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a. Overview—R. J. H. Dunn, F. Aldred, N. Gobron, J. B Miller, and K. M. Willett

For reasons other than the climate, 2020 was an extraordinary year. The COVID-19 pandemic 
has affected almost all of us, changing the lives of many people around the globe. While the 
economic disruption associated with COVID-19 led to modest estimated reductions of 6–7% (e.g., 
le Quere et al. 2020; Friedlingstein et al. 2020; BP Statistical Review of the World Energy 2021) 
in global anthropogenic carbon dioxide (CO2) emissions, atmospheric CO2 levels continued to 
grow rapidly—a reminder of its very long residence time in the atmosphere and the challenge of 
reducing atmospheric CO2. As we show in this chapter, the climate has continued to respond to 
the resulting warming from these increases in CO2 and other greenhouse gases such as methane 
and nitrous oxide, which also experienced record increases in 2020.

The year 2020 was one of the three warmest since records began in the mid-to-late 1800s, with 
global surface temperatures around 0.6°C above the 1981–2010 average, despite the El Niño–
Southern Oscillation progressing from neutral to La Niña conditions by August (see section 4b). 
Lower tropospheric temperatures matched those from 2016, the previous warmest year. Mean-
while, stratospheric temperatures continued to cool as a result of anthropogenic CO2 increases. 
Along with the above-average surface temperatures, an unprecedented (since instrumental 
records began) geographic spread of heat waves and warm spells occurred. Antarctica observed 
its highest temperature on record (18.3°C) at Esperanza in February. In August, Death Valley, 
California, reported the highest temperature observed anywhere on Earth since 1931 (preliminary 
value of 54.4°C).

Consequently, many permafrost measurement sites experienced their highest temperatures 
on record; Northern Hemisphere (NH) snow cover was below the 51-year average and the fourth-
least extensive on record. Glaciers in alpine regions experienced their 33rd consecutive year of 
negative mass balance and 12th year of average losses of more than 500 mm depth. On average, 
NH lakes froze over 3 days later and thawed 5.5 days earlier than the 1981–2010 average during 
the 2019/20 winter, which was the third-shortest ice cover season since 1979/80.

The atmosphere responded to higher temperatures accordingly by holding more water. Total 
column water vapor was high relative to the 1981–2010 average, ranging from 0.75 to 1.06 mm 
over ocean and 0.58 to 0.94 mm over land, but did not reach the record values of 2016. At the 
surface, specific humidity over oceans was at record high levels (0.23 to 0.41 g kg−1) and was well 
above average over land (0.14 to 0.36 g kg−1). Conversely, relative humidity was well below average 
over land (–1.28 to –0.68 %rh), continuing the long-term declining trend. Precipitation increased 
compared to 2019, driven largely by land values, but there were few exceptional extreme precipi-
tation events, coupled with below-average cloudiness over most of the land. More lakes showed 
positive water level anomalies than 2019, and in East Africa, Lake Victoria’s level rose by over a 
meter due to a wet long-rains season. Soil moisture and terrestrial water storage showed stronger 
regional variations than in previous years, with East Africa and India being especially moist. 
Global drought area continued to increase for most of the year, reaching a peak in October, with 
the third-highest global land area experiencing extreme drought according to the Palmer Drought 

2. GLOBAL CLIMATE
R. J. H. Dunn, F. Aldred, N. Gobron, J. B Miller, and K. M. Willett, Eds.
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Severity Index (6.8%). Despite progression to a neutral Indian Ocean dipole (IOD) this year, from 
a strongly positive IOD in 2019 (see section 4h), the western Indian Ocean and East Africa showed 
above-average hydrological cycle anomalies generally, including upper tropospheric humidity. 

Greenhouse gas levels continued to rise, with the three primary greenhouse gases, CO2, CH4, 
and N2O, all reaching their highest levels in at least 800,000 years. Radiative forcing from the long-
lived greenhouse gases also reached a new record level of 3.2 W m−2, with CO2 being responsible 
for a large majority of the total. Tropospheric ozone, another greenhouse gas (although shorter 
lived and not well-mixed throughout the atmosphere), continued a modest upward trend, which 
was dominated by trends over and downwind of Asia. Stratospheric ozone, on the other hand, 
exhibited unusually large negative anomalies, especially in the Arctic and Antarctic. These 
large ozone depletions resulted mainly from stable polar vortices despite continued reduction 
in equivalent effective stratospheric chlorine, as calculated from tropospheric values of ozone-
depleting substances. 

COVID-19 impacts on the troposphere, at least at large spatial scales, were not readily apparent 
in 2020 anomalies. Modest anthropogenic CO2 emissions reductions of perhaps 6–7% were too 
small to be identified on a background of large interannual CO2 variability driven by the terrestrial 
biosphere. Carbon monoxide (CO) and aerosol optical depth anomalies could also not be clearly 
tied to COVID-19-related emissions reductions. However, significant CO and aerosol anomalies 
related to large fires in southeastern Australia, the western United States, and Siberia were evident.

The warmer temperatures were also felt in the biosphere, with an earlier start of season, later 
end of season, and hence, longer growing season as measured by the normalized difference veg-
etation index, for example, the United Kingdom had the earliest “first leaf” of the Pedunculate 
oak in a 20-year series. Anomalies of vegetation productivity reached a record positive peak in 
the NH. Overall, 2020 saw one of the lowest fire years in the record but regionally some locations 
experienced extreme fire activity, notably southeastern Australia, the Siberian Arctic, and western 
United States, as noted above. 

Three new measurements are included as sidebars in this year’s report. Night marine air tem-
perature (NMAT) provides a useful independent comparison against sea surface temperature 
datasets to explore ongoing warming over oceans. Available NMAT observations (and marine 
humidity) have declined from around 7000 Voluntary Observing Ships in the 1980s to around 
1000 at present, severely endangering our monitoring ability. Extending our cryosphere coverage, 
rock glacier kinematics, which is linked to the state of the permafrost, shows speeds in 2020 in 
the European Alps close to the maximum recorded. Increasing our monitoring of the biosphere, 
the final sidebar outlines the use of passive microwave satellite measurements for determining 
the vegetation properties via the amount of attenuation (the vegetation optical depth).

Time series and anomaly maps for many of the variables in this chapter are shown in Plates 1.1 
and 2.1, respectively. 
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Plate 2.1. (a) NOAA NCEI Global land and ocean surface an-
nual temperature anomalies (°C); (b) Satellite-derived lake 
surface water temperature anomalies (°C); (c) GHCNDEX warm 
day threshold exceedance (TX90p); (d) GHCNDEX cool night 
threshold exceedance (TN10p); (e) Average of RSS and UAH 
lower tropospheric temperature anomalies (°C). Hatching 
(stipling) denotes regions in which 2020 was the warmest 
year on record for UAH (RSS); (f) CLASSnmat night marine 
air temperature anomalies (°C); (g) HadISDH surface specific 
humidity anomalies (g kg–1);
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Plate 2.1. (cont.) (h) HadISDH surface relative humid-
ity anomalies (%rh); (i) ERA5 TCWV anomalies (mm). Data 
from GNSS stations are plotted as filled circles; (j) “All sky” 
microwave-based UTH anomalies (%rh); (k) GPCP v2.3 annual 
mean precipitation anomalies (mm yr−1); (l) GPCC maximum 
1-day (Rx1day) annual precipitation anomalies (mm); (m) 
Lake water level anomalies (m); (n) PATMOS-x /AVHRR+HIRS 
global cloudiness anomalies (%);
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Plate 2.1. (cont.) (o) ELSE (Ensemble Land State Estimator) global distribution of runoff anomalies (mm yr−1); (p) ELSE global 
distribution of river discharge anomalies (m3 s−1); (q) GRACE and GRACE-FO difference in annual-mean terrestrial water 
storage between 2019 and 2020 (cm); (r) ESA CCI average surface anomalies (m3 m−3); (s) Mean scPDSI for 2020. Droughts 
are indicated by negative values (brown), wet episodes by positive values (green); (t) GLEAM land evaporation anomalies 
(mm yr−1);
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Plate 2.1. (cont.) (u) ERA5 surface pressure anomalies (hPa); 
(v) Surface wind speed anomalies (m s−1) from the observa-
tional HadISD3 dataset (land, circles), the MERRA-2 reanalysis 
output (land, shaded areas), and RSS satellite observations 
(ocean, shaded areas); (w) ERA5 Sep–Dec average 850-hPa 
northward wind speed anomalies (m s−1); (x) Total aerosol 
optical depth (AOD) anomalies at 550 nm; (y) Ratio of total 
AOD at 550 nm in 2020 relative to 2003–19; (z) Number of 
days with AOD above the 99.9th percentile; (aa) GOME2 to-
tal column ozone anomalies (DU; using GOME, SCIAMACHY, 
GOME-2A and -2B [GSG]);
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Plate 2.1. (cont.) (ab) OMI/MLS tropospheric ozone column 
anomalies for 60°S–60°N (DU); (ac) CAMS reanalysis total 
column CO anomalies (%); (ad) Land surface visible broad-
band albedo anomalies (%); (ae) Land surface near-infrared 
albedo anomalies (%); (af) FAPAR anomalies; (ag) GFAS1.4 
carbonaceous emission anomalies (g C m−2 yr−1) from biomass 
burning; (ah) VODCA Ku-band VOD anomalies.
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b. Temperature
1) Global surface temperature— A. Sánchez-Lugo, C. Morice, J. P. Nicolas, and A. Argüez

The year 2020 was one of the three warmest years since global records began in the 
mid-to-late 1800s, with a global land and ocean surface temperature 0.54°–0.62°C above the 
1981–2010 average, according to five global temperature datasets (Table 2.1). These datasets 
consist of three independent global in situ surface temperature analyses (NASA-GISS, Lenssen 
et al. 2019; HadCRUT5, Morice et al. 2021; NOAAGlobalTemp, Zhang et al. 2019) and two global 
atmospheric reanalyses (ERA5, Hersbach et al. 2020; JRA-55, Kobayashi et al. 2015). Depending on 
the dataset, 2020 was either the warmest year on record, 2020 was tied with 2016 as the warmest 
on record, 2020 was the second-warmest year on record, or 2020 was the third-warmest (Fig. 2.1). 

The year began in El Niño–Southern Oscillation (ENSO)-neutral conditions, transitioning to 
La Niña by August (see section 4b for details). The global monthly temperature anomalies were 
high throughout 2020, with each month from January through November ranking among the five 
warmest for each respective month across all datasets. December had the smallest temperature 
anomaly of the year. Despite the slightly cooler end to the year, this was the warmest non-El Niño 
year on record, surpassing 2017 by 0.07°–0.11°C. Furthermore, the five datasets agree that the 
last 7 years (2014–20) were the seven warmest years on record.

Even though each dataset might differ slightly on the yearly rankings and anomalies, it is 
worth noting that these differences are small and that, overall, temperature anomalies for each 
dataset are in close agreement. The three global in situ surface temperature analyses assessed 
here are derived from air temperatures observed at weather stations over land and sea surface 
temperatures (SSTs) observed from ships and buoys. The differences between each analysis are 
mainly due to how each methodology treats areas with little to no data and how each analysis 
accounts for changes in measurement methods (for more details see Kennedy et al. 2010; Hansen 
et al. 2010; Huang et al. 2015; Sánchez-Lugo et al. 2017). The global average surface temperature 
has increased at an average rate of 0.08°C decade−1 since 1880 with a rate more than twice as high 
since 1981 (0.19°–0.20°C decade−1, depending on the dataset).

Unlike the global in situ surface temperature analyses, global atmospheric reanalyses use a 
weather prediction model to combine information from a range of satellite, radiosonde, aircraft, 
and other in situ observations to reconstruct historical weather and climate across the whole globe. 
These characteristics give reanalyses a unique ability to produce globally-complete temperature 
fields in a physically consistent manner; however, these datasets can also suffer from regional 
model biases and the effects of changes in the observation network over time (Simmons et al. 
2017, 2021). Nonetheless, surface temperatures from reanalyses should be consistent with in situ 
analyses in regions of good observational coverage. One of the reanalyses used here, ERA5, pro-
vides data from 1950 onward, but because of lower confidence in its surface temperature data prior 
to 1967 (Simmons et al. 2021), only data from 1967 onward are shown. In addition, temperatures 

Table 2.1. Temperature anomalies (°C) and uncertainties (where available) for 2020 with respect to the 1981–2010 
base period. Where uncertainty ranges are provided, temperature anomalies correspond to the central values 
of a range of possible estimates. Uncertainty ranges represent a 95% confidence interval. Note that for 
HadCRUT5, land values were computed using the CRUTEM 5.0.1.0 dataset (Osborn et al. 2021), ocean values 
were computed using the HadSST4.0.0.0 dataset (Kennedy et al. 2019), and global land and ocean values used 
the HadCRUT5.0.1.0 dataset (Morice et al. 2021).

Global
NASA-GISS

(°C)
HadCRUT5

(°C)

NOAA
GlobalTemp

(°C)

ERA5
(°C)

JRA-55
(°C)

Land +0.97 +0.85 ± 0.13 +0.95 ± 0.14 +0.99 +0.88

Ocean +0.37 +0.42 ± 0.07 +0.39 ± 0.16 +0.47 +0.41

Land and Ocean
+0.60 
±0.05

+0.57 ± 0.08 +0.54± 0.15 +0.62 +0.54
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Fig. 2.1. Global average surface air temperature anomalies (°C; 1981–2010 base period). In situ estimates are shown from 
NOAA/NCEI (Zhang et al. 2019), NASA-GISS (Lenssen et al. 2019), HadCRUT5 (Morice et al. 2021), CRUTEM5 (Osborn et al. 
2021), and HadSST4 (Kennedy et al. 2019). Reanalyses estimates are shown from ERA5 (Hersbach et al. 2020) and JRA-55 
(Kobayashi et al. 2015). Please note change in x-axis scale pre/post 2000.
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over the Great Lakes are adjusted as described in Simmons et al. (2021) to correct for a produc-
tion error. This correction has a negligible impact on the global average temperature. The other 
reanalysis, JRA-55, provides data from 1958 onward. The JRA-55 global average temperature is 
computed as in Simmons et al. (2017, 2021), that is by using JRA-55 analysis temperature over land 
and its background temperature over ocean and other water bodies. For both reanalyses, the 2-m 
air temperature is used over both land and ocean whereas the global in situ analyses use SST 
over ocean. This difference is expected to have only a very small impact on the global averages 
assessed here (see Fig. 1 of Simmons et al. 2017).

While annual temperature rankings provide an intuitive measure of the state of global tem-
peratures, a recently introduced global annual temperature score (Arguez et al. 2020) comple-
ments the annual temperature ranking by providing a basic characterization of the impacts of 
interannual variability on global temperature relative to the sustained upward trend since the 
mid-1970s. Scores range from 1 to 10, with a score of 1 (10) indicating the coldest (warmest) 10% 
of anomalies relative to the trend. In an era of seemingly perpetual near-record warm rankings, 
the annual temperature scores can help characterize whether the annual temperature ranking at-
tained in a given year was due primarily to the secular trend, interannual variability, or both. For 
example, 2016 was not only the warmest year on record, but it also exhibited a temperature score 
of 10, whereas 2014 previously attained a ranking of warmest yet exhibited a temperature score 
of 4 (on the colder half of the scale). This indicates that, on top of the secular trend, interannual 
variability had a prominent contribution to the record temperature in 2016, whereas interannual 
variability did not synergistically contribute to 2014’s previous record temperature. Using global 
annual time series from 1975 through 2020, the year 2020 registers a global annual temperature 
score of 9 (corresponding to the 80th–90th percentile) in the NASA-GISS and NOAAGlobalTemp 
datasets and a score of 8 (70th–80th percentile) in the HadCRUT5 dataset. This indicates that 
2020, much like 2019, was moderately-to-considerably warmer than would be expected due to 
the secular trend alone, suggesting that its ranking of warmest or second warmest for the three 
in situ datasets was enhanced by the effects of the interannual variability.

Separately, the global land surface temperature for 2020 was the highest in four of the five 
datasets, surpassing the previous record set in 2016 by 0.05°–0.11°C. The fifth dataset (JRA-55) 
has the global land surface temperature tying with 2016 as the highest. The globally averaged 
SST was either third or fourth highest on record, depending on the dataset.

The year was characterized by higher-than-average temperatures across much of the globe 
(Plate 2.1a; Appendix Figs. A2.1–A2.4). The most notable feature of 2020 is the very large positive 
temperature anomalies (+4.0°C or higher above the 1981–2019 base period) over Arctic Siberia 
and the adjacent sector of the Arctic Ocean (Appendix Fig. A2.2). Large positive anomalies (+2.0°C 
or higher) are also found across northern Europe, northern Asia, and the North Pacific Ocean. 
In contrast, average to below-average conditions were limited to the central and eastern tropi-
cal Pacific Ocean and across parts of northern North America, subpolar North Atlantic, and the 
southern Indian Ocean.

2) Lake surface water temperature—L. Carrea, C. Merchant, B. Calmettes, and J.-F. Cretaux
In 2020, the worldwide averaged satellite-derived lake surface water temperature (LSWT) 

warm-season anomaly was +0.11°C with respect to the 1996–2016 baseline. The mean warming 
trend during 1996–2020 was 0.22 ± 0.01°C decade−1, broadly consistent with previous analyses 
(Woolway et al. 2017; Woolway et al. 2018; Carrea et al. 2019, 2020). On average, anomalies in 
2020 were only 0.01°C higher than in 2019. The warm-season anomalies for each lake are shown 
in Plate 2.1b. Lake mean temperature anomalies were positive for 55% of lakes and negative for 
45%. Some lakes in eastern Africa recorded notable positive anomalies for both LSWT and lake 
water level (LWL; section 2d6). The LWL is defined as the height, in meters above the geoid (the 
shape that the surface would take under the influence of the gravity and rotation of Earth), of 
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the reflecting surface. Changes in lake water levels can be critical, as they affect water quantity 
and quality, food stocks, recreational opportunities, and transportation. 

Globally, distinct regions of coherent warm and cool LSWT anomalies can be identified in 2020. 
Lakes in subtropical eastern China were markedly warm, with the three largest warm anomalies 
(+2.54°C, +2.39°C, +2.38°C) in this region. In northern Europe, Canada, the southeastern United 
States, and southeastern Australia, negative anomalies were observed for 70% or more of the 
water bodies, while southern Europe, Alaska, the Middle East, northern Russia, and eastern 
Africa had positive anomalies. 

Four regions are considered here in more detail: Canada (number of lakes, n = 246, Fig. 2.2); 
Europe (n = 127, Fig. 2.2); Tibet (n = 104, Fig. 2.2); and Africa (n = 70). The boreal warm sea-
son (July–September) LSWT calculated from the satellite data shows a warming tendency of 
+0.39 ± 0.01°C decade−1 in Europe (Fig. 2.2a) and +0.18 ± 0.01 °C decade−1 in Canada (Fig. 2.2d). In 
Africa and Tibet, the tendency is closer to neutral (Figs. 2.2b,c). In Canada, 166 lakes had nega-
tive anomalies and 80 had positive in 2020, with an overall average of −0.22°C. In Tibet, 72% of 
the lakes had moderate-positive anomalies and 28% had negative anomalies, with an average of 
+0.20°C. In Europe, cool anomalies in northern Europe (67 lakes) balanced warmer anomalies in 
the south (60 lakes), producing +0.03°C on average. In Africa, positive anomalies were recorded 
for 80% of the 70 lakes over the considered period. Several of the warmest anomalies occurred in 
eastern Africa, where the LWL was also consistently higher than the 1996–2016 average. Therefore, 
for some of the eastern African lakes, LSWT was compared with their LWL anomalies, calculated 
using a time series of LWL changes obtained from satellite altimetry. 

Fig. 2.2. Satellite-derived warm-season lake surface 
water temperature anomalies (°C; 1996–2016 base 
period) per year from 1995 to 2020 for (a) Europe, 
(b) Africa (c) Tibet, and (d) Canada and per-lake 
temperature anomalies in 2020 (colored dots) in (e) 
Europe, (f) Canada, and (g) and Tibet. These values 
were calculated for the warm season (Jul–Sep in 
the NH; Jan–Mar in the SH; Jan–Dec in the tropics).
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Figure 2.3 presents a selection of African lakes (Victoria, Tanganyika, Malawi, Turkana, Rukwa, 
Albert, Kyoga, Edward, Mweru, Tana, and Bangweulu) for which the LSWT and the LWL normal-
ized anomalies from 1996 to 2020 are reported for each of the lakes, together with the spatial 
distribution of the 2020 LSWT anomalies. All the lakes exhibit positive LWL anomalies in 2020, 
while Lakes Turkana, Edward, and Rukwa have notably high LSWT positive anomalies. For these 
lakes, the LSWT 2020 anomalies were consistently positive across their full spatial extent, while 
there was a mix of positive and negative anomalies spatially across other lakes. Most of the lakes 
exhibited an upward long-term trend for both the LSWT and LWL. 

The LSWT warm-season averages for midlatitude lakes are computed for summers (July–Sep-
tember in the Northern Hemisphere [NH] and January–March in the Southern Hemisphere [SH]), 
and whole-year averages (January–December) are presented for tropical lakes (within 23.5° of 
the equator).

The LSWT time series were derived from satellite observations from the series of Along Track 
Scanning Radiometers (ATSRs), the Advanced Very High Resolution Radiometers (AVHRRs) on 
MetOp A and B, and the Sea and Land Surface Temperature Radiometers (SLSTRs) on Sentinel3A 
and 3B. The retrieval method of MacCallum and Merchant (2012) was applied on image pixels filled 
with water according to both the inland water dataset of Carrea et al. (2015) and a reflectance-
based water detection scheme. The LWL observations for 11 African lakes were analyzed where 
long time series are available from radar altimetry (Cretaux et al. 2011). The LWL were validated 
using a set of in situ data over lakes in South America, North America, Russia, and Europe (Ričko 
et al. 2012). For lakes with sizes comparable to those in East Africa, the accuracy is generally 
within 0.1 m (Cretaux et al. 2018; Quartly et al. 2020).

The satellite-derived LSWT data are spatial averages for each of 947 lakes, for which high-quality 
temperature records were available in 2020. The satellite-derived LSWT data were validated with 
in situ measurements with an average satellite minus in situ temperature difference less than 

Fig. 2.3. Satellite-derived lake surface water temperature (LSWT) and lake water level (LWL) normalized anomalies rela-
tive to the 1996–2016 period from 1995 to 2020 for 11 lakes in East Africa, together with the spatial distribution of the 
2020 LSWT anomalies (in °C) for the same lakes.
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0.5°C and, consequently, a good agreement was found. Lake-wide average surface temperatures 
have been shown to provide a more representative picture of LSWT responses to climate change 
than single-point measurements (Woolway and Merchant 2018).

3) Land and marine temperature extremes—S. E. Perkins-Kirkpatrick, R. J. H. Dunn, R. W. Schlegel,  
M. G. Donat , and Michael G. Bosilovich. 
Averaged over global land regions using the Global Historical Climatology Network-Daily data-

set (GHCNDEX; Donat et al. 2013), 2020 recorded the highest number of days where the maximum 
temperature was above the climatological 90th percentile (TX90p, “warm days”; Fig. 2.4). There 
were over 70 days, which is almost double the average of 36.5 days during 1961–90, and 10 days 
more than 2019. The number of cool nights (TN10p, where the minimum temperature was below 
the 10th percentile) was lower than the 1961–90 average, at just over 20 nights throughout the 
year. This was below average compared to the last 70 years but comparable to the recent decade. 

Fig. 2.4. Time series of (a) TX90p (warm days) and (b) TN10p (cool nights) from GHCNDEX relative to 1961–90. The red 
dashed line shows a binomial smoothed variation and red shading the coverage uncertainties estimated using ERA5 fol-
lowing Brohan et al. (2006). The dotted black line shows the percentage of land grid boxes with valid data in each year. 
Time series of (c) TX90p (warm days) and (d) TN10p (cool nights) from ERA5 relative to 1981–2010.
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The behavior of the GHCNDEX time series is comparable to the more spatially complete ERA5 
dataset (Fig. 2.4; Hersbach et al. 2019) for the last 40 years. 

More detail on regional extreme temperature events is available in Chapter 7. There was a high 
number of warm days during 2020 in Europe, China, and northeast Australia compared to aver-
age (Plate 2.1c), and the number of warm days was larger than the number of cool nights almost 
everywhere (Plate 2.1d). Many extreme maximum temperatures were recorded (Table 2.2), several 
of which are described in the following text, and others discussed in Chapter 7 and the World 
Meteorological Organization (WMO) State of the Global Climate (2021). 

In the United States, Furnace Creek in Death Valley (California) recorded a yet-to-be certified 
temperature of 54.4°C—the hottest temperature measured on Earth since 1931—on 16 August 
during a heat wave that affected the western and midwestern states. Another heat wave hit the 
southwest in early September where the extreme heat fueled wildfires (see sections 2h3, 7b2) and 
set new records. In Canada, Montreal and Burlington experienced six consecutive days at 32°C 
during a June heat wave. This heat wave lasted into July, enhancing conditions for wildfires in 
the Quebec province and seeing numerous daily maximum temperature records broken. Many 
locations in South America experienced extreme temperatures during September and October, 
with multiple records broken. ConcepciÓn, Paraguay, reached 42.6°C on 2 October; Sao José de 
Chiquitos, Bolivia, reached 43.4°C on 8 October, and Sao Paulo, Brazil, recorded four of its five 
highest daily maximum temperatures on record during this time (see sections 7d2, 7d3). Extreme 
heat also occurred over the Caribbean and Mexico during April. Daily maximum temperatures 
reached 39.7°C and 48.8°C at Veguitas, Cuba, and Gallinas, Mexico, respectively, on 12 April.

A protracted extreme temperature event occurred over Siberia during the first half of 2020. Heat 
wave frequency (HWF) and magnitude (HWM) indices for April–June over Siberia were the largest 
in the MERRA2 record (Collow et al. 2020; Fig. 2.5). The long-term and widespread heat helped 

Table 2.2. Examples of extreme maximum temperatures in 2020 described in this 
section.

Country Location Date Value (°C) Notes

UK Heathrow 31 Jul 37.8 Third-hottest UK day

Spain Around Seville 5 Mar 36 —

Russia
Verkhoyansk 

(Siberia)
20 Jun 38

Hottest regional day 
(Provisional Arctic Circle 

record)

United States
Furnace Creek, 
Death Valley, 

California
16 Aug 54.4

Globally third-hottest day on 
record

United States
Woodland Hills, 

Los Angeles
6 Sep 49.4 —

Canada Montreal 27 May 36.6 Hottest May

Canada Miramichi 19 Jun 37.2 New annual record

Iraq Basra 27 and 28 Jul 53 —

Iraq Baghdad 28 Jul 51.8 New record

Lebanon
Houch al-
Oumara?

28 Jul 45.6 New record

Syria Damascus 29 Jul 46 New record

Japan Hamamatsu 18 Aug 41.4 Equal record

Australia Sydney 29 Nov 25.4 Hottest November night

Antarctica Casey 24 Jan 9.2 New record

Antarctica Esperanza Base 6 Feb 18.3 New Antarctic record
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fuel large wildfires in the region (see sec-
tions 2h3, 7g2, Sidebar 5.1). Verkhoyansk 
recorded 38.2°C on 22 June, provisionally 
the highest temperature ever measured 
within the Arctic Circle.

Antarctica experienced a period of 
record-breaking temperatures during 
23–26 January 2020 at Casey, where mini-
mum temperatures did not fall below 0°C 
and the highest ever daily maximum and 
minimum temperatures were recorded 
(9.2°C and 2.5°C, respectively). On 6 Feb-
ruary, the highest Antarctic temperature 
on record was measured at Esperanza 
Base (18.3°C; see section 6b, Sidebar 6.1). 
This was part of a warm spell lasting 
from 5–13 February, causing widespread 
glacial melting. 

During early August, record warm nights were widespread across the United Kingdom, with 
parts of the southeast experiencing five consecutive tropical nights (temperatures greater than 
20°C) and 6 days with peak temperatures over 34°C (see section 7f2). A heat wave (defined as a 
period of three or more consecutive TX90p days [Perkins and Alexander 2013]) affected Spain 
and Portugal in May (see section 7f 5). 

An intense heat wave occurred over the Middle East during July, with daily maximum tem-
peratures reaching over 53°C in Basra (Iraq) on both the 27th and 28th and widespread maximum 
temperatures over 45°C. During a heat wave in August, Tokyo experienced three consecutive days 
of maximum temperature above 35°C and multiple locations in central southwest Japan recorded 
temperatures above 39°C on 17 August. Numerous large-scale heat waves occurred over Vietnam, 
with maximum daily temperatures greater than 35°C over large parts of the country during June. 

Australia had a warm start to 2020, with its second-warmest summer (December 2019–February 
2020) on record for maximum and minimum temperature (2.11°C and 1.64°C above the 1961–90 
average, respectively). On 4 January the Sydney suburb of Penrith recorded 48.9°C, the hottest 
temperature ever recorded across all Australian metropolitan areas. The country also experienced 
an anomalously warm spring, with records for nationally averaged minimum spring (Septem-
ber–November) and November temperatures (1.91°C and 2.9°C above average, respectively) . 
Numerous local maximum temperature records across the southeast were also broken during 
November (see section 7h4 for details).  

Marine heatwaves (MHW) are defined as SST above the climatological 90th percentile for five 
or more days (Hobday et al. 2016). Categories of MHW are defined in Hobday et al. (2018). Using 
NOAA OISST v2 (Banzon et al. 2020), 84% of the surface of the ocean experienced at least one 
MHW in 2020 (Fig. 2.6). Category 2 – Strong events were the most common (45%), vastly exceed-
ing Category 1 – Moderate events (28%), marking the seventh consecutive year that Category 
2 – Strong MHWs have been the dominant category. The ocean experienced a global average of 
77 MHW days, exceeding the 2019 average of 74 days, but fewer than the 2016 record of 83 days 
(Fig. 2.6). On average, 21% of the surface of the ocean in 2020 was experiencing a MHW on any 
given day (Fig. 2.6). This is slightly higher than the 2019 average of 20%, but lower than the 2016 
record of 23%. Roughly the entire surface of the ocean experienced at least one MHW in 2020, 
with the exception of the equatorial Pacific Ocean. This is likely because heat anomalies in the 
equatorial Pacific Ocean are tightly linked with the ENSO, which was in a neutral or moderately 

Fig. 2.5. MERRA-2 Apr–Jun seasonal heatwave frequency (HWF; 
count) and heatwave magnitude (HWM; °C; Callow et al. 2020) 
area averaged for the Siberian region affected by anomalous heat 
wave conditions (60°–160°E, 50°–80°N, land only).
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negative phase in 2020 (see section 4b). The subpolar North Atlantic, southeast of Greenland, was 
another area that did not experience MHWs in 2020, a pattern persistent from 2014–18. 

To show temperature extremes over land, we use a subset of the moderate extremes indices 
developed by the WMO Expert Team in Climate Change Detection and Indices (ETCCDI; Zhang 
et al. 2011). In the GHCNDEX dataset (Donat et al. 2013), daily temperature values from the GHCND 
(Menne et al. 2012) are interpolated onto a regular 2.5° grid. As in previous years, the spatial cov-
erage is sparse (Plates 2.1c,d) and restricted to North America, parts of Eurasia, and Australia. 
To fill the gaps, we use the ERA5 reanalysis (Hersbach et al. 2019), though we have not included 
the preliminary release of the extension from 1950 to 1978. With the shorter temporal coverage, 
the reference period for the extremes indices is 1981–2010 (compared to 1961–90 for GHCNDEX), 
which can lead to differences when comparing recent trends (Dunn et al. 2020a; Yosef et al. 2021). 
Siberian heat waves were calculated from the MERRA-2 dataset (Gelaro et al. 2017; Collow et al. 
2020). HWF frequency is the count of days satisfying heat wave conditions, where heat waves are 
defined as the MERRA-2 daily mean 2-m temperature exceeding the calendar day 90th percentile 
for at least three consecutive days. HWM magnitude is the average daily mean 2-m temperature 
anomaly over all heat wave days.

4) Tropospheric temperature—S. Po-Chedley, J. R. Christy, L. Haimberger, and C. A. Mears
The 2020 annual global lower tropospheric temperature (LTT) tied with 2016 as the highest on 

record. The annual average LTT was 0.49°–0.72°C above the 1981–2010 average, depending on 
dataset, and 10%–16% of Earth’s surface experienced record high temperatures (Plate 2.1e). Such 
expansive and record warmth is notable because it occurred even though the ENSO exhibited 
neutral or La Niña conditions throughout the year (Fig. 2.7a) and is thus consistent with the back-
ground upward trend since 1958. In the past, record warm and cold tropospheric temperatures 
have typically followed El Niño and La Niña events, respectively (Figs. 2.7a,b). A La Niña pattern 
was established in August, which will likely depress the LTT in 2021 because tropospheric tem-
perature lags ENSO by several months. 

More than 90% of Earth’s lower troposphere experienced above-average temperatures (Plate 
2.1e). Regions experiencing record warmth included much of Europe and Russia, the Indian Ocean, 
the northeast and South Pacific, and a region off the coast of East Antarctica. Limited areas of 
below-average LTT included Canada, Greenland, and parts of Antarctica and the Southern Ocean. 

Above-average lower tropospheric temperatures are consistent with long-term greenhouse gas 
warming and less-pronounced volcanic cooling over the past 3 decades (relative to significant cool-
ing from the eruptions of Agung, El Chichón, and Pinatubo in 1963, 1982, and 1991, respectively; 

Fig. 2.6. Annual global marine heatwave (MHW) occurrence from NOAA OISST using a climatology base period of 1982–2011. 
(a) Daily average percent of the ocean that experienced an MHW. (b) Total percent of the ocean that experienced an MHW 
at some point during the year. The values shown are for the highest category of MHW experienced by each ocean grid cell 
during 2020. (c) Total average of daily MHW occurrence throughout the entire ocean. 
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e.g., Santer et al. 2014; Christy and McNider 2017). Recent warmth is recorded by in-situ radiosonde 
(balloon-borne), microwave (satellite), and reanalysis datasets (Fig. 2.8). Global and tropical 
tropospheric temperature (TTT) trends since 1958 and 1979 are approximately +0.18°C decade−1 
(Table 2.3). While the individual tropospheric temperature datasets are broadly consistent, the 
temperature time series and trends vary across datasets, by altitude (TTT samples temperature 
at higher altitudes than LTT), and by region. As noted above, 2016 and 2020 are statistically tied 
for the warmest year on record; the average annual near-global LTT across all eight datasets was 
0.68°C and 0.65°C above the climatological normal, respectively. In individual datasets, 2016 was 
the warmest year in the RATPACvA2, RICHv1.7, and RAOBCORE v1.7 radiosonde datasets (Free 
et al. 2004; Haimberger et al. 2012), the UAH v6.0 satellite product (Spencer et al. 2017), and JRA-
55 reanalysis (Kobayashi et al. 2015). 2020 was the warmest year in the RSS v4.0 satellite product 
(Mears and Wentz 2016) and the ERA5 and MERRA-2 reanalyses (Hersbach et al. 2020; Gelaro 
et al. 2017). Structural uncertainty in satellite dataset construction can also affect the spatial 
pattern of record warm temperatures. RSS has a larger global surface area of record warm LTT 
values in 2020 compared to the UAH dataset (16% versus 10%, respectively; Plate 2.1e).

