
HAL Id: hal-04846840
https://hal.science/hal-04846840v1

Submitted on 18 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Tee-based key-value stores: a survey
Aghiles Ait Messaoud, Sonia Ben Mokhtar, Anthony Simonet-Boulogne

To cite this version:
Aghiles Ait Messaoud, Sonia Ben Mokhtar, Anthony Simonet-Boulogne. Tee-based key-value stores:
a survey. The VLDB Journal, 2024, 34 (1), pp.10. �10.1007/s00778-024-00877-6�. �hal-04846840�

https://hal.science/hal-04846840v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

TEE-based Key-Value Stores : a Survey

Aghiles Ait Messaoud · Sonia Ben Mokhtar · Anthony

Simonet-Boulogne

the date of receipt and acceptance should be inserted later

Abstract Key-Value Stores (KVSs) are No-

SQL databases that store data as key-value

pairs and have gained popularity due to

their simplicity, scalability, and fast retrieval

capabilities. However, storing sensitive data

in KVSs requires strong security properties to

prevent data leakage and unauthorized tam-

pering. While software (SW)-based encryption

techniques are commonly used to maintain

data confidentiality and integrity, they suffer

from several drawbacks. They strongly assume

trust in the hosting system stack and do not

secure data during processing unless using

performance-heavy techniques (e.g., homo-

morphic encryption). Alternatively, Trusted

Execution Environments (TEEs) provide a

solution that enforces the confidentiality and

integrity of code and data at the CPU level,

allowing users to build trusted applications in

an untrusted environment. They also secure

data in use by providing an encapsulated

A. Ait Messaoud
LIRIS, iExec Blockchain Tech, Lyon, France
E-mail: aghiles.ait-messaoud@insa-lyon.fr

S. Ben Mokhtar
LIRIS, CNRS, Lyon, France
E-mail: sonia.benmokhtar@insa-lyon.fr

A. Simonet-Boulogne
iExec Blockchain Tech, Lyon, France
E-mail: anthony.simonet-boulogne@iex.ec

processing environment called enclave. Nev-

ertheless, TEEs come with their own set of

drawbacks, including performance issues due

to memory size limitations and CPU context

switching. This paper examines the state of

the art in TEE-based confidential KVSs and

highlights common design strategies used

in KVSs to leverage TEE security features

while overcoming their inherent limitations.

This work aims to provide a comprehensive

understanding of the use of TEEs in KVSs

and to identify research directions for future

work.

Keywords Key-Value-Store · TEE · SGX ·
Privacy

1 Introduction

Key-value stores (KVSs) like Redis [29], Dy-

namoDB [38], and RocksDB [82] are NoSQL

databases that have gained popularity since

the cloud shift post-2010. KVSs provide a

simple, fast, and scalable storage solution

for unstructured or semi-structured data by

mapping each key to a unique value. They

store various types of data, including sensitive

and confidential information such as session

details [38], private cryptographic keys [17],

https://orcid.org/0000-0003-4657-5179
https://orcid.org/0000-0003-2821-7714
https://orcid.org/0000-0002-4072-8886

2 Aghiles Ait Messaoud et al.

and wallet data [61], necessitating strong

confidentiality and integrity protections.

Traditional solutions for securing KVSs

include software-based encrypted databases

like [122,90,93,112], which keep data en-

crypted along with verification metadata.

Clear-text data is accessible only to those

with the decryption key, and data integrity

is ensured through digests or MACs that are

compared to known references. However, these

methods merely shift the problem to securing

cryptographic keys. If the cryptographic keys

are kept by the data owner, only the latter

can use the outsourced data, complicating

cloud-based data sharing unless keys are

shared with authorized clients, risking leak-

age. If the cryptographic keys are managed

by the database server or a Key Management

Service (KMS), trust must be placed in their

system administrators and software stack

to not misuse them. Building secure KVSs

for confidential data under such conditions

implies strong trust assumptions. Moreover,

software-based encryption techniques protect

data at rest and in transit but require expen-

sive methods like homomorphic encryption [4]

or verifiable computation [12,88,102,26] to

protect data during processing.

An alternative to software-based encryp-

tion is using Trusted Execution Environments

(TEEs)[97]. TEEs provide confidentiality

and integrity at the hardware level by

creating isolated secure environments, or

enclaves, ensuring more robust isolation than

virtualization-based techniques[60,67]. There-

fore, TEEs shift the trust in computation

from the server software stack to the enclave

code and its underlying CPU chip. TEEs

are utilized, among other things, in secure

mobile platforms [13], secure payment sys-

tems [98], or even privacy-preserving federated

learning [23,83,7,123], becoming central to

securing sensitive data across various fields.

Despite several TEE implementations [34,

9,91], SGX [34] is the most widely deployed

due to Intel’s market share and investment

in SGX development and tools. For instance,

compared to ARM TrustZone [91], SGX offers

built-in support for remote attestation [3],

allowing verification of enclave authenticity

and code integrity. However, SGX suffers

from performance issues due to CPU context

switching and its limited secure memory,

which leads to in-enclave page faults and,

thus, costly page swapping. To balance secu-

rity and performance, SGX-based KVSs adopt

novel designs and optimization techniques.

In this study, we examine TEE-based

No-SQL KVSs and how they leverage the

benefits of TEEs while addressing their

limitations, especially those of SGX. All the

existing TEE-based KVSs we could survey

leverage Intel SGX. We believe this is due

to the maturity and specific features of the

Intel implementation (e.g., resilience against

physical attacks). We exclude general-purpose

frameworks such as Scone [11], Gramine [111],

Haven [21], Panoply [106], and SGX-LKL [94],

which port existing codebases to enclaves

with minimal effort and no optimization.

Instead, we focus on KVSs with novel designs

that address SGX limitations. We also target

NoSQL KVSs and exclude SQL databases

such as [126,95,20,125], as they serve different

purposes, such as handling relational data

(e.g., for data analytics), and do not prioritize

performance (including scalability). Moreover,

these systems require a deeper literature

review to address their specificities (parsers,

optimizers, etc.).

The flow of this survey is depicted in

Figure 1. Section 2 delves into the TEE

concept, SGX implementation, limitations,

and versions. Section 3 formalizes the adopted

threat model for TEE-based KVSs. Section 4

synthesizes a modular architecture for the sur-

veyed SGX-based KVSs and explains the roles

and instantiations of each module. Section 5

classifies SGX-based KVSs based on relevant

criteria and implementation strategies. Sec-

tion 6 overviews the problem of side-channel

attacks (SCAs) in SGX applications. Section 7

discusses open challenges related to SGX.

Finally, Section 8 concludes the work.

https://orcid.org/0000-0003-4657-5179

TEE-based Key-Value Stores : a Survey 3

TEE-based Key-Value Store

Background Threat Model Modules Classification Side-channel leakage Discussion

 TEEs

 Intel SGX

 SGX performance

 SGX versions

 Data structure (index)

 Disk Access optimization

 Networking optimization

 Synchronization (consensus)

 Data access criteria

 Security criteria

 Communication criteria

 Classification

 Mitigation

Fig. 1: Survey flow

2 Background

2.1 Trusted Execution Environments

In this section, we define TEEs and provide a

comparison between major TEE implementa-

tions with respect to their security features.

2.1.1 Definition

TEEs are specialized environments imple-

mented on commodity processors to protect

applications (or portions of applications) in

a secure environment isolated from other

processes and the — potentially malicious

— operating system (OS). They are turnkey

solutions for securing applications, with

early implementations appearing in the mid-

2000s [120,65,28]. In 2012, GlobalPlatform

and the Trusted Computing Group created

standard specifications for TEEs. TEEs allow

applications to use a secure region of memory

(RAM) to store sensitive data and execute

sensitive code without the risk of leakage or

modification by unauthorized applications,

including those with high privileges such as

the OS and hypervisor. Today, TEEs are

available from all major CPU vendors (e.g.,

ARM TrustZone [91], Intel SGX (Software

Guard Extensions) [34], AMD SEV (Secure

Encrypted Virtualization) [9]).

2.1.2 Implementations comparison

Ménétrey et al [79] compared the TEE im-

plementations of major vendors according to

several features. We extract relevant compar-

ison criteria in Table 1. It is noteworthy that

other academic, non-commercial frameworks

for TEEs exist, such as Keystone [71], Sanc-

tum [35], TIMBER-V [117], and LIRA-V [104],

among others.

Features SGX TrustZone SEV-SNP

Encryption ✓ ✗ ✓

Integrity ✓ ✗ ✓

Freshness ✓ ✗ ✓

Local at-
testation

✓ ✗ ✗

Remote
attesta-
tion

✓ ✓ ✓

Open
source

✓ ✓ ✗

Isolation
level

Intra-
address
space

Secure
World

Virtual
Machine

Table 1: Comparison of major TEEs
implementations

The considered criteria are: (1) Encryp-

tion: DRAM of TEE instances is encrypted to

ensure that no unauthorized access or memory

snooping of the enclave occurs; (2) Integrity:

an active mechanism prevents DRAM of

TEE instances from being tampered with; (3)

Freshness: protects DRAM of TEE instances

against replay and rollback attacks; (4) Local

attestation: a TEE instance attests to another

instance running on the same system; (5)

Remote attestation: a TEE instance attests

to its genuineness to remote parties; (6)

Open-source: indicates whether the solution is

4 Aghiles Ait Messaoud et al.

publicly available; (7) Isolation level: the level

of granularity at which the TEE operates to

provide isolation. (✓) means full support of

the feature; (✓) means partial support; and

(✗) means no support.

TrustZone. TrustZone (TZ) [91] does not

provide built-in remote attestation to estab-

lish the trustworthiness of the code loaded

into the enclave. Instead, it relies on academic

work [6,74,103,124] to add remote attestation

support. Nevertheless, after enclave loading,

TZ does not offer reliable mechanisms to pro-

tect against integrity and freshness attacks. It

also logically isolates its enclave from the OS

environment but does not encrypt its main

memory, leaving the TZ enclave vulnerable to

memory snooping. Additionally, TZ requires

a side-OS to support the secure environment

(i.e., Secure World).

SEV-SNP. SEV-SNP [9] protects entire

virtual machines (VMs), including their OS.

However, it does not guarantee integrity or

freshness against physical attacks. While

AMD has provided documentation and speci-

fications for SEV to assist software developers

in understanding and implementing support

for the technology, the actual implementation

and firmware of AMD SEV are not open

source.

SGX. SGX [34] is the commercial TEE that

supports the widest range of security features,

particularly protection against physical at-

tacks and encryption of secure memory. It

also offers fine-grained security by enabling

users to isolate specific parts of an applica-

tion. SGX is further supported by extensive

documentation and regular updates from Intel.

Based on the previous comparison, SGX

may be favored by developers and researchers

for building TEE-based applications, including

KVSs.

2.2 Intel SGX

Intel SGX [34] is a set of extensions to the

Intel x86 CPU architecture for implementing

Create enclave

Main()

Call enc_fun() ecall

UnTP

Execute

Return

TP (enclave)

enc_fun()

fun()

Execute

Return

External call
(optional)

ocall

Kernel, hypervisor

ecreate
1

2

3

Fig. 2: High level SGX execution workflow

a TEE. It aims to provide confidentiality and

integrity for user-level sensitive data and com-

putations, even when the underlying execu-

tion platform (including privileged software)

is potentially malicious. SGX allows develop-

ers to split applications into untrusted (non-

sensitive) parts that do not require security

properties and trusted (sensitive) parts that

do; the trusted parts run in a protected mem-

ory region called an enclave.

2.2.1 Execution workflow.

The execution workflow of SGX-based ap-

plications is described in Figure 2. An SGX

application is subdivided into two parts: the

Untrusted Part (UnTP), where the main

program and routine functions are executed,

and the Trusted Part (TP or enclave), where

sensitive functions are executed. First, the

Main() function of the UnTP runs until it

reaches 1 the ecreate instruction, which

loads the enclave environment. The Main()

function continues executing until it reaches

2 an enclave call (i.e., ecall) to an enclave

function (enc fun()). At this point, the CPU

changes its context and executes enc fun()

until it returns. Optionally, during the execu-

tion of enc fun(), the CPU can 3 issue a

call to a function in the UnTP environment

(ocall), such as a syscall. When the enclave

https://orcid.org/0000-0003-4657-5179

TEE-based Key-Value Stores : a Survey 5

function returns, the CPU restores its context

and resumes the execution of Main().

2.2.2 Memory layout.

The memory organization of SGX is shown

in Figure 3. At boot time, a secure memory

area called PRM (Processor Reserved Mem-

ory), whose size is determined by the BIOS, is

allocated as a subset of DRAM (Dynamic Ran-

dom Access Memory). The PRM itself consists

of two main parts:

– Enclave Page Cache: The EPC is a reserved

portion of system memory (DRAM) used to

store the encrypted memory pages of the en-

claves. These pages can only be decrypted

at execution time by a key stored in the

CPU, when they are in the physical pro-

cessor core cache. When a trusted applica-

tion exceeds the EPC size, the OS may evict

some pages from the EPC to swap in other

pages, following these steps: The CPU (1)

reads the EPC page to be swapped out, (2)

encrypts the contents of that page (second

encryption), and (3) writes the encrypted

page to regular, unprotected system mem-

ory. Since this process has inherent over-

head, The more pages that are swapped out,

the more performance drops.

– Merkle Hash Tree: The MHT [80] maintains

the Message Authentication Code (MAC)

tags of the EPC pages in the form of a tree,

where the leaves represent the individual

MAC of each page in the enclave, and the

root represents the summary MAC of all

enclave content.

To allow the creation of multiple enclaves, the

EPC is divided into 4KB pages, each of which

can be assigned to a different enclave instance.

Since the system software responsible for allo-

cating EPC pages (e.g., OS kernel, hypervisor)

is not fully trusted, SGX must verify the cor-

rectness of the allocation decisions. Therefore,

SGX records the EPC allocation information

in the EPCM (Enclave Page Cache Map), a

lookup table inside the CPU, where each en-

try corresponds to an allocated page.

