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Abstract In this work, we investigate a deep learning PET-MR joint
reconstruction method based on the ADMM algorithm. The a priori
information to regularize the inverse problem is obtained with a VAE
trained with high-quality images. Adaptive choice of the Lagrangian
parameter ensures good convergence properties of the method. The
proposed approach is tested on simple cases. It outperforms the classi-
cal MLEM for high noise levels.

1 Introduction

Dual imaging positron emission tomography (PET)-magnetic
resonance imaging (MRI) scanners have been investigated
recently as an imaging modality offering both functional and
anatomical information. With this hybrid imaging technique,
the PET and MRI data are simultaneously acquired. Several
works have investigated the synergistic reconstruction of PET
and MRI data in order to improve the reconstruction results
obtained with conventional independent reconstruction ap-
proaches. The idea is to exploit the common features and
similarities between PET and MR images.
Variational methods have been investigated by Ehrhardt,
Thielemans, Pizarro, et al. [1]. Structural similarity, joint
sparsity and alignment of the gradients of the two images
is promoted through a Total Variation (TV) prior. Improve-
ments have been proposed to overcome cross-talk artifacts
[2]. Recently, Mehranian, Belzunce, Prieto, et al. [3] have
proposed a non-convex joint sparsity prior generalizing the
joint TV to promote common boundaries while preserving
modality-unique features. Their reconstruction framework
is based on the augmented Lagrangian method with a scal-
ing to take into account the dependence of the prior on the
magnitude of the PET and MR images gradients. The perfor-
mance of the algorithm is highly dependent on the PET-MR
initialization and on the selection rules of hyper-parameters.
Deep learning methods have opened a new area of research
for medical image reconstruction and they have allowed
substantial improvements over state-of-the-art conventional
methods in terms both accuracy and execution time. More
specifically, for synergistic PET-MR reconstruction, deep
learning approaches have been studied to overcome the limi-
tations of these variational methods [4]. These methods are
based on unrolling techniques that leverage the classical itera-
tive algorithms used for image reconstruction. The proposed
synergistic PET-MR reconstruction algorithm interconnects
two networks to guide one modality with the other. Genera-
tive modeling has also been used for PET image denoising
with MR images [5].

In this work we propose the deep latent reconstruction
method (DLR) for synergistic PET-MR images which lever-
ages the ADMM iterative method of Mehranian, Belzunce,
Prieto, et al. The Total Variation regularization is replaced by
a learned constraint obtained with a Variational Auto-Encoder
(VAE) [6] trained with high-quality PET-MR images. The
latent variable is used to represent the common information
shared by the two imaging modalities. The proposed algo-
rithm could be used for synergistic reconstruction although
we focus on MR guided PET reconstruction in this paper.
The work is structured as follows. In the first section, we
summarize the ADMM algorithm and we present the VAE
we used as well as our dataset. We then present and discuss
preliminary results showing that the proposed method outper-
forms the classical MLEM algorithm, showing promising for
guided reconstruction as well as mutlimodal reconstruction.

2 Materials and Methods

2.1 Forward imaging models and ADMM approach
for synergistic reconstruction

We denote M the number of PET lines of response and N the
number of image voxels. The unknown vector xpet ∈ RN is
the radioactive tracer distribution and P∈RM×N the detection
probability matrix. The forward model considers the data
ypet ∈ RM as random independent Poisson random variables
with expected counts ỹpet = Pxpet + r+ s where r and s the
expected number of randoms and scatters. The PET data
fidelity is given by the negative Poisson log-likelihood which
reads:

Dpet(ypet,xpet)=
M

∑
i=1

(
[ỹpet]i − [ypet]i log([ỹpet]i)+ log([ypet]i!)

)
.

(1)
The Magnetic Resonance (MR) imaging model is ỹmr = Exmr
where xmr ∈ RN is the MR image, ỹmr and ymr ∈ RMv are the
expected k-space data and the measurements respectively,
E ∈ RMv×N is the Fourier encoding matrix consisting of the
product of the discrete Fourier transform F and subsampling
k-space operator, Mv and N are respectively the number of
k-space samples and MR image voxels. In the following, we
will use fully sampled spectra. We also assume the measure-
ments are corrupted by Gaussian noise, and we define the
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MR data fidelity term :

Dmr(ymr,xmr) =
1
2
∥Exmr − ymr∥2

2 . (2)

Our new method of synergistic reconstruction is inspired
from the method of Mehranian, Belzunce, Prieto, et al. [3]
and from the approach investigated by Xie, Li, Zhang, et
al. [5] for guided mono-modal reconstruction. It is well-
known that variational autoencoders (VAEs) allow to reliably
represent complex data in a lower dimensional space. Our
hypothesis in this work is that by training a VAE to represent
both modalities with a single latent variable, it should learn
more about the mutual information between them. Thus, we
assume that the images are the output of the decoder part of
a VAE with a single input z,