The tropical troposphere is expected to experience substantial warming in response to the 
increasing concentration of atmospheric carbon dioxide (CO2; Flato et al. 2013). Simulations of 
satellite era tropical and global tropospheric warming in the most recent generation of climate 
models generally exhibit substantially greater warming than observations (McKitrick and Christy 
2018, 2020). Over 1979–2014, the multimodel average TTT trend is +0.30°C decade−1, while satellite-
derived trends range from 0.09° to 0.20°C decade−1 (Po-Chedley et al. 2021). The difference in the 
rate of warming is partially attributable to Pacific decadal climate variability, which has reduced 
warming in the observed record (Po-Chedley et al. 2021). Such internal climate variability is 
random and is only captured by chance in climate model simulations. A number of individual 
model realizations simulate similar Pacific decadal climate variability and approximately 13% 
(24%) have tropical (global) tropospheric temperature trends that are within the range of satel-
lite observations (Po-Chedley et al. 2021). Other possible drivers of this model-observational 

Fig. 2.7. (a) Sea surface temperature anomaly (°C) in the Niño 3.4 region in the central equatorial Pacific. (b) Fraction of 
Earth (%) with record warm (red) and cold (blue) monthly LTT values. The width of the line represents the difference 
between the UAH and RSS datasets. 
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Table 2.3. Temperature trends (°C decade−1) for near-global lower tropospheric 
temperature (LTT) and tropical tropospheric temperature (TTT) over 1958–2020 
and 1979–2020. 

LTT  
(90°S–90°N)

TTT  
(20°S–20°N)

Start Year 1958 1979 1958 1979

Radiosonde

NOAA/RATPACvA2 0.19 0.21 0.16 0.17

RAOBCOREv1.7 0.18 0.19 0.15 0.15

RICHv1.7 0.20 0.21 0.17 0.19

Satellite

UAHv6.0 — 0.14* — 0.13

RSS v4.0 — 0.22 — 0.18

UWv1.0 — — — 0.18

NOAA STAR v4.1 — — — 0.23

Reanalyses

ERA5 — 0.18 — 0.16

JRA-55 0.17 0.19 0.16 0.15

NASA/MERRA-2 — 0.19 — 0.19

Median 0.19 0.19 0.16 0.18

*The vertical sampling in UAH LTT is slightly different from other datasets and results in temperature 
trends that are approximately 0.01°C decade−1 smaller than other datasets.

Fig. 2.8. Monthly average lower tropospheric temperature (LTT) anomalies (°C) for (a) radiosonde, (b) satellite, and (c) 
reanalysis datasets. Time series are smoothed using a 12-month running average. Annual averages are displayed for the 
RATPAC dataset. 
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discrepancy include model biases in their response to greenhouse gas forcing, deficiencies in 
the external forcing applied to models, and observational biases. 

The 2σ trend error estimate for individual satellite datasets is approximately 0.04°C decade−1 

(Mears et al. 2011; Po-Chedley et al. 2015; Spencer et al. 2017). Uncertainty in satellite datasets 
arise from instrument calibration and the removal of non-climatic artifacts, particularly between 
2000 and 2005 (Christy et al. 2018). The conversion of level temperatures in radiosonde and re-
analysis data to synthetic satellite brightness temperatures and incomplete spatial sampling in 
radiosonde data contribute to the trend error (Mears et al. 2011). The 2σ tropospheric trend error 
associated with these effects is approximately 0.01°C decade−1 and 0.02°C decade−1, respectively, 
in both the tropical and global domain.

5) Stratospheric temperature and winds—W. J. Randel, C. Covey, and L. Polvani
Temperatures in the middle and upper stratosphere continued to exhibit strong decadal-scale 

cooling as a result of anthropogenic CO2 increases. Lower stratospheric temperatures have been 
relatively constant since ~1998 as the Montreal Protocol stabilized ozone levels, but a transient 
temperature increase occurred in early 2020, likely related to enhanced stratospheric aerosols 
from extreme Australian bushfires. The Arctic and Antarctic stratospheric polar vortices were 
remarkably strong and undisturbed in 2020, with accompanying large polar ozone depletion in 
both hemispheres. Additionally, a new anomalous disruption of the stratospheric quasi-biennial 
oscillation (QBO) occurred in 2020, following a similar event in 2016. 

Time series of global monthly temperature anomalies from the lower to upper stratosphere 
based on satellite measurements are shown in Fig. 2.9. The middle and upper stratosphere data 
(Stratospheric Sounding Unit [SSU] 1, 2, 3) represent ~20-km thick layers from infrared (SSU) data 
merged with more recent measurements (Zou and Qian 2016; Randel et al. 2016), while the lower 
stratospheric temperatures (TLS) represent the layer over ~13–22 km from microwave data. As 
shown in previous reports (Randel et al. 2020), the satellite TLS measurements agree well with 
radiosonde and reanalysis datasets. Middle- and upper-stratosphere temperatures show strong 
cooling since 1979 with larger negative trends at higher altitudes, a long-predicted response to 
increases in atmospheric CO2 (Manabe and Wetherald 1967). The upper stratospheric cooling is 
modulated by stratospheric ozone changes, with weaker cooling after 1998 tied to observed in-
creases in upper-stratospheric ozone (Maycock et al. 2018). The ozone is evolving as a response to 
changes in ozone-depleting substances linked to the Montreal Protocol (WMO 2018). In addition 
to long-term cooling, the upper-stratosphere time series show modulation by the 11-year solar 
cycle and transient warming from large volcanic eruptions in 1982 and 1991. 

TLS have been relatively constant since the later 1990s with small year-to-year variability. 
Over most of the globe, the TLS layer spans the cross-over between tropospheric warming and 
stratospheric cooling associated with CO2 increases; hence ozone variations strongly influence 
temperatures in this layer. TLS cooling prior to ~1998 is tied to ozone decreases in the lower 
stratosphere, while there are small ozone changes thereafter (WMO 2018). The TLS in Fig. 2.9 show 
an unusually large short-term warm anomaly in early 2020 that is probably related to enhanced 
stratospheric aerosols in the SH caused by extreme Australian bushfires and resulting smoke 
injection into the stratosphere (Kablick et al. 2020; Khaykin et al. 2020; Schwartz et al. 2020; 
Hirsch and Koren 2021; Yu et al. 2021). 

The stratospheric winter polar vortices were uniquely strong and undisturbed in both hemi-
spheres in 2020. The Arctic polar vortex was the strongest since the beginning of the satellite era 
and coincided with record-low stratospheric ozone levels in the Arctic that lasted into spring, 
together with a record-breaking positive Arctic Oscillation index in the troposphere during 
January–March (Lawrence et al. 2020). The Antarctic polar vortex in 2020 was also anomalously 
strong and persistent, with polar temperatures at record cold levels throughout spring (November–
December). This strong vortex was linked to a large and persistent ozone hole over the Antarctic, 
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which lasted to the end of December. While the polar vortices were anomalously cold, they have 
minimal influence on global average temperatures. 

Another notable feature of stratospheric circulation in 2020 was a new disruption of the QBO, 
which is a repeating reversal of equatorial zonal winds, characterized by downward-propagating 
easterly and westerly wind regimes with a mean periodicity of ~28 months. While regular down-
ward propagation from the upper to lower stratosphere had been observed continuously since its 
discovery in the early 1960s, a disruption occurred in 2016, when anomalous easterlies appeared in 
the lower stratosphere disconnected from upper levels, and a similar disruption occurred in 2020 
(see Fig. 2.46). This behavior has been attributed to strong wave forcing from extratropical latitudes 
(e.g., Osprey et al. 2016; Coy et al. 2017; Anstey et al. 2021). With two disruptions over the last 5 
years, there is now substantial uncertainty regarding QBO predictability and future evolution. 

Fig. 2.9. Monthly global stratospheric temperature anomalies from the lower to upper stratosphere (bottom to top). Middle 
and upper stratosphere data are from the stratospheric sounding unit (SSU), representing thick-layer averages centered 
near 30, 38, and 45 km (SSU1, SSU2, and SSU3, respectively). Lower stratosphere temperatures (TLS) are ~13–22 km layer 
averages from satellite microwave measurements. Each time series has been normalized to zero for the period 1995–2005, 
and curves are offset for clarity. 
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Sidebar 2.1: Night marine air temperature—R. C. CORNES, D. I. BERRY, R. JUNOD, E. C. KENT, 
AND N. A. RAYNER

Sea surface temperature (SST) is the principal variable for 
monitoring surface temperature change across ocean regions. 
Ship-based SST measurements provide the mainstay of the 
record, which extends back to the mid-nineteenth century, 
and these data have been supplemented with observations 
from moored and drifting buoys since the 1990s. In addition 
to recording SST, many ships also take measurements of air 
temperature but in general these marine air temperature 
(MAT) data are sparser than SST and the values are prone to 
daytime heating biases (Berry et al. 2004). To mitigate these 
biases and improve the accuracy of gridded anomaly datasets, 
only the nighttime values are selected. These night marine air 
temperature (NMAT) datasets provide a useful independent 
comparison against SST datasets.

NMAT readings require adjustment to account for variations 
in ship observation height, including an increase over time in 
the mean height of the bridge where the observations 
are typically taken (Kent et al. 2013). If this adjustment 
is not applied, a reduced trend would be apparent in the 
data series since temperature generally decreases with 
height. The temperature values are typically adjusted 
to the standard reference height of 10-m although the 
CLASSnmat dataset (Cornes et al. 2020) also provides 
values adjusted to 2 m and 20 m for comparison against 
other air temperature datasets.

Over long time periods and over sufficiently large spa-
tial regions it has been assumed that anomalies of SST 
and NMAT anomalies show similar variability and trends 
(Kennedy et al. 2019). Climate model simulations indeed 
depict this relationship. Huang et al. (2015) demonstrate 
using the GFDL-coupled model that NMAT and SST display 
a consistent trend over the 1875–2000 period, and this 
evidence was used to justify the use of NMAT to bias-
correct the SST data in the ERSST dataset. However, in 
situ NMAT and SST datasets indicate a divergent trend 
at the global scale, with NMAT anomalies increasing at a 
slower rate than SST (Cornes et al. 2020; Folland and Karl 
2001; Kennedy et al. 2019). Initial analyses into this subject 
concluded that while it is difficult to ascertain the cause, 
the magnitude of the difference is small relative to the 
global warming trend (Folland and Karl 2001). However, 
the more up-to-date CLASSnmat and UAHNMAT (Junod 
and Christy 2020) datasets indicate an increase in this 
differential (Fig. SB2.1)—particularly in recent years—
when compared against modern SST datasets, in this case 
HadSST4 (Kennedy et al. 2019).

The NMAT-SST discontinuity may appear as a step-like 
change in the early 1990s (Kennedy et al. 2019), although this 
may be a manifestation of a long-term divergence between SST 
and NMAT coupled with the use of a common 1961–90 base 
period for the calculation of the anomalies. In the evaluation 
of the long-term trends in NMAT and SST, differences in spa-
tial coverage may have a large influence on the results (Jones 
2020). In general, SST is more spatially complete than NMAT. 
This results from both the increase in drifting buoy observations 
and the considerable decline in voluntary observing ships (VOS; 
https://www.vos.noaa.gov/vos_scheme.shtml) from >7000 in 
the 1980s to ~1000 at present. Hence, only co-located grid-cell 
values across the three datasets are averaged in Fig. SB2.1. Note 
that differences in actual temperatures cannot be inferred from 
this figure because the time series are expressed as anomalies 
from climatological averages.

Fig. SB2.1. Large-scale average annual anomalies in the 
CLASSnmat (Cornes et al. 2020), UAHNMAT (Junod and Christy 
2020), and HadSST4 (Kennedy et al. 2019) datasets relative to 
a 1961–90 base period over the period 1900–2020 (UAHNMAT 
to 2018).
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The trend difference in NMAT and SST is 
strongest in the tropics (Fig. SB2.1), which may 
be attributable to changes in the atmospheric 
circulation across the region (Christy et al. 2001). 
Recent analyses by Rubino et al. (2020) examined 
the difference in MAT (day and night) and SST data 
recorded by moored tropical ocean atmosphere 
buoys in the tropical Pacific Ocean. The buoy data 
series are generally short in length (covering at 
most the period 1985–2010) relative to the century-
long ship data, which inhibits definitive conclusions 
regarding long-term trends in MAT data relative 
to SST. However, the authors observed marked 
differences in these variables, particularly on sub-
decadal timescales, which highlight the difficulty 
in assuming that MAT and SST are interchangeable.

Reanalysis datasets provide additional information about 
the (N)MAT-SST trend difference. Figure SB2.2 shows global 

and hemispheric annual average 2-m air temperature 
and SST anomalies (relative to 1981–2010) calculated 
from ERA5 over the period 1950–2020. This figure 
indicates a comparable trend in SST and co-located 
air temperature across all regions including the trop-
ics (see also Table SB2.1), which is in contrast to the 
results in Figure SB2.1 using the gridded NMAT and 
SST datasets. Note that ERA5 is spatially complete 
(apart from the masking of sea ice regions) in Fig. 
SB2.2 whereas the in situ datasets have missing grid 
cells. Conversely, ERA5 data across the Arctic region, 
which are excluded in the Figure SB2.2 averages, show 
a much greater warming trend in air temperature 
relative to SST (Fig. SB2.3); however, SST is derived 
indirectly in these regions using sea ice concentration 
data (Hirahara et al. 2016).

It remains unclear if the trend difference seen in SST 
and NMAT datasets is due to physical processes or if it 
results from biases in either the SST or NMAT data or 
both. Understanding this feature is particularly impor-
tant because global mean surface temperature (GMST) 
data products (Lenssen et al. 2019; Morice et al. 2021; 
Vose et al. 2012) combine anomalies of near-surface 
temperature over land with anomalies of SST rather 
than MAT. Resolving this question would also inform 
the debate about the suitability of comparing these 
merged GMST datasets against global climate model 
simulations of air temperature (Cowtan et al. 2015; 
Jones 2020), especially since simulated values using 
MAT for the marine component of global air tempera-
ture have been shown to warm at a slightly faster rate 
than a comparable dataset that used SST as the marine 
component (Richardson et al. 2018)

Table SB2.1. Decadal trends (°C decade−1) in large-scale average anomalies 
from 1979 to 2020 in the sea surface temperature (SST) and marine air 
temperature (MAT) data from ERA5 and in CLASSnmat and HadSST4. Note 
that ERA5 has complete coverage over ocean regions whereas CLASSnmat 
and HadSST4 are not complete. CLASSnmat and HadSST4 are masked to have 
the same spatial coverage.

ERA5

Region SST Air Temperature CLASSnmat HadSST4

Global 0.120 0.127 0.093 0.125

Northern extratropics 0.171 0.183 0.114 0.151

Tropics 0.116 0.123 0.039 0.101

Southern extratropics 0.081 0.084 0.069 0.098

Fig. SB2.2. Large-scale average anomalies in 2-m air temperature 
across ocean regions and sea surface temperature from the ERA5 
reanalysis dataset (Hersbach et al. 2020) from 1950 to 2020. Note that 
in contrast to Fig. SB2.1, the anomalies in this figure are expressed 
relative to 1981–2010 averages. The data prior to 1978 are currently 
considered experimental. Areas with sea ice are masked from the 
averaging.
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These analyses of NMAT and MAT illustrate the importance 
of exploring many different variables, using as many different 
methods as possible, and that some questions are yet unan-
swered. Despite the various issues discussed and differences 
in long-term trend, NMAT and MAT show similar year-to-year 
variability to spatially-matched SST in terms of the global 

Fig. SB2.3. Linear trends in the difference between 2-m air temperature and sea 
surface temperature (SST) anomalies (°C decade−1; relative to 1981–2010 averages) 
in the ERA5 dataset over the period 1980–2020. Red colors indicate where air 
temperature is warming faster than SST and blue colors where the reverse is true. 

average time series (Figs. SB2.1, SB2.2) and spatially for the 
annual average anomalies (Plate 2.1f). However, while 2020 
was marginally the warmest year in globally average SST and 
reanalysis-derived MAT data (see section 2.b.1), this is not the 
case with CLASSnmat, which was cooler than 2016 and thus 
ranked 2020 as the second-warmest year in the record. 
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c. Cryosphere
1) Permafrost thermal state—J. Noetzli, H. H. Christiansen, F. Hrbacek, K. Isaksen, S. L. Smith, L. Zhao, and 

D. A. Streletskiy
Ongoing increases in global permafrost temperatures have occurred over the past several 

decades, with regional variability in magnitude. There have been short breaks in the warming 
trend due to shorter-term meteorological fluctuations, such as summer heat waves or snow-poor 
winters (e.g., Biskaborn et al. 2019; Romanovsky et al. 2007; Harris et al. 2009; Wu and Zhang 
2008; PERMOS 2019; Etzelmueller et al. 2020). The largest increases were observed for sites with 
low permafrost temperatures, i.e., several degrees below 0°C, and low ground ice contents. Warmer 
and ice-rich permafrost warms up at a lower rate due to latent heat uptake during ice melt. This 
global picture continued in 2020. Record values were observed at many sites in polar and moun-
tain regions. However, data could not be collected from all permafrost observation sites in 2020 
(particularly in North America) due to pandemic-related travel restrictions.

Permafrost temperatures reported in 2020 for the Arctic regions were the highest on record 
at a majority of the observation sites. Warming rates for colder permafrost were as high as 
0.8°C decade−1, compared to less than 0.3°C decade−1 for permafrost at temperatures close to 

0°C. Details on Arctic permafrost are 
given in section 5h. Increasing permafrost 
temperatures were reported from the 
Antarctic Peninsula and Victoria Land 
for the past decade up to 2018 (cf. Noetzli 
et al. 2019); however, deep boreholes and 
complete time series were scarce and the 
trend lacks statistical significance.

Mountain permafrost accounts for ap-
proximately 30% of the global area under-
lain by permafrost (Hock et al. 2019). Data 
are primarily available from the European 
Alps, the Nordic countries, and central 
Asia (Qinghai-Tibetan Plateau; QTP), but 
they are sparse for other mountain re-
gions. A mean permafrost temperature in-
crease of 0.19°C decade−1 was observed for 
2007–16 (Biskaborn et al. 2019). Warming 
rates are heterogeneous due to the high 
spatial variability in thermal conditions 
resulting from complex topography, snow 
regime, and ground ice content. Highest 
rates are observed for bedrock with a low 
ice content and permafrost temperatures 
several degrees below 0°C and without 
a thicker winter snow cover. Permafrost 
temperatures recorded in 2020 in the Eu-
ropean Alps were higher than in 2019 and 
close to or above the previous maximum 
observed in 2015 at the majority of sites 
(Fig. 2.10; Noetzli et al. 2020; updated 
from Pogliotti et al. 2015; PERMOS 2019) 
due to an early onset of the snow cover 
in autumn 2019 and the warmest year 

Fig. 2.10. Permafrost temperature measured in boreholes in the 
European Alps and the Nordic countries at a depth of approxi-
mately 10 m (monthly means, upper panel) and 20 m (annual 
means, lower panel). (Sources: Switzerland: Swiss Permafrost 
Monitoring Network PERMOS; Norway: Norwegian Meteorologi-
cal Institute and the Norwegian Permafrost Database NORPERM; 
France: updated from Magnin et al. 2015; Italy: updated from 
Pogliotti et al. 2015.)
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recorded in Europe (Copernicus Climate Change Service 2021). Permafrost temperatures are thus 
higher or similar as before the temporary cooling in 2016 and 2017, which persisted in 2018 and 
only started to reverse in 2019. Temperatures at Murtèl-Corvatsch in the Engadin (Switzerland) 
increased by ~0.6°C at 20-m depth and by more than 1°C at 10-m depth over the past 3 decades. 
On Stockhorn above Zermatt (Switzerland), temperatures at 23-m depth increased by ~0.4°C 
over the past 2 decades. Surface velocities of rock glaciers generally follow the evolution of the 
permafrost temperatures. In the European Alps, rock glacier surface velocities for the year 2020 
are at or above the previous maximum observed in 2015 (see Sidebar 2.1). 

In the Nordic countries, permafrost temperatures measured in 2020 were the highest or sec-
ond highest on record, continuing the reported warming trend (Fig. 2.10; Noetzli et al. 2020; 
Etzelmüller et al. 2020). In the cold mountain permafrost at Juvvasshøe in southern Norway, 
permafrost temperatures at 20-m depth increased by 0.5°C from 1999 to 2020. Permafrost tem-
peratures decreased in Svalbard at 10-m depth compared to the previous extremely warm years 
due to the relatively cold winters in 2019 and 2020 (Christiansen et al. 2021). However, they are 
still above the long-term average; for example, at Kapp Linne they were 0.7°C higher in 2020 than 
at the start of the record in 2009.

Permafrost temperatures measured in 
the hinterland of the QTP in Central Asia 
continued to increase at all sites, with 
remarkable warming trends but variable 
rates: at 10-m depth they range between 
0.45°C decade−1 (QTB15, Fig. 2.11) and 
0.04°C decade−1 (QTB06), and at 20-m 
depth between 0.24 and 0.02 °C decade−1 
(Zhao et al. 2020, 2021). 

The active layer thickness (ALT) is 
the ground layer that freezes and thaws 
annually and lies above the permafrost. 
Changes in ALT are a key indicator for 
changing permafrost conditions. ALT was 
not or only partly reported for some sites 
in Canada and Alaska due to COVID-19 
travel restrictions. The ALT in northern 
Alaska was 6 cm thinner in 2020 than the 
decadal average (2008–17) and 8 cm thinner than in 2019. In the Alaska Interior, ALT was thicker 
than average, but 5 cm thinner than in 2019. ALT at the majority of sites in the Nordic region was 
similar to the previous year, at or close to record values. In Russia, ALT was thicker than aver-
age and thicker than in 2019 in all regions, except for Chukotka, where ALT was thinner than in 
2019. The Siberian heat wave (see section 7g2, Sidebar 5.1) caused particularly thick ALT, with 
more than 10 cm larger values than in 2019 in West Siberia and neighboring sites in northwestern 
Russia. ALT in the regions of central and eastern Siberia was only 3 cm above previous regional 
averages. More details on ALT in Arctic regions are given in section 5h. 

In the Scandinavian and European Alps, ALT values for 2020 were at or close to the previous 
maximum at most of the sites. In the Swiss Alps, record values were observed in 2020 for most 
sites, with values up to 10 m in extreme cases. Along the Qinghai-Tibet Highway (Kunlun moun-
tain pass to Liangdaohe), an ALT increase was observed with a mean of 19.5 cm decade−1 from 
1981 to 2019 (Fig. 2.12). In Antarctica, the February 2020 heat wave in the northwest Weddell Sea 
sector (section 2b3) accelerated active layer thickening. Thaw depth on James Ross Island reached 
80 cm. This is comparable to observations in 2016/17 (Hrbáček et al. 2021), one of the warmest 
years so far measured in this sector (J. Turner et al. 2020).

Fig. 2.11. Temperature measured in permafrost boreholes along 
the Qinghai-Xizang Highway on the Tibetan Plateau at 10-m 
depth from 2005 to 2019. (Source: Cryosphere Research Station 
on Qinghai-Xizang Plateau, CAS.)
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Long-term observation of permafrost 
relies on field observations of ALT and 
permafrost temperatures measured in 
boreholes. International data are collect-
ed by the Global Terrestrial Network for 
Permafrost (GTN-P) as part of the Global 
Climate Observing System (GCOS). Per-
mafrost temperatures are logged manu-
ally or continuously using multi-sensor 
cables in boreholes reaching at least the 
depth of the zero annual amplitude. An 
assessment of the measurement accuracy 
of permafrost temperatures worldwide 
varied from 0.01° to 0.25°C, with an as-
sumed overall accuracy of about 0.1°C 
(Biskaborn et al. 2019; Romanovsky et al. 
2010). ALT is determined by mechani-

cal probing where possible and has an accuracy of ~1 cm. Probing is not possible in bedrock or 
debris material, particularly in mountain regions. Here, ALT is interpolated from temperature 
sensors in boreholes. The current global coverage of permafrost monitoring sites is sparse; it is 
particularly limited in regions such as Siberia, central Canada, Antarctica, and the Himalayan 
and Andes Mountains. 

Fig. 2.12. The active layer thickness (cm) and air temperature 
anomaly (°C) in the permafrost zone along the Qinghai-Tibet High-
way during the period 1981–2019. The air temperature anomaly 
is estimated relative to the climate baseline 1981–2010.

Sidebar 2.2: Rock glacier kinematics—C. PELLET, X. BODIN, R. DELALOYE, V. KAUFMANN, J. NOETZLI,  
E. THIBERT, AND A. KELLERER-PIRKLBAUER

Rock glaciers are geomorphological indicators of permafrost 
occurrence in mountain areas and develop in most mountain 
ranges worldwide. Their kinematics derived from surface dis-
placement measurements typically range from several centi-
meters up to several meters per year (Kääb and Vollmer 2000). 
Long-term studies from the European Alps have shown that the 
velocity of rock glaciers in a specific region responds sensitively 
and synchronously to interannual and decennial changes in 
ground temperature (e.g. Bodin et al. 2009; Delaloye et al. 2008, 
2010; Kääb et al. 2007; Kellerer-Pirklbauer and Kaufmann 2012, 
2018; Staub et al. 2016; Thibert et al. 2018; PERMOS 2019). 
Measurements of the surface velocity of rock glaciers based on 
aerial images and geodetic surveys first started in the 1960s 
in the European Alps (Haeberli 1985). Today, the majority of 
monitored rock glaciers are in the European Alps, and surface 
velocity measurements based on repeated terrestrial geodetic 
surveys have become part of operational permafrost monitor-
ing in several European countries (Austria, France, Switzerland; 
see PERMOS 2019). In addition to their importance as climate 
indicators, rock glaciers are highly relevant for natural hazards 
risk management in mountain regions as well as for land use 
planning. Active rock glaciers are sediment conveyers and their 

increasing velocity can lead to a higher frequency of rock fall or 
debris flows from their frontal parts (e.g., Kummert et al. 2018).

The surface velocity of the majority of the observed rock 
glaciers in the European Alps behaved similarly during the past 
decades, despite variable size, morphology, and velocity range 
(Fig. SB2.4). The surface velocity increased by a factor of 2 to 
10 from 1980s to 2015, and a maximum was reached in 2015. 
The acceleration was temporarily interrupted (i.e., velocity de-
crease was observed) for most of the landforms between 2004 
and 2006, as well as between 2016 and 2018, coinciding with a 
decrease in ground temperatures (Noetzli et al. 2018; PERMOS 
2019). The acceleration resumed in 2018. In 2020, the surface 
velocity of rock glaciers was close to or even higher than the 
maximum observed in 2015, which corresponds to the high 
ground temperatures observed (see section 2c1). Compared 
to the values of 2019, the surface velocity increase spans from 
+17% (Dösen [Austria] and Gemmi/Furggentälti [Switzerland]) 
to +45% (Grosses Gufer [Switzerland] and Hinteres Langtalkar 
[Austria]), which is in the same range as the acceleration ob-
served between 2014 and 2015.

Long-term in situ measurements of rock glacier kinematics 
are scarcely available from other regions of the world. However, 
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Fig. SB2.4. (a) Long-term in situ permafrost temperature measured at 20-m depth [blue 
lines]) and air temperature measurements (composite anomaly to the 1981–2010 norm 
[red and blue bars]) and composite 20-year running mean (solid line) at five selected 
sites in the European Alps (Switzerland, France, Austria): Besse France, Grand Saint-
Bernard Switzerland, Sonnblick Austria and Zugspitze Germany. (b) Rock glacier sur-
face velocities (m yr−1) measured using in situ geodetic surveys and photogrammetrics. 
(Sources: Météo France, Deutscher Wetterdienst DWD, MeteoSwiss, Zentralanstalt 
für Meteorologie und Geodynamik ZAMG, Swiss Permafrost Monitoring Network, 
University of Fribourg, University of Graz, Graz University of Technology, Université 
Grenoble Alpes [INRAE].)

the increasing emergence of open-access and high-resolution 
satellite data (e.g., optical and Synthetic Aperture Radar [SAR]) 
facilitates the setup of regional surveys worldwide (e.g., Strozzi 
et al. 2020). Recent studies in northern Norway (Eriksen et al. 
2018) and in the Tien Shan Mountains (Kääb et al. 2020) found 
an overall increase of the rock glaciers’ surface velocity from the 
1950s on. These observations are consistent with the results 
obtained in the European Alps. 

According to in situ measurement (e.g., Arenson et al. 2002; 
Buchli et al. 2018) and modeling approaches (e.g., Kannan and 
Rajagopal 2013), the displacement at the surface of rock glaciers 
mainly results from shearing within a layer of several decimeters 
to a few meters thickness, which typically lies between 15- and 
30-m depth. The changes in rock glacier kinematics are mostly 

related to the evolution of ground temperature and liquid water 
content between the permafrost table and the main shearing 
horizon at depth: the closer to 0°C the temperature is, the faster 
the rock glacier is moving (Cicoira et al. 2019; Frauenfelder 
et al. 2003; Staub et al. 2016). A time lag of around 1 to 2 years 
has been observed between high air temperatures and the 
resulting acceleration (Kellerer-Pirklbauer and Kaufmann 2012; 
Staub et al. 2016). 

The consistent regional evolution of rock glacier velocity and 
its sensitivity to changes in ground temperature, together with 
their global presence, make rock glaciers ideal climate indicators. 
An Action Group of the International Permafrost Association 
(IPA; see Delaloye et al. 2018) aims to internationally harmonize 
and coordinate measurements of rock glacier kinematics (RGK). 

Based on their recommendation, 
the Global Terrestrial Network for 
Permafrost (GTN-P) is proposing 
to include RGK as a new product 
of the GCOS essential climate vari-
able (ECV) permafrost, in addition 
to the thermal state of permafrost 
and active layer thickness. RGK 
measurements are based on re-
peated terrestrial geodetic surveys 
or determined photogrammetri-
cally using aerial images. Geodetic 
surveys are performed annually at 
the same time of the season (usu-
ally at the end of the summer). 
The coordinates and elevation are 
measured for a number of selected 
boulders (10–100 per landform) 
with an average accuracy in the 
range of millimeters to centimeters 
(Delaloye et al. 2008; PERMOS 
2019). Multi-temporal aerial images 
are compared with each other to 
obtain rock glacier-wide movement 
information. Typically, horizontal 
displacement metrics are computed 
based on 2D ortho-image match-
ing algorithms or digital elevation 
model matching. The accuracy of 
the photogrammetrically derived 
displacements strongly depends on 
the spatial resolution of the aerial 
images and on the image qual-
ity (e.g., sharpness, contrast, and 
so forth).
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2) Northern Hemisphere continental snow cover extent—D. A. Robinson
Snow cover extent (SCE) displays 

considerable intra- and interannual 
variability. As such, variations in SCE 
impact surface albedo and thus, the 
overall surface energy balance. SCE 
also plays a role in atmospheric circula-
tion and surface hydrology. Annual SCE 
over Northern Hemisphere (NH) lands 
averaged 24.1 million km2 in 2020. This 
is 1.0 million km2 less than the 51-year 
average (mapping extends back to late 
1966, although three early years in the 
record are incomplete) and ranks 2020 
as having the fourth-least extensive 
cover on record (Fig. 2.13; Table 2.4) and 
0.7 million km2 less than the 2019 mean 
extent. SCE over both NH continents, 
including the Greenland ice sheet, was 
considered in this analysis. Monthly SCE 
in 2020 ranged from 46.4 million km2 in 
January to 2.3 million km2 in August. The 
only years in the satellite record with less 
NH SCE than in 2020 were, from lowest 
upward, 1990, 1988, and 2007.

During the first half of 2020, SCE was 
well below average across the NH. Month-
ly rankings ranged from below average for 
the 54-year record in January to third-least 
extensive in February. NH spring (March–
May) SCE ranked fourth lowest on record, 
consistent with a generally persistent ear-
lier snow melt in recent decades. Rankings 
of second- to fourth-least extensive cover 
occurred across Eurasia from February to 
June. North American snow cover was be-
low average in five of the first six months 
of 2020, the exception being April, where 
a delayed melt resulted in above-average 
cover. 

The NH SCE was above average in Oc-
tober and November, ranking 10th- and 
12th-most extensive, respectively. The 
past nine autumns (September–Novem-
ber) have had average SCE exceeding 
20 million km2, while only eight of the 
prior 41 years exceeded that mark. Decem-
ber SCE was close to average. The excessive cover was primarily driven by conditions in North 
America, where October cover was the largest on record and November cover was 13th largest. 
December SCE was close to average in Eurasia, while a major turnaround occurred across North 

Table 2.4. Monthly and annual climatological information on 
NH and continental snow extent between Nov 1966 and Dec 
2020. Included are the numbers of years with data used in the 
calculations, NH means, standard deviations, 2020 values, and 
rankings. Areas are in million km². The years 1968, 1969, and 
1971 have 1, 5, and 3 missing months, respectively, thus are not 
included in the annual calculations. N. Am. includes Greenland. 
Ranks are from most extensive (1) to least (ranges from 51 to 55 
depending on the month).

Years 
of data

Mean
Std. 
Dev.

2020
2020 
NH 

rank

2020 
Eurasia 

rank

2020 
N Am. 
rank

Jan 54 47.2 1.5 46.4 37 39 33

Feb 54 46.0 1.8 43.5 52 52 39

Mar 54 40.4 1.9 37.7 50 51 32

Apr 54 30.5 1.7 29.1 42 52 14

May 54 19.2 2.0 16.7 49 52 28

Jun 53 9.4 2.5 6.0 49 52 43

Jul 51 3.9 1.2 2.4 50 51 50

Aug 52 3.0 0.7 2.3 50 52 42

Sep 52 5.4 0.9 4.5 42 50 22

Oct 53 18.6 2.7 21.2 10 19 1

Nov 55 34.3 2.1 36.0 12 17 13

Dec 55 43.7 1.8 43.7 32 26 37

Ann 51 25.1 0.8 24.1 48 49 26

Fig. 2.13. Twelve-month running anomalies of monthly snow cover 
extent (million km2 over NH lands as a whole, and Eurasia and North 
America separately, plotted on the seventh month using values 
from Nov 1966 to Dec 2020. Anomalies are calculated from NOAA 
snow maps. Mean hemispheric snow extent is 25.1 million km2 for 
the full period of record. Monthly means for the period of record 
are used for nine missing months during 1968, 1969, and 1971 to 
create a continuous series of running means. Missing months fall 
between Jun and Oct, no winter months are missing. 
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America, with SCE below average. Research by Allchin and Dery (2020) supports the autumn in-
creases, attributing this to atmospheric circulation patterns that have increased moisture fluxes 
into areas that are cold enough to sustain an autumn snow cover but previously were somewhat 
moisture deficient.