2.2.3 Remote Attestation.

Remote attestation [3] (RA) allows a remote

client to verify that a particular application

is running within an authentic (not forged)

SGX enclave using an SGX-generated certifi-

cate. Remote attestation in SGX involves an

architectural enclave called the Quoting En-

clave (QE), provided by Intel, which generates

a verifiable QUOTE to prove the authenticity

of an enclave. Two RAs models are used :

– EPID-based RA: Enhanced Privacy ID

(EPID)-based attestation [3] is a crypto-

graphic protocol that provides anonymous

attestation. This method allows an enclave

to generate a QUOTE while preserving

privacy through the use of digital signa-

tures and zero-knowledge proofs [27]. The

QUOTE can then be verified online by

the Intel Attestation Service (IAS). EPID-

based RA ensures the authenticity and

integrity of an enclave without revealing

the identity of its signer. It is primarily used

in scenarios where anonymity is crucial,

such as peer-to-peer networks, distributed

ledger technologies (e.g., blockchain), or

any situation where the identity of the

attesting device needs protection. Despite

its advantages, support for EPID-based RA

is deprecated, and Intel is now focusing on

the newer DCAP scheme.

– DCAP-based RA: DCAP (Data Center

Attestation Primitives)-based attesta-

tion [3,99] is a remote attestation scheme

provided by Intel, specifically designed for

data center environments. It enables the

creation of on-premises attestation services,

reducing the need for interactions with

Intel’s online services. This approach is

particularly beneficial for cloud service

providers (CSPs) who prefer to manage the

attestation process in-house. DCAP allows

CSPs to cache essential SGX certificates

from Intel within their local infrastructure,

thereby authenticating enclaves without

relying on the IAS. Essentially, DCAP

6 Aghiles Ait Messaoud et al.

 CPU

MHT

EPCM Entries

EPC
cache lines

Fig. 3: SGX Memory layout

decentralizes the attestation protocol,

facilitating faster enclave attestation.

2.2.4 Sealing.

Sealing [58] allows in-enclave data to be se-

curely stored on persistent storage. The data

is encrypted within the enclave using a secret

sealing key derived from the Root Sealing Key

(a cryptographic key embedded in the CPU

fuse array during manufacturing) before be-

ing stored outside the enclave. This encryp-

tion provides confidentiality and integrity as-

surances for the sealed data. Intel SGX offers

two binding policies for sealing keys, based on

two different measurements:

– MRENCLAVE stands for Enclave Measure-

ment and refers to a hash value of the en-

clave code and static data at the time of

enclave creation.

– MRSIGNER stands for Enclave Signer

Measurement and refers to a hash value of

the identity of the entity that signed the

enclave (typically an independent software

vendor or a certificate authority).

If the sealing key is tied to a specific MREN-

CLAVE, any change that affects the enclave’s

measurement will result in a different sealing

key, making the sealed data undecipherable.

In other words, the MRENCLAVE-based seal-

ing is used to share data between enclave in-

stances with the same MRENCLAVE. On the

other hand, if the sealing key is bound to an

MRSIGNER, the data can be unsealed by any

enclave signed by the same signer as the one

that sealed the data.

2.3 SGX performance

Some critical limitations directly impact the

performance of applications running in SGX

enclaves and hinder their adoption. Two

primary sources of performance degradation

should be considered when designing secure

applications with SGX:

Page faults. If the secure portion of the

application exceeds the size of the EPC, the

extra pages will be encrypted and swapped

out of the EPC memory region. Accessing

these pages will trigger costly decryption and

verification checks when they are loaded back

into the EPC. Therefore, it is advisable to

wisely select the components (both code and

data) to be secured inside the enclave to avoid

expensive page swapping.

Environment context switch. Environ-

ment context switch refers to switching

between the untrusted part of an application

and the trusted part in an SGX enclave. A

context switch is triggered by ecalls and

ocalls and results in significant performance

degradation, being 5.5 times more expensive

than a user-mode context switch [19,118].

Excessive environment context switches can

be caused by an application design that

frequently alternates between trusted and

untrusted parts, or by an excessive number of

in-enclave system calls (syscalls).

https://orcid.org/0000-0003-4657-5179

TEE-based Key-Value Stores : a Survey 7

2.4 SGX versions

Intel SGX CPUs are available in two flavours:

Client SGX. Client SGX systems provide

comprehensive protection against software

and hardware (physical) confidentiality and

integrity attacks. To offer integrity protection,

client SGX relies on the MHT at the expense

of maximum secure memory, which does

not exceed 128 MB. Any additional secure

pages will trigger page swapping on Linux

systems. An evolution of client SGX, namely

SGX2, introduces EDMM (Enclave Dynamic

Memory Management) feature. It allows an

enclave to add more secure memory after it

has already been loaded.

Scalable SGX. Built on top of SGX2,

Scalable SGX was released in 2021, focusing

on server-grade processors. Scalable SGX

significantly increases the amount of secure

memory available to the enclave to 512GB.

It also introduces support for multi-socket

CPUs. Furthermore, Intel switched from

Memory Encryption Engine (MEE) to Total

Memory Encryption – Multi-Key (TME-

MK) [55] for faster memory encryption and

execution. However, the increase in secure

memory and performance compromises the

security guarantees of scalable SGX CPUs,

which sacrifice MHT and thus protection

against hardware-based integrity attacks.

3 TEE-based KVSs threat model

We surveyed many TEE-based KVSs [108,

66,18,81,64,10,73,19,45,116] to understand

the threat models they use. A common factor

among these systems is their reliance on

Client SGX as the TEE implementation.

The likely motivation behind this choice,

despite the fact that some KVSs appeared

before scalable SGX, is that ”among the

commercially available TEEs, Client SGX is

the only one that provides integrity guarantees

against a physical attacker” [16], despite its

limitation of having a small secure memory

(128MB). Consequently, we detail the Client

SGX threat model[34] that is considered by

SGX-based KVS nodes.

SGX-based KVSs are designed to mitigate

the following threats inside the enclave (EPC):

– Malicious Software: EPC is protected

against malware that may attempt to access

sensitive data (KV records) or tamper with

application workflow running in EPC.

– Insider Attacks: EPC is protected against

attacks from users or processes with legit-

imate access to the system (including OS,

hypervisors) but who may try to abuse that

access to steal sensitive information (KV

records).

– Physical Attacks: SGX helps mitigate

the risk of attacks on the system’s hardware

components by ensuring that sensitive data

(KV records) inside EPC is encrypted

by hardware key and isolated, even from

privileged software running on the system.

– Alteration of code and static data:

SGX allows remote parties to ensure that

the expected code and static data are

loaded in enclave through RA.

Lone SGX is not designed to handle SCAs,

therefore the literature provides mitigation

techniques on top of SGX. The surveyed

TEE-based KVSs do not employ any mit-

igation techniques against SCAs, as these

are notoriously costly and conflict with the

objectives of the studied KVSs, which aim

to maintain practical performance. However,

some TEE-based SQL databases [125,41,36]

do leverage SCA mitigation techniques that

may also be applicable to KVSs. Section 6

provides an overview of SCAs.

4 TEE-based KVSs modules

TEE-based KVSs have a typical architecture

that encompasses several modules. They are

highlighted with green rectangles in Figure

4. Rectangles with dashed lines represent

modules that are specific to distributed KVS.

KVS’ Data Structure module. The choice

8 Aghiles Ait Messaoud et al.

of the underlying data structure to store the

KV pairs directly impacts the time complex-

ity of the KVS for processing requests and

its space complexity. The former point is

independent of the use of Intel SGX, while

the latter directly influences performance due

to the limited size of secure memory. The

goal of this module is to survey the data

structures used in building SGX-based KVSs

and describe how they were adapted to fit the

limited secure memory constraints of SGX.

Disk Access Optimization module. This

module encompasses a set of optimizations to

efficiently access the storage device, through

the enclave memory, without experiencing

SGX-typical context switching overhead. It

encompasses asynchronous storage syscall and

the use of Storage Performance Development

Kit (SPDK) [121].

Networking Optimization module. On

the same way than Disk Access Optimization

module, Networking Optimzation module en-

compasses a set of optimizations to efficiently

access the network device (NIC) and process

network packets. It encompasses asynchronous

networking syscall and the use of Data Plane

Development Kit (DPDK) [31].

Synchronization module. Multi-node

(distributed) KVSs require communication

to ensure data consistency and integrity

across multiple nodes, using synchronization

protocols that handle various system and

networking errors (packet dropping, delays,

alterations, etc.). This module presents

the synchronization protocols adopted by

distributed SGX-based KVSs to ensure con-

sistency across their nodes in a byzantine

environment [30] and how SGX benefits to

them.

Security module. This module is a transver-

sal component linked to all the previous

modules to ensure they are correctly secured

with the appropriate confidentiality and

integrity guarantees, even outside the enclave.

It encompasses a set of measures taken to

extend the security of the enclave to sensitive

data located outside the enclave, whether

KVS Data
Structure module

Disk Access
module

Storage device

Security module

<Single-node KVS>

Synchronization module

Networking module

Security module

<Single-node KVS>

Specific to distributed KVS

NIC

Kernel

I/O stack Cache Network
stack

Drivers

Kernel

I/O stack CacheNetwork
stack

Drivers

Storage device NIC

KVS Data
Structure module

Disk Access
module

Fig. 4: TEE-based Key-value stores generic

architecture

due to the lack of secure memory space or

because of persistency (data exits the enclave

boundaries when it is in storage disk).

The remaining of this section details the

different building blocks and/or implementa-

tions of each module.

4.1 KVS’ data structure module

The surveyed KVSs use the following

data structures: Hash table, Skip list and

Log-Structured Merge Tree (LSMT). We

systematically explain the architecture of

each of them, their space complexity, get/put

operation workflow and their adaptation for

SGX considering its small secure memory.

4.1.1 Hash table

A hash Table [78] is a data structure that

implements an associative array abstract

data type, a structure that can map keys to

values. It uses a hash function to compute an

index into an array of buckets (or slots), from

which the desired value can be found. A hash

function takes an input (or ’key’) and returns

an integer, which is typically the index where

the KV pair is stored in the hash table. The

goal is to distribute keys uniformly across the

https://orcid.org/0000-0003-4657-5179

TEE-based Key-Value Stores : a Survey 9

buckets. Each bucket contains a list (or chain)

of KV pairs that mapped to the same bucket.

Space complexity. Considering a hash table

with M buckets and N KV pairs, the space

complexity of such structures is O(M+N).

Put operation. To add a KV pair to the

hash table, (i) we compute the hash value

of the key using the hash function, (2) we

use the hash value to determine the index

in the array, and (3) we insert the KV pair

into the appropriate bucket. If the buckets

are uniformly filled, this put operation results

in an O(1) complexity. In the worst case, if

all keys hash to the same index (poor hash

function or high load factor), all KV pairs

(N) end up chained in the same bucket. In

this scenario, the insertion requires traversing

a list of length N, resulting in an O(N)

complexity.

Get operation. The get operation follows

the same pattern as put, where we use the

hash function on the key to locate the ap-

propriate bucket and search for the element

within it. Consequently, depending on the

distribution of KV pairs across the buckets,

the complexity can be O(1) in the best case

and O(N) in the worst case.

Adaptation to SGX. ShieldStore [66] is

an SGX-based KVS that uses a hash table

to store its KV pairs. To save SGX memory,

the entire data structure is kept outside the

enclave. For confidentiality, each KV pair in

each bucket is encrypted inside the enclave

using an in-enclave encryption key before

being stored outside. For integrity, a Merkle

tree over the buckets is maintained outside

the enclave, with its root secured inside the

enclave.

4.1.2 Skip list

A skip list [96] is an in-memory probabilis-

tic data structure that allows fast search, in-

sertion, and deletion operations within an or-

dered sequence of elements (according to the

key part of KV record). Skip lists are an al-

ternative to balanced trees and provide a sim-

pler and often more efficient implementation

for certain types of data management tasks. It

consists of multiple layers of linked lists. Skip

list also introduces the concept of probabilistic

balancing by using randomization to maintain

an efficient structure (i.e., nodes are promoted

to higher levels based on a probabilistic cri-

terion). Skip list leverages the following key

principles:

– Nodes: Each node in a skip list contains a

data (i.e., KV pair) and a set of forward

pointers. The number of forward pointers

(levels) a node has is determined randomly

when the node is inserted.

– Levels: The skip list has multiple levels,

with the bottom level containing all ele-

ments. Higher levels contain fewer elements,

creating shortcuts for faster traversal.

Space complexity. Every element in the skip

list appears in the base level (level 0), which

is a simple linked list. This contributes O(N)

space, where N is the number of elements.

Each element has a probability p of being

promoted to the next level. Commonly, p is

set to 0.5, meaning each level has about half

as many elements as the level below it. The

expected number of levels in a skip list is

O(log(N)). This is because, with probability

p, a node appears in level 1; with probability

p2, it appears in level 2, and so on. Thus,

the total number of nodes is modeled by a

geometric series of ratio p=0.5, leading to a

total number of nodes bounded by 2N. Thus,

the average space complexity of skip list,

without considering the pointers, is O(N).

Get operation. A skip list is composed on

average of O(log(N)) levels as we explained

above. During a search, we start from the

highest level and move forward until the next

node’s key exceeds the target key, then drop

down a level. This process ensures that we are

practically going through the levels, leading

to an average time complexity of O(log(N)).

Put operation. (i) Inserting or updating

an element requires finding the appropriate

10 Aghiles Ait Messaoud et al.

position, which on average takes O(log(N))

due to the search process explained above. (ii)

Once the position is found, the new element

is inserted into the multiple levels based on

random level assignment. Since the expected

number of levels for any node is O(log(N)), the

insertion process also averages to O(log(N)).

