(25)

UK
ad(i) and SS

ad(i) being the admissible spaces related to problem i ∈ Ntest .
The computed data-driven model is thus determined by:

ψ ≡ arg min
ψ∈ψ

E2
CRE(ψ) (26)
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The final value E2
CRE(ψ) reached by the CRE (averaged over the tested structures) at

the end of the optimization process characterizes the quality of the optimal data-driven
material model. It is different from 0 in general; in the very special case where this error
is zero, it means the computed material model is compatible with the experimental data.
The validation of the calculated data-driven model, although a fundamental question,

is beyond the scope of this paper. Nevertheless, a first idea is to describe the validation
domain s from the set sexp of strain–stress pairs associated to the solutions of the i-
problems with ψ ∈ ψ. One has:

s ≡
{
(εε, σσ ) ∈ R6 × R6|eCRE(ψ ; εε, σ̃σ ) ≤ ε, eCRE(ψ ; ε̃ε, σσ ) ≤ ε, (ε̃ε, σ̃σ ) ∈ sexp

}
(27)

where the tolerance ε satisfies ε ≥ ECRE(ψ)/|�|, and the local CRE is defined as:

e2CRE(ψ ; εε, σσ ) = ψ(εε) + ψ
∗(σσ ) − Tr[σσεε] (28)

The experimental “points” should be sufficiently numerous and scattered so that the
validation domain e contains a large ball of R6 centered at 0.

Computation of the data-drivenmodel

The problem to get ψ ∈ ψ being nonlinear, the computation method is iterative. At
iteration n + 1, there are two stages:

1. K -S-stage at iteration n + 1 From the previous iterations, the following quantities
have been computed: (i)ψn ∈ ψ; (ii) optimal fields

(
UK

n (i), σσ S
n (i)

) ∈ UK
ad(i)×SS

ad(i),
i ∈ Ntest , computed from ψn−1 ∈ ψ. The K -S-stage consists in the computation
of the solution of each i-problem, i ∈ Ntest , using the constitutive relation related
to the convex function ψn. As we have seen in the previous section, this stage does
not involve any serious difficulty for standard ill-posed computational problems; the
classical finite element method can be used. In fact, we minimize the CRE for given
ψn to get optimal admissible fields:

(
UK

n+1(i), σσ
S
n+1(i)

)
= arg min(

ŨK (i),σ̃σ S (i)
)
∈UK

ad (i)×SS
ad (i)

E2
CRE

(
ψn; Ũ

K (i), σ̃σ S(i)
)

(29)

and one has:
1

Ntest

∑

i∈Ntest

E2
CRE

(
ψn;UK

n+1(i), σσ
S
n+1(i)

)
≤ 1

Ntest

∑

i∈Ntest

E2
CRE

(
(ψn;UK

n (i), σσ S
n (i)

)
(30)

The first term denoted E2
CRE(ψn) can be interpreted as the CRE associated to the

material model defined by ψn ∈ ψ. One has:

E2
CRE(ψn) ≤ E2

CRE(ψn−1) (31)

which indicates that the CRE decreases with the number of iterations. The iterative
process is stopped when a stationary point is approximately reached. The final error
valueECRE(ψ) characterizes the quality of the computed data-drivenmaterialmodel.

2. ψ-stage at iteration n + 1 From the previous stage, one can define:

ψ ∈ ψ �−→ E2
n+1(ψ) ≡ 1

Ntest

∑

i∈Ntest

E2
CRE

(
(ψ ;UK

n+1(i), σσ
S
n+1(i)

)
(32)
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and ψn+1 ∈ ψ is thus computed as:

ψn+1 = arg min
ψ∈ψ

E2
n+1(ψ) (33)

This corresponds here to a convex regression problem that is to find a convex func-
tion belonging to ψ which fits the best possible the data, question which is detailed
in the next section.

Back to theψ-stage at iteration n + 1

Convex regression is an old question with still a lot of research works nowadays. A first
set of works refers to pioneer papers [34,69] where the convexity is obtained thanks to
inequality constraints which are numerous and thus difficult to take into account. The
detailed theory can be found in [51]. Among the numerousworks in this direction, one can
mention [4,5,65] and their references. Another set of works introduces the convex func-
tion being sought a priori, as a combination of elementary convex functions. Among these
works, one can mention [30,61,74]. Input Convex Neural Networks (ICNN), introduced
in [1] and widely used since then, follow the same representation of convex functions.
We propose here to follow [74] where the convex function being sought is described as
the envelop of quasi-affine convex functions. Using the Voigt notation where strain and
stress tensors (εε, σσ ) are represented by vectors (ε, σ ) of R6, the sought potential ψ is
represented as:

ψ(ε) = max
j∈J ψj(ε); ψj(ε) = aj + Aj · (ε − εj) + τ

2
(ε − εj)

T
K(ε − εj) (34)

The positive symmetric matrixK and the curvature τ are given. For j ∈ J, (aj, Aj) and εj
are parameters. εj are part of the discretization points of the strain space.
The advantage of the representation (34), apart from the fact that it can be visualized,

is that its Legendre-Fenchel transform can be defined explicitly; one has:
ψ∗(σ ) = sup

ε∈R6

[
σT ε − ψ(ε)

]
= min

j∈J ψ∗
j (σ ) (35)

with
ψ∗
j (σ ) = −aj + σT εj +

1
2τ

(σ − Aj)TK−1(σ − Aj) (36)
To belong to ψ, ψ should in particular satisfy to:

ψ(0) = 0;
∂ψ

∂ε
(0) = 0 (37)

The last relation being equivalent to ψ(0) + ψ∗(0) = 0, one has:

max
j∈J

[
aj − Aj · εj +

τ

2
εTj Kεj

]
= 0

min
j∈J

[
−aj + 1

2τ
AT
j K

−1Aj

]
= 0

(38)

One also remarks that under the constraints (37):
∀ε ∈ R6, ψ(ε) + ψ∗(0) − 0 = ψ(ε) ≥ 0 (39)

and consequently (38) are the only constraints defining ψ .
It follows that the function En+1(ψ) introduced in (32) is explicitly defined in terms of

the parameters (aj, Aj, εj) and consequently the problem to solve is a classical regression
problem for which numerous numerical techniques are available. Of course, the optimal
data-driven material model may be non-unique; consequently, a regularization (Lasso or
Ridge) is welcome especially if the volume of data is relatively small.