SCE over the contiguous United States during the first half of 2020 saw monthly rankings of 
third- to 20th-least extensive, with the exception of April which had above-average cover for the 
54-year record. October 2020 was its most extensive SCE on record, with November above average 
and December below average. 

SCE is calculated at the Rutgers Global Snow Lab from daily SCE maps produced by meteo-
rologists at the National Ice Center (a United States joint NOAA, Navy, and Coast Guard facility), 
who rely primarily on visible satellite imagery to construct the maps (Estilow et al. 2015). Maps 
depicting daily, weekly, and monthly conditions, daily and monthly anomalies, and monthly 
climatologies for the entire period of record may be viewed at the Rutgers Global Snow Lab web-
site (https://snowcover.org). Monthly SCE for the NH, Eurasia, North America, contiguous United 
States, Alaska, and Canada are also posted, along with information on how to acquire weekly 
areas and the weekly and monthly gridded products.

3) Alpine glaciers—M. Pelto
For 2019/20, the overall mean annual mass balance of 33 reporting reference glaciers, from 12 

nations on four continents, was −621 mm and was −590 mm for all 79 reporting glaciers to date 
(World Glacier Monitoring Service [WGMS] 2020). This makes 2020 the 33rd consecutive year with 
a global alpine mass balance loss and the 12th consecutive year with a mean global mass balance 
below −500 mm, but it was less negative than the previous 2 years, which were the most negative 
of the entire 1950–2020 record. In the hydrological year 2017/18, reference glaciers experienced 
a mass balance loss of −1184 mm and in 
2018/19 of −1177 mm. 

Figure 2.14 illustrates glacier mass 
balance for the WGMS global reference 
glaciers with more than 30 continued ob-
servation years for the period 1950–2019. 
Global values were calculated using a 
single value (averaged) for each of 19 
mountain regions in order to avoid a bias 
to well-observed regions. Zemp et al. 
(2019) indicated that the collective loss 
of alpine glaciers from 2006 to 2016 pro-
vided a global sea level contribution of 
0.92 ± 0.39 mm yr−1 (see section 3f).

The decadal averaged annual mass 
balance was −214 mm in the 1980s, 
−499 mm in the 1990s, −527 mm in the 
2000s, and −896 mm for the 2010s. The 
average mass loss reported by Slater et al (2021) identified a similar rise with a loss of 62 Gt yr−1 
in the 1980s, 206 Gt yr−1 in the 1990s, 252 Gt yr−1 in the 2000s, and 327 Gt yr−1 in the 2010s. The 
increasing rate of glacier mass loss, with eight out of the 10 most negative mass balance years 
recorded after 2010 during a period of retreat, indicates that alpine glaciers are not approaching 
equilibrium and retreat will continue to be the dominant terminus response (WGMS 2020). 

All 19 reporting glaciers in the Alps had a negative mass balance averaging −873 mm in 2020. In Aus-
tria in 2019, of the 92 glaciers with annual terminus observations, 86 (93.4%) withdrew, five remained 
stationary, and one advanced (Lieb and Kellerer-Pirklbauer 2020). This retreat trend continued in 2020. 

Fig. 2.14. Mass balance of alpine glaciers reporting to the World 
Glacier Monitoring Service in mm of water equivalent (mm w.e.). 
The values from 1980 to 2020 are based on average annual value 
determined for 19 different Alpine regions.

Unauthenticated | Downloaded 01/02/25 03:33 PM UTC



S482 . G L O BA L  C L I M AT EAU G U S T  2 0 2 1  |  S t a t e  o f  t h e  C l i m a t e  i n  2 0 2 0

In Sweden, all three glaciers report-
ing had a negative balance averaging 
−320 mm. In Norway, the eight reporting 
glaciers had a positive average mass bal-
ance of +365 mm in 2020. All 36 Norway 
glaciers surveyed in 2019 were retreating 
(Andreasson 2020). On Svalbard, the 
mean loss of three glaciers in 2020 was 
−1485 mm. Iceland completed surveys of 
nine glaciers, of which eight had nega-
tive balances with a mean mass balance 
of −442 mm.

In Alaska and Washington, all 14 
glaciers observed in 2020 had a negative 
mass balance averaging −722 mm. This 
was significantly larger than the long-
term average of four United States Geo-
logical Survey benchmark glaciers, which 
had a cumulative mass loss since the mid-
twentieth century that averaged from 
−580 to −300 mm yr−1 (O’Neel et. al. 2019). 

In South America, 2020 mass balance 
data were reported from two glaciers in 
Chile, one in Ecuador, and one in Ar-
gentina; all were negative with a mean 
of −1056 mm. This was greater than the 
2000–18 average loss observed in the 
Andes of −720 ± 220 mm yr−1 (Dussaillant 
et. al. 2019). 

In Kyrgyzstan and Kazakhstan, nine 
glaciers in the Tien Shan Range had near 
equilibrium balances. In the Himalayas, the two reporting reference glaciers had negative bal-
ances averaging −487 mm. King et al. (2019) identified that in the Mount Everest region mass loss 
has increased each of the last 6 decades. In 2020, the post-monsoon season and early winter were 
warm and dry in the Himalayas, leading to the ablation season extending into January with the 
snow line retreating over 100 m from October into January (Fig. 2.15; Patel 2021). This raises the 
question, when does the ablation season end in the region in our warmer climate?

The WGMS record of mass balance and terminus behavior (WGMS 2017, 2018) provides a global 
index for alpine glacier behavior. Glacier mass balance is the difference between accumulation and 
ablation, reported here in mm of water equivalent (mm w.e.).

4) Lake ice—S. Sharma and R. I. Woolway
In the 2019/20 winter, lake ice phenology (the timing of ice-on and ice-off) across the NH (cal-

culated from Copernicus Climate Change Service [C3S] ERA5 [Hersbach et al. 2020]) continued 
to experience later ice-on dates, earlier ice-off dates, and shorter seasonal ice continuing the 
pattern seen over 1980–2020 (Magnuson et al. 2000; Benson et al. 2012; Woolway et al. 2020). 
The hemispheric average for ice-on was 1.5 days later decade−1 and ice-off was 1.5 days earlier 
per decade−1. In line with these calculated changes in ice phenology, the data suggest that the 
duration of lake ice cover was shortening at an average rate of 3 days decade−1, albeit with consid-
erable inter-annual variability (R2 = 0.44). Relative to the 1981–2010 base period, NH lakes froze, 

Fig. 2.15. LandSat imagery of Nangpa La (NPL-5806 m) and Nup 
La (NL-5850 m) 25–50 km west of Mount Everest, indicating the 
rise of the snow line from 13 Oct 2020 to 17 Jan 2021, leaving 
Nangpa La at the crest of the Gyabarg (G) and Bhote Koshi Glacier 
(BK) snow free. Nup La at the crest of Rongbuk (R) and Ngozumpa 
Glacier (NG) is also snow free on 17 Jan 2021.
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on average, 3 days later and thawed 5.5 days earlier during the 2019/20 winter season (Fig. 2.16). 
By ranking these ice phenology metrics according to the earliest and latest days in which they 
occurred since 1979/80 (the years in which these records began) we calculated that, in 2019/20, 
the hemispheric average ice-on was the eighth latest on record and ice-off was the third earliest. 
Relative to the 1981–2010 average, lake ice duration in 2019/20 was 8.5 days shorter across the NH. 
This was the third-shortest ice cover season since 1979/80. The regional variations in ice dura-
tion were consistent with the NH cold season (November–April) average surface air temperature 
anomalies (relative to 1981–2010) in 2019/20, similar to previous studies (Sharma and Woolway 
2020). Most notably, some regions in North America, such as Canada, experienced below-average 
air temperatures, which resulted in longer-than-average ice duration. Conversely, many regions 
in Eurasia experienced warmer-than-average conditions that resulted in shorter-than-average 
ice duration (Figs. 2.16c,d). 

Fig. 2.16. Anomalies (days) in 2020 in (a) ice on, (b) ice off, and (c) ice duration for lakes across the NH, and (d) surface air 
temperature anomalies (°C) for the NH cold-season (Nov–Apr average), the time of year in which lakes typically freeze. 
The base period is 1981–2010. (Sources: ERA5, GISTEMP.)
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In situ ice phenological records from 
20 monitored lakes, situated mostly in 
Finland, the United States, Russia, and 
Canada, reveal that ice-on was 15 days 
later, ice-off was 11 days earlier, and there 
were 27 fewer days of ice cover over the 
winter season in 2020, on average, relative 
to 1981–2010 (Fig. 2.17). Lakes in Finland 
experienced remarkably warm conditions 
such that ice-on was 29 days later, ice-off 
was 13 days earlier, and ice duration was 
42 days shorter. Typically, these Finnish 
lakes freeze in early December. However, 
during the 2020 winter, some of these 
same lakes froze as late as February (e.g., 
Lakes Nasijarvi and Visuvesi). Lakes in 
North America also experienced a warmer 
winter in 2020, with 16 fewer days of ice 
cover on average. Ice cover was especially 
anomalously low in the Finger Lakes re-
gion of New York state. For example, ice-
on was 26 days later, ice-off was 16 days 
earlier, and ice duration was 43 days 
shorter for Cazenovia Lake. The winter 
of 2020 generally followed the long-term 
warming trend of 11 fewer days of ice cover 
for the 20 in situ lakes, on average. 

In 2020, the Laurentian Great Lakes 
had substantially less ice cover, consis-
tent with a warmer winter in the region. 
On average, the Laurentian Great Lakes 
had 33.9% less maximal ice coverage 
relative to 1981–2010. The smallest and 
most southern lake, Lake Erie, had the 
highest anomaly with a 65.4% reduction 
in ice coverage. Maximal ice coverage 
decreased by 38.1% in Lake Superior and 
30.8% in Lake Huron, the two largest and 
most northern Great Lakes (Fig. 2.18). 

To estimate the timing of ice-on and 
ice-off and, ultimately, the duration of 
winter ice cover across NH lakes, ice simu-
lations from the ECMWFs ERA5 reanalysis 
product (Hersbach et al. 2020) were ana-
lyzed. Here, ice cover metrics were only 
calculated for pixels where lakes occupied 
greater than 1% of the land surface area. 
Lake ice conditions in 2020 were given 
as anomalies, calculated relative to the 
1981–2010 average.

Fig. 2.17. (a) Lake ice on, (b) ice off, and (c) ice duration anomalies 
from 1980 to 2020 derived from in situ observations and ERA5. 
Base period is 1981–2010. In situ observations of ice on, ice off, 
and ice duration are derived from nine lakes monitored in Finland, 
one lake in Russia, nine lakes in the United States, and one lake 
in Canada. 

Fig. 2.18. Anomalies in Great Lakes maximum ice cover extent 
(%) for 1973–2020 (base period is 1981–2010). The black line 
shows the average anomaly for all of the Great Lakes, whereas 
the other lines show individual lakes (Erie, Michigan, Superior, 
Ontario, Huron).
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Long-term in situ observations of ice-on, ice-off, and ice duration data were obtained for nine 
lakes in Finland, one lake in Russia, nine lakes in the United States, and one lake in Canada 
(Benson et al. 2000). Further, annual maximum ice cover (%) data for each of the Laurentian Great 
Lakes from 1973–2020 was obtained from the Great Lakes Environmental Research Laboratory. 
A combination of composite ice charts and observations from satellites, ships, and aircraft were 
used to quantify the maximum amount of ice coverage observed over the winter season in the 
Great Lakes (https://www.glerl.noaa.gov/data/ice/).

Surface air temperature data for the NH cold season (November–April average) were down-
loaded from the NASA GISS surface temperature analysis (Lenssen et al. 2019).

d. Hydrological cycle
1) Surface humidity—K. M. Willett, A. Vance, A. Simmons, M. Bosilovich, D. I. Berry, and D. Lavers

During 2020, the land surface specific humidity (qland)—a measure of atmospheric water vapor—
remained well above average (0.14 to 0.36 g kg−1), while relative humidity (RHland)—a measure of 
saturation—remained well below average (−1.28 to −0.68 %rh). Over oceans, qocean was a record 
high (0.23 to 0.41 g kg−1) but RHocean was close to the 1981–2010 average (−0.14 to 0.13 %rh). Although 
the various estimates broadly agree there are differences in magnitudes and rankings (Fig. 2.19). 
In situ-based HadISDH and reanalyses MERRA-2 and JRA-55 show 2020 qland as moister than 2019, 
ranking third, first, and fourth, respectively, within their records. ERA5 reanalysis shows 2020 
tied with 2019, as sixth moistest on record. JRA-55 and HadISDH RHland were also more saturated 
in 2020 but still low (third and fifth, respectively). ERA5 RHland was slightly more arid than 2019, 
making it a record low for the second consecutive year. Over ocean, qocean was a record moist year 
by a large margin for HadISDH and ERA5. MERRA-2 and JRA-55 ranked qocean second and close 
to 2019. RHocean was more saturated in HadISDH and JRA-55 while marginally more arid in ERA5. 

Taking HadISDH uncertainty into account, these rankings are less clear, but the 2020 qocean 
record lies outside the uncertainty range for all other years. HadISDH and ERA5 differ in input 
data, coverage, and processing, especially over ocean where no ship humidity data are assimi-
lated (Simmons et al. 2021). The 2-sigma uncertainty for HadISDH broadly encompasses the ERA5 
ocean values but not ERA5 land. 

Surface humidity is driven by temperature and circulation patterns. The high qland and record 
high qocean concur with the record/near-record high temperatures (section 2b1). Despite relatively 
neutral El Niño–Southern Oscillation (ENSO) conditions evolving to moderate La Niña conditions 
(section 4b), the qocean peak surpasses those of strong El Niño events (e.g., 1998, 2010, 2015–16); 
and the qland peak is comparable for all datasets apart from ERA5.

Despite 2020 rankings differences, there is good agreement across estimates in long-term trends 
of increased q and decreased RH (Table 2.5). On average, the warmer air contains more water 
vapor, but not as much as it could, given its temperature. So, the air has become less saturated, 
even over oceans; ERA5, JRA-55, and HadISDH show small RHocean decreases. This is surprising 
given that several climate model studies show negligible or small increases in future RHocean (Held 
and Soden 2006; Schneider et al. 2010; Byrne and O’Gorman 2013, 2016, 2018). 

HadISDH is affected by instrument and recording errors and biases along with changes in 
observation density, frequency, and precision (Willett et al. 2013, 2014, 2020). Reanalyses contain 
model and data biases and temporally changing data assimilation streams (Gelaro et al. 2017; 
Hersbach et al. 2020; Simmons et al. 2021). Unlike reanalyses, HadISDH is spatially incomplete, es-
pecially over the Southern Hemisphere oceans and many dry regions (where fewer people live and 
hence fewer weather stations). Spatially matching ERA5 to HadISDH slightly improves agreement  
(Fig. 2.19; Table 2.5). Over land, HadISDH reflects the well-observed regions and, hence, regions 
that are generally well constrained by observations in the reanalyses. Over oceans, ERA5 does not 
assimilate ship humidity or air temperature observations and thus poorer observational coverage 
has no effect, but various changes in satellite contributions do. Comparing trends over just the 
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temporally complete HadISDH grid boxes with matched ERA5 grid boxes (Table 2.5) shows closer 
agreement. Compared to full coverage ERA5, HadISDH matched ERA5 shows stronger increasing 
q but near-identical decreasing RH, and HadISDH shows marginally stronger increasing q and 
slightly stronger decreasing RH. Trends over ERA5 where there are no HadISDH data are generally 

Table 2.5. Global average decadal trends for specific humidity (q, g kg−1) and relative humidity (RH; %rh) over 1979–2020 
fitted using ordinary least squares regression. The 90th-percentile confidence intervals are shown in parentheses, fitted 
using AR(1) correction following Santer et al. (2008). Trends shown in bold are considered significantly different from a 
zero trend in that the confidence intervals do not cross the zero line.

Variable HadISDH ERA5
MERRA-2 

(1980–2020)
JRA-55

HadISDH (continuous 
gridboxes)

ERA5 (continuous 
HadISDH gridboxes)

ERA5 (no HadISDH 
gridboxes)

Land q
0.09  

(0.02)
0.06 

(0.01)
0.09  

(0.02)
0.07  

(0.01)
0.10  

(0.02)
0.10  

(0.02)
0.05  

(0.01)

Land RH
−0.22 
(0.07)

−0.44 
(0.06)

NA
−0.32 
(0.04)

−0.33  
(0.07)

−0.46  
(0.07)

−0.24  
(0.03)

Ocean q
0.08  

(0.01)
0.05 

(0.02)
0.10  

(0.02)
0.04  

(0.01)
0.10  

(0.02)
0.14  

(0.03)
0.05  

(0.02)

Ocean RH
−0.05 
(0.05)

−0.18 
(0.09)

NA
−0.05 
(0.01)

−0.08  
(0.05)

−0.17  
(0.04)

−0.18  
(0.02)

Fig. 2.19. (a)–(d) Global average land and ocean surface humidity annual anomalies of specific humidity (q; g kg−1) and (e)–
(h) relative humidity (RH; %rh) from in situ and reanalyses datasets relative to the 1981–2010 base period. For the in situ 
datasets 2-m surface humidity is used over land and ~10 m over the oceans. For the reanalysis, 2-m humidity is used over 
the whole globe. For ERA5, ocean series-only points over open sea are selected. 2-sigma uncertainty is shown for HadISDH 
capturing the observation, gridbox sampling, and spatial coverage uncertainty. (Sources: HadISDH [Willett et al. 2013, 2014, 
2020]; ERA5 [C3S 2017, Hersbach et al. 2020]; JRA-55 [Kobayashi et al. 2015]; MERRA-2 [Gelaro et al. 2017].)
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weaker apart from RHocean. This suggests that HadISDH is biased towards regions with stronger 
moistening (q), especially over oceans. Possibly, ERA5 q is showing weaker moistening/stronger 
drying where it is unconstrained by surface observations. Further investigation is needed. Re-
gardless, compared to the 1960–70s, when humidity monitoring records begin, in 2020, Earth 
contained more water vapor at the surface, while being less saturated. 

2) Total column water vapor—C. A. Mears, S. P. Ho, O. Bock, X. Zhou, and J. P. Nicolas
In 2020, global land and ocean averages of total column water vapor (TCWV), the total amount 

of water vapor in the atmosphere, were well above the 1981–2010 climatology, ranging from 0.75 
to 1.06 mm over ocean and 0.58 to 0.94 mm over land, yet did not approach the record levels 
observed in 2016 (Fig. 2.20). This is surprising at first because global temperatures in 2020 were 
essentially tied with those from 2016 
in most surface and lower-tropospheric 
datasets (sections 2b1, 2b4). This discrep-
ancy is likely explained by the highest 
temperature anomalies having occurred 
well away from the tropics (Plates 2.1a,e) 
where the sensitivity of TCWV to tem-
perature changes is largest because of the 
Clausius-Clapeyron relationship.

Water vapor is an important part of the 
transport of energy in the atmosphere, 
and influences patterns of precipitation 
and evaporation, and thus drought and 
floods. Large-scale averages of TCWV are 
strongly correlated with atmospheric and 
surface temperature. Thus, as the planet 
warms, TCWV will also increase. TCWV 
estimates are derived from satellite-
borne microwave radiometers over the 
ocean (RSS Satellite; Mears et al. 2018), 
from Global Positioning System–Radio 
Occultation (GPS-RO) observations from 
the COSMIC, Metop-A, -B, and -C and 
COSMIC-2 satellite missions over land 
and ocean (satellite RO; Ho et al. 2020a,b, 
2010a,b; Teng et al. 2013; Huang et al. 
2013), and from ground-based Global 
Navigation Satellite System (GNSS) sta-
tions over land (Bock 2020). In addi-
tion, three reanalysis products are also 
used here: ERA5 (Hersbach et al. 2020), 
MERRA-2 (Gelaro et al. 2017), and JRA-55 (Kobayashi et al. 2015). All three reanalyses assimilate 
satellite microwave radiometer and GPS-RO data and are therefore not independent from these 
two datasets. Ground-based GNSS measurements are not assimilated and are thus independent.

The most prominent TCWV anomaly features for 2020 (Plate 2.1i) were the strong north–south 
asymmetry over the tropical Pacific Ocean and the excess vapor anomaly over most of the tropi-
cal and subtropical Indian Ocean. Other regions showed a mix of smaller anomalies, with more 
regions showing positive anomalies than negative. The ocean patterns in TCWV from ERA5 
(Plate 2.1i) are confirmed by the RSS satellite data (Appendix 2, Fig. A2.8), satellite RO ocean 

Fig. 2.20. Global mean total column water vapor annual anomalies 
(mm) over the oceans from (a) observations and (b) reanalyses, 
and over land from (c) observations and (d) reanalyses averaged 
over 60°S–60°N. The shorter time series from the observations 
have been adjusted so that there is zero mean difference relative 
to the ERA5 results during their respective periods of record.
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measurements, and by the other two reanalyses. Over land, the patterns agree less well. There 
is good agreement in the dry anomalies over central South America and central Africa and in the 
wet anomalies over the Gulf of Mexico, Caribbean, North Africa, East Africa, and India. However, 
over the United States, satellite RO shows dry anomalies to the west and wet anomalies to the 
east, which is the opposite of ERA5 and ground-based GNSS. There are also opposing anomalies 
in western Europe, the southwest tip of Africa, eastern Asia, and central Australia. In ERA5, the 
Pacific Ocean wet–dry dipole and wetter-than-average Indian Ocean, in addition to many of the 
more regional features (e.g., dry western United States, wet East Africa), are consistent with those 
shown for surface specific humidity (section 2d1). Specific humidity should be broadly similar 
to TCWV in that the vast majority of water vapor lies close to the surface. The poorer agreement 
between ERA5 and RO over land may be partly due to different and incomplete temporal and 
spatial sampling from the satellite RO data. In 2020, only COSMIC-2, Metop-A, -B, and -C are used 
because COSMIC data are only available from January to April. COSMIC-2 mainly covers from 45°S 
to 45°N with about 4000 daily occultations and a relatively uniform local time coverage. The other 
RO missions (i.e., Metop-A, -B, and -C) cover both tropical and midlatitudes (60°S to 60°N) but 
with only about 1000 daily occultations and non-uniform local time coverage. 

Ocean TCWV global average anomaly time series (Figs. 2.20a,b) from reanalyses and RSS sat-
ellite data show maxima in 1983–84, 1987–88, 1997–98, 2009–10, and 2015–16 associated with 
El Niño events. Both 2019 and 2020 approach, but do not exceed, the 2015–16 record levels due to 
the overall increasing trend. The RSS satellite data show a discernible increasing trend. On the 
other hand, the reanalysis products show different long-term trends up until the 1990s but agree 
well with each other and with the radiometer data after 2000. The satellite RO data are in good 
agreement with both the radiometer and reanalysis data but show a lower overall trend. TCWV is 
strongly driven by surface temperature and thus El Niño–Southern Oscillation conditions. After 
the 2015–16 El Niño peak, all datasets show a return to lower TCWV due to a generally neutral/
weak La Niña in 2017–18, followed by larger TCWV anomalies associated with the weak El Niño 
in boreal winter-spring 2018–19. The positive anomaly continued into 2020. Although 2020 began 
with weak El Niño conditions, there was a shift by August, ending in moderate La Niña conditions 
in December (sections 2e1 and 4b).

Over land, the reanalyses, satellite RO missions, and ground-based GNSS agree well in terms 
of the global average anomaly time series (Figs. 2.20c,d). The small differences between ground-
based GNSS and the other datasets are 
due to asymmetry in the spatial sampling, 
with more stations located in the North-
ern Hemisphere, but the general trend 
and interannual variability are consistent 
among all datasets. An ERA5 latitude–
time Hövmuller plot of TCWV anomalies 
over land and ocean (Fig. 2.21) indicates 
that the long-term increase in TCWV oc-
curs at all latitudes, with less variability 
outside the tropics. Following the most 
recent strong El Niño in 2015–16, elevated 
moisture has persisted in the tropics, 
mainly north of the equator.

Fig. 2.21. Hövmuller plot of total column water vapor anomalies 
(mm; base period 1981–2010) derived from the ERA5 reanalysis.
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3) Upper tropospheric humidity—V. O. John, L. Shi, E.-S. Chung, R. P. Allan, S. A. Buehler, and B. J. Soden
The 2020 near-global-average (60°S–60°N) upper tropospheric (relative) humidity (UTH) re-

mained close to the 2001–10 average (0.04, −0.16, and −0.35 %rh for the three datasets shown in 
Fig. 2.22a). This implies a continued moistening of the upper troposphere with warming. A near-
zero decadal trend (less than 0.01 %rh 
per decade for all datasets in Fig. 2.22) in 
the UTH indicates an increase in absolute 
(specific) humidity in line with the warm-
ing mid- and upper troposphere (about 
0.2 K per decade as shown, for example, in 
Santer et al. 2017 and Christy et al. 2020), 
and hence is consistent with a positive 
(amplifying) water vapor feedback (Chung 
et al. 2016). 

This moistening of the free tropo-
sphere is demonstrated in Fig. 2.22b, 
which shows the difference between the 
Microwave Sounding Unit/Advanced 
Microwave Sounding Unit (MSU/AMSU) 
channel 2 brightness temperature (T2; 
sensitive to upper-tropospheric tempera-
ture emissions from oxygen molecules) 
and High Resolution Infra Red Radia-
tion Sounder (HIRS) upper tropospheric 
channel brightness temperature (T12). As 
shown in Chung et al. (2014), the differ-
ence, T2 minus T12, measures the diver-
gence in emission levels between upper-
tropospheric water vapor and oxygen. 
This divergence provides a direct mea-
sure of the extent of upper-tropospheric 
moistening as the emission level of T12 
elevates with increasing concentrations of 
water vapor, while the T2 emission level 
remains the same because the oxygen concentration does not change over time. The positive trend 
in the T2 minus T12 time series thus indicates the moistening of the upper troposphere. The water 
vapor feedback is determined mainly by the mid- to upper troposphere though the concentration 
of water vapor is small there. This is because the radiative effect of absorption by water vapor is 
roughly proportional to the logarithm of its concentration, so it is the fractional change in water 
vapor concentration, not the absolute change, that governs its strength as a feedback mechanism 
(Allan et al. 1999; Held and Soden 2000; John and Soden 2007).

The microwave satellite data (Chung et al. 2013) and the ERA5 reanalysis (Hersbach et al. 2020) 
data show below-average UTH values throughout the year. However, the HIRS infrared satellite 
data (Shi and Bates 2011) show above-normal UTH values since summer 2020; the reason for this 
discrepancy is not yet understood. Despite this, there is broad agreement among the three datasets 
in interannual variability. During their common period, there is a correlation of 0.6 between the 
two satellite datasets and 0.5 between ERA5 and either of the satellite datasets. The mean and 
standard deviation of the anomaly time series are −0.01 ± 0.54, 0.08 ± 0.65, and −0.01 ± 0.33 %rh 
for the ERA5, HIRS, and microwave datasets, respectively, during their common period. HIRS 
and ERA5 show larger interannual variability compared to the microwave data, which can be 

Fig. 2.22. (a) Global (60°S–60°N) average time series of upper 
tropospheric humidity anomalies (%rh) using HIRS (black), mi-
crowave (blue), and ERA5 (purple) datasets. (b) Anomalies of 
MSU/AMSU channel 2 brightness temperature (T2) minus HIRS 
channel 12 brightness temperature (T12) with increasing values 
indicative of higher absolute or specific humidity. The anomalies 
are computed with respect to the 2001–10 average, and the time 
series are smoothed to remove variability on time scales shorter 
than 3 months.
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attributed in part to the clear-sky sampling of the infrared HIRS observations (e.g., Fig. 10 of John 
et al. 2011) and to the use of a single level (400 hPa) RH for the ERA5. Negative (dry) anomalies 
in all datasets can be observed during strong El Niño events (e.g., 2015–16). 

Annual anomalies of UTH for 2020 are shown in Plate 2.1j and Appendix Fig. A2.9 for the mi-
crowave and HIRS datasets, respectively. Preconditioned in 2018–19 by a strong positive Indian 
Ocean dipole (IOD), the neutral to slightly positive phase of the IOD during 2020 led to widespread 
flooding in eastern Africa (Wainwright et al. 2020) and droughts in southeast Asia (Wang and 
Cai 2020). This is clearly reflected in the UTH data by positive anomalies over eastern Africa and 
surrounding oceans and negative anomalies over southeast Asia and eastern Australia. During 
the positive phase of IOD, sea surface temperature (SST) in the Indian Ocean near Africa’s east 
coast is warmer than usual, while SST in the waters northwest of Australia is comparatively 
cooler. These conditions lead to above-average precipitation in the western equatorial Indian 
Ocean and surrounding areas and the opposite in southeast Asia (section 2d4). Severe drought 
conditions in Madagascar, South America, and the western United States are also reflected in 
the anomalies. Above-normal monsoon rainfall in central and southern India is indicated by the 
positive anomalies in UTH over those regions. Dry anomalies over Europe are associated with 
the high geopotential height associated with a blocking pattern that led to dry, sunny conditions, 
especially in spring 2020 (van Heerwaarden et al. 2021; section 7f). This close connection of UTH 
to convection makes it suitable for monitoring large-scale dynamics of the troposphere.

The inter-satellite calibrated and bias-corrected infrared and microwave satellite measurements 
sample a broad upper tropospheric region (roughly between 500 and 200 hPa, but this layer varies 
slightly depending upon the atmospheric humidity profile) twice per day, and infrared observa-
tions only sample clear-sky scenes (John et al. 2011). The ERA5 reanalysis is based on model runs 
constrained with in situ and satellite data including the HIRS and microwave radiances. ERA5 
samples all regions every hour but here are only displayed at 400 hPa. 

4) Precipitation—R. S. Vose, R. Adler, A. Becker, and X. Yin
Precipitation over global land areas in 2020, as estimated from three different monitoring prod-

ucts, was near to or above the 1981–2000 long-term average (Fig. 2.23a). All three products indicate 
that global average precipitation in 2020 was higher than 2019. The observational datasets with 
the most complete global coverage, that is, the gauge-based product from the Global Precipitation 
Climatology Centre (GPCC; Becker et al. 2013) and the blended gauge–satellite product from the 
Global Precipitation Climatology Project (GPCP; Adler et al. 2018), had near-normal precipita-
tion for 2020 (area-average anomalies of +0.46 mm and +0.63 mm, respectively). In contrast, the 
gauge-based Global Historical Climatology Network (GHCN; Peterson and Vose 1997) dataset was 
well above the long-term normal, with an area-average anomaly of +49.38 mm. GHCN has had 
consistently higher precipitation estimates than the other products for the past 4 years. According 
to the GPCP dataset, the precipitation anomaly over the global ocean (Fig. 2.23b) was +3.93 mm, 
and the global (land and ocean) anomaly (Figure 2.23c) was +3.22 mm, the latter being a slight 
increase from the previous year. 

Examining the geographic distribution of precipitation anomalies, there was substantial vari-
ability across the planet in 2020 (Plate 2.1k). Over global land areas, the largest positive anomalies 
were over eastern China, with much of central Asia and sub-Saharan Africa also well above aver-
age. The strongest positive anomaly over land was in eastern China, the scene of devastating and 
long-lasting floods primarily during the summer months (see Sidebar 7.3). The largest negative 
anomalies were over the continent of South America, with much of temperate North America also 
below average (see sections 7d and 7b, respectively). Over the global oceans, the largest positive 
anomalies were over the Maritime Continent and the Indian Ocean, as well as along the Intertropi-
cal Convergence Zone (ITCZ) and the South Pacific Convergence Zone (SPCZ) in the Pacific Ocean. 
Much of the rest of the Pacific Ocean, however, had negative anomalies, as did much of the North 
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Atlantic and part of the southern Indian 
Ocean. Rainfall excesses associated with 
tropical cyclones were evident in several 
areas, including the southeastern United 
States and in the Caribbean and South 
China Seas. 

Precipitation patterns in 2020 reflect 
the transition from weak El Niño-like con-
ditions early in the year to a moderate La 
Niña late in the year (see sections 2e1, 4b). 
During the first 3 months of 2020, there 
was excess rainfall in the central Pacific 
along the equator and generally below-
average precipitation over the Maritime 
Continent associated with the El Niño-
like conditions. During the last 3 months 
of the year, influenced by La Niña, the 
central Pacific reversed from a positive 
anomaly to an intense negative anomaly, 
and the Maritime Continent became posi-
tive. Outside the ENSO-affected regions, 
the large-scale patterns, e.g., over the 
subtropics of the Pacific and the Atlantic, 
stayed roughly the same during the year. 

5) Land-based precipitation extremes—M. R. Tye, S. Blenkinsop, M. G. Bosilovich, M. G. Donat, I. Durre, 
A. J. Simmons, and M. Ziese
Overall, extreme events during 2020 were less intense than normal across most of Eurasia 

and North America and more intense than normal over the tropics. The patterns of global mean 
and extreme anomalies illustrate the uneven spatial and temporal distribution of precipitation, 
whereby the heaviest events contribute disproportionately to the annual total volumes (PRCPTOT 
[see Table 2.6 for extremes index descriptions]; Pendergrass and Knutti 2018; see section 2d4, 
Plate 2.1k). Parts of Central America, Europe, and Asia reported very high PRCPTOT; and as il-
lustrated by Plate 2.1l, Fig. 2.24 and Appendix Fig. A2.10, eastern China was influenced by very 
intense extremes (R95p, Rx1day, Rx5day) rather than frequent heavy rain days (R10mm, R20mm). 
Conversely, dryness in South America for instance, arose from the combined absence of heavy 
rain days and anomalous low intensity of extremes. In contrast with 2019, there was a far clearer 
pattern of exceptionally wet or dry regions (Blenkinsop et al. 2020), with global insured losses 

Table 2.6. Precipitation indices used in this section and their definitions, as developed by the WMO 
ETCCDI (Zhang et al. 2011).

Index Definition FIgure/Plate

Rx1day Highest 1-day precipitation amount (mm) Plate 2.1l; Figs. 2.24c,d; 2.25

Rx5day Highest 5-day precipitation amount (mm) Appendix Figs. A2.10c,d

R10mm Heavy precipitation days >10 mm (days) Appendix Figs. A2.10c,d

R20mm Very heavy precipitation days >20 mm (days) Fig. 2.24

R95pTOT
Total precipitation on days exceeding the 95th percentile  

of wet days (mm)
Not shown

PRCPTOT Annual total precipitation falling on wet (>1 mm) days (mm) Not shown

Fig. 2.23. Globally averaged precipitation anomalies (mm yr−1) 
relative to the 1981–2000 base period over (a) land, (b) ocean, 
and (c) the globe. Land and ocean time series were created using 
a proportional land/sea mask at the 1°×1° scale.