Adaptation to SGX. Avocado [19] is a

distributed SGX-based KVS where each

nodes utilizes a skip list for indexing its

underlying data structure. The skip list index,

along with the keys, pointers to values, and

their individual MACs, are stored within

the enclave. The values are stored outside

the enclave, in an encrypted form, using an

in-enclave encryption key. Overall, this design

attempts to ensure a balance between security

(i.e., by protecting keys, cryptographic keys

and integrity checks inside the enclave) and

performance (i.e., by storing the bulkier values

outside the enclave to avoid overloading EPC).

4.1.3 Log Structured Merge Tree.

LSMT [87] is a disk-based data structure

designed for high-throughput write operations

and efficient read operations in systems that

handle large volumes of data and that require

persistence. It is widely used in modern

persistent databases and storage systems

like RocksDB [82], and Speicher [18]. Behind

LSMT name, two key concepts are leveraged:

(1) Log-structured: Data is initially written

to a log in an append-only manner to enforce

sequential writes, which are faster than ran-

dom writes, especially on disk storage; and

(2) Merge tree: Data is organized in multiple

levels or tiers, each level consisting of sorted

runs of data. Periodically, data from smaller,

more frequently accessed levels is merged into

larger, less frequently accessed levels.

LSMTs leverage three key principles:

– MemTable: The LSMT begins with an

in-memory table called the MemTable.

All writes are first recorded here. Once

the MemTable reaches a certain size, it is

flushed to disk, creating a new sorted file

called an SSTable (Sorted String Table).

– SSTable: SSTables are immutable and

stored on disk. Each SSTable is organized

in a set of blocks (tailored to the same

block size as the disk), each block contains

a set of KV pairs and the whole SSTable

is sorted by key. When a MemTable is

flushed, it becomes a new SSTable in Level

0.

– Compaction: To manage the growing

number of SSTables and maintain read

efficiency, compaction processes merge

SSTables, invloving merging overlapping

SSTables within the same level or between

adjacent levels, deleting obsolete versions

of keys and consolidating fragmented data.

The process creates a new bigger SSTable

at highest level. Compaction helps in main-

taining the sorted order and removing stale

data, thus optimizing read performance.

Space complexity. LSMT spans both main

memory and disk storage. However, since en-

clave secure memory only encompasses main

memory, we focus on the spatial complexity

of the MemTable. The complexity depends

on the data structure used to implement the

MemTable. For classical architectures (e.g.,

B-tree, skip list, etc.), the spatial complexity

of the MemTable is O(N), where N represents

the maximum number of records a MemTable

can store before flushing.

Put operation. The temporal complexity

of put operation is amortized to O(1) as ex-

plained in the following: (i) Put operations are

first appended in a write-ahead log (WAL) to

ensure durability, which is an O(1) operation.

(ii) Data is then written to the MemTable.

Assuming that MemTable is a balanced data

structure that record N KV pairs before

flushing, it translates to an O(log(N)) op-

eration. But considering the amortized cost

over multiple operations and the efficient

management of writes, it’s often treated as

O(1). (iii) When the MemTable is full, it is

flushed to disk as an SSTable. Similarly to the

previous operation, it is amortized to O(1)

https://orcid.org/0000-0003-4657-5179

TEE-based Key-Value Stores : a Survey 11

considering that flushing spreads the cost over

many writes. (iv) Finally, if compaction is

triggered, its cost is also spread over many

writes, leading to an amortized complexity of

O(1) per write.

Get operation. (i) Read operations first

check the MemTable, which takes O(log(N))

if the MemTable is implemented as balanced

tree, assuming that N is the number of

entries of the MemTable. (ii) If the data

is not found in the MemTable, the system

searches through the SSTables, starting from

the most recent and moving to older ones.

To spead up this search process, bloom filters

and other indexing structures are often used

to quickly eliminating SSTables that do not

contain the queried key. Assuming that the

previous optimization techniques allow us

to search only one SSTable per level and

that M,K are respectively the number of

entries in a single SSTable and the number

of SSTable levels, the complexity of searching

in SSTables is O(K.log(M)). The summarized

complexity of get operation in LSMT is

O(log(N)+K.log(M)).

Adaptation to SGX. Speicher [18] is a

pioneering SGX-based KVS that leverages

LSMT as its underlying data structure. For

the MemTable implementation, it uses a skip

list, similar to Avocado [19]. Consequently, it

inherits the same partitioning design between

enclave and non-enclave as described in 4.1.3:

Adaptation to SGX. Before persisting an

SSTable, each block is encrypted using an

in-enclave encryption key for confidentiality.

Additionally, a Merkle tree is built over the

SSTables of each level, where their root are

kept in enclave, ensuring SSTables integrity

and freshness.

4.2 Disk Access Optimization module

One of main source of overhead of SGX appli-

cations comes from context switching between

the trusted and untrusted environments. In the

context of SGX-based KVS, this switch is typ-

ically triggered by synchronous storage syscall

triggered within an enclave, usually for persist-

ing in-enclave data on disk. Two approaches

are used to overcome this overhead:

4.2.1 Asynchronous storage syscall

Asynchronous storage syscall allows to ex-

ecute storage operations asynchronously

by leveraging a producer/consumer model.

Syscall is issued from the enclave thread by

placing a request into the producer queue

(request queue). Then, a non-enclave thread,

continuously probing the queue, processes

these requests. When the syscall returns,

the non-enclave thread places the result into

the consumer (response) queue to be used

by the enclave thread. Thus, enclave thread

does not exit the enclave environment and

consequently does not perform the expensive

context switch. Shielded execution frame-

works such as Scone [11] and Eleos [86]

provide asynchronous storage interface.

4.2.2 Storage Performance Development Kit

SPDK [121,2] is a collection of tools and li-

braries designed to significantly improve the

performance of storage applications by utiliz-

ing user-space, polled-mode drivers, and mini-

mizing CPU overhead. SPDK achieves this by

bypassing the traditional kernel storage stack,

thus reducing latency and improving through-

put. SPDK is built around several key princi-

ples:

– User space drivers: Virtual memory

is typically divided into kernel space and

user space, with storage drivers typically

operating in kernel space. However, SPDK’s

drivers run in user space while still directly

controlling storage hardware. To utilize

SPDK, the OS must first release control

(unbind) of the device. On Linux, this is

achieved through sysfs. SPDK then binds

the device to special dummy drivers like

vfio, preventing the OS from reclaiming the

12 Aghiles Ait Messaoud et al.

device. Subsequently, SPDK replaces the

OS storage stack with its own implemen-

tations in C libraries, which include block

device abstraction, block allocators, and

filesystem components.

– Polled mode drivers: Unlike interrupt-

driven drivers, SPDK employs polled-mode

drivers. Specifically, when a user provides

a callback function for an I/O operation,

SPDK continuously polls the device to

check for the completion of that I/O

operation. When the I/O operation fin-

ishes, SPDK triggers the provided callback

function. This polling mechanism ensures

low-latency and high-performance stor-

age operations by avoiding the overhead

associated with interrupts and context

switches.

– Zero-copy data path: In traditional I/O

operations, data typically has to be copied

multiple times. For instance, in order to

write to storage device, data need to be

copied from the user application buffers

to kernel staging buffers, then from kernel

staging buffers to storage device. These

additional copies introduce latency and

consume CPU resources. Zero-copy allows

user applications to transfer data directly

from the host memory to storage without

using any staging buffer inside the kernel.

– Modular Design: SPDK is modular, en-

abling developers to use only the compo-

nents necessary for their specific use case.

This is particularly useful in SGX context

where the size of secure memory is limited.

Coupling with DMA. DMA (Direct Mem-

ory Access) is a feature of computer systems

that allows certain hardware subsystems (e.g.,

storage devices) to transfer data to or from

memory without involving the CPU, thus

freeing up CPU resources for other tasks. The

data transfer is supervised by the DMAC

(DMA Controller), which only involves the

CPU for initialization (i.e., setting the source

and destination addresses, amount of data

to be transferred, and direction of transfer).

DMA is often coupled with SPDK to man-

age data transfer from userspace between

storage device and user application buffers

without intermediate copying (i.e., zero-copy)

and without involving the CPU (i.e., using

DMAC).

Adaptation to SGX. In the context of

Intel SGX, SPDK’s user space drivers can be

installed within the enclave to enable enclave

threads to issue I/O storage operations

without exiting their enclave environment.

Speicher [18] is an SGX-based KVSs that

leverage in-enclave SPDK logic to improve

I/O storage performance. However, to avoid

expensive EPC paging, it hosts SPDK buffers

outside the enclave. Figure 5(a) shows the

combination between SPDK and DMA in

the context of SGX applications and the

bypassed kernel components. Performance

measurements of Speicher’s I/O through-

put in GB/S (Gigabytes per second) under

different block size conditions of SSTables

reveal that the throughput of Speicher with

adapted in-enclave SPDK is similar to that of

RocksDB [82] with native -without enclave-

SPDK (1.25GB/s for blocks of 16KB for in-

stance), indicating that I/O-related overhead

for enclaves are successfully mitigated.

4.3 Networking Optimization module

Another reason of context switch between the

trusted and untrusted environment in SGX ap-

plications, alongside accessing to storage de-

vice, is accessing to network device (NIC, i.e.,

Network Interface Card) to transfer packets

through the network. Thus, Networking Opti-

mization module is specific to distributed KVS

where high-performance networking is essen-

tial for supporting low-latency communication

between nodes. Traditional inter-node commu-

nication involves using synchronous network-

ing syscall based on sockets to process network

packets. Similar to persisting data, processing

network packets force enclave thread to leave

its security context, leading to a non-negligible

overhead. TWo approaches are used to over-

come this issue:

https://orcid.org/0000-0003-4657-5179

TEE-based Key-Value Stores : a Survey 13

SGX enclave

Disk Access module

Storage device

SPDK library

SPDK's
buffers

NVMe drivers

U
se

r
sp

ac
e

DMA controller

K
er

ne
l s

pa
ce

D
M

A

I/O stack

Drivers

Cache Network
stack

<Node>

I/O stack

(a) Combining SPDK and DMA
optimizes disk access within
SGX enclaves by using the
SPDK library to provide NVMe
driver access in user space while
the DMA controller handles data
transfer. The combination elim-
inates dependence on the ker-
nel storage driver, kernel storage
stack, and kernel buffers. Nev-
ertheless, SPDK’s buffers should
reside outside the enclave to be
registered by DMA controller
and to avoid costly EPC paging.

SGX enclave

Networking module

NIC

DPDK library

DPDK's
buffers

NIC drivers

U
se

r
sp

ac
e

DMA controller

K
er

ne
l s

pa
ce

D
M

A

Network stack

SGX enclave

NIC

DPDK's
buffers

D
M

A

<Node 1> <Node 2>

31

2

321 + + = RDMA

Drivers

Cache Network
stack

I/O stack

Drivers

Cache I/O stack Network
stack

DMA controller

Networking module

DPDK library

NIC drivers Network stack

(b) Combining DPDK and RDMA optimizes data exchange
within SGX enclaves by using the DPDK library to provide
NIC driver access in user space while RDMA transfers data
between two remote devices. This eliminates dependence on
the kernel’s NIC drivers, network stack, and cache. Never-
theless, DPDK’s buffers should reside outside the enclave to
be registered by DMA controller.

Fig. 5: Direct storage and direct transfer technologies in SGX-based KVS

4.3.1 Asynchronous transfer syscall

Like asynchronous storage syscall, it is an exit-

less syscall approach for inter-node data trans-

fer based on sockets, where networking I/O op-

erations do not block or prevent the execution

of other code. Specifically, enclave thread del-

egates the syscall of packet transfer from/to

NIC (Network Interface Card) to an external

thread while the enclave thread continues to

execute its code. The purpose is to avoid the

context switch induced by in-enclave syscalls

and optimize the CPU usage time.

4.3.2 Data Plane Development Kit

DPDK [31,1] is a set of libraries and drivers

for fast packet processing, primarily used in

network applications. It allows developers to

build high-performance networking applica-

tions by bypassing the kernel network stack

and accessing the hardware directly. Similar

to SPDK, DPDK provides user-space drivers

for various NICs and polling mode drivers. It

also leverages Hugepages as described below.

Hugepages. In most OSs, memory is man-

aged in small chunks of 4KB pages. Hugepages

are much larger memory pages, typically 2 MB

or even 1 GB in size, depending on the hard-

ware and OS configuration. Using hugepages

14 Aghiles Ait Messaoud et al.

in DPDK context allows for efficient memory

allocation by providing large contiguous

blocks of memory to handle high-speed packet

processing while reducing fragmentation.

Also, by reducing the number of pages (by

increasing the size of individual pages),

hugepages decrease the number of page table

entries and TLB misses. This translates to

lower latency and higher throughput in packet

processing tasks.

Coupling with RDMA. If DMA is a feature

for transferring data between local peripheral

devices and main memory without involving

the CPU, RDMA (Remote DMA) extends

this capability to transfer data between the

main memory of two remote systems over a

network, without involving the CPUs of either

system. RDMA is often coupled with DPDK

to manage packet transfers between two

remote userspace memories, while bypassing

the CPU.

Adaptation to SGX. In the context of

Intel SGX, DPDK’s user space drivers can be

installed within the enclave to enable enclave

threads to issue I/O networking operations

without exiting their enclave environment.

Avocado [19] and Treaty [45] are both dis-

tributed SGX-based KVSs that use in-enclave

DPDK logic to improve networking perfor-

mance. However, to avoid costly EPC paging,

Hugepages that host DPDK buffers are

instantiated outside the enclave. Figure 5(b)

shows the combination of DPDK and RDMA

in the context of SGX applications and the

bypassed kernel components. Performance

measurements on Avocado show that its

network stack based on DPDK is 1.66x faster

in processing packets than sockets-Scone, an

in-enclave and asynchronous secure socket

by Scone [11] that does not leverage DPDK

optimizations.

Table 2 summarizes the kernel components

that are bypassed for each storage/networking

optimization technology as well as their ability

to bypass the CPU.

4.4 Synchronization module

The surveyed distributed SGX-based KVSs

leverage three different synchronization

protocols, implemented inside the enclave.