Ladevèze and Chamoin AdvancedModeling and Simulation in Engineering Sciences          (2024) 11:23 Page 10 of 27

Particular case of linear materials

For linear elastic materials, it is remarkable that the minimization condition of the CRE
functional can be written explicitly. Using the Voigt notation, the energy reads:

ψ(εε) = 1
2
εTKε (40)

where

K ∈ K ≡
{
K matrix (6, 6) s.t. K = K

T ,K > 0
}

(41)

Here, the material model is thus defined by the Hooke tensor, the goal being to recover
the optimal one.
The optimal K is the minimizer over K of the CRE for the family of tested structures;

one has following (24) and (26):

E2
CRE(K) = 1

Ntest

∑

i∈Ntest

min(
ŨK (i),σ̃σ S (i)

)
∈UK

ad (i)×SS
ad (i)

E2
CRE

(
K; ŨK (i), σ̃σ S(i)

)
(42)

Denoting by εK and σ S the vectors corresponding respectively (in the Voigt notation) to
optimal admissible fields εε(UK ) and σσ S , computed for given K and therefore implicitly
depending on K, one has:

E2
CRE(K) =

∫

�

⎛

⎝1
2
Tr[KQ

K ] + 1
2
Tr[K−1

Q
S] − 1

Ntest

∑

i∈Ntest

σ S(i)T εK (i)

⎞

⎠ d� (43)

with

Q
K = 1

Ntest

∑

i∈Ntest

εK (i)εK (i)T ; Q
S = 1

Ntest

∑

i∈Ntest

σ S(i)σ S(i)T (44)

The differential of ECRE should be equal to zero, which yields (using δK = −KδK−1
K):

0 = −1
2
Tr[δK−1

KQ
K
K] + 1

2
Tr[δK−1

Q
S]

+
⎡

⎣1
2
Tr[KδQK ] + 1

2
Tr[K−1δQS] − δ

1
Ntest

∑

i∈Ntest

σ S(i)εK (i)T
⎤

⎦ (45)

One can note that the last term between brackets is equal to zero because (εK (i), σ S(i)) is
the minimizer of the CRE for the i-problem. Finally, one gets:

Property 3 For linear elastic materials, the minimization condition of the CRE is:

KQ
K
K = Q

S ; K ∈ K (46)

Let us come back to the ψ-stage at iteration n + 1. One has:

KQ
K
n+1K = Q

S
n+1; K ∈ K (47)

so that([
Q

K
n+1

]1/2
K

[
Q

K
n+1

]1/2)([
Q

K
n+1

]1/2
K

[
Q

K
n+1

]1/2) =
[
Q

K
n+1

]1/2
Q

S
n+1

[
Q

K
n+1

]1/2

(48)

Consequently, if QK
n+1 and Q

S
n+1 are strictly positive:

K
n+1 =

[
Q

K
n+1

]−1/2
([

Q
K
n+1

]1/2
Q

S
n+1

[
Q

K
n+1

]1/2)1/2 [
Q

K
n+1

]−1/2
(49)
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The case wherematricesQK
n+1 andQ

S
n+1 are singular i.e., when the strain and stress spaces

are not fully explored by the tests, is more complicated. We will omit the index n + 1.
Let πK and πS be the orthogonal projectors on the kernels of QK and Q

S , respectively.
To define the part of K which is not defined by the minimization condition, we use a
regularization associated to the reference Hooke tensor K0 (strictly positive).
One remarks first from (48) that:

‖QK 1/2
KQ

K 1/2
W‖2 = WT

Q
K 1/2

Q
S
Q

K 1/2
W (50)

If (I−πK )W ∈ Ker(QS), the part (I−πK )K(I−πK ) of the operatorK is singular; one has:

(I − πK )K(I − πK ) = Q
K−1/2

[
Q

K 1/2
Q

S
Q

K 1/2
]1/2

Q
K−1/2

(51)

To get a regular operator, let us consider the orthogonal projection (I − πK ) on the
subspace Ker⊥(QK ) ∩ Ker(QS); one takes to get a non-singular K:

(I − πK )K(I − πK ) = Q
K−1/2

[
Q

K 1/2
Q

S
Q

K 1/2
]1/2

Q
K−1/2 + (I − πK )K0(I − πK ) (52)

Moreover, one has:

(I − πK )KπK = Q
K−1

[(I − πK )K(I − πK )]−1
Q

SπK (53)

To end, we take:

πKKπK = πKK0πK (54)

Comparison with the pioneer data-driven approach

Let us consider the very particular situation where strain and stress are uniform for the
family Ntest of tested structures. It follows that one can easily define the Experimental
Constitutive Manifold �exp:

�exp =
{(

εεK (i), σσ S(i)
)

∈ R6 × R6, i ∈ Ntest
}

(55)

The pioneer work [41] starts with the Experimental Constitutive Manifold which is in
general not explicitly defined in terms of experimental data. To get the data-driven mate-
rial model, an interpolation operator is added, for instance using a nearest neighbors
(k-NN) algorithm.The present work is different in the sense that from materials science,
the available mathematical shapes of the Experimental Constitutive Manifold are given.
For linear elastic materials, �exp should be close to a linear manifold that is computed
thanks to the CRE. One gets for tests covering the strain and stress spaces:

K = [QK ]−1/2
(
[QK ]1/2QS[QK ]1/2

)1/2
[QK ]−1/2 (56)

with

Q
K = 1

Ntest

∑

i∈Ntest

εK (i)εK (i)T ; Q
S = 1

Ntest

∑

i∈Ntest

σ S(i)σ S(i)T (57)

In the case of nonlinear but stable elastic materials, �exp is nonlinear and should be close
to a manifold defined by the convex potential ψ ∈ ψ. On has by minimizing the CRE:

ψ = arg inf
ψ∈ψ

1
Ntest

∑

i∈Ntest

[
ψ(εεK (i)) + ψ∗(σσ S(i)) − Tr[σσ S(i)εεK (i)]

]
(58)

Data-drivenmaterial modeling—stable elasto-(visco-)plastic materials
TheCRE-method is nowset up for thedata-drivenmodelingof stable elasto-(visco-)plastic
materials. There are two key questions for which a solution is given:
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• the mathematical shape of the most general data-driven model compatible with
knowledge from physics and materials science;

• the computation of standard ill-posed problems for elasto-(visco-)plastic materials.