Unauthenticated | Downloaded 01/02/25 03:33 PM UTC



S582 . G L O BA L  C L I M AT EAU G U S T  2 0 2 1  |  S t a t e  o f  t h e  C l i m a t e  i n  2 0 2 0

of $76 billion U.S. from natural hazards largely driven by floods from severe convective storms 
and drought-influenced fires (Swiss Re 2020). 

Several notable events stand out in relation to the long-term mean of extreme precipitation 
indices (Table 2.6). Reanalysis products (MERRA-2, Gelaro et al. 2017; ERA5, Hersbach et al. 2020) 
and gridded observations (GPCC, Schamm et al. 2013; GHCNDEX, Donat et al. 2013) generally 
show similar patterns, with the exception of the tropics, parts of central and southern Africa, 
and South America for extreme indices (e.g., R10mm, Rx1day) as noted in recent publications 
(Alexander et al. 2020; Hersbach et al. 2020). Rx1day and Rx5day highlight storm tracks and 
anomalous events over the Middle East, southeast Asia, southeastern United States, and northern 
and eastern Australia (Fig. 2.24, Appendix Fig. A2.10b, Table 2.7). 

The “Dragon Storm” over the Middle East/North Africa on 12 March was an unusually powerful 
midlatitude cyclone for early boreal spring, bringing ~70 mm of precipitation in 24 hours to the 
north coast and Nile Delta in Egypt (NESDIS 2020; The Watchers 2020). Above-average SSTs in the 
Indian Ocean (see section 3b), coupled with favorable atmospheric conditions over East Africa, 
resulted in a particularly wet long-rains season (March–June), with several prolonged duration 
events contributing to floods (see section 7e4). These events follow a pattern of increased duration 
and total volume in persistent extremes (Du et al. 2019). Exceptionally wet monsoon conditions 
led to the highest Rx1day on record in Karachi-Faisal, Pakistan (see section 7g4; WMO 2021; 
Table 2.7), compounding the effects of Super Cyclonic Storm Amphan over India and Bangladesh 
(Floodlist 2020a). The Indian Ocean conditions also contributed to the first known landfalling 
tropical cyclone in Somalia, with accompanying precipitation extremes (Floodlist 2020b).

Few records were broken over Australia during 2020, the exception being the Northern Terri-
tory during January where the highest Rx1day totals on record accompanied Cyclone Claudia (see 
section 4g7; BoM 2020; Table 2.7). Eastern Australia was wetter than average, reversing drought 
conditions in the southeast. New Zealand experienced a drier-than-normal year over the northern 
and eastern North Island, and near-normal conditions in most other locations. 

Fig. 2.24. Anomalies of 2020 indices relative to a 1981–2010 baseline for: R20mm (days) derived from (a) MERRA-2 (Gelaro 
et al. 2017) and (b) ERA5 (Hersbach et al. 2020) reanalyses, (c) Rx1day (mm), and (d) R95p (mm) derived from the in situ-
based GHCNDEX relative to a 1961–90 baseline (Donat et al. 2013). 
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A longer-term perspective using near-complete series of extreme indices (≥50 years) from 
~6000 gauges over Europe (Klein Tank et al. 2002) indicates new Rx1day (Rx5day) records at 
70 (40) gauges. These are fewer than normally expected and suggestive of an inactive year for 
European rainfall extremes. Many record-breakers were in Germany (Fig. 2.25), which accounted 
for 43 Rx1day records, but also included a total of 200.2 mm in Dimitrovgrad, Serbia, exceeding 
the previous record of 123.3 mm. In total, 11.6% (7.5%) of the Rx1day (Rx5day) values ranked in 
the top 10% of annual values for an individual gauge in 2020. Comparing these data on upper 
decile events for each year in the period 1980–2020 shows that 2020 ranked 15th (34th) out of the 
41 years for which at least ~4500 gauges contribute. The R10mm (R20mm) indices for 2020 were 
around average with 8.8% (10.6%) of gauges in the top decile for the location, ranking 24th (19th) 
with new records at 82 (84) gauges, particularly across Scandinavia. 

Fig. 2.25. Comparison of absolute Rx1day values (mm) and their ratio to the previous record from GHCN-Daily  
(Menne et al. 2012) over Germany.

Table 2.7. Notable events and new precipitation maxima.

Location Duration Amount Comment Reference

Wagait Beach and 
Dum in Mirrie, Australia

24 hours
515.2 mm 
562 mm

10 Jan 
pre-cyclone Claudia  

(Wagait Beach—new January record,  
Dum in Mirrie—new record for Northern Territory)

BoM 2021

Belo Horizonte, Brazil 24 hours 172 mm 24 Jan (new record) WMO 2021

Kolkata, India 
Ishwardi, Bangladesh

24 hours
250 mm 
155 mm

20 May 
Super Cyclonic Storm Amphan

Floodlist 2020a

Karachi-Faisal, Pakistan 24 hours 231 mm 28 Aug (new record for Karachi area) WMO 2021

Khombole, Senegal 24 hours 225.8 mm 5 Sep (new record) WMO 2021

Jeju Island, South Korea 48 hours 963.5 mm
7 Sep 

Tropical Cyclone Julian (Mayask)
WMO 2021

Hué, Vietnam 7 days 1500 mm 7–13 Oct WMO 2021

Napier, New Zealand
1 hour

24 hours
54 mm 

242.4 mm
9 Nov (new hourly record) Floodlist 2020d

Ciro Marina, Calabria Italy 48 hours 456.8 mm 20–22 Nov Floodlist 2020c

Bosaso Somalia 24 hours 128 mm 22 NovTropical Cyclone Gati Floodlist 2020b
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Component 4 of the U.S. NOAA Climate Extremes Index (CEI4, area of the United States that 
experienced 1-day precipitation totals exceeding the 90th percentile; Gleason et al. 2008; NOAA 
2021) was low for 2020, ranking 75th in the 111-year record. Of the seasonal indices, only autumn 
ranked in the top tercile at 34th. From a regional perspective, the western United States registered 
CEI4 = 0% in all seasons, or no areas of heavy precipitation. CEI4 registered in the top decile dur-
ing spring and summer in the upper midwest and autumn in the southeast, also illustrated by the 
location of Rx1day events (Plate 2.11; Fig. 2.24c). Despite the very active Atlantic hurricane season 
(see section 4g2), CEI4 values along the eastern seaboard were at or below average. 

6) Lake water levels—B. M. Kraemer
In 2020, the average water level anomaly across 249 of Earth’s largest lakes was +1.05 m (range: 

−9.16 m to +44.45 m) compared to their mean lake water levels from 1993–2001 (Fig. 2.26). Water 
level anomalies were positive in 73% of the lakes (183 out of the 249) compared to 68% in the pre-
vious year. Measurements of lake water level variation provide an important indicator of global 
hydrological change, water availability, drought, and human hydrological influence. Publicly 
available satellite altimetry data are used to assess changes in surface water storage. This year 
there are an additional 51 monitored lakes compared to 2019.

The 2020 water level anomalies differed widely both between and within regions. Lakes in 
southern Brazil and the Caucasus region had consistent negative water level anomalies while 

Fig. 2.26. (a) Lake water level time series for 249 globally distributed lakes ranked by their 2020 anomaly (m) relative to the 
1993–2001 mean. Ninety-five of the 249 water level time series had substantial data gaps from 2002 to 2008. The subset 
of lakes that are named on the y-axis of (a) and plotted in (b) are those with the five largest positive anomalies and five 
largest negative anomalies when water levels anomalies were weighted by the surface area of each lake.
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Canada, equatorial Africa, and western China had consistent positive water level anomalies 
(Plate 2.1m). The Tibetan-Qinghai Plateau experienced positive water level anomalies in most 
lakes (Plate 2.1m), consistent with the expected effects of climate change on regional rainfall and 
glacier melt (Woolway et al. 2020). Aside from broadscale and consistent regional variability, lake 
water level anomalies in nearby lakes within regions also varied. For example, Cahora Bassa and 
Kariba, two large, nearby reservoirs on the Zambezi River in southern Africa (within 185 km), had 
strongly diverging water levels (+4.38 m and −2.28 m, respectively), potentially due to differences 
in their water level management as reservoirs. The Middle East, Australia, and northern Asia all 
included lakes with both strong positive water level anomalies and strong negative anomalies, 
often in close proximity. 

When lake level anomalies were multiplied by the lake surface area, the resulting approximate 
volumetric anomalies were most negative for the Caspian Sea (−433 km3), Aral Sea (−47 km3), 
Kara-Bogaz-Gol (−32 km3), Urmia (−22 km3), and Kariba (−19 km3). The largest positive volumet-
ric anomalies were found in Tanganyika (+26 km3), Volta (+28 km3), Superior (+45 km3), Victoria 
(+76 km3), and Huron/Michigan (+105 km3). These lakes are highlighted in the time series shown 
in Fig. 2.26. The largest volumetric water level anomalies matched global patterns in terrestrial 
water storage assessed using data from the Gravity Recovery and Climate Experiment (GRACE) 
satellite mission (see Fig. 2.31).

Water level data were acquired from the NASA/CNES Topex/Poseidon and Jason satellite mis-
sions via the Global Reservoir and Lake Monitoring (G-REALM) project version 2.4 and via Theia’s 
Hydroweb database. The 2020 water level anomalies in 80 lakes that had data from both sources 
were averaged across the two sources. One hundred and sixty lakes were unique to the G-REALM 
dataset and nine lakes were unique to the Hydroweb dataset. Satellite altimeters were originally 
developed to map ocean surface height. A small subset of the world’s lakes are monitored in this 
way because the space-borne sensors must pass directly over the lake with sufficient regularity to 
produce accurate and complete time series. The lakes in this study comprise the 249 lakes with the 
longest (>29 years) and highest temporal resolution time series which are updated in near real time. 
Comparing the satellite altimeter measurements to in situ measurements, the root mean squared 
error of elevation variations is ~5 cm for large lakes such as those analyzed here. Water levels are 
typically measured every 10 days, but the exact dates on which water levels are measured vary 
from lake to lake. To make water level data temporally consistent, we have linearly interpolated 
each lake’s time series to the daily scale so that all lakes had time series of the same interval. 
Of the 249 water level time series, 95 had substantial data gaps from 2002 to 2008, so we used a 
period prior to these gaps (1993–2001) as the baseline for calculating 2020 water level anomalies. 

In situ monitoring of lake water levels is vital for cross-validating and calibrating altimeter-
based estimates of long-term water level variation in lakes. However, our capacity to monitor 
changes in a global population of lakes with in situ data alone is currently limited due to the 
scarcity of publicly available near-real time data from key regions. Impediments to data sharing 
need to be overcome, and data delivery needs to be more timely in order to monitor water cycle 
variation with in situ data. Landsat-based surface water extent datasets, such as those produced 
by the Copernicus Programme (Pekel et al. 2016), could be used for near real-time monitoring of 
water storage in many thousands of lakes but to date, no near real-time data products exist to 
support such efforts.

7) Cloudiness—M. J. Foster, L. Di Girolamo, C. Phillips, M. Stengel, S. Sun-Mack, and G. Zhao
Global cloudiness in 2020 increased by 0.31% (±0.14%) relative to 2019, based on several satel-

lite records (Fig. 2.27). Mean global cloudiness tends to stay reasonably stable, but regional dis-
tribution of cloud changes year-to-year. Some of this is due to normal variation in synoptic-scale 
weather events, but cloudiness can also be driven by modes of variability, the best-known being 
the El Niño–Southern Oscillation (ENSO). ENSO is characterized by a shifting gradient of SST and 
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low-level winds between the eastern and central equatorial Pacific and Indonesia. This gradient 
can in turn enhance or suppress convection, which drives the formation of clouds. This means 
that different phases of ENSO (and other modes) are frequently accompanied by characteristic 
patterns of cloudiness, which typically have a seasonal dependence. These large-scale patterns 
are important for several reasons. Clouds cool Earth by reflecting incoming solar radiation and 
warm it by trapping outgoing terrestrial radiation. Whether the overall effect is one of cooling or 
warming depends on many factors including the geographic distribution, height, and opacity of 
clouds (Bony et al. 2015). Clouds are also a gauge for moisture, and their presence may increase 
or decrease the risk of hydrological hazards like droughts, flooding, and wildfires. 

The Indian Ocean dipole (IOD) can also be characterized by a shifting gradient in SST but af-
fects the Indian Ocean, and a positive phase typically means fewer clouds and drier-than-normal 
conditions over much of Australia (BoM 2021). After being strongly positive and the most notable 
mode of variability present in 2019, the IOD returned to neutral conditions in 2020 (see section 4f). 
Meanwhile, ENSO shifted from neutral conditions to a moderate La Niña phase, which began in 
the boreal summer and persisted through the rest of the year (see section 4b). These features are 
apparent in the cloudiness anomalies across the four typical seasons of 2020 (Fig. 2.28). Positive 
cloudiness anomalies and wet conditions in the tropical central and eastern Pacific are indicative 
of weak El Niño-like conditions during December 2019–February 2020, while negative anomalies 
over the western tropical Pacific paired with positive anomalies over Indonesia are characteristic 
of La Niña during June–August 2020.

Plate 2.1n shows global cloudiness anomalies for 2020. Large and/or persistent changes over 
a specific region can result in a statistically significant cloudiness anomaly. This is an anomaly 
that, when averaged over the entire year, falls more than 2 standard deviations outside the mean 
as determined from the PATMOS-x/AVHRR climatology base period (1981–2010). In 2020 there 
were several such anomalies, and, in particular, there were large numbers of negative continental 
anomalies. Significant maritime anomalies include increased cloudiness in the eastern tropical 
Pacific and northern Indian ocean, particularly the Arabian Sea and Gulf of Aden, and decreased 
cloudiness in the northern Pacific. The increased cloudiness in the tropical Pacific is on either 
side of the ITCZ, the equatorial belt where northern and southern trade winds converge to produce 
precipitating convective clouds, and suggests a poleward shift of convective activity. Continental 

Fig. 2.27. Annual global cloudiness (a) anomalies and (b) actual 
(%) for 1980–2020. The anomaly is defined as the annual value 
minus the mean, derived between 2003 and 2015, a period 
common to the satellite records excluding CALIPSO, where 
the entire record was used instead. The datasets include 
(1) PATMOS-x /AVHRR (Pathfinder Atmospheres Extended; 
Heidinger et al. 2013), (2) HIRS High Cloud (Wylie et al. 2005, 
Menzel et al. 2016), (3) MISR (Multi-angle Imaging SpectroRa-
diometer; Di Girolamo et al. 2010), (4) Aqua + Terra MODIS C6 
(Moderate Resolution Imaging Spectroradiometer Collection 
6; Platnick et al. 2015), (5) CALIPSO (Cloud-Aerosol Lidar and 
Infrared Pathfinder Satellite Observation; Winker et al. 2007), 
(6) CERES Aqua MODIS (Clouds and the Earth’s Radiant Energy 
System; Trepte et al. 2010; Minnis et al. 2008), (7) SatCORPS 
(satellite cloud and radiative property retrieval system; Minnis 
et al. 2016), (8) CLARA-A2 (cloud, albedo, and radiation data-
set; Karlsson et al. 2017), (9) PATMOS-x/AQUA MODIS (created 
specifically for this report), (10) CLOUD_CCI (Cloud Climate 
Change Initiative AVHRR-PM v3.0; Stengel et al. 2017), and 
(11) PATMOS-x /AVHRR+HIRS (Foster et al. 2018). 
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anomalies include decreased cloudiness in the Americas over the western United States and por-
tions of Brazil, Paraguay, Uruguay, and Argentina. Africa experienced decreased cloudiness in the 
south over Namibia and South Africa and in the north over Libya, Tunisia, and Algeria. Europe 
experienced negative anomalies driven by decreased cloudiness during March–May (Fig. 2.28). 
Decreased cloudiness also occurred in Asia over Turkey, southern Russia, Kazakhstan, Mongolia, 
and parts of western China. The continental anomalies frequently coincided with regions that 
experienced below-average precipitation and/or severe wildfires (Plates 2.1k,x,z,ag).

8) River discharge and runoff—H. Kim and D. Tokuda
Since 2017, global land has been overall slightly wetter than average, and the anomalies of 

runoff (Plate 2.1o) and discharge (Plate 2.1p) make clear that the distribution of wet and dry re-
gions were similar to those of 2019. In many regions, the deviations intensified during 2020. A 
wet state of runoff prevailed in a large area of the United States (except the west), Canada (except 
the southeast), and the Eurasian continent. In particular, a strong wet signal has been discerned 
in East Asia (i.e., China, Japan, and Korea) in contrast to the strong dry spell of the previous year. 
During summer, anomalous runoff was generated by a disastrous amount of rainfall fostered by 
the enhanced Changma (also known as Meiyu in China and Baiu in Japan; see Sidebar 7.3 for de-
tails). According to recent studies, the East Asia Summer Monsoon lifecycle has intensified (Park 
et al. 2020; Wang et al. 2019). The United Kingdom also observed an anomalous wet year due to 
an exceptionally wet 2019/20 winter, and all the seasons of 2020 except for the record-breaking 
sunny spring (see section 7f2; Met Office 2020). Most regions of the European continent suffered 
anomalous dry spells, while the climate state of Scandinavian countries shifted to become wetter. 
Also, a large area of South America experienced a drier hydroclimate. Such anomalous states of 
climate were reflected in the global distributions of runoff and river discharge.

Fig. 2.28. Global seasonal cloudiness anomaly (%; 1981–2010 base period) for (a) Dec–Feb (DJF), (b) Mar–May (MAM), 
(c) Jun–Aug (JJA), and Sep–Nov (SON) generated from the 30-year PATMOS-x /AVHRR+HIRS cloud climatology.
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It has been well-known that ENSO and Pacific Decadal Oscillation (PDO; Zhang et al. 1997) are 
key drivers modulating global freshwater discharge (e.g., Kim 2020). The long-term variability of 
total runoff and those climate modes are shown in Fig. 2.29. This indicates that a positive (nega-
tive) phase inherent to ENSO and PDO tends to be associated with a drier (wetter) state of the 
global freshwater discharge by which about 46% of total variance is explained by the combined 
contribution of ENSO and PDO. Globally, a continuous wet state since 2017 was prolonged and 
then further intensified during 2020 due to the emergence of La Niña in the second half of the 
year. 2020 saw the third-highest (~95th percentile) runoff of the 63-year period (1958–2020). 

Figure 2.30 displays the inter-annual variability and climatology of freshwater discharge into 
the Atlantic, Pacific, Indian, and Arctic basins, which comprise approximately 75% and 85% of 
the entire terrestrial land area and river discharge, respectively. For the Atlantic Ocean, it was 
nearly neutral during 2020, while river runoff was above normal for much of the past decade. The 
seasonality was relatively weaker due to the excess and deficit of discharge during the dry and 
wet season, respectively. The Pacific Ocean received significantly greater volumes of water from 
rivers during the wet season (May–July) and over the rest of the year. In terms of long-term vari-
ability, there is a strong upward trend since the 1990s. Therefore, it was significantly wet during 
2020. A similar upward trend is seen in the Indian Ocean as well, following a long-term decline 
since the mid-twentieth century. During the entire analysis period, the freshwater discharge into 
the Arctic Ocean has been increasing, and the wet season of 2020 was significantly anomalous 
(see section 5g for details).

The 63-year series of runoff and freshwater discharge were provided from off-line hydrologic 
simulations of the Ensemble Land State Estimator (ELSE; Kim et al. 2009) and a global-scale river 
routing model, Catchment-based Macro-scale Floodplain (CaMa-Flood; Yamazaki et al. 2011) over 
1° and 0.5° global grids, respectively. To keep uniformity with the other estimates, river networks 
information was prepared in a regular grid system, 30-min drainage direction map (DDM30; Döll 
and Lehner 2002), and sub-grid-scale parameters (e.g., river length and floodplain shape) were 
derived accordingly. To distinguish the freshwater discharge to each oceanic basin, the World 
Ocean Atlas 2018 (Garcia et al. 2019) was referenced. The Japanese global atmospheric reanalysis 
(JRA-55; Kobayashi et al. 2015) and the GPCC Monitoring Product version 2020 (Schneider et al. 
2020) were combined to produce the atmospheric boundary conditions.

Fig. 2.29. Interannual variability of Ocean Nino Index (ONI; lower), Pacific Decadal Oscillation (PDO) index (upper),  
and global runoff (middle; mm; thick black line is 12-month moving average). ONI and PDO index are shaded red (posi-
tive phase) or blue (negative phase). Shading above and below the zero-line of global runoff is proportional to PDO and 
ONI, respectively.
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9) Groundwater and terrestrial water storage—M. Rodell and D. Wiese
Terrestrial water storage (TWS) comprises all the water on and below the land surface: ground-

water, soil moisture, surface water, snow, and ice. In general, snow and ice dominate interannual 
TWS variability at high latitudes and in alpine regions, surface water dominates in the wet tropics, 
and groundwater dominates elsewhere (Getirana et al. 2017). 

Changes in mean annual TWS between 2019 and 2020 as measured by the GRACE (Tapley et al. 
2004) and GRACE-FO ( Landerer et al. 2020) satellite missions, shown in Plate 2.1q as equivalent 
heights of water in centimeters (cm), integrate the effects of multiple hydroclimatic variables 
(see Plates 2.1k,p,t). Of note in 2020, heavy rains raised TWS in a large region of south-central 
and eastern Africa by 12–25 cm equivalent height of water. Exacerbated by increased runoff due 
to environmental degradation and urbanization (Mafaranga 2020), Lake Victoria consequently 
gained more than a meter of water (see sections 2d6, 7e4), with flooding in the surrounding re-
gion. Groundwater and TWS remained depressed over most of Europe, excluding Scandinavia, 
following losses in 2019. Much of India experienced large TWS gains, but, directly to the east, 
drought worsened in the Indochina Peninsula. Above-normal precipitation increased TWS in 

Fig. 2.30. Interannual variability of freshwater discharge to global ocean basins (km3 yr−1). Line and shades indicate 
annual mean and monthly anomaly, respectively. (Left) Seasonality of freshwater discharge to global ocean basins  
(km3 yr−1). Thick black line, thin blue line, and gray shade indicate long-term climatology, seasonal variation during 2020, 
and 1σ of long-term variability. J, A, J, O for the tick labels of the shared-ordinate between left and right panels indicate 
Jan, Apr, Jul, and Oct, respectively (right).
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much of the rest of far eastern Asia as well as north-central Asia. TWS changes in Australia were 
of mixed sign and generally mild. In North America, the most notable changes were considerable 
increases in TWS in central Canada and the southeastern United States and drying that stretched 
from the coast of California to eastern Texas, all of which were driven by precipitation anomalies 
(see section 7b2). Consistent with past years (Tapley et al. 2004), some of the most massive TWS 
changes occurred in South America, including large increases in eastern Brazil and a north–south 
swath of large decreases down the center of the continent (see section 7d). 

Figures 2.31 and 2.32 depict time series of zonal mean and global mean monthly TWS anomalies 
after removing the seasonal cycle. Ice sheet and glacier ablation continued to produce large TWS 
declines in Antarctica, Greenland, the Gulf Coast of Alaska, and polar islands, hence we excluded 
these regions from the data used in Figs. 2.31 and 2.32, but additional ice mass loss is still appar-
ent at high latitudes in Fig. 2.31. The large TWS increase in south-central and eastern Africa was 
apparent near the equator in Fig. 2.31. 
TWS decreases near 40°N can be attrib-
uted to four factors (Plate 2.1q): droughts 
in California, the central United States, 
and the land adjacent to the Aegean Sea 
and Black Seas; glacier ablation in the 
Alay Mountains of Tajikistan; persistent 
water level decline in the Caspian Sea; 
and groundwater depletion to support 
irrigated agriculture in the North China 
Plain. At the global scale (Fig. 2.32), mean 
TWS decreased by about 7 mm equivalent 
height of water from the start of 2020 
through June and then quickly gained 
nearly 12 mm, much of that in central 
Africa, causing a temporary 4 mm decline 
in sea level (see section 3f).

In situ measurement records of the TWS 
components are rarely available outside of 
the United States and parts of Europe and 
Australia; however, GRACE and GRACE-FO 
have provided monthly, global maps of 
TWS anomalies based on precise measure-
ments of Earth’s time-varying gravity field. 
The GRACE and GRACE-FO data were the 
basis for this analysis. Uncertainty in the 
derived TWS anomalies varies depending 
on the latitude (higher near the equator), 
size of the region of interest (higher at 
small scales), TWS anomaly averaging 
period (higher for short periods), and 
orientation (higher for north–south ori-
ented regions near substantially different 
gravity change signals). At scales greater 
than about 500,000 km2, uncertainty 
in monthly TWS anomalies is typically 
around 1–2 cm equivalent height of water 
(Wiese et al. 2016).

Fig. 2.32. Global average terrestrial water storage anomalies from 
GRACE (gray) and GRACE-FO (black), in cm equivalent height of 
water, relative to a 2004–09 mean baseline.

Fig. 2.31. Zonal means of terrestrial water storage anomalies, ex-
cluding those in Antarctica, Greenland, the Gulf Coast of Alaska, 
and polar islands, in cm equivalent height of water, based on 
gravity observations from GRACE and GRACE-FO. The anomalies 
are relative to a base period of 2004–09.
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10) Soil moisture—R. van der Schalie, T. Scanlon, W. Preimesberger, A. J. Pasik, M. van der Vliet, L. Mösinger,  
N. J. Rodríguez-Fernández, R. Madelon, S. Hahn, M. Hirschi, R. Kidd, R. A. M. de Jeu, and W. A. Dorigo 
Monitoring global soil moisture conditions is key for our understanding of the climate system, 

as soil moisture has a defining role in the energy and water fluxes at the land–atmosphere bound-
ary. The global surface soil moisture conditions in 2020, as measured by satellite, were on average 
close to the climatology derived from historical data of the 1991–2010 period (Fig. 2.33), being 
slightly wetter than normal at the start of the year. Although still present, the large discrepancy 
between the Northern Hemisphere (NH) and Southern Hemisphere (SH) observed at the end of 
2019 became slightly less pronounced in 
2020 (Fig. 2.34). Drier-than-usual condi-
tions persisted in the SH throughout 2020, 
and while the record wet peak of the NH 
at the end of 2019 weakened, it remained 
historically high in 2020. Plate 2.1r and 
Appendix Fig. A2.11a show the yearly 
and monthly soil moisture anomalies 
for 2020, respectively. There are strong 
spatial anomalies, which are discussed 
per individual continent.

In North America the year started 
with mostly wet conditions, but from the 
spring onward a strong deviation started 
to develop between the eastern United 
States, northwest Canada, and Alaska, 
with wet anomalies, and the Great Plains, 
southwestern United States, and Mexico, 
with strong dry anomalies. In the United 
States, this was linked to the precipita-
tion anomalies (NOAA 2021), which 
show a similar pattern, with Nevada and 
Utah posting record lows. The peak in 
dry anomalies occurred in autumn and 
coincided with the record-breaking 2020 
western United States wildfire season 
(see section 7b2 for details about the U.S. 
drought and wildfires). Consistent with 
the La Niña forming in the second half 
of the year (see section 4b), these dry 
conditions remained in place until the 
end of 2020.

For Europe an overall wet anomaly 
was recorded, with the only exception 
being the region around the Black Sea, 
which experienced drier-than-normal 
conditions. April diverted from this, with 
high-pressure systems dominating the 
weather in Europe, causing extraordinary 
warm, sunny, and dry conditions, and 
consequently led to a sharp decline in 
soil moisture conditions. The eastern part 

Fig. 2.33. Time series of global, NH, and SH surface soil moisture 
anomalies for 1991–2020 (upper, m3 m−3; 1991–2010 base period) 
and the percentage of valid retrievals over land (lower, %). Data 
are masked where no retrieval is possible or where the quality 
is not assured and flagged due to dense vegetation, frozen soil, 
radio frequency, interference, and so forth. (Source: ESA CCI  
Soil Moisture.)

Fig. 2.34. Time–latitude diagram of surface soil moisture anoma-
lies (m3 m−3; 1991–2010 base period). Data are masked where 
no retrieval is possible or where the quality is not assured and 
flagged due to dense vegetation, frozen soil, radio frequency, 
interference, and so forth. (Source: ESA CCI Soil Moisture.)
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of Europe was the most affected, and related early season wildfires were recorded in multiple 
countries, including Germany, Poland, and Ukraine. From the second half of May onward, the 
moisture deficiencies returned to wetter-than-usual conditions for most of Europe (see section 7f).

South America experienced a widespread drought (see section 7d), which is clearly visible in 
the strong dry anomalies found over central Brazil, Bolivia, Paraguay, Uruguay, and Argentina. 
This situation was amplified by the emergence of La Niña (section 4b) in the second half of the 
year (Penalba and Rivera 2016). One region that clearly stands out with a severe dry anomaly 
is Brazil’s Pantanal, known as the world’s largest wetland, which endured its worst drought in 
almost 50 years and saw more than a quarter of its area burned. Eastern Brazil is the only major 
exception to this, with an opposite strong wet anomaly caused by heavy rains early on in the 
year. Wetter-than-usual conditions in this region generally coincide with La Niña events (see 
section 7d for details).

In eastern Africa an intensification of the already above-average wet conditions was observed. 
In the second half of 2019 above-average rainfall was recorded in this region, caused by a strong 
positive Indian Ocean dipole (Preimesberger et al. 2020), leading to above-average conditions 
in early 2020. This wet anomaly remained intact due to exceptionally heavy seasonal rains. The 
dry conditions in southern Africa alleviated in 2020, while southern Madagascar became much 
drier. The Sahel saw strong wet anomalies developing from August onwards, caused by heavy 
rainfall (see section 7e for details).

Asia mainly experienced wetter-than-normal soil moisture conditions throughout 2020, espe-
cially in India, China, Mongolia, North Korea, and South Korea, where unusually long and strong 
monsoon rains were reported (see section 7g). The countries in the Lower Mekong Basin continued 
to experience dry conditions, according to the Mekong River Commission, with below-average 
annual rainfall in 2019 and a shorter-than-normal monsoon season in 2020. In eastern Siberia, 
a widespread dry anomaly was observed in the region that experienced massive wildfires and a 
record heat wave (Overland and Wang 2020; see section 7g2). 

While most of Australia still recorded below-average soil moisture conditions in 2020, it shifted 
considerably toward the long-term mean following the extraordinary low values seen in 2019 
(Preimesberger et al. 2020). The only exception to this was southeastern Australia, where soil 
moisture increased to above-average conditions, providing some much needed relief from the 
multi-year drought (see section 7h4 for details). 

The soil moisture anomalies used in this analysis were derived from the COMBINED product 
of ESA’s Climate Change Initiative for Soil Moisture v05.3 (ESA CCI SM; Dorigo et al., 2017), which 
is a product that merges satellite soil moisture retrievals from multiple active (Wagner et al. 2013) 
and passive microwave (Van der Schalie et al. 2017) sensors to achieve the most accurate and 
consistent climate data record of soil moisture (representing the top ~5 cm of the soil). Merging 
is done based on both the quality and the temporal and spatial availability of observations, in 
order to achieve both an improved coverage and quality as compared to any single sensor dataset 
(Gruber et al. 2017, 2019). 

11) Monitoring global drought using the self-calibrating Palmer Drought Severity Index— 
J. Barichivich, T. J. Osborn, I. Harris, G. van der Schrier, and P. D. Jones
The sharp increase in global drought area based on different severities of the self-calibrating 

Palmer Drought Severity Index (scPDSI) that began in mid-2019 (Barichivich et al. 2020), contin-
ued in 2020, and reached a historical peak in October, with a small decrease afterward (Fig. 2.35). 
Around 6.8% of the global land area experienced extreme drought conditions in October, marking 
the third historical peak since 1950 after earlier peaks in October 1984 (7.7%) and October 1983 
(7.3%). The extent of severe plus extreme drought conditions peaked at 15% of the global land 
area in October and November, matching the largest historical peaks of this drought severity in 
September 1983. Moderate or worse drought conditions peaked in August at 27.8% of the global 
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land area, marking the fifth historical 
peak after June 1987 (29.6%) and the larg-
est peak since August 2002 (29%).

Extensive severe-to-extreme drought 
conditions during 2020 affected most of 
the SH, southern and central Europe, the 
Middle East, and Southeast Asia (Plate 
2.1s). Compared to 2019 (Barichivich 
et al. 2020), drought severity worsened 
to extreme in central South America  
(Fig. 2.36). Worsening drought during the 
dry season (austral winter and spring) 
contributed to ravaging fires across the 
Chaco floodplains and Pantanal wetland 
in northern Argentina and southern 
Brazil (Rodríguez 2020; see section 7d). 
The decadal drought in north-central 
Chile (Garreaud et al. 2017; Alvarez-
Garreton et al. 2021) continued through 
its 11th year in 2020, with extreme condi-
tions in the central and most populated 
region of the country (Plate 2.1s). In North 
America, the east–west moisture contrast 
observed across the United States since 
2017 (Osborn et al. 2018; Barichivich 
et al. 2020) also persisted during 2020 
(Plate 2.1s). Extensive wet conditions 
extended over the whole eastern half of 
the country and moderate but protracted 
drought prevailed in the west. Under 
these persistent drought conditions, 
California saw another extreme season 
of wildfires (Goss et al. 2020). 

Previous drought conditions in south-
ern Africa eased slightly in general, 
but worsened in northern Mozambique 
(Fig. 2.36). South Africa declared a state 

of disaster as many parts of the country had remained under extreme drought since 2018. Wet 
conditions from 2019 in most of Central and East Africa persisted in 2020 (Plate 2.1s), though mois-
ture anomalies in these regions were uncertain due to sparse coverage of station data. Previous 
drought conditions also eased in Australia (Fig. 2.36) but most of the country remained under 
drought during 2020 (Plate 2.1s).

In Southeast Asia, extreme drought because of a weak monsoon season affected Malaysia, 
Myanmar, Thailand, Cambodia, Vietnam, and particularly Laos (Plate 2.1s), contributing to 
record low levels of the Mekong River. Extreme drought affected a vast region of northeastern 
Siberia. Dry conditions through the Sakha Republic, Russia, were associated with anomalously 
extensive wildfires that burned around 6 million ha. Most of the midlatitude belt from Mongolia in 
central Asia to western Europe and the Mediterranean saw moderate to extreme drought severity 
during 2020 (Plate 2.1s). Extreme drought in Europe was once again exacerbated by increasingly 
recurrent spring and summer heat waves combined with below-average spring precipitation and 

Fig. 2.36. Change in drought from 2019 to 2020 (mean scPDSI for 
2020 minus mean scPDSI for 2019). Increases in drought severity 
are indicated by negative values (brown), decreases by positive 
values (green). No calculation is made where a drought index is 
meaningless (gray areas: ice sheets or deserts with approximately 
zero mean precipitation).

