
HAL Id: hal-04846653
https://hal.science/hal-04846653v1

Submitted on 18 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Spatial Granular Synthesis With Ambitools and
Antescollider

Pierre Lecomte, José Miguel Fernandez

To cite this version:
Pierre Lecomte, José Miguel Fernandez. Spatial Granular Synthesis With Ambitools and Antescollider.
Proceedings of the 4th International Faust Conference, Nov 2024, Turin, Italy. pp.2-7. �hal-04846653�

https://hal.science/hal-04846653v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Proceedings of the International Faust Conference (IFC-24), Soundmit, Turin, Italy, November 21-22, 2024

SPATIAL GRANULAR SYNTHESIS WITH AMBITOOLS AND ANTESCOLLIDER

Pierre Lecomte ∗

Ecole Centrale de Lyon, CNRS, Universite Claude Bernard Lyon 1,

INSA Lyon, LMFA, UMR5509, 69130, Ecully, France

Lyon, France

pierre.lecomte@ec-lyon.fr

José Miguel Fernandez †

IRCAM, STMS, UMR9912, 75004, Paris, France

jose.miguel.fernandez@ircam.fr

ABSTRACT

This paper presents a spatial granular synthesis tool developed in

FAUST and part of the Ambitools v1.3 library. This tool generates

a swarm of spatialized sound grains in a spherical shell sector us-

ing the Higher Order Ambisonic format. The grains can be played

from pre-recorded sound files or from a circular buffer of the input

signal for live use. This tool is then integrated into the AntesCol-

lider library to offer fine control over the evolution of the grain

swarm as well as its visualization.

1. INTRODUCTION

Granular synthesis, originally based on the pioneering work of Ga-

bor [1] and Xenakis [2], is a sound synthesis technique that breaks

down an audio signal into small segments called “grains”. Build-

ing on the general concepts developed by Truax [3] and Roads [4],

granular synthesis has been extensively used by composers and

musicians to create new sounds from pre-recorded audio (whether

concrete or synthesized). This technique allows for the creation of

complex sounds, rich textures, and evolving sounds by manipulat-

ing various parameters such as grain duration, overlap time, enve-

lope type, and playback position within the audio file. The use of

granular synthesis in spatial audio, or granular spatialization, is a

natural evolution of this concept. Beyond its original capabilities,

it enables the creation of diverse spatial sound morphologies. For

instance, one can easily generate sound masses that move not only

in timbre but also in space, such as a sound point exploding into

the surrounding space, multiple sounds transforming and converg-

ing towards a specific spatial point, or using random positions to

generate an immersive spatial sound. Although spatial granulation

is not a new concept [5, 6], the implementation we propose, based

on the Ambitools library [7], allows for the generation of many

grains in a Higher Order Ambisonics (HOA) format of any order.

This approach enables the dynamic creation of various granular

synthesis modules in real-time from an audio file or live input.

The spatial granular synthesizer being written in FAUST, many

plug-ins formats are available which can be integrated in multi-

ple environments. We present here an integration of this tool in

AntesCollider [8], which provides an interface for precise control

over the evolution of a swarm of grains within the 3D spatial en-

vironment. AntesCollider is a library dedicated to electronic mu-

sic composition and temporal sequencing, enabling, among other

things, synchronization with a musician through score follower or

gesture follower. It also allows for 3D visualizations through the

integration of the OpenFrameworks library. The paper is organized

as follows: Technical details on the FAUST implementation of the

∗ https://sekisushai.net/ambitools
† https://josemiguel-fernandez.com/

spatial granular synthesis engine is given in Sec. 2. Then, the in-

tegration to AntesCollider is presented in Sec. 3. Conclusions and

future works are given in Sec. 4.

2. THE GRANULATOR

The spatial granulation tool is written in the FAUST language [9].

It is part of the ambitools plug-in suite [7] v1.3 as the “Granulator”

(granulator.dsp) 1. The tool generates N
2 parallel signal

streams of sound “grains”, spatialize each grain individually in a

swarm whose geometry define a spherical shell sector. An example

of Graphical User Inteface (GUI) for the Granulator is shown in

Fig. 1.

This section detail the construction of a stream of grains, present

extra parameters for each grain and their spatialization. A discus-

sion of the FAUST compilation time is carried out.

2.1. Grain Stream Generation

Each of the N streams of grains is a signal made of concatenated

grains: once a grain is played, a new one is generated and so on.