Experimental data

Weuse similar notations as in the previous sections, but introducing now the timedomain.
We have a series of tested structures i ∈ Ntest over the time interval [0, T ]. Data obtained
from measurements is:

Ud(i) over ∂1� × [0, T ]; Fd(i) over ∂2� × [0, T ] (59)
The i-problems (i ∈ Ntest ) are standard ill-posed problems forwhich the admissible spaces
for the displacement-stress pair (UK , σσ S) are denoted UK,[0,T ]

ad and SS,[0,T ]
ad .

Mathematical shape of data-driven models

The goal in this section is to derive the mathematical shape of the most general available
model, the elastic stiffness being known. We use here the internal variables framework
which is very general and common in materials science; this is the basis of the material
modeling developed here for stable elasto-(visco-)plastic materials.

The different internal variables

The state of the material at time t is defined by the value of the following set:
(εεp,X, σσ ,Y) (60)

where εεp (= εε − K−1σσ ) and σσ are observable variables, while the pair (X,Y) gathers
hidden internal variables. Y is the force associated to X and both belong to Rq . In a data-
driven mathematical model, X and Y are a priori unknown as well as their dimension
q.

The classical formulation

For the sake of simplicity, one assumes isothermal conditions. Following the first principle
of thermodynamics of irreversible processes, we consider a Helmholtz free energy ewhich
depends on the state of the material defined by the elastic strain εεe, the hidden variable
X ∈ Rq and the cumulated inelastic strain p:

e(εεe,X, p) (61)
X has often a precise interpretation; for example, in the case of kinematic hardening, X is
associated in the classical models to the center of the elasticity domain.
As classically done inmaterials science, one introduces the followingdecouplinghypoth-

esis (H1) used in this section:

e = 1
2
Tr[Kεεeεεe] + ψ(X, p) (62)

It follows the state equations defining the forces associated to (εεe,X, p):
σσ = Kεεe; Y = ∂ψ

∂X ; R = ∂ψ

∂p
(63)

The dissipation is equal to:
ω = Tr[σσ ε̇ε] − ė

= Tr[σσ ε̇εp] − ψ̇

= Tr[σσ ε̇εp] − Y · Ẋ − Rṗ

(64)
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The second principle of thermodynamics of irreversible processes indicates that the dis-
sipation ω is positive or null for all admissible histories of the material. To satisfy this
constraint, one adds the state evolution laws:

⎡

⎢⎣
ε̇εp
−Ẋ
−ṗ

⎤

⎥⎦ = B

⎛

⎜⎝

⎡

⎢⎣
σσ

Y
R

⎤

⎥⎦

⎞

⎟⎠ (65)

with εεp = 0, X = 0 and p = 0 at t = 0, and B is positive.

The normal formulation

The hidden internal variables (X,Y) ∈ Rq ×Rq are not intrinsic in the sense that another
pair (X′,Y′) ∈ Rq × Rq can lead to the same observable quantities i.e. the same material
model. This legitimates (as done in [47]) a choice more remarkable than the others, the
so-called normal formulation. It results from a transformation of hidden variables, from
(X,Y) to (X̃, Ỹ), which leads to an equivalence between the kinematic and static variables,
of the form:

X̃ = �Ỹ (66)

where � is a positive symmetric constant linear operator. Here, we take � = I. This
formulation is not unique, and the following property introduces a particular one where
the only assumption is the decoupling hypothesis (H1).Moreover, this normal formulation
preserves the energy and the dissipation.

Property 4 Let the Helmholtz free energy be:

e(εεe,X, p) = 1
2
Tr[Kεεeεεe] + ψ(X, p) (67)

where ψ is a convex positive function, twice differentiable such that:

ψ(0, 0) = 0;
∂ψ

∂X (0, 0) = 0; ∂ψ

∂p
(0, 0) = 0 (68)

There is an internal variables transform:

X̃ = Qv(X, p); p̃ = qv(X, p) (69)

such that the energy can be written with the new variables (X̃, p̃):

e = 1
2
Tr[Kεεeεεe] + 1

2
X̃ · X̃ + 1

2
p̃2 (70)

The dissipation is also preserved. The force Ỹ associated to X̃ is such that Ỹ = X̃ and p̃ can
be taken in R+.

Proof Let Z =
[
X
p

]
∈ Rq+1 and

ψ(Z) = ZT
[∫ 1

0
dμ

∫ 1

0
λdλ

∂2ψ

∂Z2 (λμZ)
]
Z (71)

First, we prove that ψ(Z) = ψ(Z). One has:

ψ(Z) =
∫ 1

0
dμ

d
dμ

�(μ) (72)
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with �(μ) = ∫ 1
0 dλ∂ψ

∂Z (μλZ)Z. It follows:

ψ(Z) = �(1) − �(0) =
∫ 1

0
dλ

∂ψ

∂Z (λZ)Z (73)

Finally, one has:

ψ(Z) = ψ(Z) − ψ(0) = ψ(Z) (74)

Let us introduce the operator

A = 2
∫ 1

0

∫ 1

0
λdλdμ

∂2ψ

∂Z2 (λμZ) (75)

It is symmetric and also positive,ψ being a convex function. Consequently, one can define
the operator A1/2 and the new state variables are:

[
X̃
p̃

]
= A1/2

[
X
p

]
(76)

with ψ(X̃, p̃) = 1
2 X̃ · X̃ + 1

2 p̃
2.