Fig. 2.35. Percentage of global land area (excluding ice sheets and 
deserts) with scPDSI indicating moderate (< –2), severe (< –3) and 
extreme (< –4) drought for each month of 1950–2020. Inset: Each 
month of 2020, denoted by first letter.
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antecedent soil moisture deficit. In the midst of two heat waves, France experienced its driest 
July on record. As in 2019, the most intense annual drought persisted across northern Germany 
and Poland, where a strong soil moisture deficit has developed since 2018 (Fig. 2.36). In contrast 
to central and southern Europe, wet conditions occurred across northern Europe from the British 
Isles to Fennoscandia and the Ural Mountains.

Hydrological drought results from a period of abnormally low precipitation, sometimes exac-
erbated by a concurrent increase in evapotranspiration (ET). Its occurrence can be apparent in 
reduced river discharge, soil moisture, and/or groundwater storage, depending on season and 
duration of the event. Here, a simple estimate of drought as measured by the scPDSI (Wells et al. 
2004; van der Schrier et al. 2013) is presented, using global precipitation and Penman-Monteith 
Potential ET from an early update of the Climatic Research Unit gridded Time Series (CRU TS 
4.05 dataset; Harris et al. 2020). Moisture categories are calibrated over the complete 1901–2020 
period to ensure that “extreme” droughts and pluvials (wet periods) relate to events that do not 
occur more frequently than in approximately 2% of the months. This calibration affects direct 
comparison with other hydrological cycle variables in Plate 2.1 that use a different baseline period.

12) Land evaporation—D. G. Miralles, A. Koppa, D. Rains, H. E. Beck, and M. F. McCabe
The geographical patterns of land evaporation anomalies for the year 2020 are illustrated in 

Plate 2.1t. Several regions experienced anomalously low evaporation, including most of the west 
and central United States and parts of Russia and central Africa. Moreover, a strong negative 
anomaly was recorded in central South America, comprising Bolivia, Paraguay, and large parts 
of Brazil and Argentina. This anomaly reflected severe meteorological drought conditions in au-
tumn, which propagated as agricultural and hydrological drought as the year progressed, leading 
to the unprecedented dry-out of the Parana River (see sections 2d11, 7d3). Likewise, the drought 
conditions in the west and central United States led to lower-than-usual evaporation across vast 
areas of the country. On the other side of the spectrum, regions of positive anomalies included the 
eastern half of the United States, western Europe, the Amazon basin, the Greater Horn of Africa, 
and India. In the first three instances, these anomalies related to higher-than-usual surface net 
radiation and air temperature (see sections 2b1, 2b3). In the case of Amazonia, they occurred 
despite the widespread meteorological drought conditions in South America, highlighting the 
positive influence that mild droughts can have on rainforest productivity and transpiration due to 
associated anomalies of incoming solar radiation (see e.g., Liu et al. 2017). In India, the seasonal 
monsoon was exceptionally wet in 2020 
(see sections 4e, 7g4), which explains the 
large positive anomaly in evaporation 
over the region.

The global mean land evaporation in 
2020 was the highest on record, exceed-
ing the values of the 2010 La Niña year 
(Fig. 2.37). The trend of approximately 
0.3 mm year–1, according to the Global 
Land Evaporation Amsterdam Model 
(GLEAM) v3.5, falls within the range re-
ported in recent literature (Zhang et al. 
2016a; Brutsaert et al. 2017; Anabalón 
and Sharma 2017). This multi-decadal 
tendency to higher evaporation has been 
attributed to increasing global tempera-
tures (Miralles et al. 2014) and greening 
(Cheng et al. 2017). The overall positive 

Fig. 2.37. Land evaporation anomaly (mm yr−1; 1981–2010 base 
period) for the NH, SH, and the entire globe (blue, red, and black 
solid lines, respectively). Linear trends in evaporation (dashed 
lines) and the Southern Oscillation Index (SOI) from CRU (right 
axis, shaded area) are also shown. (Source: GLEAM.)
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global evaporation anomaly in 2020 re-
sulted from the mean positive anomaly 
in the NH (Figs. 2.37, 2.38), likely associ-
ated to the unusually high temperatures 
across Eurasia (see sections 2b1, 2b3, 7f). 
The characteristic negative anomalies 
in land evaporation in the SH during El 
Niño years (Miralles et al. 2014; Martens 
et al. 2018) dissipated as the atmosphere 
returned to a neutral ENSO state dur-
ing early 2020 and then shifted toward 
La Niña later in the year (see Southern 
Oscillation Index; SOI in Fig. 2.37). None-
theless, evaporation in the SH remained 
below average, particularly during the 
first half of the year, and especially over 
the latitudes where the South American 
drought occurred (Fig. 2.38).

Evaporation is the phase change of liquid water into vapor. On average, two-thirds of the 
precipitation over land is evaporated (Dorigo et al. 2021). The ability to monitor its spatial and 
temporal dynamics is critical for agriculture and water management, as well as to diagnose cli-
mate changes. Its crucial climatic role, combined with an increased monitoring ability, has led to 
the recent consideration of land evaporation as an essential climate variable (ECV) by the World 
Meteorological Organization (WMO). This consideration was enabled by the proliferation, over the 
past 2 decades, of approaches dedicated to quantifying this flux at regional to continental scales 
based on satellite data (McCabe et al. 2016; Miralles et al. 2016). A handful of such approaches 
regularly update their simulations, including the Land Surface Analysis Satellite Applications 
Facility (LSA-SAF; Ghilain et al. 2011), the Atmosphere–Land Exchange Inverse (ALEXI; Anderson 
et al. 2011), and GLEAM (Miralles et al. 2011). The latter provides global-scale estimates and serves 
as the basis for the results presented in this section. 

The accuracy of GLEAM v3 has been reported to be on the order of 0.7 mm day−1 (unbiased root 
mean square error), and its correlation against in situ eddy covariance measurements is around 
0.8 on average (Martens et al. 2017). Some climate zones are known to be challenging for models 
of terrestrial evaporation such as GLEAM (McCabe et al. 2017a; Fisher et al. 2017; Talsma et al. 
2018): in semiarid regions, difficulties in capturing the response of evaporation to drought stress 
affect the accuracy, while for tropical forests, interception loss remains a key source of uncertainty. 
Moreover, reported global trends are affected by the poor representation of the effects of carbon 
dioxide (CO2) and atmospheric aridity on stomatal conductance in current evaporation models 
(Zhang et al. 2016a). Further advances in the field of global terrestrial evaporation monitoring 
need to be realized in order to reduce these uncertainties. These may include developments in 
high-resolution optical platforms (McCabe et al. 2017b) and thermal missions such as ECOSTRESS 
(Fisher et al. 2020) or TRISHNA (Lagouarde et al. 2018). 

e. Atmospheric Circulation
1) Mean sea level pressure and related modes of variability—R. Allan and B. Noll

Global atmospheric circulation patterns are dominated by the El Niño–Southern Oscillation 
(ENSO), measured in the atmosphere by the Southern Oscillation Index (SOI), and in the Northern 
Hemisphere (NH) by the Arctic Oscillation (AO) and the North Atlantic Oscillation (NAO); ENSO 
is measured in the Southern Hemisphere (SH) by the Antarctic Oscillation (AAO), also known as 

Fig. 2.38. Zonal mean terrestrial evaporation anomalies  
(mm month−1; 1981–2010 base period). (Source: GLEAM.)
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the Southern Annular Mode (SAM; see Fig. 2.39). A detailed summary of all the above modes, 
their definitions, and so forth, are given in Kaplan (2011).

In section 4b, 2019 to mid-2020 conditions are denoted as being ENSO-neutral, with evidence 
for the development of a La Niña by August–September 2020. However, from March–April 2018 
until July–August 2020, monthly Niño-4 sea surface temperature (SST) anomalies (https://www 
.cpc.ncep.noaa.gov/data/indices/sstoi.indices) remained positive and thus passed one criterion for 
this period being indicative of a protracted El Niño episode (Allan et al. 2019). Different “flavors” 
of ENSO have been addressed in the literature (Capotondi et al. 2015; L’Heureux et al. 2017; Wang 
et al. 2017; Timmermann et al. 2018; Santoso et al. 2019), including protracted El Niño and La Niña 
episodes (Allan and D’Arrigo 1999; Allan et al. 2019). The latter are distinguished by periods of 
both sustained above-average SST anomalies in the Niño-4 region in the western equatorial Pacific 
(5°S–5°N, 160°E–150°W) and a persistent negative SOI. This pattern is similar to El Niño and La 
Niña episodes known as Modoki (Ashok et al. 2007; Weng et al. 2007; Ashok and Yamagata 2009) 
and they could be argued to be the same phenomenon (Allan et al. 2019; see also section 4b).

The second criteria, for the SOI to have acted similarly by being consistently negative (allowing 
for at most two consecutive months to have gone positive), occurred from June 2018 to August 
2020 (Fig. 2.39). This period of continuously warm Niño-4 SST anomalies led to enhanced atmo-
spheric convection over that region and the generation of a teleconnection that caused large-scale 
subsidence across eastern Australia in the early 2018 to mid-to-late 2020 period (Allan et al. 2021). 
Together with the continued impact of a positive Indian Ocean dipole (IOD) from late 2019, the 
warm Niño-4 SST teleconnection suppressed rainfall across southern and eastern Australia and 
New Zealand (Zhang et. al. 2021; see also sections 2d5, 7h).

Fig. 2.39. Time series for modes of variability described using sea level pressure for the (left) complete period of record and 
(right) 2006–20. (a),(b) Southern Oscillation Index (SOI; provided by the Australian Bureau of Meteorology); (c),(d) Arctic 
Oscillation (AO; NOAA NCEP Climate Prediction Center); (e),(f) Antarctic Oscillation (AAO; NOAA NCEP Climate Prediction 
Center); (g),(h) winter (Dec–Feb) North Atlantic Oscillation (NAO) average (NCAR; presented for winter at the beginning 
of each year so winter 2020/21 is not shown).
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In the NH, the last several boreal winters have displayed a variety of AO and NAO conditions 
(Figs. 2.39, 2.40). The 2019/20 boreal winter (Figs. 2.40b,e) was characterized by a persistent, 
mainly positive NAO, which led to mild conditions across the entire European region (see sec-
tion 7f). This NAO phase contributed to heavy rainfall leading to flooding and a series of deep 
Atlantic cyclones, culminating in large storms in February 2020 (e.g., Storms Ciara and Dennis 
that impacted the United Kingdom; see section 7f2 for details). A strong stratospheric polar vortex 
dominated the winter, extending down through the troposphere and leading to abnormally cold 
air temperatures extending eastward from Alaska to Greenland and Svalbard (see section 5b).

During the 2020/21 boreal winter (Figs. 2.40c,f), the NAO was near average in December but 
shifted to negative throughout January, becoming the most negative observed in 11 years, and 
this extended through the first half of February 2021. In December 2020, Europe experienced its 
fourth-warmest December on record, with such conditions most pronounced over Scandinavia. 
Above-average precipitation occurred over most of western, northern, and southern Europe, with 
localized damage and flooding. This extended into January and February for western and central 
Europe, while temperatures were generally close to average across the continent, though colder 
in the west and north.

In the SH, the AAO was positive over 60% of the time during 2020, associated with a wide swath 
of higher-than-normal air pressure in the southwest Pacific (Figs. 2.40b,e), both early and again 
late in the year. This, along with the continued impact of a positive IOD event from late 2019, was 
associated with one of the worst droughts on record for northern New Zealand (NIWA 2020; see 
section 7h5). Slightly higher-than-normal air pressure in the Great Australian Bight also occurred 
as Australia recorded its fourth-warmest year on record (BoM 2020a; see section 7h4). Pressures 
were also above normal across South America, leading to Argentina’s second-warmest year on 
record (see section 7d3). Influenced by the aforementioned IOD and the Pacific Niño-4 telecon-
nection, tropical cyclone activity was near or slightly above normal in the South Indian Ocean 
and southwest Pacific but below normal in the Australian region (see section 4g). 

The frequently positive AAO also meant that pressures were below normal across Antarctica, 
which in September 2020 experienced an above-average maximum sea ice extent of 19.06 × 106 km2 
(NOAA 2021; see section 6f). Frequent patterns of lower-than-normal pressure near South Africa 
caused a wetter-than-normal winter during 2020 (see section 7e5), leading to the full recharge of 
Cape Town’s dams for the first time in about 6 years (City of Cape Town 2021), following the severe 
drought of 2015–18 (Otto et al. 2018; section 2d9; SOTC 2018)

The AAO remained mostly positive during the 2020/21 austral summer (Figs. 2.40c,f), contrib-
uting to a drier-than-normal summer across New Zealand for the second consecutive year (NIWA 
2021; see section 7h5). During December, Severe Tropical Cyclone Yasa formed as a pulse of en-
hanced convection crossed the tropical Pacific, becoming the South Pacific’s strongest tropical 
cyclone since Winston in 2016 and making landfall in Fiji. Above-average sea surface temperatures 
to the north of Australia, as is typical during La Niña, led to above-normal rainfall totals in the 
tropical north and southeast, a marked change compared to the previous year (BoM 2021).

2) Land and ocean surface winds—C. Azorin-Molina, R. J. H. Dunn, L. Ricciardulli, C. A. Mears, T. R. McVicar, 
and J. P. Nicolas
The strengthening in global average surface wind speed over land (i.e., ~10 m above the ground) 

persisted in 2020, consistent with the reversal in global terrestrial winds observed since around 
2010 (e.g., Azorin-Molina et al. 2020; Zeng et al. 2019; Fig. 2.41a). Prior to ~2010, a slowdown of 
terrestrial surface winds (termed stilling; Roderick et al. 2007) had dominated globally and region-
ally since the 1960s (e.g., Kim and Paik 2015; Azorin-Molina 2018a; Zeng et al. 2019). The global 
land average wind speed anomaly in 2020 with respect to the 1981–2010 climatology (Table 2.8) 
showed a positive value (+0.052 m s−1), which was the highest over the last 2 decades. Europe 
(+0.082 m s−1), Central Asia (+0.178 m s−1), and East Asia (+0.051 m s−1) continued with the recovery of 
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Fig. 2.40. Boreal winter sea level pressure anomalies (hPa; 1981–2010 base period) around the NH averaged over Dec–Feb 
for (a) 2018/19, (b) 2019/20, and (c) 2020/21 (constructed using ERA5, Hersbach et al. 2019). North Atlantic Oscillation (NAO) 
daily time series (hPa) for boreal winter (d) 2018/19, (e) 2019/20, and (f) 2020/21. The 5-day running mean is shown by the 
solid black line (constructed using Met Office MIDAS data). Austral summer sea level pressure anomalies (hPa; 1981–2010 
base period) around the Southern Hemisphere (hPa; 1981–2010 base period) averaged over Dec–Feb for (g) 2018/19, (h) 
2019/20, and (i) 2020/21 (constructed using ERA5). Antarctic Oscillation (AAO) daily time series (hPa) for austral summer 
(j) 2018/19, (k) 2019/20, and (l) 2020/21 (NOAA NCEP Climate Prediction Center).

Unauthenticated | Downloaded 01/02/25 03:33 PM UTC



S752 . G L O BA L  C L I M AT EAU G U S T  2 0 2 1  |  S t a t e  o f  t h e  C l i m a t e  i n  2 0 2 0

winds, while North America showed less 
negative anomalies (−0.084 m s−1) com-
pared to the lowest value (−0.253 m s−1), 
which occurred in 2012. Wind speed 
frequencies above a moderate threshold 
(>3 m s−1; Fig. 2.41c) exhibited a weak re-
covery in the last decade, with no trend for 
stronger wind speeds over land (>10 m s−1; 
Fig. 2.41d). 

The assessment of wind speed changes 
across land and ocean surfaces for the 
1979–2020 period is based on two types 
of products. First, global in situ an-
emometer observations were obtained 
from the quality-controlled HadISD3 
dataset (v3.1.1.2020f; 1973–2020; Dunn 
et al. 2012, 2016, 2019) for 2554 stations 
that had sufficient coverage during the 
1981–2010 climatology period. Second, 
wind speed estimates from three grid-
ded reanalysis products were used to 
cover Earth’s surface evenly: (i) ERA5 
(1979–2020; Hersbach et al. 2020); (ii) 
MERRA-2 (1980–2020; Gelaro et al. 2017); 
and (iii) 20CRv3 (1836–2015; Slivinski 
et al. 2019). A major shortcoming of these 
products is their inability to capture the 
stilling and reversal phenomena shown 
by observations (Fig. 2.41b; Torralba et al. 
2017; Ramon et al. 2019; Wohland et al. 
2019); therefore, trends should be inter-
preted with caution.

Despite the rebound of surface winds 
observed since 2012, the sign of the 
long-term 1979–2020 trends of terrestrial 
wind speed remained negative. Globally, 
land surface winds weakened at a rate 
of −0.056 m s−1 decade−1 (Table 2.8). This 
slowdown is of lesser magnitude com-

pared to previous reports (Azorin-Molina et al. 2020) and especially when compared to the global 
average trend in observed terrestrial near-surface wind speeds of −0.140 m s−1 decade−1 reviewed 
by McVicar et al. (2012) Regions also exhibited a weakening of negative trends and in the magni-
tudes of the 5th to 95th percentile confidence ranges because of the reversal of winds in the 2010s, 
with Central Asia and North America showing the strongest changes, and Europe and East Asia 
the weakest. As shown in Fig. 2.42, negative trends mostly occur across midlatitude regions of 
the NH, where most land-based observations exist. In the SH, ERA5 shows a greater dominance 
of weak positive trends over continents, particularly for Antarctica. In fact, the percentage of 
positive trends for stations and grid-points increased from 37% in 2019 to 42% because of the 
recovery of terrestrial winds, especially in Asia.

Fig. 2.41. Global (excluding Australia in panels [a], [c] and [d]) and 
regional annual time series of land surface wind speed anomaly 
(m s−1; 1981–2010 base period) using (a) HadISD3 (1973–2020) 
and (b) ERA5 (1979–2020), MERRA-2 (1980–2020), and 20CRv3 
(1836–2015, only 1970–2015 shown here). HadISD3 occurrence 
frequencies (in %) for wind speeds (c) >3 m s−1 and (d) >10 m s−1.
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Ocean surface winds for 1988–2020 were assessed using: (i) reanalyses (MERRA-2, ERA5, 
and 20CRv3) and (ii) satellite-based products including the Special Sensor Microwave/Imager 
(SSM/I), the Special Sensor Microwave Imager/Sounder (SSMIS), the Advanced Microwave Scan-
ning Radiometer (AMSR-E and AMSR2), and microwave imagers TMI, GMI, WindSat, QuikSCAT, 
and ASCAT (Wentz 1997; Wentz et al. 2007, 2015; Ricciardulli and Wentz 2015; Ricciardulli 2016). 
For 2020, satellite radiometers showed a near-zero global mean wind speed anomaly over ocean 
(−0.013 m s−1; Fig. 2.43), consistent with the satellite scatterometers (ASCAT) and with MERRA-2; 
whereas ERA5 shows a positive anomaly and biases compared to the other products. In general, 
the magnitudes of any positive wind speed anomalies in 2020 were weak (Plate 2.1v), except in 
the Arctic Ocean, the North Atlantic Ocean, the southern fringe of both the South Pacific and 
South Atlantic Oceans, and the Bering Sea. In contrast, negative wind speed anomalies dominated 
tropical and subtropical ocean surfaces in 2020, particularly in the Atlantic and Indian Oceans. 
The ocean wind speed trend from satellite radiometers is nearly zero (+0.002 m s−1 decade−1) for 
1988–2020 (Fig. 2.42), with a dominance of negative regional trends (moderate ones in the Indian 
Ocean and western Pacific Ocean), except for the positive trends found in the Southern Ocean, 
and the Pacific and Atlantic trade winds south of the equator (Young and Ribal 2019) 

Table 2.8. Global and regional statistics for land surface wind speed (m s−1) using 
the observational HadISD3 dataset for 1979–2020.

Region
Mean 

1981–2010 
(m s−1)

Anomaly 
2020  

(m s−1)

Trend 1979–2020  
(m s−1 decade−1) and 
5th–95th percentile  

confidence range

Number of 
stations

Globe (excluding 
Australia)

3.324 +0.052 −0.056 (−0.065  −0.040) 2554

North America 3.709 −0.084 −0.080 (−0.092  −0.069) 578

Europe 3.677 +0.082 −0.042 (−0.053  −0.032) 765

Central Asia 2.890 +0.178 −0.089 (−0.116  −0.060) 258

East Asia 2.726 +0.051 −0.028 (−0.037  −0.015) 459

Fig. 2.42. Wind speed trends (m s−1 decade−1) for the observational HadISD3 dataset (circles) over land, and ERA5 reanalysis 
output over land/ice and RSS satellite radiometers (SSM/I, SSMIS, TMI, GMI, AMSR2, AMSR-E, and WindSat) over ocean 
for 1988–2020 (shaded areas).
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Decadal-scale variations and trends of land and ocean surface winds are likely driven by inter-
nal decadal ocean–atmosphere oscillations (Zeng et al. 2019) and anthropogenic greenhouse gas 
forcing (Deng et al. 2021), respectively, with vegetation growth (Vautard et al. 2010), urbanization 
(Chen et al. 2020), and instrumentation issues (Azorin-Molina et al. 2018b) having a lesser impact. 
After decades of a slowdown of winds over land, the recent reversal, which continued in 2020, 
is increasing potential wind energy across the world (Zeng et al. 2019). The most challenging 
research questions now are to predict how long the positive anomalies will last and to estimate 
future wind projections given a changing climate with a direct impact on the wind energy sector.

3) Upper air winds—L. Haimberger, M. Mayer, and V. Schenzinger
The 2020 global mean wind speed anomaly at 850 hPa has slightly recovered from a minimum 

in late 2019 to values close to the long term (1981–2010) average (Fig. 2.44). However, the clear 
positive trend over the past 40 years remains in all four included reanalyses. The wind time series 
start now in 1950, thanks to the backward extension of ERA5 (Bell et al. 2021). In the NH extra-
tropics, there is no evidence of wind stilling at 850 hPa, in contrast to surface winds (section 2e2).

Plate 2.1w shows the meridional (positive northward) wind anomaly averaged over Septem-
ber–December 2020 at 850 hPa. That 
period showed a pronounced wave train 
with wavenumber 4 around 55°N, with 
particularly strong southerly winds of 
up to 4 m s−1 in the 4-month average over 
northeastern Europe and far eastern New-
foundland. This pattern, together with 
ongoing climate change, led to the high-
est autumn temperatures on record in this 
region (Copernicus 2021). The dynamics 
that led to this pattern need to be fully 
investigated but are likely an example of 
enhanced resonance of Rossby waves in 
a warming climate (Petoukhov et al. 2013; 
Mann et al. 2019; Wills et al. 2019).

Turning to higher altitudes, we first 
assess the impact of tropical climate 
anomalies on upper-tropospheric cir-
culation through inspection of 200-hPa 

Fig. 2.43. Annual global mean wind speed anomalies (m s−1; 1981–2010 base period) over the ocean from satellite radiom-
eters and scatterometers, and reanalysis outputs. The values for the first year of both ASCAT and QuikSCAT are based on 
6 months of deseasonalized data (monthly anomaly compared to monthly climatology).

Fig. 2.44. Annual anomalies of global mean wind speed  
(m s−1; 1981–2010 base period) at 850 hPa from four reanaly-
ses (ERA5, ERA-Interim, MERRA-2, JRA-55). The numbers in 
parentheses are linear trends in m s−1 decade−1 for the period 
1980–2020. The y-axis range matches that for the land surface 
winds (Fig. 2.41).
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velocity potential. After a strong positive IOD event in 2019, IOD conditions returned to neutral 
in 2020 (section 4f). In the Pacific, cold equatorial sea surface temperature (SST) anomalies ap-
peared from early boreal summer 2020 and developed into a moderate La Niña event had formed 
by the end of the year (if defined by ONI index as >- 1.0 value, see section 4b).

Figure 2.45 depicts the imprint of these major tropical climate anomalies on upper air circula-
tion. In August–September (Fig. 2.45a), negative velocity potential anomalies were present over 
the tropical Indian Ocean, with local minima over the northwestern and southeastern parts of 
the basin, indicating widespread, positive upper-air divergence anomalies. This differs from 2019 
when there was a clear east–west dipole in the Indian Ocean velocity potential anomalies. An 
explanation for this difference is that SSTs were above normal both in the western and eastern 
equatorial Indian Ocean in 2020 (suggestive of a positive state of the Indian Ocean Basin Mode; 
Yang et al. 2007) but with more pronounced anomalies in the east (see also section 4f). The gen-
erally positive SST anomalies were favorable for enhanced upper-air divergence. At the same 
time, positive velocity potential anomalies were present over the western Pacific, consistent with 
reduced atmospheric convection associated with the developing La Niña event.

Velocity potential anomalies shifted eastward in October–November (Fig. 2.45b). Negative 
anomalies were centered over the Indo-Pacific Warm Pool. This is consistent with enhanced at-
mospheric convection over the eastern Indian Ocean associated with positive SST anomalies in 
this region. Moreover, in October–November changes to the Pacific Walker Circulation related to 
the negative SST anomalies of the now more mature La Niña event were centered farther eastward 
in the Pacific. This is reflected in positive velocity potential anomalies centered east of the date 
line arising from suppressed convection and likely contributed to the negative anomaly over the 
Indo-Pacific Warm Pool.

La Niña years provide more favorable conditions for Atlantic hurricanes, and indeed the late 
2020 hurricane season was exceptionally intense (see section 4g). The imprint of the strong 

Fig. 2.45. Anomalous 200-hPa velocity potential (× 106 m2 s−1) and divergent winds (m s−1) averaged over (a) Aug–Sep and 
(b) Oct–Nov 2020 (1981–2010 base period) based on ERA5 data.
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hurricane activity can also be seen in Fig. 2.45b, with a prominent negative anomaly over the 
Caribbean. Such a pattern favored hurricane activity, but likely was also enhanced by the strong 
upper-air divergence in the hurricanes once they had formed.

After the anomaly around the 2015/16 year transition (Osprey et al. 2016), the quasi-biennial 
oscillation (QBO) saw its second disruption in 2019/20. In both cases, a thin layer of westerlies 
appeared to be split off the descending westerly phase around 40 hPa and propagated upward 
through the stratosphere (Fig. 2.46). While these winds were overall weaker in the recent anomaly, 
the disruption, as measured by the explained variance of the first two empirical orthogonal func-
tions (EOFs), was much stronger (Anstey et al. 2020). Typically, the first two EOFs explain around 
90% of the vertical wind variance. In the 2015/16 disruption, this value dropped to around 60% 
and in 2019/20 down to 20%.

While the anomaly in 2015/16 was associated with unusually high wave-momentum fluxes from 
the NH (Osprey et al. 2016), the 2019/20 anomaly was probably caused by meridional momentum 
fluxes from the SH (Anstey et al. 2020). The QBO pattern stabilized again around May 2020. The 
combination of the QBO phase shifts following the disruptions results in the phase again align-
ing with the expectation from the historical record (Anstey et al. 2020). However, with long-term 
changes in the tropical circulation like increased upwelling, it remains to be seen whether the 
QBO returns to its regular cycle for a longer period of time.

f. Earth radiation budget

1) Earth radiation budget at top-of-atmosphere—P. W. Stackhouse Jr., T. Wong, P. Sawaengphokhai, 
A. C. Wilber, S. K. Gupta, D. P. Kratz, and N. G. Loeb
The energetic state of the Earth–atmosphere system is defined by the balance of the incoming 

total solar irradiance (TSI), the reflected shortwave (RSW), and the outgoing longwave radiation 
(OLR) from Earth. This balance defines Earth’s radiation budget (ERB) at the top of the atmosphere 
(TOA) and its regional distribution drives atmosphere and ocean circulations.

An analysis of all Clouds and the Earth’s Radiant Energy System (CERES) ERB measurements 
(Table 2.9) shows that 2020 global annual mean OLR increased by ~0.20 W m−2 and RSW increased 
by ~0.40 W m−2 relative to their corresponding values in 2019 (rounded to nearest 0.05 W m−2). 

Fig. 2.46. Monthly mean stratospheric zonal winds (m s−1) at Singapore with 2016 and 2020 highlighted by arrows  
(FU Berlin, 2021). Purple shades show westerly winds; orange colors show easterly winds.
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Over the same timeframe, the global an-
nual mean TSI increased by 0.05 W m−2, 
showing a steady increase, possibly 
toward the next solar maximum. The 
sum of these components amounts to a 
decrease of ~0.60 W m−2 in the global an-
nual mean total net radiation relative to 
2019. Figure 2.47 shows the annual mean 
regional difference maps in the OLR 
and RSW between 2019 and 2020. The 
largest reductions in OLR and increases 
in RSW are observed over the tropical 
Indian Ocean extending over Indonesia 
and southeastward over and east of 
Australia (a recovery from a 2019 Indian 
Ocean dipole event; see sections 2a1, 2d7, 
4f), as well as a feature in the tropical 
Atlantic. The largest increases in OLR 
and reductions in RSW were observed 
in the tropical western and south-central 
Pacific regions. These regional differ-
ences appear associated with the change 
from near-neutral ENSO conditions at 
the end of 2019 to La Niña conditions by 
August 2020 that persisted through the 
end of the year (see section 2e1, 4b). Also 
noted are broad areas of moderate OLR 
increase and RSW decrease over both 
North and South America correspond-
ing to reduced cloudiness and increased 
surface warmth in these regions (see sec-
tions 2d4, 2d7, 2d11 and 2b1). Relative to 
the 2001–19 climatological average, the 
2020 global annual mean flux anomalies 
are +0.65, −0.05, −0.70, and +0.00 W m−2 

Table 2.9. Global annual mean top of atmosphere (TOA) radiative flux changes (W m−2) between 2019 
and 2020, the 2020 global annual mean radiative flux anomalies relative to their corresponding 2001–19 
mean climatological values (also shown), and the 2-sigma interannual variabilities of the 2001–19 global 
annual mean fluxes for the outgoing longwave radiation (OLR), total solar irradiance (TSI), reflected 
shortwave (RSW), absorbed shortwave (SW; TSI minus RSW), absorbed SW (TSI − RSW), and total net 
fluxes (TSI minus RSW minus OLR)). All flux values have been rounded to the nearest 0.05 W m−2 and 
only balance to that level of significance.

One-Year Change 
(2020 minus 2019) 

(W m−2)

2020 Anomaly  
(Relative to Climatology) 

(W m−2)

Climatological Mean 
(2001−19)  

(W m−2)

Interannual Variability 
(2001−19)  

(W m−2)

OLR 0.20 +0.65 240.20 ±0.65

TSI 0.05 −0.05 340.00 ±0.15

RSW 0.40 −0.70 99.00 ±1.00

TSI − RSW −0.40 +0.65 241.00 ±0.95

Net −0.60 0.00 0.80 ±0.80

Fig. 2.47. Annual average top of atmosphere (TOA) flux differ-
ences between 2020 and 2019 (W m−2) for the (top panel) OLR 
and (bottom panel) TOA reflected shortwave (RSW). The annual 
mean maps for 2020 were derived after adjusting December 2020 
FLASHFlux v4A using the difference between EBAF and FF v4A in 
2019. The pattern of differences shows several significant features 
including changes over the Indian and tropical western and south-
central Pacific Oceans. The tropical Indian/Pacific Ocean pattern is 
dominated by an atmospheric shift from neutral ENSO conditions 
during the latter half of 2019 and early 2020 to La Niña conditions 
that persisted from Aug through Dec 2020 and also includes a 
transition from an IOD event in 2019 (see section 4f).
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for OLR, TSI, RSW, and total net flux, 
respectively (Table 2.9), all at or within 
their corresponding 2-sigma interannual 
variability (Table 2.9). 

The global monthly mean anomaly 
time series of TOA fluxes (Fig. 2.48) re-
veal that the global monthly mean OLR 
anomaly remained positive throughout 
the first half of 2020 at a level of about 
+1.00 W m−2. During the second half 
of 2020, the OLR anomalies remained 
positive, but decreased to less than 
+0.50 W m−2 except for November, which 
spiked to +1.30 W m−2. This large Novem-
ber OLR anomaly is consistent with the 
values obtained from the NOAA HIRS 
OLR (Lee and NOAA CDR Program 2011) 
and NASA AIRS OLR (Susskind et al. 
2012) datasets (not shown). The global 
monthly mean absorbed shortwave 
(SW; TSI minus RSW) anomaly began 
2020 at +0.20 W m−2, peaked in May at 
around +1.35 W m−2, and then decreased 
sharply after August, ending the year  
with a value of −0.10 W m−2. For the year 
as a whole, the 2020 global annual mean 
absorbed SW anomaly was +0.65 W m−2. 
The global monthly mean total net 

anomaly, which is calculated from the absorbed SW anomaly minus the OLR anomaly, began 
2020 with a value of −0.05 W m−2, reached a maximum value of +0.75 W m−2 in August, then de-
creased rapidly to about −0.90 W m−2 in November, ending the year at −0.45 W m−2. The positive 
OLR anomalies approximately balanced the positive absorbed SW anomalies in 2020, resulting 
in a global annual mean total net anomaly of 0.0 W m−2. The total net anomaly decreased by 
~1.65 W m−2 between August and November 2020. Although this corresponds to the onset of the 
2020 La Niña, more analysis is required for definitive attribution. Long-term trend analyses that 
include the last month of the merged dataset are discouraged because of the natural fluctuation 
in ERB components, uncertainty from the data-merging process, and potential for drift in the 
FLASHFlux product. 

The TSI data used in this study are provided by the Total Irradiance Monitor aboard the Solar 
Radiation and Climate Experiment (SORCE) mission (Kopp and Lean 2011) and the Royal Meteo-
rological Institute of Belgium composite dataset (Dewitte et al. 2004), both renormalized to the 
SORCE Version 15. Starting in February 2020, data from the Total Solar and Spectral Irradiance 
Sensor-1 (TSIS-1, Coddington, 2017) mission on board the International Space Station is normalized 
to SORCE Version 15. The RSW and OLR data were obtained from the CERES instruments (Wielicki 
et al. 1996, 1998) aboard Terra and Aqua spacecraft. The time series (Fig. 2.48) were constructed 
from the CERES EBAF (Energy Balanced And Filled) Ed4.1 product (Loeb et al. 2009, 2012, 2018) 
for March 2000–November 2020 and from the CERES Fast Longwave and Shortwave Radiative 
Fluxes (FLASHFlux) version 4A product (Kratz et al. 2014) for December 2020. The normalization 
of the FLASHFlux data (Stackhouse et al. 2016) results in 2-sigma monthly uncertainties of ±0.47, 
±0.07, ±0.24, and ±0.58 W m−2 for the OLR, TSI, RSW, and total net radiation, respectively. 