(xpet,xmr) = Decoder(z) (3)

where Decoder is the decoder part of the VAE and the latent
variable z is used for the low-dimensional representation of
the PET and MR images. Our aim is to find the PET-MR
solution (x̂pet, x̂rm) ∈RN ×RN of the following minimization
problem:

(x̂pet, x̂mr, ẑ) = argmin
xpet,xmr,z

Dpet(ypet,xpet)+Dmr(ymr,xmr)

s.t. (xpet,xmr) = Decoder(z) (4)

We apply the augmented Lagrangian method to the con-
strained optimization problem. We used the ADMM [7] algo-
rithm to solve (4). Denoting µ the Lagrange multiplier and
ρ = (ρmr,ρpet) the Lagrangian hyperparameter, the ADMM
iterations can be rewritten:

xn+1
pet = argmin

xpet

Dpet(ypet,xpet) (5)

+
ρpet

2
∥xpet −Decoder(zn)pet +µ

n
pet∥2

xn+1
mr = argmin

xmr

Dmr(ymr,xmr) (6)

+
ρmr

2
∥xmr −Decoder(zn)mr +µ

n
mr∥2

zn+1 = argmin
z

∥Decoder(z)− (xn+1 +µ
n)∥2 (7)

µ
n+1 = µ

n + xn+1 −Decoder(zn+1) (8)

where we denoted xn = (xn
pet,x

n
mr), µn = (µn

pet,µ
n
mr) and

Decoder(zn) = (Decoder(zn)pet,Decoder(zn)mr) . The min-
imization problem of Eq. (5) is solved with optimization
transfer and convex surrogate function similar to the one of
the classical MLEM algorithm [5]. We used the following
update formula for xn+1

pet at each pixel j:

[
xn+1

pet
]

j
=

1
2

(
[Decoder(zn)pet] j − [µn

pet] j −
p j

ρpet

+

√(
Decoder(zn)pet j − [µn

pet] j −
p j

ρpet

)2

+
4p j[xn+1

pet,em] j

ρpet

)
(9)

where p j = ∑i Pi, j and xn+1
pet,em is obtained by doing one

MLEM step:

[xn+1
pet,em] j =

[xn
pet] j

p j
∑

i
Pi j

[ypet]i
[Pxn

pet]i +[r]i +[s]i
(10)

The update of the latent variable in Eq. (7) is obtained with a
simple gradient descent with a gradient step S which is easily
performed using Tensorflow’s Gradient API [8]. This step
size S has to be tuned depending on the input data.
The scaling of the Decoder output is also an important issue.
It is common practice to train the decoder on normalized
data but the image that we are trying to reconstruct is not
necessarily normalized. We thus chose to rescale the output
of the decoder by using a scaling factor equal to the mean of
the current reconstructed image.
The additional ADMM penalty parameter ρ has a strong
influence on the convergence rate and is often chosen em-
pirically based on some validation data. In this work, we
implemented the adaptive update scheme proposed recently
in [9]. Its principle is to balance the relative primal and dual
residuals while taking into account the scaling properties of
the ADMM problem. We have also implemented the stopping
criterion proposed in the same paper with ε = 0.02.

2.2 Dataset

The data used for training the VAE and testing our method
consists in 840 co-registered 2D brain [18F]FDG PE images
(20 minutes acquisition) and T1-weighted MR images ex-
tracted from 44 acquisitions on a clinical hybrid PET/MR
scanner (Signa PET/MR, GE Healthcare) of patients with
dementia or epilepsy. These images are of shape 256×256
and are considered our references. The data used for the
reconstructions are generated from the images xpet according
to the following:

ypet = Poisson
(

α

∥xpet∥1
(Pxpet + r+ s)

)
(11)

where α is a factor used to control the noise level . The
signal to noise ratio is lower for lower values of α . We add
r (random) and s (scatter) events so that they correspond to
1% of the total number of observed events . The resulting
sinograms are of shape 256 (number of bins) × 60 (num-
ber of angles) and are then used as the input data for our
reconstruction method.

2.3 VAE structure and training

In this work, we use VAEs to generate PET and MR images.
A VAE is a latent space generative model based on the varia-
tional Bayesian inference originally proposed by Kingma and
Welling [6]. The structure of our VAE is displayed in figure
1. Each convolution and transposed convolution is described
with the format (number of channels, filter size, stride) and
the dense layers are described by their number of neurons.
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Figure 1: Architecture of the VAE.

The Sampling layer is used to perform the reparametrization
trick [6] and takes a mean vector and a standard deviation
vector to sample a latent variable z. We use a multichannel
input CNN, which treats PET/MR images as two separate
input channels. The VAE we considered in our work is a
β -VAE [10] which allows us to balance the training of the
model between latent space regularization and data fidelity.
On top of that, we use a L2 loss for the data fidelity term with
a weighting parameter to balance the two modalities’ contri-
butions to the loss. The training was implemented using the
open-source library Keras 2.2.5 with Tensorflow backbone
and performed on an NVIDIA RTX A2000 mobile. The net-
work is trained for 500 epochs using the Adam optimizer with
a learning rate of 10−3 and a batch size of 32. The images
from our dataset were used as the high-quality references and
the VAE was trained on them. The dataset was split into 3
parts: one for training, one for validation (20% of the data)
and one for testing (10% of the data).