The energy being preserved, it is also true for the dissipation. The operator B which
defines the state evolution laws is of course modified, the relation between the observable
variables being preserved. ��

The normal formulation has serious advantages. For stable materials with a convex
energy, it allows to divide by two the number of hidden internal variables and to get an
energy parametrized by the Hooke tensor K alone.
Elasto-viscoplasticity is characterized by the fact that the components of the general-

ized strain rate, i.e. ε̇εp, ˙̃X, ˙̃p, are null at the same time. Consequently, the most general
mathematical model can be written:

ε̇εp = g(σσ , X̃, p̃)˙̃p
˙̃X = h(σσ , X̃, p̃)˙̃p
˙̃p = f (σσ , X̃, p̃) ≥ 0

εεp = 0, X̃ = 0, p̃ = 0 at t = 0

(77)

This model is defined by three functions and the number q of hidden variables. To fulfill
the second principle of thermodynamics of irreversible processes, one should satisfy:

Tr[σσ ε̇εp] − X̃ · ˙̃X − p̃. ˙̃p ≥ 0 (78)

For elastoplastic materials for which the behavior is independent of the loading rate, the
third equation of (77) is replaced by:

˙̃pf (σσ , X̃p̃) = 0; ˙̃p ≥ 0; f ≤ 0 (79)

Remark 2 We have shown in [50] that the functions g, h, f should be single-valued to
get a consistent material model with (77) and (78). This univocity property is the basis of
the construction method of the hidden internal state variables from data introduced in
[24,50]. Its interest is its generality. However, we will see that the CRE enables to solve
the same problem with a more robust approach but less general in the sense that a CRE
must be defined beforehand, constraint that we are considering today as relatively weak.
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The subfamily of standardmaterials

The decoupling hypothesis (H1) and the convexity property of the energy e belong to
commonly accepted assumptions in materials science as they have been validated by
experiments for stable materials. Consequently, they will be systematically taken into
account a priori in the following. Here, we go one step further considering stablematerials
which, for most of them, can be described by a standard material model. Such a family,
very common inmaterials science, has been validated for numerous materials. It has been
introduced by B. Halphen and Q.S. Nguyen [29].
Precisely, a standard material model is defined by two potentials φ∗(σσ , X̃, p̃) and
φ(ε̇εp,− ˙̃X,− ˙̃p) which are two dual convex functions related to the dissipation bilinear
form:

(
(ε̇εp,− ˙̃X,− ˙̃p), (σσ , X̃, p̃)

)
∈ R6+q+1 × R6+q+1 �−→ Tr[σσ ε̇εp] − X̃ · ˙̃X − p̃. ˙̃p (80)

One should also satisfy the second principle of thermodynamics of irreversible processes,
that corresponds to:

φ∗(0, 0, 0) = 0; φ∗ ≥ 0 (81)

Such a material model depends only on one convex function and it is compatible with the
two principles of thermodynamics. It also depends on the dimension q of the vector of
hidden internal variables.
The local CRE then reads:

e2CRE = φ(ε̇εp,− ˙̃X,− ˙̃p) + φ∗(σσ , X̃, p̃) − Tr[σσ ε̇εp] + X̃ · ˙̃X + p̃. ˙̃p (82)

and the global CRE over the time-space domain [0, T ] × � is equal to:

E2
CRE =

∫ T

0
dt
∫

�

d�η(t)e2CRE (83)

where the weight η(t) may be chosen as 1 or (1 − t/T ).
Let us return to the normal formulation and the following question: is there a normal

formulation for a standard initial model that retains the property of being standard? The
answer has been given in [47]; one has:

Property 5 A standard material model defined by the convex potential φ∗(σσ ,Z) and the
inelastic part of the energy ψ(Z) admits a normal standard formulation is there exists an
operator R (defining a new set of hidden internal variables) such that:

Z̃ ≡
[
X̃
p̃

]
= R(Z)

(
∂Z̃
∂Z

)T (
∂Z̃
∂Z

)
= ∂

∂Z

(
∂ψ

∂Z

)T

φ∗
(

σσ ,
(

∂ψ

∂Z

)T
(R−1(Z̃))

)
is a convex function

(84)

This normal formulation is different from the one introduced in “Thenormal formulation”
section. The conditions of Property 5 are much more common than they appear at first.
They are satisfied by classical parametrizedmodels ofmaterials science [47]; an illustration
is given a little further on.
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One can remark that the main condition:
(

∂Z̃
∂Z

)T (
∂Z̃
∂Z

)
= ∂

∂Z

(
∂ψ

∂Z

)T
(85)

involves a deformation.The right-hand side shouldbepositivewhich implies the convexity
of the energy. An approximation can be given if we neglect the square of the nonlinear
part of R(Z) denoted R∗(Z); one has:

Z̃ = R(Z) = A0Z + R∗(Z) (86)

It follows with � = ∂
∂ZR∗(Z):

AT
0 � + �TA0 + AT

0 A0 = ∂

∂Z

(
∂ψ

∂Z

)T
(87)

One gets the operator R as:

Z̃ = 1
2

[(
A−1
0

)T (∂ψ

∂Z

)T
+ A0Z

]
(88)

which shows that if we neglect the square of the nonlinear part of ∂ψ
∂Z )

T , the material
model is both normal and standard.
Finally, as a conclusion of the previous developments, we consider that the family of nor-

mal and standard models provides a reasonable framework for the data-driven modeling
of stable elasto-(visco-)plastic materials.
A classical model in materials science
Let us consider first the standard version of theChaboche-Marquis elasto-(visco-)plastic

model (see [47,52]). We will see that this model admits a version which is both standard
and normal.
The material is supposed to be isotropic; the internal hidden variable is a second order

tensor X with Tr[X] = 0, its associated force being Y with Tr[Y] = 0. The dissipation
potential in viscoplasticity is with classical notations:

φ∗(σσD,Y, R) = k
n + 1

〈z〉n+1+ n > 0 (89)

with

z = |σσD − Y| + 1
2
a|Y|2 − R

Y = cX

R = γ (p)

p =
∫ T

0
|ε̇εp|dt

(90)

k , n, a, c are positive material parameters. The threshold function:

p ∈ R+ �−→ γ (p) ∈ R+ (91)

is also a material function which is supposed to be concave and increasing.
To get a normal standard formulation, let us introduce:

X̃ = c1/2X

p̃ =
∫ p

0
dp[

∂γ

∂p
]1/2

R = �(p̃)

(92)
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One has φ̃∗(σσD, X̃, p̃) = φ∗(σσD, c1/2X, �(p̃)) and one can check that φ̃∗ is convex.
Standard material model for elastoplastic materials
Let us consider the case of elastoplastic materials. The potential φ∗ is the indicator

function of the elastic domain which is convex; one has:

φ∗(σσ , X̃, p̃) =
⎧
⎨

⎩
0 if f (σσ , X̃, p̃) ≤ 0

+∞ otherwise
(93)

with f (0, 0, 0) ≤ 0.
This mathematical model depends also on one convex function f . This function can be
simplified because we know from materials science that the elasticity domain grows with
p̃ which can be interpreted as a material time, i.e.:

f ,p̃ < 0 (H2) (94)

It follows the property:

Property 6 Under the (H2) hypothesis and if f is convex and piecewise regular, f can be
replaced by:

a(σσ , X̃) − p̃ (95)

where a is a convex function such that a(0, 0) ≤ 0.

Proof From f (σσ , X̃, p̃) = 0, one gets

p̃ = a(σσ , X̃) (96)

and we have:

f (σσ , X̃, a(σσ , X̃)) = 0 (97)

The second differential of f (σσ , X̃, a(σσ , X̃)) is:

0 = [δ2f ](σσ , X̃, p̃)p̃=a(σσ ,X̃) + ∂f
∂p

[δ2a](σσ , X̃) (98)

It follows δ2a ≥ 0 and consequently the convexity of a. Moreover, from f (0, 0, 0) ≤ 0,
p ≥ 0, one gets:

a(0, 0) ≤ 0 (99)

Finally, the data-drivenmathematical model compatible with the knowledge from physics
and materials science is defined by the convex function a alone, such that a(0, 0) ≤ 0. ��

Remark 3 Somemore assumptions can be introduced for particular materials. For exam-
ple, for metallic materials, the plastic incompressibility is commonly used. Isotropy or
orthotropy properties can also be added and allow important complexity reduction.

It follows that the dual potential φ is:

φ(ε̇εp,− ˙̃X,− ˙̃p) = sup
σσ ,X̃,p̃,a(σσ ,X̃)≤p̃

[
Tr[σσ ε̇εp] − X̃ · ˙̃X − p̃. ˙̃p

]

= sup
σσ ,X̃,p̃,a(σσ ,X̃)≤p̃

[
˙̃p(Tr[σσ ε̇εp/ ˙̃p] − X̃ · ˙̃X/ ˙̃p − a(σσ , X̃) + ˙̃p(a − p̃)

]

= ˙̃pa∗(ε̇εp/ ˙̃p,− ˙̃X/ ˙̃p) + 0

(100)
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The local CRE can be written:

e2CRE = ˙̃p
[
a∗(ε̇εp/ ˙̃p,− ˙̃X/ ˙̃p) + a(σσ , X̃) − Tr[σσ ε̇εp/ ˙̃p] + X̃ · ˙̃X/ ˙̃p

]
+ ˙̃p

[
p̃ − a(σσ , X̃)]

(101)

where the quantities between brackets are positive or null.
Standard material model for elasto-viscoplastic materials
A common assumption inmaterials science is to consider viscoplasticity as an extension

or regularization of plasticity. The elastic domain being described by the convex function
a, the potential is defined as:

φ∗(σσ , X̃, p̃) = γ (〈a(σσ , X̃) − p̃〉+) (102)

where γ is an increasing convex function defined over R+ such that γ (0) = 0. The
potential φ∗ is thus convex, positive and satisfies:

φ∗(0, 0, 0) = 0 (103)

To get the dual potential φ, one has to take the Legendre-Fenchel transform of a combi-
nation of convex functions named composite convex functions for which results are given
in [36]. Here, one has:

φ(ε̇εp,− ˙̃X,− ˙̃p) = sup
σσ ,X̃,p̃∈R6+q×R+

[
Tr[σσ ε̇εp] − X̃ · ˙̃X − p̃. ˙̃p − γ (〈a(σσ , X̃) − p̃〉+)

]

= sup
σσ ,X̃,p̃∈R6+q×R+

[
(˙̃p(a(σσ , X̃) − p̃) − γ (〈a(σσ , X̃) − p̃〉+))

+ ˙̃p(a∗(ε̇εp/ ˙̃p,− ˙̃X/ ˙̃p) + a(σσ , X̃) − Tr[σσ ε̇εp/ ˙̃p] + X̃ · ˙̃X/ ˙̃p)
]

= γ ∗(˙̃p) + ˙̃pa∗(ε̇εp/ ˙̃p,− ˙̃X/ ˙̃p)

(104)

It follows that the local CRE is equal to:

e2CRE = ˙̃p
[
a(σσ , X̃) + a∗(ε̇εp/ ˙̃p,− ˙̃X/ ˙̃p) − Tr[σσ ε̇εp/ ˙̃p] + X̃ · ˙̃X/ ˙̃p

]

+ [
γ ∗(˙̃p) + γ (〈a(σσ , X̃) − p̃〉+) − ˙̃p〈a(σσ , X̃) − p̃〉+

]

+ [ ˙̃p〈a(σσ , X̃) − p̃〉−
]

(105)

Let us note that the three quantities between brackets are positive or null.
Illustration: back to the normal/standard model of Chaboche-Marquis
We have seen that the potential φ∗(σσD, X̃, p̃) is equal to:

φ∗(σσD, X̃, p̃) = k
n + 1

〈z〉n+1+ (106)

with

z = |σσD − c1/2X̃| + 1
2
ac|X̃|2 − �(p̃) (107)

It follows:

a(σσD, X̃) = �−1(|σσD − c1/2X̃| + 1
2
ac|X̃|2) (108)

which is convex because � is an increasing concave function. One also has:

φ∗(σσD, X̃, p̃) = γ (〈a(σσD, X̃) − p̃〉+) (109)

with

γ (r) = k
n + 1

[�(r)]n+1 ∀r ∈ R+ (110)
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Optimal solution of standard ill-posed problems

Let us consider that the behavior of the material is known and defined by the potential
φ∗(σσ , X̃, p̃) which is a convex function such that:

φ∗ ≥ 0; φ∗(0, 0, 0) = 0 (111)
The displacementUK and the stress σσ S defined over [0, T ]×� should be admissible, i.e.:

UK ∈ UK,[0,T ]
ad ; σσ S ∈ SS,[0,T ]

ad (112)
and the problem to solve is a standard ill-posed problem. A solution could be given
by the pair (UK , σσ S) which minimizes the global CRE functional ECRE over the space
UK,[0,T ]

ad × SS,[0,T ]
ad . ECRE being a strongly convex function for standard material models,

the solution is unique. Here, the optimal solution is computed.
First we construct a solution defined by a modified potential φ∗

M and in a second time,
we prove that it is optimal. For elasto-(visco-)plastic materials, the modified constitutive
relation is also elasto-(visco-)plastic but nonlocal; however, the optimal solution can be
computed without difficulty thanks to an incremental numerical technique.

A remarkable constraint

We will see that for standard ill-posed problems, ε̇εp is not a priori arbitrary. One has:
ε̇εp = ε̇εK − K−1σ̇σ S (113)

and the question is to compute εεK and σσ S from ε̇εp. First, let us compute σσ S ; it is defined
for t ∈]0, T [ by:

σσ S ∈ SS
ad ;

∫

�

Tr[σσ SK−1σσ ∗]d� = −
∫

�

Tr[(εεp − εεKe )σσ ∗]d� ∀σσ ∗ ∈ SS
ad,0(114)

where εεKe is the elastic solution for the K -data:
Ud over ∂1�×]0, T [; Fd over (∂2� − ∂12�)×]0, T [; f d = 0 (115)

It follows:
εεp + K−1σσ S = εε(U ) (116)

with U ∈ [H1(�)]3 and U = Ud over (∂1� − ∂12�).
To get UK = U , U should also satisfy:

U = Ud over ∂12� (117)
which is equivalent to:∫

�

Tr[Kεε(U )εε(W ∗)]d� =
∫

∂12�
Kεε(W ∗)n · UddS ∀W ∗ ∈ W (118)

with
W ≡ {

U ∈ [H1(�)]3 s.t. div (Kεε(U )) = 0 over�, U |∂1�−∂12� = 0,

Kεε(U )n|∂2�−∂12� = 0
}

(119)
Using (116), we get from (118) the following property:

Property 7 For standard ill-posed problems, the inelastic strain satisfies the constraint:
∫

�

Tr[Kεεpεε(W ∗)]d� =
∫

�

Tr[KεεKSe εε(W ∗)]d� ∀W ∗ ∈ W (120)

where εεKSe ≡ εεKe − εεSe , εεKe and εεSe being the elastic solutions for the K-data and the
S-data, respectively.

Remark 4 For a well-posed computational problem, the constraint (120) disappears.
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Modified potential�∗
M

Let us introduce the global potentials:

�∗(σσ , X̃, p̃) =
∫

�

φ∗(σσ , X̃, p̃)d�; �(ε̇εp,− ˙̃X,− ˙̃p) =
∫

�

φ(ε̇εp,− ˙̃X,− ˙̃p)d� (121)

One considers first the case where the reference potential �∗ is regular. The ECRE-
minimization leads for fixed (σσ , X̃, p̃) to the minimization of:

�(ε̇εp,− ˙̃X,− ˙̃p) −
∫

�

[
Tr[σσ ε̇εp] − X̃ · ˙̃X − p̃. ˙̃p

]
d� (122)

with the constraint:∫

�

Tr
[
K(ε̇εp − ε̇εKSe )εε(W ∗)

]
d� = 0 ∀W ∗ ∈ W (123)

This constraint being equivalent to ε̇εp ∈ Hp, the previous minimization problem can be
rewritten as the minimization of:

�(ε̇εp,− ˙̃X,− ˙̃p) + χHp (ε̇εp,− ˙̃X,− ˙̃p) −
∫

�

[
Tr[σσ ε̇εp] − X̃ · ˙̃X − p̃. ˙̃p

]
d� (124)

where χHp is the characteristic function of the subspace Hp. It follows that (ε̇εp,− ˙̃X,− ˙̃p)
is the subdifferential of the Legendre-Fenchel transform of � + χHp , for which we know
�∗ and χ∗

Hp
(σσ , X̃, p̃) equal to:

⎧
⎨

⎩
Tr[σσ ε̇εKSe ] if σσ = −Kεε(W ) withW ∈ W
+∞ otherwise

(125)

This is a composite convex function; from [35], we get that the Legendre-Fenchel trans-
form of � + χHp is:

inf
σσ=σσ ′−Kεε(W ),W∈W

[
�∗(σσ ′, X̃, p̃) + χ∗

Hp (−Kεε(W ), X̃, p̃)
]

(126)

Finally, we have:

inf
W∈W

[
�∗(σσ + Kεε(W ), X̃, p̃) −

∫

�

Tr[Kε̇εKSe εε(W )]d�
]

(127)

which defines the modified potential �∗
M . In the case of elastoplastic materials, one has a

slight modification:

�∗
M(σσ , X̃, p̃) = �∗(σσ , X̃, p̃)

+ inf
W∈W

[
�∗(σσ + Kεε(W ), X̃, p̃) −

∫

�

Tr[Kε̇εKSe εε(W )]d�
]