The grains are read from a buffer which can be either a sound file

(by using the soundfile primitive), or a circular buffer fed with

an input signal (by using the rwtable primitive). The user can

choose which sound source to use at runtime. For both cases, a

“read index” signal, which gives the samples index over time, is

needed and constructed according the following grain parameters:

• duration,

• reading speed,

• starting index in the buffer,

• reading direction: forward or reverse.

An example of read index signal as well as the duration, starting

sample and reading speed parameters for a grain stream is shown

in Fig. 2

For each grain of each stream, the parameters are set randomly

using decorrelated random noise signals using no.rnoises prim-

itive 3. The random signals are scaled and shifted according to the

parameters ranges which can are tuned using sliders in the User

Interface (see Fig. 1). They are fed into a sample and hold func-

tion. The latter is denoted trig and a block diagram is shown

in Fig. 3. The trigger signal in Fig. 3 is an impulse which is

1https://sekisushai.net/ambitools/docs/

granulator.html
2
N ∈ N is set at compilation time.

3Note that we don’t use of no.noises primitive here as it would
produce the same grains sequences at each plugin initialization because
the noises generator seeds are the same.

2



Proceedings of the International Faust Conference (IFC-24), Soundmit, Turin, Italy, November 21-22, 2024

Figure 1: GUI of the Granulator compiled with faust2jack script.

Figure 2: The read index signal for a stream of grains (in blue):

the slope is proportional to the read speed. Its sign gives the read

direction. Once the read index minus the starting sample equals

the duration, a new set of parameters is randomly chosen within

the parameter ranges.

[1] trigger [1] trigger

cross(2)

rnoises(32)(0) abs

lmax

lmin

- abs

*

lmin

+

select2

Figure 3: Block diagram of the trig function, i.e., a sample

and hold function triggered by a impulse signal. Here the 0-th

noise among 32 noises signals (rnoises(32)(0)) is scaled

and shifted to give a random signal between lmin and lmax. A

value of this signal is hold until an impulse is received (trigger

).

Figure 4: The various envelopes used on a grain stream. A cross-

fade allows interpolation between two envelopes among this bank

at runtime.

non-zero only when the read index value minus the starting in-

dex equals the grain duration. At this instant the trig function

of Fig. 3 samples the current value of the random signal and hold

it until the next impulse. Thus, a new set of grain parameters is

randomly set at the end of each grain.

2.2. Extra Parameters

Grain Envelopes Since the reading index signal exhibits dis-

continuities (see Fig. 3), audible clicks may occur at each grain

change. To prevent this phenomenon, but also to provide control

over grain dynamics, an envelope starting and ending at zero is ap-

plied to each grain. The same envelope is used in the N streams.

This envelope is constructed at runtime with a cross-fade between

two envelopes taken from a bank. The envelopes bank can be seen

in Fig. 4.

Grain Probability To control the density of grains played simul-

taneously in the N streams, a Probability slider (see Fig. 1) is

used (between 0 and 100%). The trig function of Fig. 3 is used

with lmin = 0 and lmax = 1 and this value is compared with

the Probability slider value. If the value is higher, the gain

grain is set to 0 and the grain is not played.

Markers The starting index in Fig. 3 is by default chosen ran-

domly in the buffer. However, in the case of sound file as the sound

source, it is possible to use “markers” given as a list of samples

index (using the waveform primitive). In this case, the starting

3



Proceedings of the International Faust Conference (IFC-24), Soundmit, Turin, Italy, November 21-22, 2024

index of each grain is chosen randomly among these markers. This

feature helps the composer to select time instants in the soundfile

where the sound grains are of interest. An example of such mark-

ers in a sound sample are shown in Fig. 5:

Figure 5: Markers in red are used to supervise the starting index

choice for each grain in the sound sample.

2.3. Grain Spatialization

For each grain, the spatialization stage is performed in HOA for-

mat as a source point with the ambitools encoder (encoder.dsp

)4. The HOA order L ∈ N is set at compilation time. The spheri-

cal coordinates are randomly picked within intervals set in the user

interface at runtime (see Fig. 1). To do so, the trig function of

Fig. 3 is used. In this way, the radius, azimuth and elevation ranges

define a spherical shell sector in which the grain swarm evolves.