This approach ensures reliable execution of

synchronization code, allowing developers to

avoid addressing the full spectrum of Byzan-

tine failures (as handled by Byzantine Fault

Tolerance - BFT - protocols [30]). Indeed,

since enclaves are designed to prevent misbe-

havior, the synchronization module in SGX

only needs to address crash and networking

failures, which do not result from arbitrary

cheating. Consequently, all employed synchro-

nization algorithms in distributed SGX-based

KVSs are CFT (Crash Fault Tolerant) rather

than BFT (Byzantine Fault Tolerant). In a

nutshell, using CFT logic in SGX enables sys-

tems to be resilient against the same malicious

behaviors considered in BFT, while requiring

only 2f +1 nodes, as in CFT systems, instead

of 3f+1 (f being the number of faulty nodes).

Synchronization module is subdivided

into two classes: Consensus protocols for

non-transactional KVSs [19,116] (Raft [85]

and ABD [14]) and a consensus protocol for

transactional KVSs [45] (Two-phase com-

mit [8]). We define each protocol and explain

for Raft and ABD how the write and read

operations are handled through the nodes.

For 2PC, we explain how the transactions are

distributively handled across the participants.

4.4.1 Raft

Raft [85] is a distributed consensus algorithm

designed as an alternative to the Paxos [70]

algorithm. It is used for managing a replicated

log in a distributed system to ensure crash

tolerance and consistency. Specifically, in a

system of n replicated nodes, Raft can tol-

erate f ≤ [n−1
2] crashes. In Raft, the system

is divided into three roles: leader, follower,

and candidate. These roles are determined

through an election process. The leader is

https://orcid.org/0000-0003-4657-5179

TEE-based Key-Value Stores : a Survey 15

Bypassed kernel components CPU
bypass

Storage stack Storage driver Network stack
NIC
driver

Cache
(buffers)

SPDK+DMA ✓ ✓ ✗ ✗ ✓
✓

(w DMA)

DPDK+RDMA ✗ ✗ ✓ ✓ ✓
✓

(w DMA)

Table 2: Bypassed kernel components w.r.t direct storage and direct transfer technologies

responsible for managing the replication of

the log and handling client requests. Follow-

ers replicate the log and respond to client

requests forwarded by the leader. Candidates

are nodes attempting to become the leader

by initiating leader election when no current

leader is detected. Raft operates through a

series of terms, each with its own unique

leader. During each term, a leader is elected

through an election process in which nodes

exchange messages to determine the leader.

Once a leader is elected, it maintains its

position until it fails or another node with a

higher term is elected.

Write operation. The core idea of Raft

is log replication. The leader receives client

requests, appends them to its log, and then

replicates the log entries to followers. Once a

majority of followers have confirmed receiving

an entry, it’s considered committed, and the

leader can apply the entry to its state machine

and respond to the client.

Read operation. In Raft, read operations

are typically handled by the leader. When a

client sends a read request to any node in the

system, that node forwards the request to the

current leader. The leader then responds to

the read request by accessing its own state

machine and returning the requested data to

the client. This operation is performed by the

leader to ensure that the client receives the

most up-to-date data.

‘

4.4.2 ABD

The ABD consensus protocol [14] is another

distributed consensus algorithm, specifically

designed for systems where read operations

are more frequent than write operations. It

is a lightweight protocol that optimizes for

read operations while ensuring consistency

across the distributed system. Similar to Raft,

in a system of n nodes, ABD can tolerate

f ≤ [n−1
2] crashes. In the ABD protocol, each

node maintains a data structure containing

two timestamps: a read timestamp and a

write timestamp. These timestamps are used

to track the most recent read and write

operations performed on a particular data

item.

Write operation. When a node wants to

perform a write operation on a data item, it

initiates a write process by assigning a new

timestamp to the data item. This timestamp

is higher than any previous timestamps

associated with the data item. The node then

propagates the write request to other nodes

in the system. Upon receiving a write request,

a node compares the timestamp associated

with the request with its own timestamps for

the data item. If the request timestamp is

greater, the node updates its own timestamp

and acknowledges the write operation. If the

request timestamp is lower or equal, the node

ignores the request, ensuring that only the

most recent write operation is accepted.

Read operation. In contrast to Raft, any

node can handle read operation itself without

forwarding the task to a unique leader. Still,

to ensure that a read operation returns the

most recent value and maintains consistency

across the distributed system, the ABD pro-

tocol requires that a read operation contacts

a quorum of nodes. This ensures that the read

operation encounters the most recent write

operation during its execution.

16 Aghiles Ait Messaoud et al.

4.4.3 Two-phase commit

The Two-Phase Commit (2PC) [8] protocol

is a distributed algorithm crucial for main-

taining atomicity in distributed transactions,

a key property related to both consistency

and integrity in the context of transactions.

It orchestrates a coordinated decision-making

process among all participating nodes. 2PC

leverages two sequential phases.

Voting phase. The coordinator node solicits

votes from all participants regarding their

readiness to commit the transaction (prepare

request). Participants respond with either a

“Yes” or a “No” based on their ability to

commit. If all participants agree to commit,

the coordinator proceeds to the second phase.

Otherwise, if any participant votes “No” or

fails to respond within a timeout period, the

coordinator decides to abort the transaction.

Decision phase. The coordinator instructs

all participants to commit the transaction

(commit request). Upon receiving the commit

request, each participant commits the trans-

action and acknowledges the coordinator.

However, if any participant encounters a

problem, it rolls back the transaction and

informs the coordinator who broadcasts an

abort message to all participants.

4.5 Security module

This module encompasses a set of measures

taken by SGX-based KVSs to provide security

properties to their data even outside the en-

clave. It includes the CIA triad (i.e., “data con-

fidentiality”, “data integrity (with freshness)”,

“data availability”) and the enclave-inherent

security property: enclave attestation and se-

cure channel establishment. We explain below

how SGX-based KVSs use enclaves to enforce

each of the properties above even when data

are not kept inside the enclave.

4.5.1 Enclave attestation and secure channel

establishment

Enclave attestation. Enclave attestation is

used to verify the identity of a remote enclave

(MRENCLAVE or MRSIGNER) by a client

against an expected identity. This verification

process assures the client that the remote

enclave executes the expected code and can be

relied upon for secure computation and data

protection, establishing a foundation of trust

in an untrusted environment. Enclave attesta-

tion is equivalent to certificate verification in

PKI, where Intel acts as the main certification

authority, with the additional verification of

code integrity. As explained in section 2.2.3,

there are two models for SGX RA: the DCAP

model and the EPID model. All the surveyed

SGX-based KVSs rely on the EPID model,

even though it is deprecated. We believe this

choice is due to its ease of use, as it only relies

on IAS (Intel Attestation Service) without the

need to deploy a dedicated infrastructure as

required by the DCAP model to locally cache

Intel certificates.

Secure channel establishment. After

attesting an enclave, the client and SGX

server establish a secure channel, with the

server-side endpoint inside the enclave. This

ensures that a client can push (or pull) its

data to (or from) the server enclave without

disclosing it to the surrounding non-enclave

environment. Intel’s SGXSSL [56] or previous

academic work such as TaLoS [15] provide

primitives to combine remote attestation

(RA) and TLS to securely communicate with

SGX servers.

4.5.2 Data confidentiality

Data confidentiality includes protecting sen-

sitive data from disclosure. In SGX-based

KVSs, inherent confidentiality offered by en-

clave is combined with confidentiality offered

by software encryption, since the enclave

alone may not be large enough to keep all

https://orcid.org/0000-0003-4657-5179

TEE-based Key-Value Stores : a Survey 17

confidential data. Specifically, each SGX-

based KVS develop its strategy to split its

data structure across enclave and non-enclave

environments, while using encryption key to

cipher sensitive parts that are kept outside

enclave, as explained in section 4.1. Since the

encryption key does not leave the enclave,

enclave confidentiality guarantees indirectly

spans to non-enclave environments.

4.5.3 Data integrity and freshness

Data integrity is usually associated with

freshness to ensure that data is accurate,

not tampered with and in its last version.

Regarding in-enclave data, their integrity

and freshness is ensured by design with

the SGX built-in MHT for EPC pages (see

section 2.2.2). Regarding data that are kept

outside the enclave, different methods are

employed by SGX-based KVSs to guarantee

their integrity and freshness:

Merkle Hash Tree. MHT is a cryptographic

structure used to ensure the integrity of large

datasets, including KVSs. It constructs a

tree-like structure over a KVS where each leaf

node represents the hash of a KV pair, and

each non-leaf node represents the hash of its

child nodes’ concatenated hashes. The root of

the tree, known as the Merkle root, uniquely

summarizes the entire KVS. ShieldStore [66]

is an SGX-based KVS that utilizes MHT to

ensure the integrity of its KV pairs. Due to

the typically large size of MHTs, only the

Merkle root is kept inside the enclave, serving

as a ground truth reference for the state of

the KV pairs. Speicher [18] also leverages one

MHT per SSTables of same level to ensure

their integrity and freshness.

SGX counters. Built-in SGX counters are

hardware-based monotonic counters provided

by SGX technology to span the freshness

protection provided by enclave to data lo-

cated outside enclave boundaries, such as

persisted data. These counters prevent replay

and rollback attacks by offering a secure,

tamper-resistant method for tracking the

sequence of operations. By ensuring that each

counter value associated with an operation or

file is unique and incrementing, SGX counters

help maintain data freshness. Furthermore,

to detect data tampering, SGX counters are

often paired with MAC computation, using an

in-enclave MAC key. However, SGX counters

are notoriously slow (60-250 ms) [77] because

they are synchronous and wear out after only

a few weeks [18]. More importantly, Intel

stopped supporting SGX monotonic counters

since version 2.8 of the SDK in January

2020, leading developers to propose their

own methods for building trusted counters.

ShieldStore [66] is an SGX-based KVS that

leveraged SGX counters to ensure the integrity

and freshness of its persisted (sealed) data.

Custom software counters. Since SGX

monotonic counters are slow and have been

deprecated by Intel, recent SGX-based KVSs

have developed custom solutions for building

trusted counters. For example, Speicher [18]

and Treaty [45] systems designed an asyn-

chronous trusted monotonic counter (AMC)

to ensure the freshness and integrity of their

log files. Each time data is modified, the

counter is incremented asynchronously. This

incrementation is only stabilized (persisted to

a file) when the data itself is persisted. By

separating the counter incrementation from its

stabilization, AMC can maintain availability

guarantees while optimizing performance, the

incrementation being 7000x faster than the

synchronous SGX counter.

Hash chain. Hash chain aims to create a

cryptographic link between successive entries

of a log file to detect integrity violation.

For instance, Tweezer [64] leverages hash

chain to maintain the integrity of its logs.

Specifically, for each new log entry ei, the

system computes a MAC Mi by concatenating

the encrypted data entry with the previous

log entry (Mi = MAC(Mi−1||Enc(ei))),

with M0 being a random nonce. Freshness is

ensured by using a new MAC key for each log

entry, invalidating a replayed log that would

be linked to an older MAC key. Tiks [116], a

18 Aghiles Ait Messaoud et al.

distributed KVS, also utilizes hash chains for

its logs and additionally leverages the broad-

cast protocol offered by Raft to maintain the

consistency and freshness of the logs across

multiple nodes.

Operation ID. Operation ID (oid) is an

incremental nonce attached to messages over

the network to guarantee their freshness. For

instance, Precursor [81] keeps track, within

its enclave, of each oid provided by a client

for its KV packets to ensure that the packets

are not replayed by an attacker. Avocado [19]

and Treaty [45], both distributed KVSs, also

leverage authenticated packets with oid to

track requests/responses and transactions,

respectively.

4.5.4 Data availability

Data availability ensures that the data is

available when needed, despite the presence

of failures (e.g., crashes), including enclave

failures. To ensure this property, SGX-based

KVSs rely on three methods :

Persistency. Persistency refers to the act of

saving data from volatile memory (RAM) to

non-volatile storage (disk), such as flushing

in-memory MemTable to disk in form of

SSTables, in the context of LSMT data struc-

ture. Persistency is natively used by persistent

SGX-based KVSs such as Speicher [18],

Tweezer [64] and Treaty [45]. However, to

keep in-enclave data, such as software encryp-

tion keys, secure (in terms of confidentiality

and integrity) even after enclave is shutdown,

they rely on SGX sealing.

Logging. Logging involves recording every

write operation in a KVS sequentially in log

files before the operation is applied to the

main data structure. The goal is to ensure

immediate durability by enabling data replay

in case a failure occurs before the data is

pushed to the main data structure. Such

mechanism is generally employed by log-based

KVSs (i.e., those that rely on LSMT [18,

64,45]). Logging is usually combined with

persistency to allow logs to be refreshed after

persistency, by eliminating entries of persisted

data from logs.

Replication. Replication is a mechanism

usually leveraged by distributed KVSs that

do not support data persistency (e.g., Avo-

cado [19]) to store copies of data on other

machines. To ensure the consistency and

integrity of replication, consensus mechanisms

(see section 4.4) are employed across nodes.

The main advantage of replication over per-

sistency as a data availability strategy is that

it eliminates the additional latency induced

by flushing data to disk.

5 Classification of TEE-based KVSs

As shown in Table 3, we categorize the

surveyed KVS into single-node KVS or

multi-node (distributed) KVS. Single-node

KVSs are databases that store KV pairs

on a single machine while multi-node KVS

store KV pairs on multiple machines through

replication, sharding or both. We recall that

all the surveyed SGX-based KVSs made the

choice to use client SGX, which has a limited

secure memory of 128MB, as their TEE

implementation. We classify surveyed KVSs

according to to three criteria: (1) Data access,

i.e., the underlying data structure used while

outlining KVSs that support range queries; (2)

security, i.e., how data are partitioned between

enclave/non-enclave environments, what

strategies are deployed to ensure data integrity

with freshness outside the enclave, and what

strategies are used to guarantee availability of

data; (3) communication, i.e., what are the

employed I/O optimization techniques and

the consensus algorithms used in distributed

context.