2.4 Experiments

For preliminary tests, we have fixed the MR image to the
reference image and only reconstructed the PET image. We
then compare the reconstruction results to the ones obtained
with the classical MLEM algorithm [11].
We initialize the algorithm with the 10th iteration of MLEM
and initialize the latent variable by using the encoder part
of the VAE on the initial PET image and the reference MR
image. The forward and backward projections are handled
by the ASTRA toolbox [12] with a parallel geometry. The
test reconstructions were performed on 10 slices from the
test set.

3 Results

Figure 2 shows a slice from the test set reconstructed with
our approach together with the ground truth image and the
reconstruction given by the MLEM algorithm . Qualitatively,
the DLR approach outperforms MLEM on these very deteri-
orated data.
Figure 3 shows the evolution of the mean squared error
(MSE) and of the constraint ∥Decoder(zn)pet−xn

pet∥ as a func-
tion of the ADMM iterations for the slice shown in figure
1 for the proposed method during one reconstruction. We
also show the best NRMSE obtained by MLEM run for 30
iterations for comparison: with the adaptive update of the

Figure 2: Ground truth image and reconstructed images obtained
with MLEM and the deep latent reconstruction approach for α =
105.

Figure 3: Evolution of the NRMSE, SSIM, data fidelity terms
and constraint as a function of iterations for α = 105. The MLEM
NRMSE is displayed for comparison.

Lagrangian parameter ρ , the behavior of the error metrics
is highly nonlinear. The regularizing effect of the constraint
is obtained after a few iterations when ρ increases signifi-
cantly. The large decrease of the constraint corresponding to
the VAE is concomitant with the MSE decrease. It should
be noted that simultaneously the data fidelity term increases
which means that once a good latent vairable has been found,
the improvement is due to the constraint. The projection on
the image manifold learned with the autoencoder is thus effi-
cient to reduce the noise and the artifacts on the reconstructed
image.
The quality of the reconstructions was evaluated quantita-
tively using the the normalised root mean squared error
(NRMSE) and SSIM for several noise levels. The results
obtained for several Poisson noise levels are displayed in
table 1 together with the value of the gradient step S chosen
empirically. The deep latent reconstruction method clearly
outperforms the MLEM approach for lower signal to noise
ratio.

4 Discussion

In this work, we have presented preliminary results obtained
with a new deep latent reconstruction approach. The
VAE constrained reconstruction framework achieves better
performance compared with MLEM for the various noise
levels investigated. The main advantage of the method
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α S
MLEM DLR

NRMSE SSIM NRMSE SSIM
105 10−2 1.47 0.79 0.88 0.83

2×105 5×10−3 1.1 0.82 0.7 0.86
5×105 10−3 0.68 0.86 0.65 0.87

Table 1: Comparison of the mean for NRMSE and SSIM for the
MLEM method and the proposed DLR method.

is that the regularizing effect is learned and not based on
penality terms like TV or joint TV regularization. By using
a VAE, we get a latent variable that sums up the mutual
information between the two modalities. With enough data
it should be possible to get a latent space from which we
can generate any PET image. Moreover, the approach is
based on a limited number of hyper-parameters thanks to the
automatic update method adopted for the ADMM algorithm.
It should be noted that the known convergence properties of
the classical ADMM algorithm are not guaranteed since the
optimization method uses both a convex surrogate and a non
linear constraint.
For the presented MR-aided reconstruction, several aspects
will be further investigated. First, we would like to get
more data and use more realistic simulations to evaluate the
method in a clinically accurate context.
One current limitation of the method is that the latent
variable z update from Eq.7 is based on a simple gradient
descent with a rough estimate of the gradient step. This
sometimes leads to updates outside of the known latent
space and may cause the algorithm’s divergence. Additional
constraints could be studied to improve the search of the
optimal latent variable. The simple VAE used could also be
improved to generate less blurred images. The VAE that
was used here is known to produce blurry images, which
is good enough to handle PET images but not enough for
MR images. With some improvement, we could also handle
MR reconstruction and improve on the PET one. Variants
like VAE GAN, InfoVAE [13] or even diffusion models
[14] exist in the literature and could lead to improving the
quality of the generated images as well as a better use of the
mutual information. In the end, the proposed framework is
highly flexible and each of its components can be improved
individually.

5 Conclusion

Our aim in this paper is to improve the fusion of the comple-
mentary information in PET/MR images. We have investi-
gated a network-constrainted image reconstruction method
where a pre-trained multi-channel input VAE trained with
high-quality images is used to represent feasible PET and
MR images. We show that, using an MR image for guid-
ance, we can find a suitable latent variable to represent our

denoised PET data. In future work, we will consider the
joint reconstruction of PET and MR images and compare
our results with other deep learning based reconstructions
approaches such as unrolling.
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