Optionnally, the grain coordinates and amplitudes signals are for-

warded into bargraphs to transmit these values through Open

Sound Control (OSC) or as output signals in SuperCollider, using

the faust2supercollider script, unlocking the swarm visu-

alization in AntesCollider (see Sec. 3.2).

2.4. FAUST Compilation

The Granulator in its current version uses 8 decorrelated random

noises signals5 for each of the N stream. In addition, each of the

N monophonic stream is encoded into (L + 1)2 HOA signals.

Moreover, to switch between recorded buffer or sound file at run

time, both signal are computed at runtime, as well as 20 signals per

stream for the grains envelopes. Finally, there are 28N +(L+1)2

audio rate signals to compute at runtime. As L and N increase

the FAUST compiler takes a rapidly increasing time to evaluate

and progagate the code and produce the binary output, if at all.

This can be seen in Fig. 6 for increasing N and L. Therefore,

we suggest compiling the Granulator keeping the value of N low

and launching several instances of the plug-in in the host software.

Note that use of the no.rnoises primitive in the code is there-

fore essential to use different seeds for the noise generators of the

various plug-in instances.

4https://sekisushai.net/ambitools/docs/encoder.

html
5One random signal for each of the following parameters: duration,

reading speed, starting index, reading direction, probability, radius, az-
imuth and elevation.

Figure 6: The time spent by the FAUST on the evaluation and prop-

agation steps for: A constant HOA order L = 3 and increas-

ing number of grain streams N ; A constant grain streams number

N = 4 and increasing HOA order. The values are obtained using

faust -time -t 0 granulator.dsp on a conventional

laptop.

3. ANTESCOLLIDER INTEGRATION

Figure 7: Interaction between Ambitools and Antescollider.

AntesCollider [8] is a library for composing and writing elec-

tronic music, created using the Antescofo [10] programming lan-

guage. It consists of two elements: an audio rendering engine, the

SuperCollider [11] servers (scsynth), and a synchronous program-

ming language to control them, Antescofo. The goal of this inte-

gration is to dynamically create real-time audio processing chains

with fine control over parameters over time. The expressiveness

of the Antescofo language and its temporal control allow for ef-

ficient and concise creation and on-the-fly restructuring of audio

processing, simplifying and adding flexibility to synthesis control.

The main motivations behind the creation of this library are both

musical and compositional. They aim towards the conception of

an environment that can extend the composer’s palette and imagi-

nation in order to create music with a strong component of interac-

tivity, thanks to score following and data processing derived from

performance, such as audio signal analysis and gesture tracking of

performers. This interactivity can also be easily extended to other

4



Proceedings of the International Faust Conference (IFC-24), Soundmit, Turin, Italy, November 21-22, 2024

media, such as video, through the integration of communication

protocols like OSC. AntesCollider integrates advanced functions:

• dynamic audio chain creation,

• preset saving and loading,

• graphical monitoring,

• spatial composition thanks to the integration of the Am-

bitools [12, 7] library,

• algorithmic control (with examples of physical models (boids,

mass-spring), KNN in parameter spaces, etc.).

3.1. Granulator Unit Generator

The Granulator tool of Sec. 2 is integrated within Antescollider as

a Unit Generator (UGEN) in SuperCollider (see Fig. 7). To do so,

the granulator.dsp code is compiled using the

faust2supercollider script. An example of use within An-

tesCollider is shown in the code of Fig. 9.

3.2. 3D Visualization

To visualize the grain swarm from the Granulator, we use the Open-

Frameworks 6 C++ library for real-time image and video synthesis.

To receive data from the Granulator UGEN, an OSC connection

is used with the SuperCollider scsynth (see Fig. 7). The UGEN

sends the spherical coordinates as well as the amplitude in dB of

each grain in real-time at the audio rate. It is then converted into

OSC messages via the SendReply.ar command in a SynthDef

in SuperCollider. This implementation allows for real-time visu-

alization of the 3D position of each grain in space, as well as their

amplitude: the grain dynamically changes size based on the am-

plitude7. In parallel with this implementation, a 3D Ambisonic

energy visualizer is used to display energy on a spherical surface.