5.1 Data access criteria

We have previously enumerated the data

structures commonly used in SGX-based

KVSs (see section 4.1). In this section, we

https://orcid.org/0000-0003-4657-5179

TEE-based Key-Value Stores : a Survey 19

Single-node KVSs Multi-node KVSs

VeritasDB [108],
ShieldStore [66], Spe-
icher [18], Precursor [81],
Tweezer [64], Con-
certo [10], eLSM [73]

Avocado [19],
Treaty [45], Tiks [116]

Table 3: Surveyed TEE-based KVSs

classify existing SGX-based KVSs in Table 4

according to their underlying data struc-

ture. Frameworks that act as proxy atop

existing KVS such as VeritasDB [108] and

Concerto [10] can use any data structure to

store KV pairs with no or minimal changes,

so they are not classified. Table 4 also outlines

KVSs that support range query operations in

addition to the classical get(K)/put(K, V).

Below, we explain how each SGX-based KVS

customized its data structure to exploit SGX

features while addressing the secure memory

size limitation.

Hash Table. ShieldStore [66] leverages a

hash table to store its KV pairs. To avoid

stressing the limited EPC, the hash table is

kept outside the enclave with encrypted KV

pairs. Only the bare minimum data is kept

inside the enclave, such as cryptographic keys

and MHT root. Precursor also leverages uses

a hash table put prefer to keep the keys part

in enclave and only the encrypted values part

outside enclave.

Skip list. Avocado [19] is an in-memory

distributed SGX-based KVS that employs

skip-list on each individual node to store its

KV pairs. The skip list spans across enclave

and non-enclave environment. The skip list

index, keys, pointers to values and their

individual hashes are kept inside the enclave.

The values are stored encrypted outside the

enclave to alleviate the impact on the EPC.

LSMT. Speicher [18] is a pioneering persis-

tent SGX-based KVS that leverages LSMT

as its underlying data structure. It uses a

skip list for its MemTable implementation,

partitioned between the enclave and non-

enclave environment in the same manner as

Avocado [19]. Each SSTable is stored on disk

(i.e., outside the enclave) and authenticated

using one per-block hash and a global hash

over the per-block hashes. The entire SSTa-

bles are authenticated using a MHT whose

root is kept inside the enclave. Tweezer [64]

builds upon Speicher and proposes two design

optimizations: using a unique MAC key

per SSTable instead of building an MHT

over SSTables to improve latency, and using

finer-grained authenticated SSTables with

one MAC per KV pair to save EPC memory

during read operations instead of one hash

per SSTable block. Treaty [45] also leverages

Speicher as a building block to construct a

distributed transactional SGX-based KVS by

adding a distributed transaction layer (2PC)

to support ACID transaction over multiple

replicated nodes. Another noteworthy work

is eLSM [73], which acts as an add-on (mid-

dleware) to existing non-SGX LSMT-based

KVSs such as RocksDB [82] and LevelDB [44].

eLSM provides an enclave environment to

store the logic of the KVS, index structure,

and authentication data such as the MHT

root of SSTables, with minimal changes to

off-the-shelf LSMT-based KVSs.

Data structures

Hash table LSMT Skip list

[66,81] [18,45,64,73] [19]

Range queries support

[18,64,73]

Table 4: Data Access

5.2 Security criteria

In this criterion, we classify SGX-based

KVSs according to the security measures

used to ensure the confidentiality, integrity

(with freshness), and availability of data, by

referring to Table 5. The table is subdivided

into three parts:

Data separation. This part highlights the

20 Aghiles Ait Messaoud et al.

generic partitioning of data between the

enclave environment and the non-enclave

environment, adopted by all SGX-based

KVSs to overcome the SGX secure memory

limitation. Data kept outside the enclave are

generally large buffers that would consume

significant secure memory. Being outside the

enclave, they necessitate additional measures

to secure them. Data kept inside the enclave

are inherently secure regarding confidentiality

and integrity (with freshness). This includes,

among other elements, authentication data

(hashes, MACs, etc.) and encryption keys

to authenticate and encrypt/decrypt data

located outside the enclave.

Integrity and freshness of outside-

enclave data. This part focuses on the

different methods used to provide integrity

and freshness of data kept outside the enclave.

We do not discuss ensuring the confidentiality

of these data, as it is systematically achieved

using encryption algorithms such as AES-

GCM, with the encryption key kept inside the

enclave to prevent unauthorized decryption.

Availability mechanisms. This part focuses

on the different methods used by SGX-based

KVSs to ensure that their KV pairs remain

available even in the event of crash failures.

5.2.1 Data separation

Regardless of the studied SGX-based KVS,

a generic framework is followed to partition

data between enclave and non-enclave envi-

ronments, as shown in Table 5. Specifically, we

do not focus on what elements each specific

KVS has, but rather provide a comprehensive

overview showing the location of each element,

if present, in an SGX-based KVS.

In-enclave data. Regarding in-enclave data,

we find the different application’s logic to

ensure their execution reliability: (1) KVS

operations logic (e.g., get/put, compaction,

etc.); (2) I/O optimization logic (SPDK,

DPDK libraries) and; (3) Consensus logic em-

ployed in distributed KVSs. Index structures

(including keys of KV pairs) are generally

also stored inside the enclave to ensure

reliable data fetching. Some exceptions, like

VeritasDB [108] and Concerto [10], keep their

index structure outside the enclave to save

even more secure memory. If values are kept

outside the enclave, their pointers, alongside

their hashes, are maintained inside the enclave

to detect any tampering with the values. The

root of big authentication data (e.g., MHT)

is also kept inside the enclave as a reference

for trust. Cryptographic keys used to encrypt,

compute MACs for outside-enclave data, or

secure sessions between clients and enclaves,

are stored within the enclave to prevent

unauthorized data decryption, alteration, or

session spoofing. Finally, some frameworks,

like VeritasDB [108], may also dedicate a

secure memory portion to cache their latest

accessed KV pairs to avoid re-authenticating

them in case they are accessed again.

Outside-enclave data. Regarding outside-

enclave data, we find the encrypted values

(or the encrypted KV pairs) as their size

may be prohibitive for the enclave. Large

authentication data structures, such as the

MHT (excluding the root), are also kept

outside the enclave. Additionally, large data

buffers, such as those used in SPDK and

DPDK, are stored outside the enclave for the

same reason. Finally, on-disk files, including

persisted data and logs, are inherently located

outside the enclave.

5.2.2 Integrity and freshness of

outside-enclave data

Merkle tree. Methods that leverage Merkle

Hash Trees (MHT) to safeguard the integrity

and freshness of their data keep the MHT

root inside the enclave. For instance, Veri-

tasDB [108] and ShieldStore [66] use MHT to

secure the KV pairs of their underlying data

structures, while Speicher [18] and Treaty [45]

use one MHT per SSTable level to secure their

SSTables.

https://orcid.org/0000-0003-4657-5179

TEE-based Key-Value Stores : a Survey 21

Data separation

In-enclave data Outside-enclave data

KVS operations logic,
I/O optimization logic (SPDK,DPDK libraries),
Consensus logic,
Index structure (excluding [108,10]),
Pointers to external data (e.g., in-memory values),
Cryptographic keys (for encryption, MAC, session),
Hashes of in-memory data (e.g., values) or MHT root,
Trusted counters,
Cached KV pairs

Encrypted Vs (or KV pairs [108,66,10]),
MHT,
Log files and persisted data (e.g., SSTables),
SPDK/DPDK buffers

Integrity and freshness of outside-enclave data

Merkle Tree Hash chain SGX counters Custom software counters Operation id

[108,66,18,45] [64,116] [108,66] [18,45] [81,19,45]

Availability mechanisms

Persistency Logging Replication

[108,66,18,45,73,64,116] [18,45,73,64,116] [19,116,45]

Table 5: Security methods

Hash chain. Tweezer [64] and Tiks [116] both

leverage hash chain to secure the integrity of

their logs data. For ensuring their freshness,

Tweezer utilizes a fresh in-enclave MAC key

to authenticate each new log entry, while Tiks

rely on its distributed consensus (Raft) for

that (see section 4.4). Details are provided in

4.5.3: Hash chain.

SGX counters. VeritasDB [108] and Shield-

Store [66] both leverage SGX built-in counters

to ensure the freshness of their sealed enclave

data. However, as mentioned in 4.5.3: SGX

counters, Intel has deprecated the use of SGX

counters. Consequently, these methods need

to change their approach to ensure freshness.

Custom software counters. Speicher [18]

and its distributed version, Treaty [45],

leverage custom in-enclave asynchronous

monotonic counters to ensure freshness of

their log files. Details are given in 4.5.3:

Custom software counters.

Operation id. Precursor [81], Avocado [19]

and Treaty [45] are SGX-based KVSs that

explicitly mention tracking packet versions

received through the network, inside enclave,

to detect replayed packets.

5.2.3 Availability mechanisms

All LSMT-based KVSs [18,45,64,73] lever-

age persistency and logging by design to

write their SSTables and keep track of not-

yet-persisted KV pairs. Other SGX-based

KVSs [108,66] implement their own mech-

anisms of persistency atop their storage.

Finally, distributed KVSs [19,45,116] rely

either on lone replication [19,116] to keep

their data available or on all the previ-

ous methods [45] to improve availability

guarantees.

5.3 Communication criteria

Table 6 classifies SGX-based KVSs according

to the mechanisms adopted to communicate

with peripherals (storage disks, network cards)

or other KVS nodes (to establish a consensus)

from within the enclave.

6 Side-channel leakage

Despite SGX’s security properties, it is far

from perfect, as its popularity makes it a

target for various attacks, especially side-

channel attacks (SCAs) [110]. The latter

22 Aghiles Ait Messaoud et al.

Disk access optimization

Async syscall SPDK+DMA

[45,116] [18]

Networking optimization

Async syscall DPDK+RDMA

[116] [19,45,81]

Synchronization

Raft ABD 2PC

[116] [19] [45]

Table 6: Communication methods

represent a class of security threats that

exploit unintended information leakage from

a system’s physical implementation rather

than its theoretical cryptographic weaknesses.

SCAs leverage various vectors of information

leakage, among others: (1) page access or

cache access pattern leakage by analyzing

page accesses, page faults and cache hit/miss;

(2) enclave interface invocation leakage by

analyzing enclave function invocation delay;

(3) instruction trace leakage by analyzing

leaked instruction sizes; (4) volume leakage

by analyzing the size (or volume) of the query

result [62,48,50,92,89,115]. By analyzing the

previous leaked information, attackers can

glean valuable information about the internal

state of the system, including secret keys or

other sensitive data.

6.1 Classification w.r.t compromised security

objectives

A previous survey [43] has classified SCAs

into three categories based on the SGX

security objectives that may be compromised:

Confidentiality impairment: SCAs that

falls under this category can obtain secrets

from ISV enclave (i.e., application enclave)

instances, where KV pairs may be stored [107,

113,119,51,63,47,84,24,100,42,54,69,52,62,

48,50,92].

Attestation security impairment: SCAs

that falls under this category can obtain

secrets from architectural enclave instances,

i.e., Quoting enclaves (see section 2.2.3),

compromise the integrity of the attestation

mechanism and thus impersonate enclaves [37,

32,72,114].

Usability impairment: SCAs that falls

under this category can interrupt the work

of enclaves through Denial-of-Service (DoS)

and render them unresponsive [59]. It is

worth noting that some SCAs may fall

under multiple categories, usually causing

both confidentiality and attestation security

impairments simultaneously. Examples in-

clude SGXPectre [32], an SGX-variant of the

Spectre attack [68], and Foreshadow [114], a

Meltdown-style attack [75] against SGX.

6.2 Mitigation

Existing countermeasures to SCAs can be cat-

egorized into three classes: hardware solutions,

application solutions and system solutions.

6.2.1 Hardware solutions

Hardware solutions require modifications to

processors and their microcode, which can

only be implemented by manufacturers. For

instance, architectural changes introduced by

Cascade Lake CPUs enabled Intel to provide

effective fixes against both SGXPectre and

Foreshadow [109]. However, these solutions

require a long time window before deployment

in commercial CPUs, and only CPU manufac-

turers (e.g., Intel, AMD, ARM) can propose

these fixes.

6.2.2 Application solutions

Application solutions are proposed by litera-

ture to mitigate SCAs before CPU manufac-

turers propose hardware mitigation. They are

usually hardware-agnostic and standalone se-

curity layers that may interface with existing

applications. We leverage [43] and recent lit-

erature about volume leakage attacks to clas-

sify application solutions into five categories

https://orcid.org/0000-0003-4657-5179

TEE-based Key-Value Stores : a Survey 23

according to their defense strategy and miti-

gated attacks.

Deterministic multiplexing. Deterministic

multiplexing (DM) [107] protects SGX-

enabled systems from page-fault driven

attacks. It leverages page-fault obliviousness,

ensuring input data does not affect the

number of allocated pages, thus preventing

sensitive information leakage through page

faults. However, the software implementation

of DM could lead to an average overhead of

705x, while a dedicated hardware implemen-

tation reduce overhead to 6.77%.

Anomaly detection. Similar to DM, these

methods aim to mitigate page-fault driven

SCAs. They are based on page anomaly

detection as an indicator of on-going SCA.

They rely on Intel’s hardware transactional

memory (TSX) [39] to handle page exceptions

and interrupts, without the involvement of

the OS. Specifically, T-SGX [105] redirects

exceptions to a specific page, allowing a

user-space fallback handler to manage er-

rors, bypassing the underlying OS. T-SGX

increased execution time by 40% and memory

usage by 30%. Déjà vu [33] used TSX to create

a reliable time measurement tool for anomaly

detection, independent from the OS, effec-

tively countering page-fault attacks despite

increasing runtime. Regarding cache-access

driven SCA, Cloak [49] used TSX to ensure

that critical data stays in the CPU cache

during transactions, proving effective with

minimal overhead (1.2%) for low-memory

tasks but significant overhead (248%) for

memory-intensive ones.

Randomization. randomization is a mem-

ory protection technique that mitigates

page-fault driven SCAs attacks by randomly

loading data and code in the OS, making

it difficult for attackers to locate targets.