(128)

Properties of the solution

The considered solution is characterized by the two dual convex potentials φ∗
M and φM ,

which defines a nonlocal in space constitutive relation. However, this property does not
involve any serious difficulty for the computation. The classical incremental method can
be used, the only new point being the calculation at each time step of theW -problem for
which a reduction method is recommended.
To prove the uniqueness of the solution, let us consider two distinct solutions (σσ , X̃, p̃)

and (σσ ′, X̃′, p̃′). One has:

Ȧ ≡
∫

�

[
Tr[(σσ − σσ ′)(ε̇εp − ε̇ε′

p] − (X̃ − X̃′) · ( ˙̃X − ˙̃X′) − (p̃ − p̃′).(˙̃p − ˙̃p′)
]
d�

= φ′
M + φ∗

M −
∫

�

[
Tr[σσ ε̇ε′

p] − X̃ · ˙̃X′ − p̃. ˙̃p′] d�

+ φM + φ∗′
M −

∫

�

[
Tr[σσ ′ε̇εp] − X̃′ · ˙̃X − p̃′. ˙̃p

]
d� ≥ 0

(129)
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Moreover, we have for standard ill-posed problems:
∫

�

Tr[(σσ S − σσ S′
)(ε̇εK − ε̇εK

′
)]d� = 0 (130)

and thus:∫

�

Tr[(σσ S − σσ S′
)(ε̇εp − ε̇ε′

p)]d� = −
∫

�

Tr[(σσ S − σσ S′
)K−1(σ̇σ S − σ̇σ S′

)]d� (131)

It follows from (129), (131) and the initial conditions at t = 0:

A|t = −1
2

∫

�

[
Tr[(σσ S − σσ S′

)K−1(σσ S − σσ S′
)]

+(X̃ − X̃′) · (X̃ − X̃′) + (p̃ − p̃′)2
]
d� ≥ 0 (132)

Consequently, the two solutions can not be distinct which proves the uniqueness.
Moreover, we have the following main property:

Property 8 The solution associated to the modified potentials �M and �∗
M is optimal i.e.

it minimizes the CRE.

Proof Let (UK ′ , σσ S′ ) be the optimal solution i.e., the minimizer of the global CRE over
the admissible space UK,[0,T ]

ad × SS,[0,T ]
ad taking into account the constraint (120). One has

the following result, where � can be replaced by �M :

a ≡
∫ T

0
η(t)dt

[
�M(ε̇ε′

p,− ˙̃X′,− ˙̃p′) + �∗(σσ ′, X̃′, p̃′)

−
∫

�

[
Tr[σσ ′ε̇ε′

p] − X̃′ · ˙̃X′ − p̃′ ˙̃p′] d�
]

(133)

The solution (UK , σσ S) associated to the modified constitutive relation satisfies:

0 =
∫ T

0
η(t)dt

[
�M(ε̇εp,− ˙̃X,− ˙̃p) + �∗

M(σσ , X̃, p̃)

−
∫

�

[
Tr[σσ ε̇εp] − X̃ · ˙̃X − p̃ ˙̃p

]
d�

]
(134)

Let us compute:

A =
∫ T

0
η(t)dt

∫

�

[
Tr[(σσ − σσ ′)(ε̇εp − ε̇ε′

p)]

−(X̃ − X̃′) · ( ˙̃X − ˙̃X′) − (p̃ − p̃′).(˙̃p − ˙̃p′)
]
d� (135)

One has from (133) and (134):

A =
∫ T

0
η(t)dt

[
�M((ε̇ε′

p,− ˙̃X′,− ˙̃p′) + �∗
M(σσ , X̃, p̃)

−
∫

�

[
Tr[σσ ε̇ε′

p] − X̃ · ˙̃X′ − p̃ ˙̃p′] d�
]

+
∫ T

0
η(t)dt

[
�M((ε̇εp,− ˙̃X,− ˙̃p) + �∗(σσ ′, X̃′, p̃′)

−
∫

�

[
Tr[σσ ′ε̇εp] − X̃′ · ˙̃X − p̃′ ˙̃p

]
d� − a

]

(136)

and consequently A ≥ 0. Moreover, we get:
∫

�

Tr[(σσ − σσ ′)(ε̇ε − ε̇ε′)]d� = 0 (137)
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and thus:
∫

�

Tr[(σσ − σσ ′)(ε̇εp − ε̇ε′
p)]d� = −

∫

�

Tr[(σσ − σσ ′)K−1(σ̇σ − σ̇σ ′)]d� (138)

It follows with η(t) = 1 − t/T :

A = − 1
2T

∫ T

0
dt
∫

�

[
Tr[(σσ − σσ ′)K−1(σ̇σ − σ̇σ ′)]

+(X̃ − X̃′) · (X̃ − X̃′) + (p̃ − p̃′)2
]
d� (139)

and thus A = 0. One concludes that:

(σσ , X̃, p̃) = (σσ ′, X̃′, p̃′) over [0, T ] × � (140)

Let us remind that (ε̇εp,− ˙̃X,− ˙̃p) is the minimizer of the CRE for fixed (σσ , X̃, p̃). It follows:

(ε̇εp,− ˙̃X,− ˙̃p) = (ε̇ε′
p,− ˙̃X′,− ˙̃p′) = ∂�∗

M(σσ , X̃, p̃) (141)

��

Optimal data-driven material model for elastoplastic materials

We only consider the case of elastoplastic materials as elasto-viscoplastic materials can
be treated in the same way. The only difference is the identification of one more function,
the function γ .