Fig. 2.48. Time series of global monthly mean deseasonalized 
anomalies (W m−2) of top-of-atmosphere (TOA) Earth radiation 
budget for outgoing longwave radiation (OLR; upper); absorbed 
shortwave (total solar irradiance [TSI] minus reflected shortwave 
[RSW]; middle); and total net (TSI minus RSW minus OLR; lower) 
from Mar 2000 to Dec 2020. Anomalies are relative to their cal-
endar month climatology (2001–19). Time series shows the CERES 
EBAF Ed4.1 1-Deg data (Mar 2000–Nov2020) in red and the CERES 
FLASHFlux version 4A data (Dec 2020) in blue; see text for merging 
procedure. (Sources: https: //ceres-tool.larc.nasa.gov/ord-tool / jsp 
/EBAF41Selection.jsp and https: //ceres-tool.larc.nasa.gov/ord-tool 
/ jsp/FLASH_TISASelection.jsp.)
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2) Mauna Loa apparent transmission—J. A. Augustine, K. O. Lantz, and J.-P. Vernier
Initiated in 1958 as part of the International Geophysical Year, one of the longest records of 

atmospheric transmission, i.e., the percent of top of atmosphere (TOA) solar radiation that reaches 
the surface, has been recorded on the island of Hawaii at 3397 m above mean sea level, just be-
low the summit of the Mauna Loa volcano. Because of the clean nature of the atmosphere over 
Mauna Loa, its elevation and vertical separation from the marine boundary layer, atmospheric 
transmission there is considered a proxy of stratospheric aerosol loading. One exception is the 
effect from the annual transport of Asian dust over Hawaii at high-tropospheric levels in spring-
time (Bodhaine et al. 1981). 

The updated time series of “apparent” transmission (see definition below) through 2020 is 
presented in Fig. 2.49. Plotted are monthly averages and a 6-month-smoothed fit that reveals 
intra-annual variability caused mainly by springtime Asian dust. The most pronounced features 
are deviations caused by three major volcanic eruptions: Agung, Indonesia, in 1963; El Chichon, 
Mexico, in 1982; and Pinatubo, Philippines, in 1991. Resultant deep reductions in transmission are 
followed by slow recoveries that last up to 8 years and reflect the long residence time of aerosols 
in the stratosphere. For reference, the horizontal dashed line in Fig. 2.49 represents the average 
transmission prior to Agung (0.934) when the stratosphere was exceptionally clean. That level 
of stratospheric purity has been achieved only briefly over the 62-year time series, most notably 
in the late 1970s and from the late 1990s into the early 2000s. A steady decrease from 2002 to 
2010 is associated with a series of tropical and high-latitude volcanic eruptions (Andersson et al. 
2015; Vernier et al. 2011), each of which affected the stratosphere for a year or less (Augustine 
et al. 2020). Apparent transmission over Mauna Loa increases after 2010 and remains relatively 
stable through 2018. A slow decline is apparent through 2019 from the eruptions of Mt. Raikoke 
on the Kuril Islands north of Japan in June 2019 and Mt. Ulawun in Papua New Guinea in June 
and August 2019. 

The only major volcanic event in 2020 was the explosive eruption of Mt. Taal in the Philip-
pines on 12 January, but there is no indication from the Cloud-Aerosol Lidar with Orthogonal 
Polarization (CALIOP) space-borne lidar that it significantly affected the stratosphere. The most 
notable aerosol events of 2020 were wildfires in Australia from December 2019 to early 2020 
(Kablick et al. 2020) and the record-setting Saharan dust event in June (Francis et al. 2020). How-
ever, neither affected Mauna Loa. Stratospheric aerosols from Australian wildfire pyrocumulus 
had limited cross-equatorial transport, and Saharan dust reached just ~3–7 km in altitude and 
only affected the troposphere in the 
low-latitude North Atlantic Ocean, the 
Caribbean, and eastern North America 
(Francis et al. 2020). Aerosols from wild-
fire pyrocumulus in the western United 
States that began in August 2020, espe-
cially in central California, were observed 
in the lower stratosphere in September by 
CALIOP and in September and October by 
SAGE III aboard the International Space 
Station (see https://appliedsciences.nasa 
.gov/our-impact/news/californias-creek 
-fire-blasts-smoke-stratosphere). Satellite 
visualization shows a relatively small 
amount of that smoke reaching Hawaii 
in late August and September 2020 and 
is probably partially responsible for the 
transmission decrease in September 

Fig. 2.49. Apparent transmission at Mauna Loa, Hawaii, from 1958 
through 2020. Red dots are monthly average morning transmis-
sions, the gray curve is a fit with a 6-month smoother applied, 
and the dashed horizontal line is the average transmission for the 
clean period before the eruption of Agung. Insert is an enlarge-
ment of the newest data for 2020.
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apparent in the inset of Fig. 2.49. Residual effects from the 2019 eruptions of Raikoke and, to a 
lesser extent Ulawun, were likely responsible for maintaining a relatively low transmission of 
0.9265 ± 0.0029 in 2020. CALIOP shows those stratospheric volcanic plumes much reduced from 
2019 levels but still present at the latitude of Mauna Loa through October 2020, which is the extent 
of CALIOP data analyzed. Transmission reached the annual minimum of 0.919 in April, presum-
ably from the addition of springtime Asian dust.

Atmospheric transmission is defined as the ratio of the solar beam intensity at the surface to 
that at the top of the atmosphere over a vertical path. Given the impracticality of that calculation, 
Ellis and Pueschel (1971) showed mathematically equivalency of vertical transmission to the ra-
tio of surface solar beam measurements at two distinct integer path lengths. However, because 
broadband transmission is influenced by path length, that calculation is referred to as “apparent” 
transmission. Here, a representative daily apparent transmission is the mean of three successive 
ratios of pyrheliometer measurements at 2, 3, 4, and 5 atmospheric path lengths. Only morning 
data are considered because upslope winds typically contaminate afternoon measurements 
with marine-layer aerosols. Individual points in Fig. 2.49 represent the average of all acceptable 
morning transmissions within a particular month. Neither the radiometer calibration factor nor 
the solar intensity at TOA are needed, resulting in a precise time series back to 1958. 

g. Atmospheric composition
1) Long-lived greenhouse gases—X. Lan, P. Tans, B. D. Hall, G. Dutton, J. Mühle, J. W. Elkins, and I. Vimont 

Increased atmospheric burdens of long-lived greenhouse gases (LLGHGs) are the dominant 
driver of warming climate (IPCC AR5 2013). Carbon dioxide (CO2), methane (CH4), and nitrous 
oxide (N2O) are naturally present in the atmosphere but have been greatly increased by human 
activity in the industrial era. 

Systematic measurements of atmospheric CO2 began at Mauna Loa, Hawaii (MLO), in 1958, when 
CO2 was approximately 315 ppm (parts per million by moles in dry air). In 2020, annually averaged 
CO2 at MLO reached 414.2 ± 0.1 ppm (all uncertainties are reported as 1 sigma [σ] in this section), 
while globally averaged CO2 derived from remote marine boundary layer (MBL) measurements 
from NOAA’s Global Greenhouse Gas Reference Network (GGGRN) was 412.5 ± 0.1 ppm (Fig. 2.50a; 
gml.noaa.gov/ccgg/trends). Both levels were the highest since the systematic measurements of 
CO2 started. The globally averaged level represents an increase of 48% over pre-industrial val-
ues of 278 ppm (Etheridge et al. 1996). Annual growth in global mean CO2 has accelerated from 
0.8 ± 0.3 ppm yr−1 (± 1 σ for interannual variability) in the 1960s to an average of 2.4 ± 0.4 ppm yr−1 
during 2010–19 (Fig. 2.50a). The annual increase in global mean CO2 in 2020 was 2.5 ± 0.1 ppm. 
In 2020, the radiative forcing due to anthropogenic CO2 increased to 2.11 W m−2 relative to pre-
industrial times (1750 CE; Table 2.10; gml.noaa.gov/gmd/aggi/; Hofmann et al. 2006). 

The main driver of increasing atmospheric CO2 is fossil fuel (FF) burning, with emissions (includ-
ing a minor amount from cement production) between 2010 and 2019 averaging 9.4 ± 0.5 Pg C yr−1 
(Friedlingstein et al. 2020). If all of this CO2 remained in the atmosphere, the average 2010–19 
increase would have been 4.4 ppm yr−1 instead of 2.4 ppm yr−1. Thus, only about 55% of FF-emitted 
CO2 in 2010–19 has remained in the atmosphere, while the rest has been stored by the ocean and the 
terrestrial biosphere. While emissions of CO2 from FF combustion drive its increasing atmospheric 
burden, the large interannual variability in the CO2 growth rate is mostly driven by terrestrial 
biospheric exchange of CO2, which is confirmed by stable carbon isotope (13C) measurements (e.g., 
Keeling et al. 1985; Alden et al. 2010). Terrestrial biosphere flux variability is influenced by both 
temperature and moisture anomalies (Cox et al. 2013; Hu et al. 2019; Humphrey et al. 2018). For 
example, the terrestrial impacts of the strong El Niño that peaked in late-2015 contributed to a 
strong global CO2 increase of 3.0 ppm yr−1 (Betts et al. 2016). Because El Niño–Southern Oscilla-
tion (ENSO) changed from neutral to La Niña during 2020, it is not surprising that the observed 
CO2 increase was near the 2010–19 mean.
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Anthropogenic CO2 emissions are 
estimated to have decreased by about 
6%–7% due to reduced human activi-
ties during the COVID-19 pandemic 
(Friedlingstein et al. 2020; Le Quere 
et al. 2020; BP Statistical Review of 
the World Energy 2021). However, this 
reduction is not obvious in observed 
global atmospheric CO2 signals, because 
it is a relatively small signal compared 
with natural variability that is driven 
by the large fluxes from photosynthesis 
and respiration of ecosystems on land. 
The estimated ~6%–7% reduction in 
global CO2 emissions of ~10 Pg C yr−1 
would result in a ~0.3 ppm decrease in 
global CO2 (given a conversion factor of 
2.12 Pg C ppm−1; Ballantyne et al. 2012), 
which is within the 1-σ interannual vari-
ability of CO2 annual growth in 2010–19 
(0.4 ± 0.1 ppm yr−1). The impact of emis-
sion changes during COVID-19 may be 
more discernible in urban atmospheric 
CO2 measurements because most of the 
emission reductions come from urban 
areas (A. J. Turner et al. 2020). 

Methane is the second-most important 
anthropogenic greenhouse gas after CO2. 
Its abundance in the atmosphere in-
creased to 1879.2 ± 1.0 ppb (parts per bil-
lion by moles in dry air) in 2020, a 160% 
increase compared to its pre-industrial 
level of 722 ± 15 ppb. Since the beginning 
of NOAA’s systematic CH4 measurements 
in 1983, the global CH4 annual increase 
has varied between −4.9 and 14.8 ppb yr−1 
(red line in Fig. 2.50b) as a result of the 

changing balance between emissions and chemical destruction. The CH4 annual increase averaged 
11.4 ± 1.4 ppb yr−1 from 1983 to 1992, followed by a strong decrease to 4.4 ± 1.8 ppb yr−1 between 
1992 and 1998, and further reduced to near zero (0.5 ± 3.0 ppb yr−1) during 1999–2006. The rise 
and then flattening of the global methane abundance is consistent with an approach to steady 
state if there was no trend in its lifetime (Dlugokencky et al. 2003). Atmospheric CH4 growth re-
started again in 2007 and the average growth rate after 2014 was higher than 2007–14 (red line 
in Fig. 2.50b). The annual increase in 2020 was 14.8 ± 0.5 ppb, which is by far the largest annual 
increase since systermatic atmospheric CH4 measurements began. There is no obvious explana-
tion at this time for this large anomaly. CH4 now contributes 0.52 W m−2 in direct radiative forc-
ing (Table 2.10) relative to pre-industrial times, while the CH4-related production of tropospheric 
ozone (O3) and stratospheric water vapor (H2O) contributes ~0.3 W m−2 in indirect radiative forcing 
(Myhre et al. 2013).

Fig. 2.50. Global monthly mean dry-air surface mole fractions 
(black, left axis) and annual increases (red, right axis) of (a) carbon 
dioxide (CO2), (b) methane (CH4), and nitrous oxide (N2O) derived 
from NOAA Global Greenhouse Gases Reference Network marine 
boundary layer measurement sites. Deseasonalized trend curves 
(see Dlugokencky et al. 1994 for methods) are shown in blue; 
annual increases are defined as 1 Jan minus 1 Jan of consecutive 
years from the trend line. N2O data prior to 1995 are insufficient 
and noisy, thus hindering the calculation of a growth rate.
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Table 2.10. Summary table of long-lived greenhouse gases for 2020 (Carbon dioxide [CO2] abundances [mole fractions] are in 
ppm, nitrous oxide [N2O] and methane [CH4] in ppb, and all others in ppt). 

Industrial  
Designation or  
Common Name

Chemical  
Formula

Included in 
the AGGIa? 

(Yes/No)

Radiative Efficiency 
(W m−2 ppb−1)b

Rad. Forcing  
(W m-2)

Mean surface mole  
fraction, 2020  

(change from 2019)c

Lifetime  
(years)

Carbon Dioxide CO2 Y 1.37 × 10−5 2.11 412.5 (2.5) —

Methane CH4 Y 3.63 × 10−4 0.52 1879.2 (12.7) 9.1

Nitrous Oxide N2O Y 3.00 × 10−3 0.21 333.0 (1.2)d 123

Chlorofluorocarbons

CFC-11 CCl3F Y 0.26 0.058 224.5 (−1.8)c 52

CFC-12 CCl2F2 Y 0.32 0.159 497.3 (−3.9)c 102

CFC-113 CCl2FCCl Y 0.30 0.021 69.0 (−0.7)c 93

Hydrochlorofluorocarbons

HCFC-22 CHClF2 Y 0.21 0.052 246.4 (1.4) 11.9

HCFC-141b CH3CCl2 Y 0.16 0.004 24.2 (0.03) 9.4

HCFC-142b CH3CClF Y 0.19 0.004 21.6 (−0.2) 18

Hydrofluorocarbons

HFC-134a CH2FCF3 Y 0.16 0.018 111.5 (5.1) 14

HFC-152a CH3CHF2 Y 0.10 <0.001 6.2 (−0.03) 1.6

HFC-143a CH3CF3 Y 0.16 0.004 24.9 (1.5) 51

HFC-125 CHF2CF3 Y 0.23 0.007 33.0 (3.0) 30

HFC-32 CH2F2 N 0.11 0.002 21.1 (2.9) 5.4

HFC-23 CHF3 Y 0.18 0.006 33.7 (1.3) 228

HFC-365mfc CH3CF2C N 0.22 < 0.001 1.0 (0.02) 8.9

HFC-227ea CF3CHFC N — < 0.001 1.70 (0.15) 36

Chlorocarbons

Methyl Chloroform CH3CCl3 Y 0.07 < 0.001 1.4 (−0.2) 5.0

Carbon Tetrachloride CCl4 Y 0.17 0.013 86.8 (−0.9)c 32

Methyl Chloride CH3Cl N 0.01 < 0.001 546.6 (8.7) 0.9

Bromocarbons

Methyl Bromide CH3Br N 0.004 < 0.001 6.70 (0.15) 0.8

Halon 1211 CBrClF2 Y 0.29 0.001 3.11 (−0.10) 16

Halon 1301 CBrF3 Y 0.30 0.001 3.31 (0.0) 72

Halon 2402 CBrF2CB Y 0.31 < 0.001 0.40 (0.0) 28

Fully fluorinated species

Sulfur Hexafluoride SF6 Y 0.57 0.006 10.3 (0.3) > 600

PFC-14 CF4 N 0.09 0.005 86.4 (0.9) ~ 50 000

PFC-116 C2F6 N 0.25 0.001 4.94 (0.09) ~ 10 000

PFC-218 C3F8 N 0.28 < 0.001 0.70 (0.02) ~ 2600

PFC-318 c-C4F8 N 0.32 < 0.001 1.82 (0.06) ~ 3200
a Annual Greenhouse Gas Index (AGGI). See https://gml.noaa.gov/aggi/ for more information
b Radiative efficiencies and lifetimes were taken from Appendix A in WMO (2018), except for SF6 lifetime from Ray et al. (2017) and CH4 lifetime from 
Prather et al. (2012). For CO2, numerous removal processes complicate the derivation of a global lifetime. For more on radiative forcing, see  
https://www.esrl.noaa.gov/gmd/aggi/

c Mole fractions are global, annual surface means for the 2020 determined from the NOAA Global Greenhouse Gas Reference Network, except for PFC-
14, PFC-116, PFC-218, PFC-318, and HFC-23, which were measured by AGAGE (Mühle et al. 2010; Miller et al. 2010). Changes indicated in brackets are 
the differences between the 2020 and 2019 means, the relevant quantities for calculating radiative forcing. These changes are somewhat different from 
the 2020 annual increases reported in 2.g.1, which are determined as the difference between Jan. 1, 2021 and Jan. 1, 2020. All values are preliminary 
and subject to minor updates.

d Global mean estimates derived from multiple NOAA measurement programs (“Combined Dataset”).
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Given the complexity of the CH4 budget and the uncertainty in CH4 source partitioning, the 
magnitudes and long-term trends of many CH4 sources are still uncertain. FF exploitation is 
estimated to account for ~19% of total global CH4 emissions since 2000 based on top-down ap-
proaches that use atmospheric CH4 measurements and inverse models (Saunois et al. 2020). 
However, studies including the radiocarbon (14C) or stable carbon (13C) isotopes of CH4 suggest a 
much larger fraction of FF emissions (~30%; Lassey et al. 2007; Schwietzke et al. 2016). Measure-
ments of δ13C-CH4 also suggest that increased emissions from biogenic sources, from natural 
and/or anthropogenic origins, are the dominant drivers for the post-2006 growth (Chang et al. 
2019; Nisbet et al. 2019; Schaefer et al. 2016; Schwietzke et al. 2016). Global atmospheric δ13C-CH4 
has become more depleted since 2008, which is consistent with an increased contribution from 
biogenic sources with more negative δ13C-CH4 signatures. Increased wetland emissions may play 
a role in the post-2006 renewed increase (Yin et al. 2020), but further investigation is required to 
better quantify wetland emissions given the large uncertainties associated with wetland emission 
areas and processes controlling wetland CH4 emissions (Bloom et al. 2017). A decrease in biomass 
burning and a small increase in FF emissions (Worden et al, 2017) may also play a smaller role 
in post-2006 global CH4 change (Lan et al. 2021). 

Methane is removed from the atmosphere mainly by reaction with hydroxyl radical (OH); OH 
has a very short lifetime (~1 s), which makes it difficult to constrain by direct observations. While 
recent studies suggest that a decreasing OH sink may not be the dominant driver for the post-2006 
renewed increase in global atmospheric CH4 (Fujita et al. 2020), uncertainties remain in the tem-
poral variations of the OH sink and other CH4 sinks such as oxidation by tropospheric chlorine 
(Cl; Hossaini et al. 2016; Gromov et al. 2018) and soils. The global soil CH4 sink is estimated to be 
~30 Tg yr−1; however, up to a 77% decrease was reported for 1988–2015 based on long-term mea-
surements and data reviews (Ni and Groffman 2018). A decrease in the soil CH4 sink is consistent 
with an observed global decrease in δ13C-CH4 (Lan et al. 2021). 

Nitrous oxide (N2O) is an important LLGHG that also depletes stratospheric ozone (Ravishankara 
et al. 2009). Atmospheric N2O has been increasing steadily throughout the industrial era except 
for a brief period in the 1940s (MacFarling Meure et al. 2006; Thompson et al. 2019). The mean 
global atmospheric N2O abundance in 2020 was 333.0 ± 0.1 ppb, while the annual increase in 
2020 was 1.4 ± 0.1 ppb (Fig. 2.50c), and a 23% increase over pre-industrial levels of 270 ppb. The 
1.4 ppb increase in the annual mean is similar to average rate of increase of 1.0 ± 0.2 ppb yr−1 over 
the past decade (2010–19), but slightly larger than the average rate in previous decade (2000–09) 
of 0.7 ± 0.2 ppb yr−1. The observed increase in atmospheric N2O over preindustrial levels is mostly 
caused by nitrogen-containing fertilizers and manure used for agriculture (Davidson 2009). A 
recent study found that anthropogenic N2O emissions have increased by 30% since 1980, with sig-
nificant contributions from developing countries such as Brazil, China, and India (Tian et al. 2020). 
Radiative forcing from N2O in 2020 is now 0.21 W m−2 relative to pre-industrial times (Table 2.10).

The combined radiative forcing in 2020 from major and minor LLGHGs was 3.2 W m−2 (Fig. 2.51). 
Annual increases in radiative forcing correspond roughly with variability in CO2, since CO2 
is responsible for about 65% of radiative forcing by LLGHGs and its increase during 2015–20 
accounts for 82% of total increase in radiative forcing.
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2) Ozone-depleting substances—I. J. Vimont, B. D. Hall, S. A. Montzka, G. Dutton, C. Siso, M. Crotwell, and 
M. Gentry
Our climate is affected by the presence of halogenated trace gases in the atmosphere. This 

group of compounds includes, but is not limited to, chlorofluorocarbons (CFCs), hydrochloro-
fluorocarbons (HCFCs), hydrofluorocarbons (HFCs), chlorinated hydrocarbons, and halons. 
These compounds both directly (via radiative forcing) and indirectly (via ozone depletion in the 
stratosphere) influence the radiative balance of the atmosphere (Karpechko and Maycock 2018).

The Montreal Protocol (1987) and its 
subsequent amendments regulate the pro-
duction and consumption of these ozone-
depleting substances (ODS) and other 
compounds. These controls started in the 
late 1980s by phasing out production of 
CFCs and were followed by the reduction 
and phaseout of halons in the 1990s and 
early 2000s. The year 2020 marks the near-
complete phaseout of HCFCs in developed 
countries. These controls have resulted 
in declines in atmospheric abundance for 
many of these gases (Engel and Rigby, 
2018). CFC-11 and CFC-12 declined 16% ± 1% 
and 8% ± 0.3%, respectively, from their 
maximum values by 2020 (Fig. 2.52). Ad-
ditionally, while the reduction of CFC-11 in 
the atmosphere slowed after 2012 owing to 
an unexpected increase in emissions that 
were likely linked to unreported production 
of CFC-11 (Montzka et al. 2018; Rigby et al. 

Fig. 2.52. Global mean abundances (mole fractions) at Earth’s 
surface (ppt = nmol mol−1 in dry air) for several halogenated 
gases, many of which also deplete stratospheric ozone. See 
Table 2.10 for the 2020 global mean mole fractions of these 
and other gases.

Fig. 2.51. (a) Direct radiative forcing (W m−2) due to five major long-lived greenhouse gases (LLGHG) and 15 minor gases (left 
axis) and the associated values of the NOAA AGGI (right axis). The Annual Greenhouse Gas Index (AGGI) is defined to have 
a value of one in 1990. (b) Annual increase in direct radiative forcing (W m−2).
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2019), continued monitoring has shown an accelerated decline from 2018 to 2019, signaling a 
decline in these emissions (Montzka et al. 2021; Park et al. 2021). 

As HCFCs replaced CFCs, their abundances increased in the atmosphere. More recently, how-
ever, as the phaseout of HCFC production nears completion, growth rates of atmospheric HCFC-
22, HCFC-141b, and HCFC-142b have slowed (Fig. 2.52). Notably, atmospheric abundances of both 
HCFC-141b and HCFC-142b have remained nearly constant since 2018 (Table 2.10; Fig. 2.52). With 
the near-complete phaseout of HCFCs in developed nations scheduled for 2020, and significant 
reductions in production and consumption occurring in developing countries, the atmospheric 
abundances of these compounds may soon begin to decline. The Kigali Amendment to the 
Montreal Protocol has mandated the phase-down of HFCs, which are substitutes for ODS. While 
these compounds do not contribute to ozone destruction, they contribute to radiative forcing, and 
atmospheric abundances for most have been increasing in the atmosphere (Table 2.10, Fig. 2.52). 
HFC-134a is the largest contributor to radiative forcing among the HFCs, and its global abundance 
increased by 5.3 ppt (4.7%) from 2019 to 2020, similar to the mean yearly increase over the last 
decade (~5.5 ppt yr−1; Fig. 2.52).

In order to quantify the overall efficacy of ozone-destroying halogen in the stratosphere, 
equivalent effective stratospheric chlorine (EESC) is calculated from the weighted global aver-
age surface abundance of ozone-depleting gases (Daniel et al. 1995). The weights represent the 
ozone-destruction efficiency of the halogens contained in each ODS, the destruction rates of each 
ODS in the stratosphere, and transport and mixing processes within the stratosphere (Montzka 
et al. 1996; Newman et al. 2007). EESC is 
calculated for the Antarctic (EESC-A) and 
the midlatitude (EESC-M) stratosphere. 
The abundance of reactive halogen in 
the Antarctic stratosphere is higher than 
in midlatitudes because air reaching 
the Antarctic stratosphere has been in 
the stratosphere longer and has been 
transported to higher altitudes, factors 
that lead to both ODS destruction and 
release of reactive halogen (Montzka and 
Reimann et al. 2011). CFCs, despite their 
decreasing global abundance, contribute 
strongly to EESC (Fig. 2.53), because they 
account for most of the reactive halogen 
present in the atmosphere today. 

At the beginning of 2020, EESC-A was 
3685 ppt, and EESC-M was 1562 ppt, de-
creases of 25 ppt and 12 ppt, respectively, 
relative to 2019. To put these values into 
context of stratospheric reactive halo-
gen reduction, the Ozone Depleting Gas 
Index (Hoffmann and Montzka, 2009,  
gml.noaa.gov/odgi/) is defined for both 
the Antarctic and midlatitude strato-
sphere (ODGI-A and ODGI-M). This index 
is defined as 100 for the peak EESC and 0 
at the 1980 level of EESC, for both the Ant-
arctic and midlatitude stratosphere. Even 
though ozone destruction was occurring 

Fig. 2.53. Equivalent effective stratospheric chlorine (EESC, ppt) 
for the midlatitude and Antarctic stratosphere derived from sur-
face measurements. The EESC values represent EESC on 1 Jan of 
each year.

Unauthenticated | Downloaded 01/02/25 03:33 PM UTC



S892 . G L O BA L  C L I M AT EAU G U S T  2 0 2 1  |  S t a t e  o f  t h e  C l i m a t e  i n  2 0 2 0

in 1980, returning the stratosphere to 1980 levels of reactive halogen would represent a major ac-
complishment for the Montreal Protocol and the global community. At the beginning of 2020, the 
ODGI-A was 77, and the ODGI-M was 52, representing progress of 23% and 48% toward the 1980 
benchmarks, respectively. Carpenter et al. (2018) estimate that ODGI-A will reach zero around 
2070, and ODGI-M will reach zero around 2045, assuming all other factors remain constant. 

3) Aerosols—S. Rémy, N. Bellouin, Z. Kipling, M. Ades, A. Benedetti, and O. Boucher
Atmospheric aerosols play an important role in the climate system by scattering and absorbing 

radiation, and by affecting the life cycle, optical properties, and precipitation activity of clouds 
(Boucher et al. 2013). Aerosols also represent a serious public health issue in many countries, 
and hence are subject to monitoring and forecasting as part of air quality policies. There is also 
growing evidence that aerosols influence ecosystems through changes in the quality and quan-
tity of light (over land) and deposition flux of nutrients (over land and ocean) such as iron (e.g., 
Hamilton et al. 2019). 

The Copernicus Atmosphere Monitoring Service (CAMS; http://atmosphere.copernicus.eu) runs 
a near-real time global analysis of aerosols and trace gases. The CAMS project also produced a 
reanalysis of global aerosols and trace gases that covers the years 2003–20, named the CAMS 
reanalysis (CAMSRA; Inness et al. 2019) by combining state-of-the-art numerical modeling and 
aerosol remote-sensing retrievals from MODIS (Levy et al. 2013) and the Advanced Along Track 
Scanning Radiometer (AATSR) (Popp et al. 2016). Verification of aerosol optical depth (AOD) 
at 550 nm against independent AERONET observations shows that the CAMS reanalysis has a 
smaller bias and error than its predecessors, the CAMS interim reanalysis (Flemming et al. 2017) 

and the Monitoring Atmospheric Composition 
and Climate (MACC) reanalysis (Inness et al. 
2013). This section uses data exclusively from 
the CAMS reanalysis. Here, we assess aero-
sols in terms of the AOD at 550 nm because 
this wavelength corresponds to the middle 
of the visible part of the spectrum, and be-
cause many remote-sensing products provide 
retrievals at this wavelength.

The time series of monthly and yearly glob-
ally-averaged total AOD during 2003–20 are 
depicted in Fig. 2.54b, showing strong season-
ality, driven mainly by dust episodes between 
March and July in the Sahara, Middle East, 
and the Taklimakan/Gobi Desert and seasonal 
biomass burning in Africa, South America, 
and Indonesia. There is no significant trend 
over the period, but extreme events such as 
the July–October 2015 fires over Indonesia 
associated with El Niño can have an impact 
on the global mean. Globally averaged AOD 
in 2020 was on average lower than in 2019, 
with a less pronounced summer maximum, 
mostly because of less intense biomass burn-
ing in the Northern Hemisphere summer and 
autumn over Indonesia and parts of equato-
rial Africa as well as Canada. Figure 2.54a 
shows the geographical distribution of AOD in 

Fig. 2.54. (a) Global aerosol optical depth (AOD) at 550 nm in 
2020 from CAMSRA. (b) Global average of total AOD at 550 nm 
for monthly (red) and annual (blue) periods for 2003–20.
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2020, with maxima from anthropogenic aerosols over India and China, as well as less pronounced 
maxima over the Arabian Peninsula and parts of the Sahara from dust, and over equatorial Africa 
from biomass burning aerosols.

Average AOD between 2003 and 2020 (Fig. 2.55a) is marked by high values over the highly 
populated regions of India and China, mainly caused by anthropogenic emissions. High AOD 
values over the Sahara and Middle East are from dust, while the maxima over central Africa, 
Indonesia, the Amazon Basin, and parts of Siberia are caused by biomass burning. The high 
values over Hawaii and close to Mexico City are a known artifact of the CAMS reanalysis related 
to volcanic outgassing. 

Fig. 2.55. (a) Total aerosol optical depth (AOD) at 550 nm averaged over the period 2003–20 from CAMSRA. Note the 
regional differences, with much greater total AOD values over parts of northern Africa, the Arabian Peninsula, southern 
Asia, and eastern China. (b) Linear trends of total AOD (AOD unit yr−1) for 2003–20 and 2012-20. (c) Only trends that are 
statistically significant (95% confidence level) are shown. Regions with decreasing trends include the eastern United 
States, most of Europe, parts of Brazil and China, as well as the Korean peninsula and Japan. 
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As compared to the 2003–19 average from the CAMS reanalysis, total AOD in 2020 shows nega-
tive anomalies over most of Europe, Africa, and East Asia, as well as parts of the Amazon basin, 
United States, and Canada (Plate 2.1x). The negative anomalies over the eastern United States, 
Europe, and China/Japan are part of a longer trend over these regions (Fig. 2.55b). As shown by 
Fig. 2.55c, the trend is more negative over China for 2012–20 than for 2003–20, which is consistent 
with the observed decrease of anthropogenic aerosol emissions there since around 2012 (Li et al. 
2017). The 2012–20 trends are positive or not significant over much of the Amazon basin, while 
the 2003–20 trends are mostly negative over the same area, showing that most of the decrease in 
AOD occurred before 2012. Reduced anthropogenic emissions because of COVID-19 lockdowns 
may have contributed to local AOD anomalies, although the impact was probably more important 
for surface particulate matter (PM2.5).

Positive anomalies of total AOD in 2020 (Plate 2.1x) were found over parts of Brazil and Bolivia, 
Siberia, and the western United States. These positive anomalies are associated with large fire 
events. The positive anomaly over southeast Australia and large parts of the southern Pacific 
Ocean were caused by the extreme fires over New South Wales in late 2019 and early 2020. The 
positive anomalies over parts of western Africa and the Atlantic Ocean were caused by an extreme 
dust event in June 2020, while the positive anomaly over Iran was caused by meteorological con-
ditions that favored severe pollution events (Broomandi et al. 2020). The positive anomaly over 
the Indian subcontinent corresponds to a long-term trend of increasing anthropogenic aerosol 
emissions (Satheesh et al. 2017), as shown in Figs. 2.55b,c. Plate 2.1y shows the ratio of AOD at 
550 nm in 2020 to the 2003–19 average, which gives a measure of the relative importance of the 
anomalies as compared to climatological values. The highest relative anomalies in 2020 are 
almost all associated with fire events (Siberia, southeastern Australia, western United States, 
southwestern Brazil), except over Iran. The exceptional severity of the Australian fires of early 
2020 and of the associated plume over the southern Pacific is highlighted in Plate 2.1z, which 
shows the number of days in 2020 with daily AOD at 550 nm above the 99.9th percentile of the 
2003–19 daily values. The same plot also shows the exceptional nature of the fires that affected 
the western United States in August and September 2020, as well as the dust plume that crossed 
the Atlantic from western Africa to the Caribbean Sea in June 2020.

Anthropogenic AOD and radiative forcing resulting from aerosol–radiation (RFari) and 
aerosol–cloud interactions (RFaci) are shown in Fig. 2.56 for the period 2003–20. They are esti-
mated using the methods described in Bellouin et al. (2020). 2020 was characterized by a small an-
thropogenic AOD and a weak RFari and RFaci in the context of the past 18 years. This may be partly 
due to regional decreases in aerosol primary and precursor emissions caused by the response 
to the COVID-19 pandemic. Such decreases have, for example, reduced aerosol radiative effects 
off the coast of China, at least in cloud-free conditions (Ming et al. 2020), which would weaken 
RFari. The data suggest a weakening trend in aerosol radiative forcing starting around 2015, but 
the trend would need to be sustained over a longer period to become statistically significant.
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4) Stratospheric ozone—M. Weber, W. Steinbrecht, C. Arosio, R. van der A, S. M. Frith, J. Anderson, L.Castia,  
M. Coldewey-Egbers, S. Davis, D. Degenstein, V. E. Fioletov, L. Froidevaux, D. Hubert, D. Loyola, C. Roth, A. Rozanov, 
V. Sofieva, K. Tourpali, R. Wang, and J. D. Wild
Stratospheric ozone protects Earth’s biosphere from harmful ultraviolet (UV) solar radiation. 