The UGEN for this energy visualizer uses a sampling decoder from

the sampling_decoder.dsp8 tool of the Ambitools library

on a 974-node Lededev grid [13]. This 3D Visualization tool is

shown in Fig. 8:

4. CONCLUSIONS

We have developed a new spatial granular synthesis tool, the “Gran-

ulator”, integrated into the Ambitools v1.3 library and implemented

in the AntesCollider library. The “Granulator” is the result of re-

search and creation at GRAME9. The development and addition

of various parameters were carried out by considering elements of

spatial and musical perception, with the aim of using it in real-

time, both with audio files and live input. Resource optimization

through programming in FAUST and its deployment in SuperCol-

lider (using the faust2supercollider script) allows for a

versatile, dynamic, HOA, multi-grain granulator where all param-

eters can be modified in real-time, providing great flexibility and

richness both in timbre and spatial impession. Its implementation

in the AntesCollider library, thanks to the Antescofo synchronous

programming language, enables the creation of intuitive spatial

6https://openframeworks.cc/
7Note that if the grain amplitude is 0 (as when its probability is 0), it

disappears in the visualization.
8https://sekisushai.net/ambitools/docs/

sampling_decoder.html
9https://www.grame.fr/

Figure 8: The 3D visualization of the grain swarm. Here N = 30
grain streams are used. The grains are represented in green, their

size is proportional to they amplitude. The acoustic energy of the

resulting HOA scene is shown in purple. A dummy head facing the

front direction is placed at origin and represented in grey.

morphologies in direct relation to instrumental performance and/or

with fine control of all parameters in a multimodal way. Future de-

velopments include the possibility of creating spatial zones based

on timbre, through the use of audio descriptors. This involves

the idea of creating and recreating spatial soundscapes based on

characteristics such as pitch, spectrum, dynamics, roughness, and

more. The Granulator will be extensively used for the creation

of a new piece for trumpet and live electronics, “Gnomon”, com-

missioned by GRAME and to be premiered in June 2025 in Lyon,

France.

5. ACKNOWLEDGMENTS

The authors would like to thank GRAME for hosting them during

artistic residencies in 2024. Most of this work was carried out at

that time. In particular we would like to thank Stéphane Letz for

his technical support on FAUST and faust2supercollider

script. Part of this work has received funding from the Euro-

pean Research Council (ERC) under the European Union’s Hori-

zon 2020 research and innovation programme. ERC REACH:

Raising Co-Creativity in Cyber-Human Musicianship, Grant agree-

ment #883313

5



Proceedings of the International Faust Conference (IFC-24), Soundmit, Turin, Italy, November 21-22, 2024

// Example of creating a track in AntesCollider and initialize a Granulator:

// First of all, we instantiate a 'mix_group' (a group of tracks) in ambisonic,

// in this case, in 4th order on the scsynth server 'server1'

obj::mix_group_HOA(''group_hoa1'', ''server1'', ''HOA_GRAME_ADTN3D'', 4)

// Then, instantiate the track 'granulator_track' in the group 'group_hoa1'.

// All tracks instantiated in this group will inherit the order of the group (in

this case, 4th order).

obj::crea_track_HOA(''granulator_track'', ''group_hoa1'', fade_in = 1, amp = -6,

encoder = false, doppler = 0)

// Retrieve the audio bus and assign it to the Antescofo variable '$hoa_bus'.

$hoa_bus := $tracks(''granulator_track'').$hoa_inter_bus

// Add the module (SuperCollider SynthDef) 'Granulator8_4' to the track '

granulator_track', a UGEN with 8 grain streams in

// 4th order and set the initialization parameters for the granular synthesis module

'Granulator8_4'

$tracks(''granulator_track'').mod_add([''Granulator8_4'', ''globTBus'', $hoa_bus,

radius_max, 1, radius_min, 0.1, azimuth_max, 180, azimuth_min, -180,

elevation_max, 45.0, elevation_min, -45.0, read_speed_max, 1.5,read_speed_min,

0.5, duration_max, 0.51, duration_min, 0.001, shift_min, 0.0, shift_max, 0.5,

sound, 4, env_0, 8, env_1, 0, env_crossfade, 0])

// Set the initialization parameters for the granular synthesis module '

Granulator8_4'.