SGX-Shield [101], a code randomization

technique, uses a secure in-enclave loader

to secretly randomize memory layout with

fine granularity by splitting target code into

small randomization units and loading each

at random addresses. DR.SGX [25], a data

location randomization technique, breaks the

link between an attacker’s memory observa-

tions and a victim’s data access patterns. It

permutes data locations at a fine granularity

using small-domain encryption and the CPU’s

AES-NI hardware acceleration. To prevent

correlation attacks from repetitive access

patterns, periodic re-randomization of enclave

data is applied, although this results in

performance overheads ranging from 4.36× to

11× depending on the re-randomization rate.

Volume leakage mitigation. In the context

of KVSs, an attacker can monitor value

size for simple get operations and/or the

number of matched keys for get-range oper-

ations [48,50]. For multi-maps, where each

key is associated with a vector of values,

the adversary can also analyze the number

of values associated with a specific key [89,

115]. Discussed methods to mitigate these at-

tacks [50,92] include: (1) padding or injecting

random noise (differential privacy) to query

results or database to conceal the actual

number of records or their size; (2) preventing

query replay by uniquely identifying and

recording each request; (3) preventing data

injection by filtering suspicious data during

put operations. However, these methods can

introduce significant server overhead and

impact user experience. Recent works aim

to minimize server storage overhead caused

by naive padding while still hiding volume

information. For instance, dprfMM [89] uses a

cuckoo hash-based method, and XorMM [115]

employs an XOR filter to support volume

hiding in multi-maps while minimizing server

storage overhead. Similarly, Veil [53] ran-

domly assigns each key to a set of equally

sized buckets, which are padded if needed and

may overlap for different keys.

ORAM. ORAM (Oblivious RAM) [46] is

designed to protect from nearly all SCA

vectors. It is a cryptographic construct that

ensures secure access to memory regions

on untrusted servers by accessing multiple

locations per operation and re-shuffling/re-

encrypting memory with a random seed.

24 Aghiles Ait Messaoud et al.

OBFUSCURO [5] uses SGX for program

obfuscation by enforcing code execution

and data access via ORAM operations. It

transforms the program layout to be ORAM-

compatible and ensures fixed time intervals

for program runs. Still, OBFUSCRO incurs

significant run-time performance overhead

(83× on average), although it is faster than

most cryptographic obfuscation schemes.

6.2.3 System solutions

System solutions modify existing system soft-

ware by integrating tailored SCA mitigation in

their design. A notable example in databases

is Opaque [125], an oblivious SGX-based

distributed data analytics platform built on

top of Spark SQL. At a basic level, Opaque

leverages SGX to provide hardware-based

data encryption, attestation, and enforce

correct execution. In its oblivious mode,

Opaque additionally provides oblivious exe-

cution, which protects against access pattern

leakage in SQL queries. Opaque’s method

differs from Oblivious RAM (ORAM) as it

takes into account specific SQL operations

such as sorting. In its oblivious pad mode,

Opaque pads the final output to prevent size

leakage based SCAs. However, obliviousness

is fundamentally costly, and Opaque’s obliv-

ious execution incurs an overhead of up to

46x compared to non-oblivious execution.

ObliDB [41] further provides obliviousness

while being 19x faster than Opaque, but still

does not reach practical performance.

7 Discussion

Preference of Client SGX over Scalable

SGX. All the TEE-based KVSs we surveyed

use SGX implementations, specifically the

client version of SGX, which offers the most

extensive set of security features, including

resilience against physical integrity attacks.

However, this version has a small secure mem-

ory (128MB), requiring developers to adopt

novel designs to avoid costly page swapping.

Scalable SGX overcomes the limited secure

memory size by providing an EPC size up

to 512GB, reducing the effort needed to

port applications to a secure environment.

However, Intel achieved this by removing the

built-in MHT, which protects against physical

integrity attacks in the EPC. Without this

protection, an attacker can mount replay

attacks, replacing memory content with

previous versions undetected. For instance, an

attacker could revert a security hot-patch to

reintroduce a vulnerability, allowing them to

extract enclave secrets. To reconcile the large

EPC size of Scalable SGX with the safety

of Client SGX, Aublin et al. [16] propose

a PoC that leverages both SGX versions:

Scalable SGX for hosting and executing the

main application code and Client SGX for

hosting verification metadata of Scalable SGX

pages. However, it is not clear whether Intel

will keep supporting Client SGX alongside

Scalable SGX. Otherwise, integrity protection

of Scalable SGX against physcial attacks

should be delegated to dedicated hardware

such as on-chip hardware [71] or FPGA [40].

Continuous problem of SCAs. Intel

prioritizes patching SCAs that threaten the

attestation mechanism of SGX, as these

attacks undermine the core security features

of SGX. For example, Intel mitigated Fore-

shadow [114] and the most dangerous Spectre

variants [32] through microcode updates [109].

However, for other SCAs that may leak

end-user secrets without compromising SGX’s

built-in attestation secrets, Intel asserts that

“it is the enclave developer’s responsibility to

address side-channel attack concerns” [57]. In

the absence of Intel’s mitigation, application-

level solutions provide generic defenses against

various SCAs. However, these solutions are

expensive to implement, and thus none of

the surveyed KVSs employed them, as they

prioritize performance for real-world viability.

Additionally, SCAs leverage unexpected

channels, complicating future prevention

https://orcid.org/0000-0003-4657-5179

TEE-based Key-Value Stores : a Survey 25

efforts. The Keccak Team notes, “protection

against side-channel attacks is never expected

to be absolute: a determined attacker with

massive resources will sooner or later break

an implementation. The engineering challenge

is to implement enough countermeasures to

make the attack too expensive to be interest-

ing” [22]. Thus, future research will likely

continue to focus on mitigating existing SCAs

while controlling performance loss. An emerg-

ing approach may involve using specifically

designed enclave oblivious memory [35,76] for

building KVSs.

8 Conclusion

SGX-enabled CPUs provide security and trust

assurances for various computing systems and

services, including storage services like KVSs

that handle sensitive data. However, integrat-

ing SGX introduces performance challenges

due to limited secure memory and context

switching, complicating the design of SGX-

based KVSs. This survey aims to elucidate

the complexities of SGX-based KVS design by

identifying various modules that collectively

form a fully functional KVS that attempt to

address both security and performance con-

siderations. We classify existing SGX-based

KVSs according to multiple criteria reflecting

these modules, providing an overview of the

diverse strategies adopted in the literature to

build secure and practical KVSs. Additionally,

we highlight the persistent threat of SCAs

to SGX systems, classify these attacks, and

discuss available mitigations. Although Intel

continuously patches the most dangerous

SCAs affecting SGX attestation, mitigations

for SCAs impacting end-user applications

are left to enclave developers. Proposed

mitigations effectively address access pattern

leakage, a common SCA vector, but often

result in impractical performance. Thus,

none of the surveyed SGX-based KVSs im-

plemented SCA mitigations, leaving them

vulnerable to attacks that could leak users’

KV pairs even with SGX protection. Future

SGX-based KVSs will need to address this

issue while preserving practical performance,

suggesting the need for novel enclave architec-

tures. Another concern is whether Intel will

continue supporting Client SGX, the TEE

implementation with the most comprehensive

security features, or shift focus to Scalable

SGX to meet the growing server demand for

larger and faster secure memory, albeit at the

expense of a broader security spectrum.

Acknowledgments

This work was supported by a French gov-

ernment grant managed by the Agence Na-

tionale de la Recherche under the France 2030

program, reference “ANR-23-PECL-0007” as

well as the ANR Labcom program, reference

”ANR-21-LCV1-0012”.

References

1. Dpdk: Data plane development kit (2010).
URL https://www.dpdk.org/

2. Spdk: Storage performance development kit
(2015). URL https://spdk.io/

3. Remote attestation (2022). URL https://ww

w.intel.com/content/www/us/en/develope

r/tools/software-guard-extensions/atte

station-services.html

4. Acar, A., et al.: A survey on homomorphic
encryption schemes: Theory and implementa-
tion. ACM Comput. Surv. 51, 1–35 (2018).
DOI 10.1145/3214303

5. Ahmad, A., Joe, B., Xiao, Y., Zhang, Y., Shin,
I., Lee, B.: Obfuscuro: A commodity obfus-
cation engine on intel sgx. In: Network and
Distributed System Security Symposium 2019
(2019). DOI 10.14722/ndss.2019.23513

6. Ahn, J., et al.: Design and implementation
of hardware-based remote attestation for a
secure internet of things. Wireless personal
communications 114, 295–327 (2020). DOI
10.1007/s11277-020-07364-5

7. Ait Messaoud, A., et al.: Shielding feder-
ated learning systems against inference at-
tacks with arm trustzone. In: Proceedings
of the 23rd ACM/IFIP International Middle-
ware Conference, p. 335–348 (2022). DOI
10.1145/3528535.3565255

https://www.dpdk.org/
https://spdk.io/
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/attestation-services.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/attestation-services.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/attestation-services.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/attestation-services.html

26 Aghiles Ait Messaoud et al.

8. Al-Houmaily, Y.J., et al.: Two-Phase Commit,
pp. 1–7 (2016). DOI 10.1007/978-1-4899-799
3-3 713-2

9. AMD: Secure encrypted virtualization api ver-
sion 0.24: technical preview. Tech. rep., Ad-
vanced Micro Devices, Inc. (2020). URL http

s://www.amd.com/content/dam/amd/en/doc

uments/epyc-technical-docs/programmer-r

eferences/55766_SEV-KM_API_Specificatio

n.pdf
10. Arasu, A., et al.: Concerto: A high concur-

rency key-value store with integrity. In: Pro-
ceedings of the 2017 ACM International Con-
ference on Management of Data, p. 251–266.
New York, NY, USA (2017). DOI 10.1145/30
35918.3064030

11. Arnautov, S., et al.: Scone: Secure linux con-
tainers with intel sgx. In: Proceedings of the
12th USENIX Conference on Operating Sys-
tems Design and Implementation, p. 689–703
(2016). URL url={https://www.usenix.org

/conference/osdi16/technical-sessions/

presentation/arnautov}
12. Arora, S., et al.: Proof verification and the

hardness of approximation problems. J. ACM
45, 501–555 (1998). DOI 10.1145/278298.278
306

13. Atamli-Reineh, A., et al.: Analysis of trusted
execution environment usage in samsung
knox. In: Proceedings of the 1st Workshop on
System Software for Trusted Execution, pp.
1–6 (2016). DOI 10.1145/3007788.3007795

14. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing
memory robustly in message-passing systems.
J. ACM 42, 124–142 (1995). DOI 10.1145/20
0836.200869

15. Aublin, P.L., Kelbert, F., O’keeffe, D.,
Muthukumaran, D., Priebe, C., Lind, J.,
Krahn, R., Fetzer, C., Eyers, D., Pietzuch, P.:
Talos: Secure and transparent tls termination
inside sgx enclaves. Imperial College London,
Tech. Rep 5 (2017)

16. Aublin, P.L., et al.: Towards tees with large se-
cure memory and integrity protection against
hw attacks (2022)

17. (AWS), A.W.S.: Aws kms cryptographic de-
tails (2018). URL https://docs.aws.amazo

n.com/kms/latest/cryptographic-details

/intro.html
18. Bailleu, M., et al.: Speicher: Securing lsm-

based key-value stores using shielded execu-
tion. In: Proceedings of the 17th USENIX
Conference on File and Storage Technologies,
p. 173–190 (2019)

19. Bailleu, M., et al.: Avocado: A secure in-
memory distributed storage system. In:
2021 USENIX Annual Technical Conference
(USENIX ATC 21), pp. 65–79 (2021)

20. Bajaj, S., et al.: Trusteddb: a trusted hard-
ware based database with privacy and data

confidentiality. In: Proceedings of the 2011
ACM SIGMOD International Conference on
Management of Data, p. 205–216 (2011). DOI
10.1145/1989323.1989346

21. Baumann, A., et al.: Shielding applications
from an untrusted cloud with haven. ACM
Trans. Comput. Syst. 33, 1–26 (2015). DOI
10.1145/2799647

22. Bertoni, G., Daemen, J., Peeters, M., Assche,
G.V.: Note on side-channel attacks and their
countermeasures (2009). URL https://kecc

ak.team/files/NoteSideChannelAttacks.p

df

23. Bonawitz, K.A., et al.: Towards federated
learning at scale: System design. In: SysML
2019 (2019). DOI 10.48550/arXiv.1902.01046

24. Brasser, F., et al.: Software grand exposure:
Sgx cache attacks are practical. In: Proceed-
ings of the 11th USENIX Conference on Of-
fensive Technologies (2017). URL https:

//www.usenix.org/conference/woot17/w

orkshop-program/presentation/brasser

25. Brasser, F., et al.: Dr.sgx: automated and ad-
justable side-channel protection for sgx using
data location randomization. In: Proceedings
of the 35th Annual Computer Security Appli-
cations Conference, p. 788–800 (2019). DOI
10.1145/3359789.3359809

26. Braun, B., et al.: Verifying computations with
state. In: Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Prin-
ciples, p. 341–357 (2013). DOI 10.1145/2517
349.2522733

27. Brickell, E., et al.: Enhanced privacy id from
bilinear pairing for hardware authentication
and attestation. In: 2010 IEEE Second In-
ternational Conference on Social Computing,
pp. 768–775 (2010). DOI 10.1109/SocialCom.
2010.118

28. Bussani, A., et al.: Trusted virtual domains:
Secure foundations for business and it ser-
vices. IBM Research Division, Tech. Rep
(2005)

29. Carlson, J.: Redis in action. Simon and Schus-
ter (2013)

30. Castro, M., et al.: Practical byzantine fault
tolerance. In: Proceedings of the Third Sym-
posium on Operating Systems Design and Im-
plementation, p. 173–186 (1999). URL https:

//www.usenix.org/conference/osdi-99/pr

actical-byzantine-fault-tolerance

31. Cerrato, I., et al.: Supporting fine-grained net-
work functions through intel dpdk. In: 2014
Third European Workshop on Software De-
fined Networks, pp. 1–6 (2014). DOI 10.1109/
EWSDN.2014.33

32. Chen, G., et al.: Sgxpectre: Stealing intel se-
crets from sgx enclaves via speculative execu-
tion. In: 2019 IEEE European Symposium on

https://orcid.org/0000-0003-4657-5179
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-references/55766_SEV-KM_API_Specification.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-references/55766_SEV-KM_API_Specification.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-references/55766_SEV-KM_API_Specification.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-references/55766_SEV-KM_API_Specification.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-references/55766_SEV-KM_API_Specification.pdf
url = {https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov}
url = {https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov}
url = {https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov}
https://docs.aws.amazon.com/kms/latest/cryptographic-details/intro.html
https://docs.aws.amazon.com/kms/latest/cryptographic-details/intro.html
https://docs.aws.amazon.com/kms/latest/cryptographic-details/intro.html
https://keccak.team/files/NoteSideChannelAttacks.pdf
https://keccak.team/files/NoteSideChannelAttacks.pdf
https://keccak.team/files/NoteSideChannelAttacks.pdf
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://www.usenix.org/conference/osdi-99/practical-byzantine-fault-tolerance
https://www.usenix.org/conference/osdi-99/practical-byzantine-fault-tolerance
https://www.usenix.org/conference/osdi-99/practical-byzantine-fault-tolerance

TEE-based Key-Value Stores : a Survey 27

Security and Privacy (EuroS&P), pp. 142–157
(2019). DOI 10.1109/EuroSP.2019.00020

33. Chen, S., Zhang, X., Reiter, M.K., Zhang, Y.:
Detecting privileged side-channel attacks in
shielded execution with déjà vu. In: Proceed-
ings of the 2017 ACM on Asia Conference on
Computer and Communications Security, p.
7–18 (2017). DOI 10.1145/3052973.3053007

34. Costan, V., et al.: Intel sgx explained. Cryp-
tology ePrint Archive, Paper 2016/086 (2016).
URL https://eprint.iacr.org/2016/086

35. Costan, V., et al.: Sanctum: minimal hardware
extensions for strong software isolation. In:
Proceedings of the 25th USENIX Conference
on Security Symposium, p. 857–874 (2016)

36. Cui, S., et al.: Preserving access pattern pri-
vacy in sgx-assisted encrypted search. In: 2018
27th International Conference on Computer
Communication and Networks (ICCCN), pp.
1–9 (2018). DOI 10.1109/ICCCN.2018.84873
38

37. Dall, F., De Micheli, G., Eisenbarth, T.,
Genkin, D., Heninger, N., Moghimi, A.,
Yarom, Y.: Cachequote: Efficiently recovering
long-term secrets of sgx epid via cache at-
tacks. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2018(2)
pp. 171–191 (2018). DOI 10.13154/tches.v
2018.i2.171-191

38. DeCandia, G., et al.: Dynamo: Amazon’s
highly available key-value store. SIGOPS
Oper. Syst. Rev. 41, 205–220 (2007). DOI
10.1145/1323293.1294281

39. Dementiev, R.: Exploring intel transactional
synchronization extensions with intel software
development emulator. URL https://www.in

tel.com/content/www/us/en/developer/ar

ticles/community/exploring-tsx-with-sof

tware-development-emulator.html
40. Erhu, F., et al.: Scalable memory protec-

tion in the PENGLAI enclave. In: 15th
USENIX Symposium on Operating Systems
Design and Implementation (OSDI 21), pp.
275–294 (2021). URL https://www.usenix.o

rg/conference/osdi21/presentation/feng
41. Eskandarian, S., et al.: Oblidb: oblivious query

processing for secure databases. Proc. VLDB
Endow. 13, 169–183 (2019). DOI 10.14778/3
364324.3364331

42. Evtyushkin, D., et al.: Branchscope: A new
side-channel attack on directional branch pre-
dictor. In: Proceedings of the Twenty-
Third International Conference on Architec-
tural Support for Programming Languages
and Operating Systems, p. 693–707 (2018).
DOI 10.1145/3173162.3173204

43. Fei, S., et al.: Security vulnerabilities of sgx
and countermeasures: A survey. ACM Com-
put. Surv. 54, 1–36 (2021). DOI 10.1145/34
56631

44. Ghemawat, S., Dean, J.: leveldb (2011). URL
https://github.com/google/leveldb

45. Giantsidi, D., Bailleu, M., Crooks, N., Bha-
totia, P.: Treaty: Secure distributed transac-
tions. In: 2022 52nd Annual IEEE/IFIP Inter-
national Conference on Dependable Systems
and Networks (DSN), pp. 14–27 (2022). DOI
10.1109/DSN53405.2022.00015

46. Goldreich, O., et al.: Software protection and
simulation on oblivious rams. J. ACM 43,
431–473 (1996). DOI 10.1145/233551.233553

47. Götzfried, J., et al.: Cache attacks on intel sgx.
In: Proceedings of the 10th European Work-
shop on Systems Security, pp. 1–6 (2017).
DOI 10.1145/3065913.3065915

48. Grubbs, P., et al.: Pump up the volume:
Practical database reconstruction from vol-
ume leakage on range queries. In: Proceed-
ings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, p.
315–331 (2018). DOI 10.1145/3243734.3243
864

49. Gruss, D., et al.: Strong and efficient cache
side-channel protection using hardware trans-
actional memory. In: Proceedings of the 26th
USENIX Conference on Security Symposium,
p. 217–233 (2017). URL https://www.usenix

.org/conference/usenixsecurity17/techn

ical-sessions/presentation/gruss

50. Gui, Z., et al.: Encrypted databases: New vol-
ume attacks against range queries. In: Pro-
ceedings of the 2019 ACM SIGSAC Confer-
ence on Computer and Communications Se-
curity, p. 361–378 (2019). DOI 10.1145/3319
535.3363210

51. Gullasch, D., et al.: Cache games – bringing
access-based cache attacks on aes to practice.
In: 2011 IEEE Symposium on Security and
Privacy, pp. 490–505 (2011). DOI 10.1109/
SP.2011.22

52. Gyselinck, J., et al.: Off-limits: Abusing legacy
x86 memory segmentation to spy on enclaved
execution. In: Engineering Secure Software
and Systems, pp. 44–60 (2018). DOI 10.1007/
978-3-319-94496-8 4

53. Han, S., et al.: Veil: A storage and communica-
tion efficient volume-hiding algorithm. Proc.
ACM Manag. Data 1, 1–27 (2023). DOI
10.1145/3626759

54. Huo, T., et al.: Bluethunder: A 2-level di-
rectional predictor based side-channel attack
against sgx. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems
2020, 321–347 (2019). DOI 10.13154/tches.v
2020.i1.321-347

55. Intel: Runtime encryption of memory with in-
tel® total memory encryption–multi-key (in-
tel® tme-mk). URL https://www.intel.co

m/content/www/us/en/developer/articles

https://eprint.iacr.org/2016/086
https://www.intel.com/content/www/us/en/developer/articles/community/exploring-tsx-with-software-development-emulator.html
https://www.intel.com/content/www/us/en/developer/articles/community/exploring-tsx-with-software-development-emulator.html
https://www.intel.com/content/www/us/en/developer/articles/community/exploring-tsx-with-software-development-emulator.html
https://www.intel.com/content/www/us/en/developer/articles/community/exploring-tsx-with-software-development-emulator.html
https://www.usenix.org/conference/osdi21/presentation/feng
https://www.usenix.org/conference/osdi21/presentation/feng
https://github.com/google/leveldb
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/gruss
https://www.intel.com/content/www/us/en/developer/articles/news/runtime-encryption-of-memory-with-intel-tme-mk.html
https://www.intel.com/content/www/us/en/developer/articles/news/runtime-encryption-of-memory-with-intel-tme-mk.html

28 Aghiles Ait Messaoud et al.

/news/runtime-encryption-of-memory-wit

h-intel-tme-mk.html

56. Intel: Intel software guard extensions ssl
(2017). URL https://github.com/intel/int

el-sgx-ssl

57. Intel: Intel software guard extensions (intel
sgx) developer guide (2024). URL https:

//download.01.org/intel-sgx/latest/li

nux-latest/docs/Intel_SGX_Developer_Gui

de.pdf

58. Intel, Inc.: Introduction to intel sgx sealing
(2016). URL https://www.intel.com/conten

t/www/us/en/developer/articles/technic

al/introduction-to-intel-sgx-sealing.h

tml

59. Jang, Y., et al.: Sgx-bomb: Locking down the
processor via rowhammer attack. In: Proceed-
ings of the 2nd Workshop on System Software
for Trusted Execution, pp. 1–6 (2017). DOI
10.1145/3152701.3152709

60. Jithin, R., Chandran, P.: Virtual machine iso-
lation - a survey on the security of virtual
machines. In: International Conference on
Application and Theory of Automation in
Command and Control Systems, pp. 91–102
(2014). DOI 10.1007/978-3-642-54525-2 8

61. Karantias, K.: Sok: A taxonomy of cryptocur-
rency wallets. Cryptology ePrint Archive, Pa-
per 2020/868 (2020). URL https://eprint.i

acr.org/2020/868

62. Kellaris, G., et al.: Generic attacks on secure
outsourced databases. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer
and Communications Security, p. 1329–1340
(2016). DOI 10.1145/2976749.2978386

63. Kim, D., et al.: Sgx-lego: Fine-grained sgx
controlled-channel attack and its countermea-
sure. Computers & Security 82, 118–139
(2019). DOI 10.1016/j.cose.2018.12.001

64. Kim, I., et al.: A log-structured merge tree-
aware message authentication scheme for per-
sistent key-value stores. In: 20th USENIX
Conference on File and Storage Technologies
(FAST 22), pp. 363–380 (2022). URL https:

//www.usenix.org/conference/fast22/pre

sentation/kim-igjae

65. Kim, S.w., et al.: Sentry: A binary-level inter-
position mechanism for trusted kernel exten-
sion. In: The Sixth IEEE International Con-
ference on Computer and Information Tech-
nology (CIT’06), pp. 169–169 (2006). DOI
10.1109/CIT.2006.165

66. Kim, T., et al.: Shieldstore: Shielded in-
memory key-value storage with sgx. In: Pro-
ceedings of the Fourteenth EuroSys Confer-
ence 2019, pp. 1–15 (2019). DOI 10.1145/33
02424.3303951

67. King, S., et al.: Subvirt: implementing mal-
ware with virtual machines. In: 2006 IEEE

Symposium on Security and Privacy (S P’06),
pp. 14–327 (2006). DOI 10.1109/SP.2006.38

68. Kocher, P., et al.: Spectre attacks: Exploiting
speculative execution. In: 2019 IEEE Sympo-
sium on Security and Privacy (SP), pp. 1–19
(2019). DOI 10.1109/SP.2019.00002

69. Koruyeh, E.M., et al.: Spectre returns! spec-
ulation attacks using the return stack buffer.
IEEE Design & Test 41, 47–55 (2024). URL
https://www.usenix.org/conference/woot

18/presentation/koruyeh

70. Lamport, L.: Paxos made simple. ACM
SIGACT News (Distributed Computing Col-
umn) 32, 4 (Whole Number 121, December
2001) pp. 51–58 (2001). URL https://www.

microsoft.com/en-us/research/publicati

on/paxos-made-simple/

71. Lee, D., et al.: Keystone: An open frame-
work for architecting trusted execution envi-
ronments. In: Proceedings of the Fifteenth Eu-
ropean Conference on Computer Systems, pp.
1–16 (2020). DOI 10.1145/3342195.3387532

72. Lee, J., et al.: Hacking in darkness: return-
oriented programming against secure enclaves.
In: Proceedings of the 26th USENIX Con-
ference on Security Symposium, p. 523–539
(2017). URL https://www.usenix.org/confe

rence/usenixsecurity17/technical-sessi

ons/presentation/lee-jaehyuk

73. Li, K., Tang, Y., Zhang, Q., Xu, J., Chen,
J.: Authenticated key-value stores with hard-
ware enclaves. In: Proceedings of the 22nd
International Middleware Conference: Indus-
trial Track, p. 1–8 (2021). DOI 10.1145/3491
084.3491425

74. Li, W., et al.: Adattester: Secure online mobile
advertisement attestation using trustzone. In:
Proceedings of the 13th Annual International
Conference on Mobile Systems, Applications,
and Services, p. 75–88 (2015). DOI 10.1145/
2742647.2742676

75. Lipp, M., et al.: Meltdown (2018)
76. Liu, C., et al.: Ghostrider: A hardware-

software system for memory trace oblivious
computation. In: Proceedings of the Twenti-
eth International Conference on Architectural
Support for Programming Languages and Op-
erating Systems, p. 87–101 (2015). DOI
10.1145/2694344.2694385

77. Matetic, S., et al.: Rote: Rollback protection
for trusted execution. In: Proceedings of the
26th USENIX Conference on Security Sym-
posium, p. 1289–1306 (2017). URL https:

//www.usenix.org/conference/usenixsecu

rity17/technical-sessions/presentation

/matetic

78. Maurer, W.D., et al.: Hash table methods.
ACM Comput. Surv. 7, 5–19 (1975). DOI
10.1145/356643.356645

https://www.intel.com/content/www/us/en/developer/articles/news/runtime-encryption-of-memory-with-intel-tme-mk.html
https://orcid.org/0000-0003-4657-5179
https://www.intel.com/content/www/us/en/developer/articles/news/runtime-encryption-of-memory-with-intel-tme-mk.html
https://www.intel.com/content/www/us/en/developer/articles/news/runtime-encryption-of-memory-with-intel-tme-mk.html
https://www.intel.com/content/www/us/en/developer/articles/news/runtime-encryption-of-memory-with-intel-tme-mk.html
https://github.com/intel/intel-sgx-ssl
https://github.com/intel/intel-sgx-ssl
https://download.01.org/intel-sgx/latest/linux-latest/docs/Intel_SGX_Developer_Guide.pdf
https://download.01.org/intel-sgx/latest/linux-latest/docs/Intel_SGX_Developer_Guide.pdf
https://download.01.org/intel-sgx/latest/linux-latest/docs/Intel_SGX_Developer_Guide.pdf
https://download.01.org/intel-sgx/latest/linux-latest/docs/Intel_SGX_Developer_Guide.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-intel-sgx-sealing.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-intel-sgx-sealing.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-intel-sgx-sealing.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-intel-sgx-sealing.html
https://eprint.iacr.org/2020/868
https://eprint.iacr.org/2020/868
https://www.usenix.org/conference/fast22/presentation/kim-igjae
https://www.usenix.org/conference/fast22/presentation/kim-igjae
https://www.usenix.org/conference/fast22/presentation/kim-igjae
https://www.usenix.org/conference/woot18/presentation/koruyeh
https://www.usenix.org/conference/woot18/presentation/koruyeh
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/matetic
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/matetic
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/matetic
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/matetic

TEE-based Key-Value Stores : a Survey 29

79. Ménétrey, J., et al.: Attestation mechanisms
for trusted execution environments demysti-
fied. In: Distributed Applications and Inter-
operable Systems, pp. 95–113 (2022). DOI
10.1007/978-3-031-16092-9 7

80. Merkle, R.C.: A digital signature based on
a conventional encryption function. In: Ad-
vances in Cryptology — CRYPTO ’87, pp.
369–378 (1988). DOI 10.1007/3-540-48184
-2 32

81. Messadi, I., et al.: Precursor: A fast, client-
centric and trusted key-value store using rdma
and intel sgx. In: Proceedings of the 22nd
International Middleware Conference, p. 1–13
(2021). DOI 10.1145/3464298.3476129

82. Meta, Inc.: Rocksdb: a persistent key-value
store for fast storage. https://rocksdb.org/

(2012)
83. Mo, F., et al.: Ppfl: Enhancing privacy in fed-

erated learning with confidential computing.
GetMobile: Mobile Comp. and Comm. 25,
35–38 (2022). DOI 10.1145/3529706.3529715

84. Moghimi, A., et al.: Cachezoom: How sgx
amplifies the power of cache attacks. In:
Cryptographic Hardware and Embedded Sys-
tems – CHES 2017, pp. 69–90 (2017). DOI
10.1007/978-3-319-66787-4 4

85. Ongaro, D., et al.: In search of an understand-
able consensus algorithm. In: 2014 USENIX
Annual Technical Conference (USENIX ATC
14), p. 305–320 (2014). URL https://www.us

enix.org/conference/atc14/technical-ses

sions/presentation/ongaro

86. Orenbach, M., et al.: Eleos: Exitless os ser-
vices for sgx enclaves. In: Proceedings of
the Twelfth European Conference on Com-
puter Systems, p. 238–253 (2017). DOI
10.1145/3064176.3064219

87. O’Neil, P., Cheng, E., Gawlick, D., O’Neil,
E.: The log-structured merge-tree (lsm-tree).
Acta Informatica 33, 351–385 (1996). DOI
10.1007/s002360050048

88. Parno, B., Howell, J., Gentry, C., Raykova,
M.: Pinocchio: Nearly practical verifiable com-
putation. In: 2013 IEEE Symposium on Secu-
rity and Privacy, pp. 238–252 (2013). DOI
10.1109/SP.2013.47

89. Patel, S., et al.: Mitigating leakage in secure
cloud-hosted data structures: Volume-hiding
for multi-maps via hashing. In: Proceedings of
the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security, p. 79–93
(2019). DOI 10.1145/3319535.3354213

90. Pattuk, E., Kantarcioglu, M., Khadilkar, V.,
Ulusoy, H., Mehrotra, S.: Bigsecret: A secure
data management framework for key-value
stores. In: 2013 IEEE Sixth International
Conference on Cloud Computing, pp. 147–154
(2013). DOI 10.1109/CLOUD.2013.37

91. Pinto, S., Santos, N.: Demystifying ARM
TrustZone: A comprehensive survey. ACM
Computing Surveys (CSUR) 51, 1–36 (2019).
DOI 10.1145/3291047

92. Poddar, R., et al.: Practical volume-based at-
tacks on encrypted databases. In: 2020 IEEE
European Symposium on Security and Pri-
vacy (EuroS&P), pp. 354–369 (2020). DOI
10.1109/EuroSP48549.2020.00030

93. Popa, R.A., et al.: Cryptdb: Protecting con-
fidentiality with encrypted query processing.
In: Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles,
p. 85–100 (2011). DOI 10.1145/2043556.2043
566

94. Priebe, C., Muthukumaran, D., Lind, J., Zhu,
H., Cui, S., Sartakov, V.A., Pietzuch, P.: Sgx-
lkl: Securing the host os interface for trusted
execution. arXiv preprint arXiv:1908.11143
(2019)

95. Priebe, C., Vaswani, K., Costa, M.: En-
clavedb: A secure database using sgx. In:
2018 IEEE Symposium on Security and Pri-
vacy (SP), pp. 264–278 (2018). DOI 10.1109/
SP.2018.00025

96. Pugh, W.: Skip lists: A probabilistic alterna-
tive to balanced trees. Commun. ACM 33,
668–676 (1990). DOI 10.1145/78973.78977

97. Sabt, M., Achemlal, M., Bouabdallah, A.:
Trusted execution environment: What it is,
and what it is not. In: IEEE Trust-
Com/BigDataSE/ISPA, pp. 57–64 (2015).
DOI 10.1109/Trustcom.2015.357

98. Samsung: Samsung pay: What is it, where is
it, and how to use it? (2022). URL https:

//www.samsung.com/in/support/mobile-dev

ices/samsung-pay-what-is-it-where-is-i

t-and-how-to-use-it/
99. Scarlata, V., et al.: Supporting third party at-

testation for intel sgx with intel data center
attestation primitives (2018). URL https:

//api.semanticscholar.org/CorpusID:

221506554
100. Schwarz, M., et al.: Malware guard extension:

abusing intel sgx to conceal cache attacks. pp.
1–20 (2020). DOI 10.1186/s42400-019-0042-y

101. Seo, J., et al.: Sgx-shield: Enabling address
space layout randomization for sgx programs.
In: Network and Distributed System Security
Symposium 2017 (2017). DOI 10.14722/NDS
S.2017.23037

102. Setty, S., Braun, B., Vu, V., Blumberg, A.J.,
Parno, B., Walfish, M.: Resolving the conflict
between generality and plausibility in verified
computation. In: Proceedings of the 8th ACM
European Conference on Computer Systems,
p. 71–84 (2013). DOI 10.1145/2465351.2465
359

103. Shepherd, C., et al.: Establishing mutually
trusted channels for remote sensing devices

https://rocksdb.org/
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.samsung.com/in/support/mobile-devices/samsung-pay-what-is-it-where-is-it-and-how-to-use-it/
https://www.samsung.com/in/support/mobile-devices/samsung-pay-what-is-it-where-is-it-and-how-to-use-it/
https://www.samsung.com/in/support/mobile-devices/samsung-pay-what-is-it-where-is-it-and-how-to-use-it/
https://www.samsung.com/in/support/mobile-devices/samsung-pay-what-is-it-where-is-it-and-how-to-use-it/
https://api.semanticscholar.org/CorpusID:221506554
https://api.semanticscholar.org/CorpusID:221506554
https://api.semanticscholar.org/CorpusID:221506554

30 Aghiles Ait Messaoud et al.

with trusted execution environments. In: Pro-
ceedings of the 12th International Conference
on Availability, Reliability and Security, pp.
1–10 (2017). DOI 10.1145/3098954.3098971

104. Shepherd, C., et al.: Lira-v: Lightweight re-
mote attestation for constrained risc-v de-
vices. In: 2021 IEEE Security and Privacy
Workshops (SPW), pp. 221–227 (2021). DOI
10.1109/SPW53761.2021.00036

105. Shih, M.W., Lee, S., Kim, T., Peinado, M.:
T-sgx: Eradicating controlled-channel attacks
against enclave programs. In: Network and
Distributed System Security Symposium 2017
(NDSS’17) (2017). DOI 10.14722/ndss.2017.2
3193

106. Shinde, S., Le, D., Tople, S., Saxena, P.:
Panoply: Low-tcb linux applications with sgx
enclaves. In: Network and Distributed Sys-
tem Security Symposium 2017 (2017). DOI
10.14722/ndss.2017.23500

107. Shinde, S., et al.: Preventing page faults from
telling your secrets. In: Proceedings of the
11th ACM on Asia Conference on Computer
and Communications Security, p. 317–328
(2016). DOI 10.1145/2897845.2897885

108. Sinha, R., Christodorescu, M.: Veritasdb:
High throughput key-value store with in-
tegrity. IACR Cryptol. ePrint Arch. 2018,
251 (2018). URL https://api.semanticscho

lar.org/CorpusID:4311947
109. Smith, R.: Intel publishes spectre & meltdown

hardware plans: Fixed gear later this year
(2018). URL https://www.anandtech.com/sh

ow/12533/intel-spectre-meltdown
110. Standaert, F.X.: Introduction to Side-Channel

Attacks, pp. 27–42 (2010). DOI 10.1007/978-0
-387-71829-3 2

111. Tsai, C.C., Porter, D.E., Vij, M.: Graphene-
sgx: A practical library os for unmodified ap-
plications on sgx. In: Proceedings of the 2017
USENIX Conference on Usenix Annual Tech-
nical Conference, p. 645–658 (2017)

112. Tu, S., Kaashoek, M.F., Madden, S., Zel-
dovich, N.: Processing analytical queries over
encrypted data. Proc. VLDB Endow. 6,
289–300 (2013). DOI 10.14778/2535573.248
8336

113. Van Bulck, J., et al.: Telling your secrets with-
out page faults: stealthy page table-based at-
tacks on enclaved execution. In: Proceed-
ings of the 26th USENIX Conference on Se-
curity Symposium, p. 1041–1056 (2017). URL
https://www.usenix.org/conference/usen

ixsecurity17/technical-sessions/presen

tation/van-bulck
114. Van Bulck, J., et al.: Foreshadow: extract-

ing the keys to the intel sgx kingdom with
transient out-of-order execution. In: Proceed-
ings of the 27th USENIX Conference on Se-
curity Symposium, p. 991–1008 (2018). URL

https://www.usenix.org/conference/usen

ixsecurity18/presentation/bulck

115. Wang, J., et al.: Practical volume-hiding en-
crypted multi-maps with optimal overhead
and beyond. In: Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Com-
munications Security, p. 2825–2839 (2022).
DOI 10.1145/3548606.3559345

116. Wang, W., et al.: Engraft: Enclave-guarded
raft on byzantine faulty nodes. In: Proceed-
ings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, p.
2841–2855 (2022). DOI 10.1145/3548606.35
60639

117. Weiser, S., et al.: Timber-v: Tag-isolated
memory bringing fine-grained enclaves to risc-
v. In: Network and Distributed System Secu-
rity Symposium 2019 (2019). DOI 10.14722/n
dss.2019.23068

118. Weisse, O., et al.: Regaining lost cycles with
hotcalls: A fast interface for sgx secure en-
claves. SIGARCH Comput. Archit. News 45,
81–93 (2017). DOI 10.1145/3140659.3080208

119. Xu, Y., et al.: Controlled-channel attacks: De-
terministic side channels for untrusted operat-
ing systems. In: 2015 IEEE Symposium on Se-
curity and Privacy, pp. 640–656 (2015). DOI
10.1109/SP.2015.45

120. Yang, R., et al.: The value of hardware-based
security solutions and its architecture for secu-
rity demanding wireless services. In: Security
and Management, pp. 509–514 (2006)

121. Yang, Z., et al.: Spdk: A development kit
to build high performance storage applica-
tions. In: 2017 IEEE International Conference
on Cloud Computing Technology and Sci-
ence (CloudCom), pp. 154–161 (2017). DOI
10.1109/CloudCom.2017.14

122. Yuan, X., Guo, Y., Wang, X., Wang, C., Li, B.,
Jia, X.: Enckv: An encrypted key-value store
with rich queries. In: Proceedings of the 2017
ACM on Asia Conference on Computer and
Communications Security, p. 423–435 (2017).
DOI 10.1145/3052973.3052977

123. Zhang, Y., Wang, Z., Cao, J., Hou, R., Meng,
D.: Shufflefl: Gradient-preserving federated
learning using trusted execution environment.
In: Proceedings of the 18th ACM Interna-
tional Conference on Computing Frontiers, p.
161–168 (2021). DOI 10.1145/3457388.3458
665

124. Zhao, S., et al.: Sectee: A software-based ap-
proach to secure enclave architecture using
tee. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communica-
tions Security, p. 1723–1740 (2019). DOI
10.1145/3319535.3363205

125. Zheng, W., et al.: Opaque: An oblivious and
encrypted distributed analytics platform. In:

https://orcid.org/0000-0003-4657-5179
https://api.semanticscholar.org/CorpusID:4311947
https://api.semanticscholar.org/CorpusID:4311947
https://www.anandtech.com/show/12533/intel-spectre-meltdown
https://www.anandtech.com/show/12533/intel-spectre-meltdown
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck

TEE-based Key-Value Stores : a Survey 31

14th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 17),
pp. 283–298 (2017). URL https://www.usen

ix.org/conference/nsdi17/technical-ses

sions/presentation/zheng

126. Zhou, W., Cai, Y., Peng, Y., Wang, S., Ma,
K., Li, F.: Veridb: An sgx-based verifiable
database. In: Proceedings of the 2021 Inter-
national Conference on Management of Data,
p. 2182–2194 (2021). DOI 10.1145/3448016.
3457308

https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zheng
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zheng
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zheng

	Introduction
	Background
	TEE-based KVSs threat model
	TEE-based KVSs modules
	Classification of TEE-based KVSs
	Side-channel leakage
	Discussion
	Conclusion