The total ozone column determines how much UV reaches the surface. Most of the ozone resides 
in the lower stratosphere (“ozone layer”), where it is recovering slowly from anthropogenic Ocean 
Depleting Substances (ODS). Clearer signs of ozone recovery, due to the phase-out of ODSs man-
dated by the Montreal Protocol in the late 1980s (section 2g2), are seen in the upper stratosphere 
(WMO 2018).

The year 2020 was remarkable because the annual mean anomaly of total column ozone was 
negative for most of the globe (Plate 2.1aa). This negative anomaly was due to the combination of 

Fig. 2.56. CAMSRA (a) 2020 average of anthropogenic aerosol optical depth (AOD); (b) global annual average of anthropogenic 
AOD from 2003 to 2020. Radiative forcing in the shortwave (SW) spectrum due to (c),(d) aerosol-radiation (RFari) and (e),(f) 
aerosol-cloud interactions (RFaci). The left column shows the average distribution for the period 2003–20. The right column 
shows time series of global averages for the same period, with the 1-σ uncertainties of these estimates shown in gray.
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very low polar ozone during Arctic winter/spring (Manney et al. 2020; Inness et al. 2020; Dameris 
et al. 2021) and a large and unusually long-lasting Antarctic ozone hole (see sections 5j and 6h, 
respectively). Low winter/spring polar ozone is a consequence of stable and cold stratospheric win-
ter vortices with very low temperatures that permit wide-spread formation of polar stratospheric 
clouds (PSC), chlorine activation, and large polar ozone depletion (Solomon et al. 1999, 2015). 

Figure 2.57 shows time series of Arctic and Antarctic daily minimum total column ozone. 
Generally, Arctic minimum total ozone increases from early winter (November) to spring (April). 
However, in cold Arctic winters, with stratospheric temperatures sufficiently low for persistent 
PSC formation (~195 K), minimum total ozone decreases over the winter, due to both chemical 
loss and reduced poleward ozone transport related to a weak Brewer-Dobson circulation (BDC; 
Lawrence et al. 2020). In March 2020 record low column values slightly below 220 Dobson unit 
(DU) were reached (Inness et al. 2020, Dameris et al. 2021), less than in previous cold winters 
(e.g., 2010/11). Even these record minimum values are, however, higher than values observed in 
the Southern Hemisphere (SH) ozone hole. Chemical ozone losses of up to 2.8 ppm near 18 km 
altitude and 88 DU (vortex average) by the end of March 2020 were similar to losses observed in 
March 2011, but due to the larger polar vortex area, the ozone mass loss was higher in 2020 and 
reached a new record after the previous record in 2011 (Manney et al. 2020; Weber et al. 2021). 
Without the Montreal Protocol phaseout of ODS, this chemical ozone loss would have been even 
higher (Feng et al. 2021). Above Antarctica, minimum total column ozone remained extremely low 
in 2020 and only rose rapidly at the end of November about 2 months later than in 2016, which 
had a winter with an average size ozone hole. 

The low total ozone levels during winter/spring in both hemispheres contributed significantly 
to the annual mean low ozone anomaly (Plate 2.1aa). Zonally averaged annual mean total column 
ozone was as much as 20 and 60 DU below the long-term mean of 1998–2008 at northern middle 
and Arctic latitudes, respectively. The band of positive anomalies in the outer tropics along with 

Fig. 2.57. Annual cycle of daily minimum total column ozone values (Dobson Units [DU]) in the polar regions between 
50° and 90° in both hemispheres derived from the European GOME-type Total Ozone Essential Climate Variable (GTO) 
satellite record from Jul 1995 to Jun 2019 and TROPOMI data thereafter. The black line shows the GTO mean annual cycle 
in the north polar region. The thin gray lines indicate the maximum and minimum values of the observed daily minima 
from Jul 1995 to Jun 2019. The light gray shading denotes the 10th percentile and 90th percentile, the dark gray shading 
the 30th percentile and 70th percentile, respectively. The cyan dashed line shows the upper limit of 220 DU that defines 
the edge of the Antarctic ozone hole. Total ozone minimum time series are shown for winter/spring 2010/11 (blue) and 
2019/20 (magenta) in the Northern Hemisphere (Jul–Jun) and in Antarctic winter/spring 2016 (red) and 2020 (orange) in 
the Southern Hemisphere (Jan–Dec). Updated from Dameris et al. (2021).
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the negative anomalies at high latitudes are a typical pattern during quasi-biennial oscillation 
(QBO) westerly phases, as explained in previous reports. The Arctic Oscillation (AO) index was at 

a record high during Northern Hemisphere (NH) 
winter/spring and contributed to the very low 
ozone observed in the NH extratropics resulting 
from a very weak meridional circulation (Law-
rence et al. 2020). 

Figure 2.58 shows the long-term evolution of 
total column ozone for different zonal bands. 
Except for the polar region (NH: March mean; 
SH: October mean) annual mean total column 
ozone is shown. Following the decline until the 
middle 1990s due to ODS increases, total column 
ozone has remained at a steady level with sub-
stantial year-to-year variability during the last 2 
decades, but still well below the 1964–80 mean 
(indicated by the dashed line). Near-global mean 
total column ozone (Fig. 2.58a) is on average still 
about 2% below the 1964–80 mean. The median 
ozone from the Chemistry Climate Model Initia-
tive (CCMI) model simulations (SPARC/IO3C/GAW 
2019), accounting for ODS and greenhouse gas 
changes, is in good agreement with observations. 
This shows that ozone observations are consis-
tent with the expected slow ozone recovery due 
to the phasing out of certain ODSs (section 2g2). 
In 2020, the annual means in all latitude bands, 
as well as the Arctic March and Antarctic October 
mean (Fig. 2.58), were all below the decadal aver-
age of 1998–2008, but were within the variability 
observed in recent years (except March 2020).

Figure 2.59 shows the ozone evolution at dif-
ferent altitudes in the stratosphere. Ozone in 
the upper stratosphere showed a large decline 
in the 1980s caused by ODS increases, which 
was stopped in the late 1990s, thanks to the 
ODS phase-out mandated by the Montreal Pro-
tocol. Since about 2000, upper stratospheric 
ozone has been in a phase of slow recovery. In 

Fig. 2.58. Time series of annual mean total column ozone (Dobson Units [DU]) in (a)–(d) four zonal bands, and (e) polar 
(60°–90°) total column ozone in Mar (Northern Hemisphere) and Oct (Southern Hemisphere), the months when polar ozone 
losses usually are largest. Red: WOUDC ground-based measurements combining Brewer, Dobson, SAOZ, and filter spec-
trometer data (Fioletov et al. 2002, 2008). Dark blue and light blue: BUV/SBUV/SBUV2 V8.6/OMPS merged products from 
NASA (MOD V8.6, Frith et al. 2014, 2017) and NOAA (Wild and Long, personal communication, 2019), respectively. Dark 
green and light green: GOME/SCIAMACHY/GOME-2 products GSG from University of Bremen (Weber et al. 2018) and GTO 
(additionally includes OMI and TROPOMI) from ESA /DLR (Coldewey-Egbers et al. 2015; Garane et al. 2018). Purple: MSR-2, 
which assimilates nearly all available ozone datasets after corrections based on the ground-based data (van der A et al. 
2015). All datasets have been bias-corrected by subtracting averages for the reference period 1998–2008 and adding back 
the mean of these averages. The dashed gray lines in each panel show the average ozone level for 1964–1980 calculated 
from the WOUDC data. The thick orange line shows the median from CCMI model runs (SPARC /IO3C /GAW, 2019). Most of 
the observational data for 2020 are preliminary.
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all recent years, including 2020, ozone values 
in the upper stratosphere from most datasets 
were above the 1998–2008 average, consistent 
with expectations from the CCMI simulations 
(gray shaded range in Fig. 2.59; SPARC/IO3C/
GAW 2019). In the lower stratosphere, however, 
long-term ozone variations are dominated by 
meteorological and transport variations (e.g., 
Chipperfield et al. 2018), and Fig. 2.59 shows no 
clear sign of ozone increases in this region over 
the last 20 or so years. This is consistent with 
total column ozone in Fig. 2.58. In 2020, lower 

stratospheric values were at the low end of recent years, and also at the low end of the model 
predictions. The tropical (20°S–20°N) long-term ozone decline is linked to the acceleration of 
the meridional Brewer-Dobson circulation (Ball et al. 2018; Chipperfield et al. 2018; WMO 2018). 
The low annual mean 2020 values of lower stratospheric ozone in the northern and southern 
extratropical 35°−60° latitude bands, however, similar to the generally low total column ozone 
(Plate 2.1aa; Fig. 2.58), are the result of the weak meridional Brewer-Dobson circulation in winter 
in both hemispheres.

5) Stratospheric water vapor—S. M. Davis, K. H. Rosenlof, D. F. Hurst, and H. Vömel
Variations in stratospheric water vapor (WV) occur over a wide range of timescales and can 

impact stratospheric ozone (Dvortsov and Solomon 2001) and surface climate (Solomon et al. 2010). 
Such variations are forced by prominent modes of seasonal and interannual dynamical variability 
that influence temperatures in the tropical tropopause layer (TTL; ~14–19 km). In general, the 
amount of WV entering the stratosphere is controlled by the lowest temperature encountered by 
an ascending air mass (i.e., through the Clausius-Clapeyron relationship), with more WV entering 
the stratosphere when TTL temperatures are warmer. As a result, processes that cause temporal 
variability in TTL temperatures also lead to global-scale variability in stratospheric WV.

Fig. 2.59. Annual mean anomalies of ozone in the upper 
stratosphere (top three panels) near 42-km altitude or 2-hPa 
pressure, and in the lower stratosphere (bottom three pan-
els, near 22 km or 50 hPa for three zonal bands: 35°–60°N, 
20°S–20°N (tropics), 35°–60°S respectively. Anomalies are 
referenced to the 1998–2008 baseline. Colored lines are 
long-term records obtained by merging different limb 
(GOZCARDS, SWOOSH, SAGE+OSIRIS, SAGE+CCI+OMPS-L, 
SAGE+SCIAMACHY+OMPS-L, SAGE+OSIRIS+OMPS-L) or 
nadir-viewing (SBUV, OMPS-N) satellite instruments. The 
nadir-viewing instruments have much coarser altitude 
resolution than the limb-instruments. This can cause differ-
ences in some years, especially at 50 hPa. The black line is 
from merging ground-based ozone records at seven NDACC 
stations employing differential absorption lidars and mi-
crowave radiometers. See Steinbrecht et al. (2017), WMO 
(2018), and Arosio et al. (2018) for details on the various 
datasets. Gray-shaded area shows the range of simulations 
from CCMI (SPARC /IO3C /GAW 2019). At the time of publi-
cation, ozone data for 2020 were not yet complete for all 
instruments and were still preliminary.
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In 2020, WV anomalies in the tropical lower 
stratosphere were positive (wet). Figure 2.60 
shows the vertical–time cross section of tropical-
averaged WV anomalies from the Aura satellite 
Microwave Limb Sounder (MLS; Fig. 2.60a), 
as well as the latitudinal distribution of WV 
anomalies as a function of time in the base of the 
stratosphere at 82 hPa (~17 km; Fig. 2.60b). The 
vertical–time plot shows a substantial region (in 
time and space) of positive water vapor anomalies 
ascending into the stratosphere starting in mid-
2019 and continuing throughout 2020. 

The 2020 Aura MLS (version 4.2) annual tropi-
cal average (15°S–15°N) WV anomaly at 82 hPa 
was 0.4 ppm (parts per million, i.e., μmol mol−1), 
or 11% above the annual average since 2005. 
Monthly WV anomalies ranged from +0.1 ppm 
(+2%) in October to +0.8 ppm (+22%) in Decem-
ber, which was the fifth-wettest anomaly in the 
Aura MLS record dating back to August 2004. 
The tropical WV anomaly time series in 2020 is 
U-shaped, with strong positive anomalies at the 
beginning and end of the year and weak positive 
anomalies in the middle (Fig. 2.60b). The quali-
tative behavior of lowermost stratospheric WV 
observed by Aura MLS is consistent with balloon-
borne frost-point hygrometer soundings at five 
locations, as shown in Fig. 2.61. 

In 2020, tropical cold-point tropopause (CPT) 
temperature anomalies were positive (warm) 
from January through April, negative from May 
through August, and positive from September 
through the end of the year (blue line, Figs. 
2.61c,d). The annual mean tropical cold-point 
anomaly was +0.48 K.

In general, interannual variations in CPTs are correlated with interannual variability in modes 
of climate variability such as the ENSO and QBO in equatorial stratospheric winds. These phe-
nomena partly impact CPTs through their modulation of upwelling of air in the tropical lower 
stratosphere and the associated temperature response. Although we do not attempt formal at-
tribution of the CPT and lower stratospheric WV variability to QBO and ENSO, below we discuss 
the changes in the phases of QBO and ENSO during 2020 as they pertain to WV variability. 

The QBO westerly shear phase is associated with a negative upwelling anomaly and cold tem-
peratures, whereas the reverse is true for easterly shear. Equatorial winds from the Singapore 
radiosonde wind data, which are a commonly used proxy for the QBO phase, were westerly at 
70 hPa at the beginning of 2020, but transitioned to easterly from May through September, before 
returning back to westerly for the final 3 months of 2020 (sections 2b5, 2e3; see Fig. 2.46). The wind 
shear between 70 hPa and 100 hPa was positive (westerly over easterly) for all of 2020, with the 
exception of July and August. It is possible that these anomalies impacted tropical CPTs, as the 
most negative CPT anomaly of the year (−0.4 K) occurred in August (Fig. 2.61d). 

Fig. 2.60. (a) Time series of vertical profiles of tropical 
(15°S–15°N) lower stratospheric water vapor (WV) anoma-
lies and (b) latitudinal distributions of WV anomalies at 
82 hPa. Both are based on version 4.2 Aura MLS data 
from the SWOOSH v2.6 5° zonal mean product (Davis 
et al. 2016). Anomalies are differences from the mean 
2004–20 water vapor mixing ratios (ppm) for each month. 
(b) shows the propagation of tropical lower stratospheric 
WV anomalies to higher latitudes in both hemispheres as 
well as the influences of dehydrated air masses from the 
Antarctic polar vortex as they are transported toward 
the SH midlatitudes at the end of each year. Tick marks 
denote the beginning of each year.
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ENSO was in a neutral phase in the first half of 2020 before transitioning to La Niña in August 
and remaining in that phase through the end of the year (see sections 2e1, 4b). In boreal winter, 
La Niña is known to result in weaker tropical lower stratospheric upwelling, anomalously higher 
cold-point temperatures, and enhanced water vapor in the tropical lower stratosphere (Calvo et al. 
2010; Garfinkel et al. 2018; Simpson et al. 2011). The large positive tropical anomalies in the lower 
stratospheric WV observed at the end of 2020 are consistent with the known behavior associated 
with a La Niña. This narrow band of positive anomalies in December 2020 is shown in contrast 

Fig. 2.61. Lower stratospheric water vapor (SWV) anomalies over five balloon-borne frost point (FP) hygrometer stations. 
Each panel shows the lower stratospheric anomalies of individual FP soundings (black) and of monthly zonal averages of 
Microwave Limb Sounder (MLS) retrievals at 82 hPa in the 5° latitude band containing the FP station (red). High-resolution 
FP vertical profile data were averaged between 70 hPa and 100 hPa to emulate the MLS averaging kernel for 82 hPa. Each 
MLS monthly zonal mean was determined from 2000–3000 profiles. Anomalies for MLS and FP data are calculated rela-
tive to the 2004–20 period for sites except for Lindenberg (2009–20) and Hilo (2011–20). Tropical CPT anomalies based 
on the MERRA-2 reanalysis (d, blue curve), which are generally well correlated with the tropical lower stratospheric WV 
anomalies, are the driving force behind the variations in tropical WV during 2020. 
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to the same month of the previous year 
in Fig. 2.62.

In addition to the tropical stratospheric 
WV features in 2020, there are several 
notable higher latitude features. First, 
strong negative WV anomalies at high 
southern latitudes at 82 hPa in the last 
several months of 2020 (Figs. 2.60b, 2.62b)  
are likely the signal of anomalously 
strong dehydration associated with the 
very strong and persistent Antarctic vor-
tex (see sections 2b5, 6h). The remarkably 
long-lived and stable Antarctic vortex 
likely explains why the dry anomaly is 
most noticeable at the very end of the 
year rather than earlier in austral spring. 

Additionally, the positive tropical low-
er stratospheric WV anomaly discussed 
previously appears to be somewhat 
shifted toward the SH in the early part of 
the year (Fig. 2.60b). This anomaly may 
be related to the rapid injection of wet 
tropospheric air into the stratosphere 
by Australian bushfires of record-break-
ing intensity at the beginning of 2020 
(Kablick et al. 2020; Khaykin et al. 2020). 
Of course, this anomaly occurs in concert 
with widespread positive WV anoma-
lies in the tropics, so it is not possible 

to quantitatively determine the contribution of the fires to stratospheric WV with the analysis 
presented here. Further modeling and analysis should be able to shed light on the contribution 
of the Australian bushfires to stratospheric WV levels in 2020 in the context of other sources of 
variability such as QBO and ENSO.

6) Tropospheric ozone—J. R. Ziemke and O. R. Cooper
Tropospheric ozone is the third-most effective climate-forcing greenhouse gas following CO2 and 

CH4 (IPCC 2013). Average global radiative forcing due to tropospheric ozone is +0.4 ± 0.2 W m−2 and 
thus contributes to net warming of the atmosphere. In addition, tropospheric ozone is a surface 
pollutant damaging to vegetation and human health (Fleming et al. 2018; Mills et al. 2018), and it 
is the primary producer of OH radical (OH), which is the main oxidant of tropospheric pollutants. 
The sources for tropospheric ozone include transport from the stratosphere, non-combustive, 
non-biogenic volatile organic compound (VOC) sources such as solvents or fuel evaporation, 
photochemical production from precursors that include non-methane biogenic hydrocarbons, 
CH4, lightning NOx, and also emissions generated from the combustion of fossil fuels and bio-
mass burning (Young et al. 2013, 2018; Monks et al. 2015; McDonald et al. 2018; Archibald et al. 
2020). The main drivers of planetary-scale variability of tropospheric ozone include dynamical 
forcing from the ENSO and Walker circulation in the tropics, and “weather system” baroclinic 
waves in midlatitudes (Chandra et al. 1998, 2009; Sun et al. 2014; Ziemke et al. 2015). The main 
drivers of small-scale patterns in tropospheric ozone are local emissions of ozone precursors, 
both anthropogenic and natural, and ozone surface deposition driven mainly by vegetation 

Fig. 2.62. Deseasonalized monthly lower stratospheric Microwave 
Limb Sounder (MLS) anomalies (ppm; 2004–20 base period) centered 
on 82 hPa in (a) Dec 2019 and (b) Dec 2020 from the Aura MLS.
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(Archibald et al. 2020). The large temporal variability of tropospheric ozone from diurnal to inter-
annual timescales makes it difficult to determine decadal trends from regional to global scales 
(Neu et al. 2014; Cooper et al. 2014; Lin et al. 2014; Barnes et al. 2016; Strode et al. 2019; Tarasick 
et al. 2019).

Since 2012, all State of the Climate reports have provided updates on global tropospheric ozone 
based on independent measurements from ground- and satellite-based instruments (Ziemke and 

Cooper 2019, and references therein). Due 
to limited annual updates of ground-
based observations, these reports have 
relied primarily on combined Aura Ozone 
Monitoring Instrument (OMI) and MLS 
satellite ozone measurements (Ziemke et 
al. 2019). Vertical resolution of OMI/MLS 
monthly tropospheric column ozone is 
2–3 km about the tropopause with ~2 DU 
(7%) precision in regional measurements; 
uncertainties in calculated trends are 
about 0.5 DU decade−1 (1.5% decade−1). 
OMI/MLS data show broad regions of 
positive 2020 tropospheric ozone column 
anomalies (relative to the 2005–19 aver-
age) of ~1.2 DU (4%) in the NH midlati-
tudes, with smaller anomalies of ~1 DU or 
less elsewhere (Plate 2.1ab). Hemispheric 
and global average tropospheric ozone 
burdens and their 95% confidence lev-
els for 2020 were 160 ± 7 Tg (0°–60°N), 
145 ± 8 Tg (0°–60°S), and 304 ± 8 Tg 
(60°S–60°N; Fig. 2.63). Trends and their 
95% confidence levels (in units Tg yr−1) 
in hemispheric and 60°S–60°N burdens 
from October 2004 through Decem-
ber 2020 are shown in Fig. 2.63; these 
trends correspond to increases of about 
0.50 ± 0.15% yr−1 for all three curves. 
Spatially, the trends are overwhelmingly 
positive, the strongest of which are ~ +3.2 
DU decade−1 (~ +1% yr−1) above India and 
East/Southeast Asia, extending east-
ward over the North Pacific Ocean (Fig. 
2.64). These trends are consistent with 
model estimates based on strengthen-
ing emissions of ozone precursors from 
Southeast, East, and South Asia, primar-
ily due to fossil fuel combustion (Zhang 
et al. 2016b; Lin et al. 2014; Ziemke et al. 
2019) and with NH ozone trends (1994–
2016) as observed by instrumented 
commercial aircraft (Gaudel et al. 2020). 

Fig. 2.64. Linear trends in Ozone Monitoring Instrument / Mi-
crowave Limb Sounder (OMI /MLS) tropospheric column ozone 
(DU decade−1) on a 5° × 5° grid from Oct 2004 through Dec 2020. 
Asterisks denote trends with p-values less than 0.05. Trends were 
calculated using a multivariate linear regression model (e.g., 
Randel and Cobb 1994, and references therein) that included 
a seasonal cycle fit and the Niño-3.4 index as an ENSO proxy; 
trend uncertainties included autoregressive adjustment via 
Weatherhead et al. (1998).

Fig. 2.63. Monthly averages of Ozone Monitoring Instrument / 
Microwave Limb Sounder (OMI/MLS) tropospheric ozone burdens 
(Tg) from Oct 2004 through Dec 2020. The top curve (black) shows 
60°S–60°N monthly averages (solid) with 12-month running mean 
(dashed). The bottom two curves show monthly averages (solid) 
and running means (dashed) for the Northern Hemisphere (red) 
and Southern Hemisphere (blue). Slopes of linear fits to the data 
are presented with their 95% confidence-level uncertainties.
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Models indicate that ozone produced in these areas is transported northward and eastward in 
the free troposphere over the North Pacific Ocean (Zhang et al. 2020), as supported by the trend 
patterns in Fig. 2.64. Positive trends in the SH extra-tropics have been linked to a broadening of 
the Hadley circulation (Lu et al. 2018a).

Three long-term baseline monitoring sites with quality assured data are available for 
updating surface ozone trends through 2020: 1) Mauna Loa Observatory (MLO), Hawaii 
(19.5°N, 155.6°W, 3397 m a.s.l.); 2) South Pole Observatory (SPO), Antarctica (90°S, 59°E, 2840 m 
a.s.l.); and 3) Barrow Atmospheric Baseline Observatory (BRW), near Utqiaġvik, Alaska (71.3°N, 
156.6°W, 11 m a.s.l.). Continuous ozone measurements began at MLO in September 1973, at SPO 
in January 1975, and at BRW in March 1973, with reliable observations available at SPO for the 
years 1961–63 and at MLO for the years 1957–59 (Tarasick et al. 2019). Observations at remote 
baseline sites are important for understanding long-term ozone trends in the boundary layer, but 
they do not necessarily match the trends in the free troposphere, which have been overwhelm-
ingly positive since the mid-1990s, as measured by ozonesondes, lidars, and commercial aircraft 
(Cooper et al. 2020).

Ozone levels at BRW in the Arctic increased by 3 ppbv (11%) since 1973. The limited data at MLO 
and SPO from the 1950s and 1960s indicate that ozone levels at these remote high-elevation sites 
were similar in the mid-twentieth century despite being located in different hemispheres. Ozone 
levels at SPO have changed little since the 1960s, with only a slight increase of ~2 ppbv (6%) from 
1975 to 2020 (Fig. 2.65). In contrast, ozone levels at MLO increased at the rate of 0.14 ± 0.05 ppbv yr−1, 
resulting in a 17% increase since 1973. MLO experiences high inter-annual ozone level variability 
due to its location in the transition region between tropical and extratropical air masses. The ozone 
level trend in the extratropical air masses can be isolated by focusing on the dry air masses, which 
tend to originate at higher altitudes and latitudes to the west and northwest of MLO (Gaudel et al. 
2018). The trend in the dry air masses is 50% greater compared to the trend using all air masses 
(10.1 ppbv total increase since 1974, or 24%), which implies that the site is influenced by ozone 
level increases in upwind regions to the west and northwest, most likely Asia where surface and 
free tropospheric ozone levels have generally increased over the past 2 decades due to increased 
anthropogenic emissions of ozone precursor gases (Zhang et al. 2016b; Cohen et al. 2018; Lu et al. 
2018b; Gaudel et al. 2018, 2020).

Fig. 2.65. Monthly median ozone (ppbv) at Barrow Observatory (Mar 1973–Dec 2020, green) and South Pole 
(Jan 1975–Dec 2020, black) using data from all hours of the day. Additional data from South Pole are shown for the early 
1960s. Also shown are nighttime monthly median ozone values at Mauna Loa (MLO) calculated with all available data 
for months with at least 50% data availability, Oct 1973–Oct 2020 (blue), with early observations from the late 1950s. 
In addition, the monthly median values associated with dry air masses (orange) at MLO are included (dewpoint < the 
climatological monthly 40th percentile, and a sample size of at least 24 individual hourly nighttime observations). Trends 
(solid straight lines) are based on least-squares linear regression fit through the monthly values (1970s–2020), and re-
ported with 95% confidence intervals and p-values. The MLO and South Pole trend lines are extrapolated back in time 
to the late 1950s (dashed lines).
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7) Carbon monoxide—J. Flemming and A. Inness
Carbon monoxide (CO) plays a significant role in determining the abundance of climate-forcing 

gases like CH4 and tropospheric ozone through OH chemistry (Hartmann et al. 2013). CO is there-
fore regarded as an indirect climate-forcing agent. Sources of CO include incomplete fossil fuel 
and biomass combustion and in situ production via the oxidation of CH4, isoprene, and other 
organic trace gases. Combustion and atmospheric chemical sources typically produce similar 
amounts of CO on the global scale but vary in space and time because of the varying distribution 
of anthropogenic and biomass burning CO emissions as well as biogenic isoprene emissions. 

CAMS (https://atmosphere.copernicus.eu) produced a retrospective analysis of CO, aerosols, 
and ozone for the period 2003–20 by assimilating satellite retrievals of atmospheric composition 
with the ECMWF model (Inness et al. 2019). This CAMS reanalysis assimilated thermal infrared 
(TIR) column CO retrievals of the Measurement of Pollution in the Troposphere (MOPITT) instru-
ment (Deeter et al. 2014) globally, only excluding observations polewards of 65°N/S using the 
ECMWF 4D-VAR data assimilation system. The anthropogenic CO emissions used in the ECMWF 
model were taken from the MACC/CityZEN EU projects (MACCity) inventory (Granier et al. 2011), 
which estimates emission trends according to the IPCC RCP 8.5 scenario. No COVID-19 pandemic-
related emissions modifications for 2020 were applied in the assimilation. Anthropogenic biomass 
burning emissions were taken from the Global Fire Assimilation System (GFAS) v1.2 (Kaiser et al. 
2012; see section 2h3). 

Figure 2.66 shows the time series of the monthly mean global burden of CO from the CAMS 
reanalysis for the period 2003–20. The total burden in 2020 was similar to the burden in the 
previous years, with the exception of the year 2015 when the global CO burden was dominated 
by emissions from fires in Indonesia (Huijnen et al. 2016). Approximated with a linear trend over 
the whole period, the total global CO burden has declined by −1.5 Tg CO yr−1, and as piecewise 
trends by −3.1, −14.0, and +0.1 Tg CO yr−1 for 2003–07, 2008, and 2009–20, respectively, following 
Flemming and Inness (2019). Figure 2.67 shows clean marine boundary layer (MBL) mean surface 
CO for five zonal bands based on measurements of weekly air samples collected at MBL sites in 
the NOAA Global Greenhouse Gas Reference Network (Novelli et al. 2003; Pétron et al. 2020). The 
global negative trend seen in both surface and satellite records is dominated by the decrease of 
the CO burden in the mid- and high-latitudes of the NH, likely as a result of reductions in vehicle 
emissions (Wang et al. 2012). The tropics and the SH exhibit no trends or a small positive trend. 

The spatial patterns of the 2020 annual CO total column anomalies (Plate 2.1ac) agree with the 
multi-year trends and show about 0%–5% higher values throughout the SH and most of the trop-
ics and negative values for most of the NH mid- and high-latitudes. The most noticeable negative 

Fig. 2.66. Time series of monthly global carbon monoxide (CO) burdens (Tg CO) from the total column CO output from the 
CAMSRA (TCCO CAMSRA) and a piecewise linear trend for the periods 2003–07, 2008, and 2009–20. The red line indicates 
the year 2020.
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anomaly in 2020 appeared over maritime 
Southeast Asia (Indonesia) and was caused 
by low fire activity in the region, because 
La Niña conditions were starting to evolve 
in (austral) spring 2020. Positive anomalies 
occurred over the western United States and 
over northeast Siberia (Yakutia), caused by 
intense biomass burning in boreal summer 
and early autumn 2020 (see also sections 
2g3, 2h3). The widespread positive anomaly 
over the southern South Pacific Ocean was 
the result of long-range transport of CO 
plumes originating from intense fires in 
southwestern Australia between Decem-
ber 2019 and January 2020. The observed 
increase in tropical and SH MBL CO in 
2020 was also most likely caused by the 
Australian fires.

The reduction in anthropogenic CO emis-
sion during the COVID-19 pandemic has 

been estimated to be up to 30% in North America and Europe and 10%–20% over China during the 
height of the lockdown measures (Foster et al. 2020; Doumbia et al. 2021). The CAMSRA CO total 
columns over Europe and North America were the lowest since 2003 for the period February–April 
(Fig. 2.68). However, the attribution of these anomalies to COVID-19-related emission reduction is 
complicated by the multi-year negative CO trends in the regions and the unquantified influence 
of other factors such as meteorological conditions. 

Fig. 2.68. Seasonal cycle of monthly global carbon monoxide (CO; ppb) total column (1018 molec. cm−2) over 
(a) Europe and (b) North America for all years in the 2003–19 period (blue) and for 2020 (red) from the CO total 
column output from the CAMSRA (TCCOsfc CAMSRA). 

Fig. 2.67. Time series of carbon monoxide (CO) over the clean 
marine boundary layer for the polar NH (53.1°–90°N, black), 
temperate NH (17.5°–53.1°N, green), tropics (17.5°S–17.5°N, red), 
temperate SH (17.5°–53.1°S, dark blue), and SH (53.1°–90°S, 
magenta) for the period 1991–2020.
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h. Land surface properties
1) Land surface albedo dynamics—G. Duveiller and N. Gobron

The presence and absence of snow cover dominates the large-scale spatial patterns of the land 
surface albedo for 2020 (Plates 2.1ad, ae). The most prominent feature was a strong reduction 
in albedo in Europe from western Germany to Moscow, and from southern Scandinavia to the 
Balkans, corresponding to a large deficit in snow cover over this area, particularly during the 
January–March 2020 period (see sections 2c2, 7f), when temperatures were particularly high (see 
section 2b1). This same effect occurred to a lesser extent in the eastern half of the United States. 
Reductions in the snow cover extent during spring over large parts of Siberia also contributed to 
reducing the overall albedo of the Northern Hemisphere (NH). Conversely, an anomalously high 
duration of snow cover resulted in a rise in albedo in several parts of the world. For northeastern 
China, the Tibetan plateau, and central parts of North America, excess snow cover duration oc-
curred in boreal winter (January–March), for Canada and northern Scandinavia in boreal spring 
(April–June), and for Patagonia in austral winter (July–September). All left a clear mark in the an-
nual maps of albedo, both in the visible and near infrared parts of the spectrum (Plates 2.1ad, ae). 

Beyond the strong effect of snow, the land surface albedo dynamics were affected by vegeta-
tion growth, which darkens the surface, and by dry climatic conditions, which typically lighten 
the surface due to either the hastening of leaf senescence or the drying up of bare soil. In 2020, 

warm conditions across most of the globe 
and during considerable portions of the 
year contributed to the development 
of greener surfaces (see section. 2h2), 
which translated to lower visible albedo. 
This was particularly evident over India, 
northern East Africa, and southeastern 
Australia, all of which had higher-than-
average soil moisture during large parts 
of the year (see section 2d10). On the other 
hand, drought conditions increased vis-
ible albedo in southern Africa (mostly 
in Mozambique) and in central South 
America (around the Gran Chaco but also 
extending eastward and northward, see 
section 2d11). Rain deficits attributable to 
the development of La Niña in late 2020 
further exacerbated the dry conditions in 
these regions of South America (see sec-
tion 7d). However, drier conditions in the 
later part of the year over various parts 
of the NH did not considerably alter the 
albedo patterns that were mostly domi-
nated by spring snow cover.

Overall, 2020 contributed to the gen-
eral darkening trend of the land surface 
with respect to visible albedo (Figs. 
2.69, 2.70). There was, however, a clear 
separation between NH and Southern 
Hemisphere (SH), with the SH seeing its 
second consecutive brighter year than the 
2003–10 baseline, and following a steady 

Fig. 2.69. Zonally averaged (a) white sky visible and (b) near 
infrared albedo anomalies (%) for the period 2003–20 using a 
2003–10 baseline period.
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brightening trend since its lowest point on 
the satellite record in 2017. With respect to 
the albedo in the near infrared part of the 
spectrum, the overall trend was toward a 
slight brightening, which was more pro-
nounced in the SH than in the NH. 

This analysis of the land surface albedo 
relied exclusively on satellite information. 
Surface albedo was retrieved from multi-
spectral surface reflectance measured by 
the Moderate Resolution Imaging Spectro-
radiometer (MODIS) instrument on-board 
the Aqua and Terra satellite platforms 
(Schaaf et al. 2002). Satellite retrievals are 
probably the most accurate way to assess 
surface albedo at the global level as they 
rely on a limited set of assumptions. They 
have been shown to provide sufficiently 
accurate estimates when compared to 
ground measurements both on ice sheets 
(Stroeve et al. 2013) and over different types 

of vegetation (Cescatti et al. 2012). The MODIS albedo products provide separate estimations 
for different parts of the shortwave electromagnetic spectrum, allowing this analysis to focus 
separately on the visible and the near infrared parts of the spectrum. Furthermore, the analysis 
was based on estimation of white-sky albedo (bi-hemispherical reflectance), which is defined as 
albedo in the absence of a direct radiation component and when the diffuse radiation component 
is isotropic.