$tracks(''granulator_track'').set(''Granulator8_4'', [radius_max, 1, radius_min,

0.1, azimuth_max, 180, azimuth_min, -180,

elevation_max, 45.0, elevation_min, -45.0, read_speed_max, 1.5, read_speed_min, 0.5,

duration_max, 0.51, lduration_min, 0.001, shift_min, 0.0, shift_max, 0.5, sound

, 4, env_0, 8, env_1, 0, env_crossfade, 0])

// Change parameters in real-time (live coding)

$tracks(''granulator_track'').set(''Granulator8_4'', [record_input, 0])

$tracks(''granulator_track'').set(''Granulator8_4'', [grains_probability, 0.05])

$tracks(''granulator_track'').set(''Granulator8_4'', [reverse_forward_max, 1])

$tracks(''granulator_track'').set(''Granulator8_4'', [reverse_forward_min, -1])

$tracks(''granulator_track'').set(''Granulator8_4'', [record, 0])

$tracks(''granulator_track'').set(''Granulator8_4'', [azimuth_min, -30])

$tracks(''granulator_track'').set(''Granulator8_4'', [azimuth_max, 30])

$tracks(''granulator_track'').set(''Granulator8_4'', [elevation_min, -20])

$tracks(''granulator_track'').set(''Granulator8_4'', [elevation_max, 40])

$tracks(''granulator_track'').set(''Granulator8_4'', [radius_max, 10])

$tracks(''granulator_track'').set(''Granulator8_4'', [radius_min, 1])

//Move parameters with continuous controls, in this case at different speeds using

random LFOs.

$tracks(''granulator_track'').rand_lfo(''Granulator8_4'', azimuth_min, 0, 360, 0, ''

linear'', 120)

$tracks(''granulator_track'').rand_lfo(''Granulator8_4'', azimuth_max, 0, 360, 0, ''

linear'', 90)

$tracks(''granulator_track'').rand_lfo(''Granulator8_4'', elevation_min, -30, 0, 0,

''linear'', 30)

$tracks(''granulator_track'').rand_lfo(''Granulator8_4'', elevation_max, 0, 90, 0, '

'linear'', 55)

$tracks(''granulator_track'').rand_lfo(''Granulator8_4'', radius_min, 0.1, 2, 0.1, '

'linear'', 160)

$tracks(''granulator_track'').rand_lfo(''Granulator8_4'', radius_max, 1, 10, 1, ''

linear'', 40)

Figure 9: Example of the Granulator usage in AntesCollider.

6



Proceedings of the International Faust Conference (IFC-24), Soundmit, Turin, Italy, November 21-22, 2024

6. REFERENCES

[1] Dennis Gabor, “Acoustical quanta and the theory of hearing,”

Nature, vol. 159, pp. 591–594, 1947.

[2] Iannis Xenakis, “Formalized music. bloomington, indi-ana,”

1971.

[3] Barry Truax, “Real-time granular synthesis with a digital

signal processor,” Computer Music Journal, vol. 12, no. 2,

pp. 14–26, 1988.

[4] Curtis Roads, The computer music tutorial, MIT press, 1996.

[5] Scott Wilson, “Spatial swarm granulation,” in ICMC, 2008.

[6] Nicholas Mariette, “Ambigrainer-a higher order ambisonic

granulator in pd,” in Ambisonics symposium, 2009.

[7] Pierre Lecomte, “Ambitools: Tools for Sound Field Synthe-

sis with Higher Order Ambisonics - V1.0,” in International

Faust Conference, Mainz, 2018, pp. 1–9.

[8] José Miguel Fernandez, Jean-Louis Giavitto, and Pierre

Donat-Bouillud, “Antescollider: Control and signal process-

ing in the same score,” in ICMC 2019-International Com-

puter Music Conference, 2019.

[9] Yann Orlarey, Dominique Fober, and Stéphane Letz,

“FAUST: An efficient functional approach to DSP program-

ming,” New Computational Paradigms for Computer Music,

vol. 290, 2009.

[10] Arshia Cont, “Antescofo: Anticipatory synchronization and

control of interactive parameters in computer music.,” in In-

ternational Computer Music Conference (ICMC), 2008, pp.

33–40.

[11] James McCartney, “Rethinking the computer music lan-

guage: Super collider,” Computer Music Journal, vol. 26,

no. 4, pp. 61–68, 2002.

[12] Florian Grond and Pierre Lecomte, “Higher order ambison-

ics for supercollider,” in Linux audio conference, 2017.

[13] Vyacheslav Ivanovich Lebedev and AL Skorokhodov,

“Quadrature formulas of orders 41, 47, and 53 for the

sphere,” in Russian Acad. Sci. Dokl. Math, 1992, vol. 45,

pp. 587–592.

7