Experimental data

Experimental data has been introduced in “Experimental data” section. It is, for i ∈ Ntest :

Ud(i) over ∂1� × [0, T ]; Fd(i) over ∂2� × [0, T ] (142)

The Hooke tensor has been identified beforehand.
We also have seen previously that for stable elastoplastic materials, the mathematical

shape of the most general data-driven model compatible with knowledge from physics
and materials science is defined by a unique convex function a belonging to A:

a ∈ A ≡
{
a s.t. a is a convex function overR6+q, a(0, 0) ≤ 0

}
(143)

Computation of the optimal data-drivenmodel

The optimal data-driven material model is the minimizer of the global CRE for the
family of tested structures. One first has, for i ∈ Ntest :

(
UK (i), σσ S(i)

)
= arg min(

ŨK (i),σ̃σ S (i)
)
∈UK

ad (i)×SS
ad (i)

E2
CRE

(
q, a; ŨK (i), σ̃σ S(i)

)
(144)

Then, after defining:

E2
CRE(q, a) = 1

Ntest

∑

i∈Ntest

E2
CRE

(
q, a;UK (i), σσ S(i)

)
(145)

the optimal data-driven material model is recovered as:

(q, a) = arg inf
a∈A,q∈N+

E2
CRE(q, a) (146)

The method to solve this nonlinear problem is similar to the one presented for solving
nonlinear elastic material models; the only difference is related to the dimension q of the
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vector X̃ of hidden internal variables, which belongs to the unknowns of the optimization
problem. Consequently, the optimization problem is first solved for a fixed value of q. If
the final value of the error is too large, it maymean that the value of the dimension q needs
to be increased. The optimal data-driven model should thus be recalculated, leading to a
reduction of the error. If this reduction is sufficient, one stops the calculation.
Remark 5 Finding a convex function a defined over R6+q is a high-dimensional convex
regression problem for which additional assumptions on the function a are more than
welcome; they aremandatory to reduce the complexity of the regression problem. Isotropy
or orthotropy properties can also be added, but probably the best and most common
way is to use micro/meso information through the FE2 method. Of course, the CRE as
presented here can also be used to identify parametrized models from materials science.
Nevertheless, to be considered data-driven, data should carry significant information in
these approaches.

Data-driven modeling of stable elasto-(visco-)plastic materials taking measurement noise

into account

One considers stable materials described by standard models in the situation where the
measurement noise should be taken into account. Following [71], themain source of noise
comes from full-field displacement measurements. It is noteworthy that in the CRE, this
noise impacts only the elastic strain rate ε̇εKSe from the constraint:∫

�

Tr[(ε̇εp − ε̇εKSe )Kεε(W ∗)]d� = 0 ∀W ∗ ∈ W (147)

where ε̇εKSe depends on the prescribed displacement Ud . To take the measurement noise
into account, we propose to satisfy this constraint approximately through a modified
Constitutive Relation Error:

mE2
CRE =

∫ T

0
η(t)

[
�(ε̇εp,− ˙̃X,− ˙̃p) + �∗(σσ , X̃, p̃)

−
∫

�

[
Tr[σσ ε̇εp] − X̃ · ˙̃X − p̃. ˙̃p

]
d�

]
dt

+
∫ T

0

μ

2
|||ε̇εp − ε̇εKSe |||2dt

(148)

where the weight μ is chosen such that |||ε̇εp − ε̇εKSe ||| is of the order of magnitude of the
measurement noise. Moreover, one has:∫

�

Tr[Kεε(W )εε(W )]d� = |||ε̇εp − ε̇εKSe |||2 (149)

withW ∈ W and∫

�

Tr[Kεε(W )εε(W ∗)]d� =
∫

�

Tr[(ε̇εp − ε̇εKSe )Kεε(W ∗)]d� ∀W ∗ ∈ W (150)

Here, the modified CRE (mCRE) replaces the classical CRE developed in the previous
sections.

The hybrid optimal solution

Following the “Modified potential �∗
M” section, one computes the dual function of �M

defined by:

�M(ε̇εp,− ˙̃X,− ˙̃p) = �(ε̇εp,− ˙̃X,− ˙̃p) + μ

2
|||ε̇εp − ε̇εKSe |||2 (151)

First, let us determine the dual function of μ
2 |||ε̇εp − ε̇εKSe |||2; one has:
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• if σσ = −Kεε(W ) withW ∈ W :

g∗(σσ , X̃, p̃) =
∫

�

[μ

2
Tr[σσK−1σσ ] + Tr[σσ ε̇εKSe ]

]
d� (152)

• otherwise:

g∗(σσ , X̃, p̃) = +∞ (153)

From [35], we get that the dual function �∗
M is:

inf
σσ=σσ ′−Kεε(W )

[
�∗(σσ ′, X̃, p̃) +

∫

�

[
1
2μ

Tr[Kεε(W )εε(W )] − Tr[Kεε(W )ε̇εKSe ]
]
d�

]
(154)

One can note that if μ = +∞, we get the potential associated to the constraint (147).
Following the proof of Property 8, we can also prove that the solution which satisfies the
modified constitutive relation (potentials �M and �∗

M) is optimal i.e. it is the minimizer
ofmECRE over the admissible space UK,[0,T ]

ad × SS,[0,T ]
ad .

Remark 6 Thehybrid optimal solution can be useful in nonlinear computationalmechan-
ics to compute hybrid numerical twins.

The optimal data-drivenmodel

All which is described in the “Optimal data-driven material model for elastoplastic mate-
rials” section is still valid.

Conclusion
The CRE has been developed as a general tool to compute data-driven models and also
classical parametrized models of materials science seen as minimizers of the global CRE.
For stable materials described by a standardmodel, the normal formulation with only one
convex function to identify was put forward. For a given reference constitutive relation, an
optimal solution i.e. the admissible displacement-stress pair which minimizes the global
CRE has been characterized by its modified constitutive relation, nonlocal in the space
variable but easy to compute. Such a solution extended to noisy data leads to the easy
computation of a hybrid numerical twin involving elasto-(visco-)plastic materials.
Let us note that materials defined by their microstructure for which a data-driven macro-
model should be built is a potential range of application; a great advantage is the large
volume of available data that facilitates the convex regression. Based on the homogenized
theory of periodic media introduced in [73], this question has already been the subject
of numerous works, in particular [20,56,62,77]. Among the extensions of the present
work that require further research, we can mention: (i) models of materials defined by a
bipotential (not necessarily stable); (ii) large displacement modeling.
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