2) Terrestrial vegetation dynamics—N. Gobron
The Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) plays a critical role in 

assessing the primary productivity of canopies, the associated fixation of atmospheric CO2, and 
the energy balance of the surface. FAPAR anomalies from the 1998–2010 average show significant 
regional variations in the vegetation productivity conditions worldwide in 2020 (Plate 2.1af). The 
SH appeared similar to typical La Niña conditions, with largest negative anomalies (brown) oc-
curring over Argentina, Paraguay, and Chile and largest positive (dark blue) in eastern Brazil, 
Malaysia, and Indonesia (see section 2e1). However, there were negative anomalies in regions 
such as Mozambique, southern Madagascar, and most of Australia, except the southeast. To a 
lesser extent, negative regional anomalies were observed near the northwest coast of the South 
American continent. 

In the NH, the largest negative anomalies were observed over herbaceous vegetation in Norway, 
northern Sweden, and Canada. Local negative occurrences were notable in the north-central 
United States (Colorado, Iowa, North Dakota, and Wisconsin), but also in California, as well as in 
the Russian Far East, including Kamchatka. The biggest positive anomalies occurred in eastern 
China and India and north Pakistan, South Sudan, and Kenya, followed by southern and central 
Europe. Similar to 2016, some arctic regions in Russia and Canada also showed strong positive 
anomalies. 

La Niña had an impact on vegetation health by contributing heavy rains over Indonesia, In-
dia, and western Brazil. In contrast, Argentina, Paraguay, and Chile recorded a strong negative 
anomaly that increased from June to December due to the dry conditions caused by La Niña 
coupled with above-normal temperatures (see section 2d4). At the start of the dry season in April, 

Fig. 2.70. Global (black /gray lines), NH (blue), and SH (red) land 
surface (a) visible and (b) near infrared albedo anomalies for the 
period 2003–20 using a 2003–10 baseline period. Dotted lines 
denote each monthly period; solid lines indicate the 6-month 
running averaged mean.
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northern Mozambique and western Madagascar suffered from rainfall deficits that induced the 
negative annual anomalies. Strong negative anomalies were also observed over some regions 
of Australia that suffered from the devastating 2019/20 summer bushfires, although vegetation 
partially recovered locally with adequate rains.

The European summer heat wave (see sections 2b3, 7f) significantly impacted the vegetation 
productivity, as can be seen in the annual anomaly of herbaceous vegetation in Sweden and 
Norway. The rest of Europe was also strongly affected during spring and summer, but this was 
not apparent per se in the annual analysis. During spring, Canadian vegetation suffered from 
very cold temperatures that affected the annual value. The western and central United States 
experienced both high temperatures and dry conditions in much of the year, and the impacts 
on central states were perceived in the annual study. Terrestrial photosynthesis was enhanced 
over eastern China, with vegetation growth noticeable since 2015 due to important changes in 

the main land use, with a net increase in 
leaf area mainly from croplands (Gobron 
2019; Chen et al. 2019). The strong positive 
anomalies over some northern latitudes 
were largely due to the warm spring that 
was ideal for vegetation growth. Further-
more, heavy rains enhanced the positive 
anomalies in China and East Africa.

Figure 2.71 shows the latitudinal anom-
alies average from 1998 to 2020 compared 
to the base period 1998–2010. The strong 
seasonal deviations mainly include posi-
tive anomalies north of 20°N after 2014. 
In 2020, this positive behavior extended 
south of the equator. Negative anomalies 
from 2002 to 2014 affected the SH, except 
in 2010–12. Around 30°S, 2019/20 anoma-
lies again became again negative. 

Figure 2.72 draws the global and bi-
hemispherical anomalies, revealing more 
seasonal oscillations in the SH than in 
the NH. Analysis of SH data reveals two 
positive extreme peaks in 2000 and 2017, 
while extreme minima events occurred 
in 2008–09. Afterwards, SH anomalies 
increased with interannual variations 
and were positive since 2014. The NH ex-
perienced fewer extreme negative events 
compared to the SH, and its photosyn-
thetic activity increased from 2010 to 2017 
and, after a brief decline in late 2017/early 
2018, increased again to a high value in 
2020. The global average has been posi-
tive since 2010 with a positive trend. 

Earth observations measurements 
are fundamental for monitoring the 
activity of vegetation worldwide. These 
observations are used to infer FAPAR, 

Fig. 2.71. Zonally averaged Fraction of Absorbed Photosynthetically 
Active Radiation (FAPAR) anomalies for 1998–2020 (1998–2010 
base period).

Fig. 2.72. Global (black /gray lines), Northern Hemisphere (blue), 
and Southern Hemisphere (red) Fraction of Absorbed Photosyn-
thetically Active Radiation (FAPAR) anomalies for 1998–2020 
(1998–2010 base period). Dotted lines denote each monthly 
period; solid lines indicate the 6-month running averaged mean.
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an essential climate variable (as defined by GCOS [2016]). The 2020 analysis merged 23 years of 
global FAPAR monthly products based on three optical sensors from 1998 to 2020 (Gobron et al. 
2010; Pinty et al. 2011; Gobron and Robustelli 2013; the base period is 1998–2010). Comparisons 
between each dataset and with multiple proxies using ground measurements provide an estimate 
of the uncertainties and biases. This long-term global FAPAR dataset presents an estimated aver-
age uncertainty close to 5%–10%.

3) Biomass burning—J. W. Kaiser and  
G. R. van der Werf
The year 2020 illustrates how two 

distinct trends that have emerged in 
global biomass burning over the last 
decade shape current pyrogeography: 
a declining trend in many savanna 
regions related to agricultural ex-
pansion and an increasing trend in 
many forested regions where climate 
change increases the flammability of 
the landscape. It was one of the lowest 
fire years in the Global Fire Assimila-
tion System (GFAS) record (13% below 
the 2003–10 average), but there was 
also extreme regional fire activity 
(Table 2.11). This activity included the 
continuation of fires in southeastern 
Australia early in the year that had 
started in late 2019, fires above the 
Arctic circle in Russia, and in the 
western United States.

Global fire emissions are gener-
ally dominated by savanna burning 
(Fig, 2.73). For example, African fire 
emissions comprise roughly half of 
total global fire carbon emissions; but 
fires here and in many other savanna 
regions have decreased over the past 
decade (Andela et al. 2017). This trend 
continued in 2020 with Africa north 
(south) of the equator seeing emissions 
11% (12%) below the 2003–10 average. Given the dominance of these regions, this reduction was 
reflected in the global total of 1741 Tg C emissions from biomass burning in 2020, which was the 
fourth lowest of the past 18 years. The lowest fire year in this period was 2018 with 1661 Tg C, fol-
lowed by 2017 and 2013 with 1683 Tg C and 1690 Tg C, respectively. While the long-term trend is 
partly driven by agricultural expansion into savanna ecosystems and associated fragmentation 
of the landscape, anomalous rainfall years also influence interannual variability on top of the 
declining trend.

Tropical forests in the Amazon saw the highest fire activity since 2012, surpassing the year 2019, 
which attracted more media attention at that time. The emerging upward trend is also supported 
by independent VIIRS observations (https://globalfiredata.org/pages/2020/09/22/amazon-fire 
-activity-in-2020-surpasses-2019; Schroeder et al. 2014). In contrast, fire activity in tropical 

Table 2.11. Annual continental-scale biomass burning budgets in terms 
of carbon emission (Tg C yr−1) from Global Fire Assimilation System 
(GFASv1.4).

Time period 2003–10 2020

Quantity in  
Tg C yr−1

Latitude/
longitude

Mean value 
(range)

Value
Anomaly 
(percent)

Global
2010  

(1828–2272)
1741 −269 (−13%)

North America
30°–75°N 

190°–330°E
79  

(63–109)
65 −14 (−18%)

Central America
13°–30°N 

190°–330°E
42  

(31–58)
42 0 (0%)

South America
13°–60°S 

190°–330°E
427  

(255–524)
418 −9 (−2%)

Europe and  
Mediterranean

30°–75°N 
330°–60°E

37  
(29–62)

30 −7 (−17%)

N. Hem. Africa
0°–30°N 

330°–60°E
419  

(353–453)
374 −45 (−11%)

S. Hem. Africa
0°–35°S 

330°–60°E
484  

(444–528)
426 −58 (−12%)

Northern Asia
30°–75°N 
60°–190°E

176  
(99–418)

193 +17 (+10%)

South-East Asia
10°–30°N 
60°–190°E

128  
(107–150)

104 −24 (−18%)

Tropical Asia
10°S–10°N 
60°–190°E

118  
(38–228)

23 −95 (−80%)

Australia
10°–50°S 
60°–190°E

99  
(47–137)

64 −34 (−35%)

Arctic
67°–90°N 
0°–60°E

4  
(0–11)

37 +32 (+724%)

Western United 
States

30°–49°N 
230°–260°E

15  
(7–25)

42 +27 (+183%)
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Asia—including Indonesia—was one of 
the lowest on record, related to relatively 
wet conditions as La Niña started to 
evolve during the fire season. 

At higher latitudes, 2020 was record 
breaking in both southeastern Australia 
and the western United States, where 
extreme heat and drought contributed 
to unprecedented fire conditions (Van 
Oldenborgh et al. 2020). While Australia 
as a whole did not exhibit anomalies 
(Table 2.11) due to the dominance of 
savanna fires in the northern part of the 
country and because the fire season in 
southeastern Australia started in 2019, 
the combined 2019–20 southeastern Aus-
tralian fire season was unprecedented. 
For example, emissions were the highest 
since at least 2003 (Fig. 2.74), burnt area 
in New South Wales was the largest since 
at least 1968 with more than 5 million ha, 
and ~43% of the total Australian cover-
age of Eucalyptus forests and woodlands 
burned (Bowman et al. 2021). In the west-
ern United States, total fire emissions 
almost tripled compared to the 2003–10 
mean and thus continued the recent up-
ward trend (Fig. 2.74).

The Arctic experienced its highest fire 
year in 2020, surpassing the record set in 
2019 (Kaiser et al. 2020; Sidebar 5.1) by 
34%. Each of the last 5 years have thus 
seen more Arctic fires than the preceding 
year (Fig. 2.74). Most of the fires occurred 
in Arctic Asia, with Arctic America, and 
also all of Canada plus Alaska, experi-
encing their lowest fire year on record in 
2020. While the fires burned within the 
Arctic circle and partly affected thawed 
permafrost, the largest fire complex was 
still in thinly forested regions and not in 
tundra, which leaves the long-term pos-
sibility of a partial uptake of the emitted 
carbon through re-growth.

The time series in Plate 1.1ac puts 
GFAS in the context of the Global Fire 

Emissions Database, version 4 with small fires (GFED4s), which is mostly based on burnt area 
observation and dates back to 1997 (van der Werf et al. 2017). It shows that the global fire emis-
sions during the 1997–98 El Niño remain unsurpassed.

Fig. 2.74. Time series of annual (squares) and monthly (lines) 
regional fire activity in terms of carbon consumption: (a) Arctic, 
(b) New South Wales and Victoria, (c) western United States, 
and (d) South America. (Source: Global Fire Assimilation System 
GFASv1.4.)

Fig. 2.73. Global map of fire activity in 2020 in terms of carbon 
consumption (g C m−2 yr−1). (Source: Global Fire Assimilation Sys-
tem GFASv1.4.)
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GFAS produces global fire emission estimates in near real-time for the Copernicus Atmosphere 
Monitoring Service (Kaiser et al. 2012). Here, we used a consistent reprocessing of 2003–20 based 
on Collection 6 of the MODIS Fire Radiative Power product (Giglio et al. 2016). The 14% bias with 
respect to Collection 5 has been corrected and the satellite- and observation time-specific bias 
correction factors from Hüser et al. (2018) were applied for 17 August–2 September 2020 in order 
to compensate for the outage of observations from MODIS onboard the Aqua satellite. 

4) Phenology of primary producers—D. L. Hemming, J. Garforth, J. O’Keefe, T. Park, A. D. Richardson,  
T. Rutishauser, T. H. Sparks, and S. J. Thackeray
During 2020, the satellite-derived (MODIS) normalized difference vegetation index (NDVI; Park 

et al. 2016) across the NH landmass (>30°N) revealed an earlier mean start of season (SOSM), later 
end of season (EOSM), and 1.8 days longer growing season, compared to the 2000–10 baseline  
(Fig. 2.75). These coincided with the second-warmest spring and warmest autumn on record across 
the NH (NOAA 2020). Regional differences resulted in 2.1 days earlier and 0.9 days later SOSM in 
Eurasia (EA) and North America (NA), respectively. No clear signal in EOSM was observed across 
NA, whereas, later EOSM was dominant across EA (Fig. 2.75d). Overall, about 55% and 65% of the 
NH showed earlier SOSM and later EOSM in 2020. These spatial variations also correlate with spring 
and autumn surface temperature (section 2b1; NASA MERRA-2, Gelaro et al. 2017), which were 
0.5°C (+1.2°C for EA, −0.95°C for NA) and 0.7°C (+1.0°C for EA, −0.05°C for NA) warmer in 2020 
compared to the baseline. NH trends of earlier SOSM and later (less significant) EOSM over the last 
21 years were noted in MODIS NDVI (SOSM = −2.3 ± 0.7 days decade−1, p = 0.01; EOSM = 1.3 ± 0.9 
days decade−1, p = 0.18) while significant differences in magnitude were observed between 

Fig. 2.75. (a) Time series of area-mean anomalies (days; base period 2000–10) in MODIS NDVI-based start of season (SOS) 
(green) and MERRA-2 spring (Mar–May, pink) temperature (°C) for Northern Hemisphere (>30°N). (b) Same as (a) but for 
end of season (EOS) (green) and autumn (Sep–Nov, pink) temperature. Note temperature scale reversal for (a). 2020 spatial 
pattern of (c) SOS and (d) EOS anomaly with respect to the baseline. Highlighted points and box identify the location of 
phenology sites shown in Fig. 2.76. (United States Harvard Forest, Massachusetts PhenoCam and Red oak [pink point]; 
United Kingdom mean Pedunculate oak [yellow box]; Lake Kasumigaura, Japan, Lake Kinneret, Israel and Müggelsee, 
Germany [green points]).

Unauthenticated | Downloaded 01/02/25 03:33 PM UTC



S1092 . G L O BA L  C L I M AT EAU G U S T  2 0 2 1  |  S t a t e  o f  t h e  C l i m a t e  i n  2 0 2 0

NA (SOSM = −0.05 ± 0.5 days decade−1, p = 0.24; EOSM = 2.0 ± 0.6 days decade−1, p = 0.01) and EA 
(SOSM = −1.7 ± 0.6 days decade−1, p = 0.02; EOSM = 0.1 ± 0.8 days decade−1, p = 0.89), indicating 
asymmetric extension of the growing season at the continental scale.

PhenoCam data across NA (Seyednasrollah et al. 2019) provide a link between the coarse 
and fine resolutions of satellite monitoring and site-level observations on individual organisms 
(Richardson et al. 2019). We compared PhenoCam-derived estimates (2008–20, n = 13) of start of 
season (SOSPC) and end of season (EOSPC) at Harvard Forest, a deciduous forest in Massachusetts, 
United States, with ground observations of Red oak (Quercus rubra) phenology (SOSRO = 50% 
budburst and EOSRO = 50% autumn color; Richardson and O’Keefe 2009, 2019), and MODIS SOSM 
and EOSM for the associated pixel (Figs. 2.76a,b). SOSPC and EOSPC were strongly correlated with 
SOSRO and EOSRO (r = 0.90 and 0.81, respectively) and their timings were similar. Although SOSPC 
and SOSM were strongly correlated (r = 0.79), SOSPC was later by 12 ± 3 days (Fig. 2.76a). The cor-
relation between EOSPC and EOSM was weaker (r = 0.48), and EOSPC was earlier on average by 48 
± 12 days (Fig. 2.76b). These differences may be explained in part by a mix of land cover types 
covered by the MODIS 5-km pixel. In 2020, SOSPC (day 137, 16 May, ± 2 days) was 6 days later than 
in 2019, and consistent with the change for SOSRO, which was 9 days later in 2020 than 2019. EOSPC 
in 2020 (day 293, 19 October, ± 1 day) was unchanged, while EOSRO was 4 days later than 2019. In 
comparison, SOSM was 3 days earlier than 2019 and EOSM remained unchanged (Figs. 2.76a,b). 
Later SOSPC in 2020 was related to relatively cold spring temperatures and resulted in a growing 
season 5 days shorter than in 2019. 2020 had the shortest growing season observed at Harvard 
Forest in the last 13 years.

Dates of Pedunculate oak (Quercus robur) “first leaf” (SOSPO) and “bare tree” (EOSPO) recorded 
by citizen scientists across the United Kingdom have been collated by the Woodland Trust since 
1999 (Collinson and Sparks 2008). The mean SOSPO for the 2000–09 baseline was 26 April (day 
116), and EOSPO was 30 November (day 334), giving a 218-day growing season length (Figs. 2.76c,d). 
Both events were strongly influenced by temperature; SOSPO advances by approximately 6 days for 
every 1°C increase in mean February–April temperature, and EOSPO is delayed by approximately 
3 days for every 1°C increase in October temperature. The year 2020, like 2019, had a very warm 
spring, and this resulted in the earliest United Kingdom SOSPO in the 20-year series (10 days earlier 
than the in-situ baseline). October temperature was similar to recent years, and the EOSPO date 

Fig. 2.76. Start of season (SOS) and end of season (EOS) phenology indicators derived from (a),(b) Harvard Forest,  
Massachusetts, United States, PhenoCam (SOSPC and EOSPC), Red oak ground observations (SOSRO and EOSRO), and  
MODIS remote sensing (SOSM and EOSM), and (c),(d) United Kingdom mean Pedunculate oak (SOSPO and EOSPO) and MODIS.

Unauthenticated | Downloaded 01/02/25 03:33 PM UTC



AU G U S T  2 0 2 1  |  S t a t e  o f  t h e  C l i m a t e  i n  2 0 2 0 S1102 . G L O BA L  C L I M AT E

Sidebar 2.3. Long-term monitoring of vegetation state through passive microwave 
satellites—W. DORIGO, L. MOESINGER, R. VAN DER SCHALIE, R. M. ZOTTA, T. SCANLON, AND R. A. M. DE JEU

(note these were predicted from the temperature relationship due to COVID-19 monitoring restric-
tions) was approximately 2 days later than the baseline. The net result was a United Kingdom 
“oak season” 12 days longer than the baseline.

In 2020, monitoring data on lake water concentrations of the photosynthetic pigment chloro-
phyll-a were available to estimate the spring phytoplankton peak in three NH lake basins (Lake 
Kasumigaura in Japan, Lake Kinneret in Israel, and Müggelsee in Germany). Some in situ lake 
monitoring schemes were inactive in 2020 due to COVID-19 restrictions. The mean start of spring 
bloom during the 2000–10 baseline in these lakes ranged from 22 March (day 81, Lake Kasum-
igaura) to 21 April (day 111, Lake Kinneret). Spring peak was earlier in 2020 than the baseline in 
two lake basins (by 15 to 38 days), but later for Müggelsee (by 4 days). This variation between 
sites may relate to differences in climate or other factors that interact with climate to influence 
seasonal ecosystem behavior.

Microwave radiation emitted or reflected by the land sur-
face is strongly affected by available water, including that stored 
in living biomass. The all-weather, sunlight-independent observ-
ing capacity of microwave satellites makes them complementary 
to satellites in the optical domain traditionally used to observe 
vegetation characteristics (Becker and Choudhury 1988; see 
section 2h2.). Particularly for areas with frequent cloud cover, 
such as the humid tropics, microwave satellites provide novel 
insights into vegetation dynamics, although with lower spatial 
detail (Rodriguez-Fernandez et al. 2018).

The portion of the radiance attenuated by the canopy is 
expressed by its vegetation optical depth (VOD), a parameter 
used in radiative transfer models to describe radiance interac-
tion with vegetation. Long seen as a by-product of soil moisture 
retrievals (see section 2d10), VOD is increasingly proven to be 
a valuable indicator of land surface conditions itself. While 
VOD is not a biogeophysical variable per se, various studies 
have shown its close relationship to vegetation above-ground 
biomass (Mialon et al. 2020, Rodriguez-Fernandez et al. 2018), 
leaf area index (Vreugdenhil et al. 2017), gross primary produc-
tion (Teubner et al. 2019), or canopy water content (Konings 
et al. 2017). Since VOD is wavelength-dependent and, with 

increasing frequency, increasingly sensitive to the upper veg-
etation layer (Li et al. 2021), VOD estimates at low frequencies 
(L-band) are more closely related to forest biomass (Chaparro 
et al. 2019), while higher frequency observations (C-, X-, and 
Ku-band) show closer agreement with seasonal leaf dynamics 
and photosynthetic activity (Teubner et al. 2018; Fig. SB2.5) 
and, hence, are valuable phenological indicators (see section 
2h4; Pfeil et al. 2020).

VOD products from various frequencies have been used 
to monitor global terrestrial carbon dynamics (Liu et al. 2015), 
assess the severity of agricultural droughts (Van Dijk et al. 2013; 
Crocetti et al. 2020), assess crop yield (Chaparro et al. 2018), 
model fire occurrence (Forkel et al. 2017, 2019) and terrestrial 
evaporation (Martens et al. 2017), and monitor land degrada-
tion (Liu et al. 2013) and deforestation (van Marle et al. 2015). 

VOD observations from several available meteorological and 
Earth observation satellites, including SSM/I, TRMM, AMSR-E, and 
AMSR2, have been retrieved with the Land Parameter Retrieval 
Model (Meesters et al. 2005; Van der Schalie et al. 2018) and 
amalgamated into the long-term VOD Climate Archive (VODCA), 
which allows for studying variability and change at climatic 
time scales (Moesinger et al. 2020). VODCA contains individual 
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In future years, we aim to increase the site phenological records to provide wider spatial and 

biome coverage.

Fig. SB2.5. (a),(b) Global maps of average vertical optical depth (VOD; unitless) for the period 2010–20 for L- and X-band, 
respectively. Note that VOD is wavelength-dependent and hence has a different range for different bands. (c) ESA CCI 
above-ground biomass (Mg ha−1) for 2017, (d) Average LAI (m2 m−2) from MODIS for 2010–20.

datasets for Ku-band (covering the period 1987–2020), X-band 
(1997–2020), and C-band (2002–20) at 0.25° spatial and daily 
temporal resolutions. Because of the superior length of the 
data record, we used the VODCA Ku-band dataset to compute 
anomalies from the long-term (1991–2010) mean seasonal 
cycle. This frequency has a noted higher sensitivity to the up-
per canopy than the other frequencies and is thus a suitable 
indicator of foliage biomass and water content dynamics over 
space and time. 

The year 2020 saw lower-than-usual VOD values (Appendix 
Fig. A2.12 in large parts of North and South America, central 
and southern Africa, most of Australia, and in a wide belt from 
eastern Europe, through Russia and Mongolia, to northern 
China and Korea. Some of these regions had to cope with strong 
agricultural droughts and crop yield losses, e.g., Argentina 
and Ukraine (see sections 7d3, 7f6). In early 2021, in southern 
Madagascar over one million people were at the brink of famine 
because of yield losses, according to the UN Global Disaster 
Alert and Coordination System. Above-normal vegetation ac-
tivity was observed in the central United States, northeastern 
Brazil, the Sahel, eastern and central southern Africa, India, 
and large parts of Eurasia. Many of these regions were much 

wetter than usual in 2020 (section 2d10). For example, eastern 
Africa was repeatedly struck by torrential rainfall, flooding, and 
landslides throughout the first half of the year (see sections 2d5, 
7e4), while India received 109% of its typical rainfall during its 
monsoon season (see section 7g4). 

Vegetation dynamics are not only driven by water avail-
ability, as they are the result of complex interactions of multiple 
drivers (e.g., precipitation, temperature, radiation, carbon diox-
ide fertilization), weather extremes, lagged effects due to deep 
rooting systems, and land management (Nemani et al. 2003; 
Reichstein et al. 2013). For example, in regions or seasons where 
plant growth is traditionally limited by low temperatures or radi-
ation, plant growth may be anti-correlated with precipitation, as 
precipitation events are characterized by more cloud cover and, 
hence, lower temperatures. A good example is the dry, warm, 
and sunny April in Europe in 2019 (see section 7f; Appendix 
Fig. A.SB2.1d), which clearly boosted vegetation development 
in the same month. In May, while soil moisture conditions had 
returned to normal, VOD showed a lagged drought response to 
the soil water depletion in early spring for several consecutive 
months (Appendix Figs. A.SB2.1e,f). 
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Fig. SB2.6. Yearly Ku-band virtual optical depth (VOD) anomalies juxtaposed with the Southern Oscillation Index Lines 
indicate the global and hemispheric VOD while the shading is the southern oscillation index (SOI) (red: La Niña, negative; 
blue: El Niño, positive). (Source: VODCA, http: //www.bom.gov.au/climate/current /soi2.shtml.) The bottom plot shows the 
percentage of land pixels that provides valid data for each year.

Worldwide, but particularly in the global south, interannual 
VOD conditions can be linked to variations in the El Niño–
Southern Oscillation (ENSO; Fig. SB2.6), which is characterized 
by predominantly dry conditions during El Niño and mostly wet 
conditions during La Niña episodes (see sections 2d4, 2d10). 
This connection between VOD and ENSO confirms previous 
studies based on optical data (e.g., Poulter et al. 2014) that, 
at the global scale, interannual vegetation activity is largely 
controlled by moisture supply. Although 2020 saw a transition 
from weak El Niño-like conditions at the start of the year to a 
moderate La Niña toward the end (see sections 2e1, 4b), this is 
not clearly reflected by the yearly and monthly VOD anomaly 
patterns (Appendix Fig. A.SB2.1), which show a mixture of typi-
cal El Niño-like patterns (e.g., wet and, hence, green conditions 

in eastern Africa and dry conditions in southern Africa and 
Australia) and patterns typically observed during La Niña epi-
sodes (e.g., wetter conditions in northeastern Brazil and drier 
conditions in Argentina; see section 2e1). 

Global long-term VOD trends are slightly positive  
(Fig. SB2.6; Moesinger et al. 2020) and in line with greening 
trends derived from observations in the optical domain (e.g., 
Forzieri et al. 2017; see section 2h2), thus affirming the usabil-
ity of VOD for detecting and attributing long-term changes in 
vegetation activity (Liu et al. 2013). Through its multiple facets, 
long-term VOD observations perfectly complement the available 
suite of Earth observation tools to solve the complex puzzle of 
the effects of climate change on our biosphere.
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Chapter 2 – Acronyms
AAO  Antarctic Oscillation
AATSR  Advanced Along Track Scanning Radiometer
ALEXI  Atmosphere–Land Exchange Inverse
ALT   active layer thickness
AMSRE-E  Advanced Microwave Scanning Radiometer
AO   Arctic Oscillation
AOD  aerosol optical depth
ATSR  Along Track Scanning Radiometer
AVHRR  Advanced Very High Resolution Radiometer
BDC   Brewer-Dobson circulation
BRW  Barrow Atmospheric Baseline Observatory
C3S   Copernicus Climate Change Service
CALIOP  Cloud-Aerosol Lidar with Orthogonal Polarization
CAMS  Copernicus Atmosphere Monitoring Service
CAMSRA  Copernicus Atmosphere Monitoring Service Reanalysis
CCMI  Chemistry Climate Model Initiative
CEI   Climate Extremes Index
CERES  Clouds and the Earth’s Radiant Energy System
CFC   chlorofluorocarbon
CH4   methane
Cl   chlorine
CO   carbon monoxide
CO2   carbon dioxide
CPT   cold-point tropopause
CRU TS  Climatic Research Unit gridded Time Series
DDM  drainage direction map
DU   Dobson unit
EA   Eurasia
ECV   essential climate variable
EESC  equivalent effective stratospheric chlorine
EESC-A  equivalent effective stratospheric chlorine-Antarctic
EESC-M  equivalent effective stratospheric chlorine-Midlatitude
ENSO  El Niño–Southern Oscillation
EOFs  empirical orthogonal functions
EOS   end of season
ERB   Earth’s radiation budget
ESA CCI SM  European Space Agency’s Climate Change Initiative for  

   Soil Moisture
ET   evapotranspiration
ETCCDI   WMO Expert Team in Climate Change Detection and Indices
FAPAR  Fraction of Absorbed Photosynthetically Active Radiation
FF   fossil fuel
GCOS  Global Climate Observing System
GFAS  Global Fire Assimilation System
GFED  Global Fire Emissions Database
GGGRN  NOAA’s Global Greenhouse Gas ReferenceNetwork
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GHCN  Global Historical Climatology Nework
GHCNDEX  Global Historical Climatology Network-Daily database 
GIN-P  Global Terrestrial Network for Permafrost
GLEAM  Global Land Evaporation Amsterdam Model
GMST  global mean surface temperature
GNSS  Global Navigation Satellite System 
GPCC  Global Precipitation Climatology Centre
GPCP  Global Precipitation Climatology Project
GPS-RO  Global Positioning System-Radio Occultation
GRACE  Gravity Recovery and Climate Experiment
GRACE-FO  Gravity Recovery and Climate Experiment - Follow On
GTN-P  Global Terrestrial Network for Permafrost 
HFCF  hydrochlorofluorocarbon
HFC   hydrofluorocarbon
HIRS   High Resolution Infra Red Radiation Sounder
HWF  heat wave frequency
HWM  heat wave magnitude
IOD   Indian Ocean dipole
IPA   International Permafrost Association
ITCZ   Intertropical Convergence Zone
LLGHG  long-lived greenhouse gases
LSA-SAF  Land Surface Analysis Satellite Applications Facility
LSWT  lake surface water temperature
LTT   lower tropospheric temperature
LWL   lake water level
MACC  Monitoring Atmospheric Composition and Climate
MAT   marine air temperature
MBL   marine boundary layer
MHW  marine heatwave
MLO  Mauna Loa, Hawaii
MLS   Microwave Limb Sounder
MODIS  Moderate Resolution Imaging Spectroradiometer
MOPITT  Measurement of Pollution in the Troposphere
MSU/AMSU  Microwave Sounding Unit/Advanced Microwave Sounding Unit
N2O   nitrous oxide
NA   North America
NAO  North Atlantic Oscillation
NDVI  normalized difference vegetation index
NH   Northern Hemisphere
NMAT  night marine air temperature
O3   ozone
ODGI  Ozone Depleting Gas Index
ODGI-A  Ozone Depleting Gas Index-Antarctic
ODGI-M  Ozone Depleting Gas Index-Midlatitude
ODS   ozone-depleting substances
OH   hydroxyl radical
OLR   outgoing longwave radiation
OMI   Ozone Monitoring Instrument
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PDO   Pacific Decadal Oscillation
PSC   polar stratospheric cloud
QBO   quasi-biennial oscillation 
QTP   Qinghai-Tibetan Plateau
RFaci  radiative forcing resulting from aerosol–cloud interactions
RFari  radiative forcing resulting from aerosol–radiation
RGK   rock glacier kinematics
RH   relative humidity
RO   radio occultation
RSW   reflected shortwave
SAM  Southern Annular Mode
SAR   Synthetic Aperture Radar
SCE   snow cover extent
scPDSI  self-calibrating Palmer Drought Severity Index
SH   Southern Hemisphere
SLSTR  Sea and Land Surface Temperature Radiometer
SOI   Southern Oscillation Index
SORCE  Solar Radiation and Climate Experiment
SOS   start of season
SPO   South Pole Observatory
SSM/I  Special Sensor Microwave/Imager
SSMIS  Special Sensor Microwave Imager/Sounder
SSMIS  Special Sensor Microwave Imager/Sounder
SST   sea surface temperature
SSU   Stratospheric Sounding Unit 
SW   shortwave
TCWV  total column water vapor
TIR   thermal infrared
TLS   lower stratospheric temperature
TOA   top of the atmosphere
TSI   total solar irradiance
TSIS-1  Total Solar and Spectral Irradiance Sensor-1
TTL   tropical tropopause layer
TTT   tropical tropospheric temperature
TWS   terrestrial water storage
UTH   upper tropospheric (relative) humidity
UV   ultraviolet
VOC   volatile organic compound
VOD   vegetation optical depth
VODCA  vegetation optical depth Climate Archive
WGMS  World Glacier Monitoring Service 
WMO  World Meteorological Organization
WV   water vapor
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APPENDIX 2: Supplemental Material

Fig. A2.1. Global 2-m surface temperature anomalies (°C; 1981–2010 base period). 
(Source: JRA-55.)

Fig. A2.2. Global 2-m surface temperature anomalies (°C; 1981–2010 base period). 
(Source: ERA5.)

2b1 Surface air temperature
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Fig. A2.3. Global surface temperature anomalies (°C; 1981–2010 base period).  
(Source: NASA GISS.)

Fig. A2.4. Global surface temperature anomalies (°C; 1981–2010 base period).  
(Source: HadCRUT5.)
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Fig. A2.5. Specific humidity annual average anomaly (g kg−1; base period 1981–2010) 
(Source: ERA5.)

Fig. A2.6. Specific humidity annual average anomaly (g kg−1; base period 1981–2010) 
(Source: MERRA-2.)

Section 2d1 Hydrological Cycle
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Fig. A2.7. Relative humidity annual average anomaly (%rh; base period 1981–2010) 
(Source: ERA5.)

Fig. A2.8. Annual average TCWV anomalies (mm; 1981–2010 base period). The data are from satel-
lite radiometers over the oceans (RSS) and from satellite RO over land. Data from GNSS stations are 
plotted as filled circles. 

Section 2d2 Total column water vapor

Section 2d3 Upper tropospheric humidity
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Fig. A2.9. Annual average UTH anomalies (%rh; 2001–10 base period)  
(Source: HIRS UTH dataset.)
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Fig. A2.10a.

Fig. A2.10b.
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Fig. A2.10c. 

Fig. A2.10d. Anomalies of 2020 indices relative to a 1981–2010 base period for R10mm (days) derived from (a) MERRA-2 
(Gelaro et al. 2017) and (b) ERA5 (Hersbach et al. 2020); Rx5day (mm) derived (c[a–d]) seasonally relative to a 1961–
1990 base period from GHCNDEX (Donat et al. 2013) and (d) annually relative to a 1982–2016 base period from GPCC  
(Schamm et al. 2013).
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Section 2d5 Land-based precipitation extremes

Fig. A2.11. (a–l) Monthly average soil moisture anomalies for 2020 (m3 m−3; 1991–2010 base period). Data are masked 
where no retrieval is possible or where the quality is not assured and flagged due to dense vegetation, frozen soil, radio 
frequency interference, etc. (Source: ESA CCI Soil Moisture.)
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Section 2d10 Soil moisture

Fig. A2.12. (a–l) Monthly global Ku-band VOD anomalies (unitless; 1991–2010 reference period). High values indicate 
favorable vegetation conditions, and low values indicate lower vegetation activity than normal. Data are masked where 
no retrieval is possible due to sparse vegetation or frozen soils/snow cover. (Source: VODCA.)
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