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IFC-24 Preface

By Romain Michon, Stéphane Letz, and Francesco Mulassano.

Welcome to the 4th International Faust Conference (IFC-24)! IFC-24 gathers members of the Faust commu-
nity every two years. It is a platform to present new and ongoing work around the Faust programming lan-
guage (https://faust.grame.fr) through talks, demos, workshops, short performances, etc. IFC-24 also hosts
roundtables to collectively brainstorm on the future of the Faust ecosystem.

IFC-24 is taking place in Turin on November 21-22, 2024 at “Toolbox Co-Working” under the auspices of Fase
Lunare and AlphaLab - Laboratorio Elettro Musicale and with the support of Inria (French National Institute for
Research in Digital Science and Technology) and GRAME - Centre National de Création Musicale, the birthplace
of Faust.

One of the main novelty of this edition of IFC is its. . . published proceedings. While papers were presented at pre-
vious editions of IFC, they were only made available through the conference website and they were not “officially”
published. Hence, the present proceedings hosts a total of nine papers and also provides a brief description of
the two workshops and of the four demos that were given at IFC-24.

In a time when it is so easy to remotely work collectively on a project such as Faust, we do believe that host-
ing in-person events like IFC helps strengthen our community by providing what technology can’t offer yet: the
serendipity of direct social interactions. The time we spend talking with each other during coffee breaks, lunches,
and dinners is essential for provoking new ideas, collaborations, etc.

We look forward to seeing you at the next edition of IFC!

vi

https://faust.grame.fr
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ABSTRACT

This paper presents a spatial granular synthesis tool developed in

FAUST and part of the Ambitools v1.3 library. This tool generates

a swarm of spatialized sound grains in a spherical shell sector us-

ing the Higher Order Ambisonic format. The grains can be played

from pre-recorded sound files or from a circular buffer of the input

signal for live use. This tool is then integrated into the AntesCol-

lider library to offer fine control over the evolution of the grain

swarm as well as its visualization.

1. INTRODUCTION

Granular synthesis, originally based on the pioneering work of Ga-

bor [1] and Xenakis [2], is a sound synthesis technique that breaks

down an audio signal into small segments called “grains”. Build-

ing on the general concepts developed by Truax [3] and Roads [4],

granular synthesis has been extensively used by composers and

musicians to create new sounds from pre-recorded audio (whether

concrete or synthesized). This technique allows for the creation of

complex sounds, rich textures, and evolving sounds by manipulat-

ing various parameters such as grain duration, overlap time, enve-

lope type, and playback position within the audio file. The use of

granular synthesis in spatial audio, or granular spatialization, is a

natural evolution of this concept. Beyond its original capabilities,

it enables the creation of diverse spatial sound morphologies. For

instance, one can easily generate sound masses that move not only

in timbre but also in space, such as a sound point exploding into

the surrounding space, multiple sounds transforming and converg-

ing towards a specific spatial point, or using random positions to

generate an immersive spatial sound. Although spatial granulation

is not a new concept [5, 6], the implementation we propose, based

on the Ambitools library [7], allows for the generation of many

grains in a Higher Order Ambisonics (HOA) format of any order.

This approach enables the dynamic creation of various granular

synthesis modules in real-time from an audio file or live input.

The spatial granular synthesizer being written in FAUST, many

plug-ins formats are available which can be integrated in multi-

ple environments. We present here an integration of this tool in

AntesCollider [8], which provides an interface for precise control

over the evolution of a swarm of grains within the 3D spatial en-

vironment. AntesCollider is a library dedicated to electronic mu-

sic composition and temporal sequencing, enabling, among other

things, synchronization with a musician through score follower or

gesture follower. It also allows for 3D visualizations through the

integration of the OpenFrameworks library. The paper is organized

as follows: Technical details on the FAUST implementation of the

∗ https://sekisushai.net/ambitools
† https://josemiguel-fernandez.com/

spatial granular synthesis engine is given in Sec. 2. Then, the in-

tegration to AntesCollider is presented in Sec. 3. Conclusions and

future works are given in Sec. 4.

2. THE GRANULATOR

The spatial granulation tool is written in the FAUST language [9].

It is part of the ambitools plug-in suite [7] v1.3 as the “Granulator”

(granulator.dsp) 1. The tool generates N
2 parallel signal

streams of sound “grains”, spatialize each grain individually in a

swarm whose geometry define a spherical shell sector. An example

of Graphical User Inteface (GUI) for the Granulator is shown in

Fig. 1.

This section detail the construction of a stream of grains, present

extra parameters for each grain and their spatialization. A discus-

sion of the FAUST compilation time is carried out.

2.1. Grain Stream Generation

Each of the N streams of grains is a signal made of concatenated

grains: once a grain is played, a new one is generated and so on.

The grains are read from a buffer which can be either a sound file

(by using the soundfile primitive), or a circular buffer fed with

an input signal (by using the rwtable primitive). The user can

choose which sound source to use at runtime. For both cases, a

“read index” signal, which gives the samples index over time, is

needed and constructed according the following grain parameters:

• duration,

• reading speed,

• starting index in the buffer,

• reading direction: forward or reverse.

An example of read index signal as well as the duration, starting

sample and reading speed parameters for a grain stream is shown

in Fig. 2

For each grain of each stream, the parameters are set randomly

using decorrelated random noise signals using no.rnoises prim-

itive 3. The random signals are scaled and shifted according to the

parameters ranges which can are tuned using sliders in the User

Interface (see Fig. 1). They are fed into a sample and hold func-

tion. The latter is denoted trig and a block diagram is shown

in Fig. 3. The trigger signal in Fig. 3 is an impulse which is

1https://sekisushai.net/ambitools/docs/

granulator.html
2
N ∈ N is set at compilation time.

3Note that we don’t use of no.noises primitive here as it would
produce the same grains sequences at each plugin initialization because
the noises generator seeds are the same.
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Figure 1: GUI of the Granulator compiled with faust2jack script.

Figure 2: The read index signal for a stream of grains (in blue):

the slope is proportional to the read speed. Its sign gives the read

direction. Once the read index minus the starting sample equals

the duration, a new set of parameters is randomly chosen within

the parameter ranges.

[1] trigger [1] trigger

cross(2)

rnoises(32)(0) abs

lmax

lmin

- abs

*

lmin

+

select2

Figure 3: Block diagram of the trig function, i.e., a sample

and hold function triggered by a impulse signal. Here the 0-th

noise among 32 noises signals (rnoises(32)(0)) is scaled

and shifted to give a random signal between lmin and lmax. A

value of this signal is hold until an impulse is received (trigger

).

Figure 4: The various envelopes used on a grain stream. A cross-

fade allows interpolation between two envelopes among this bank

at runtime.

non-zero only when the read index value minus the starting in-

dex equals the grain duration. At this instant the trig function

of Fig. 3 samples the current value of the random signal and hold

it until the next impulse. Thus, a new set of grain parameters is

randomly set at the end of each grain.

2.2. Extra Parameters

Grain Envelopes Since the reading index signal exhibits dis-

continuities (see Fig. 3), audible clicks may occur at each grain

change. To prevent this phenomenon, but also to provide control

over grain dynamics, an envelope starting and ending at zero is ap-

plied to each grain. The same envelope is used in the N streams.

This envelope is constructed at runtime with a cross-fade between

two envelopes taken from a bank. The envelopes bank can be seen

in Fig. 4.

Grain Probability To control the density of grains played simul-

taneously in the N streams, a Probability slider (see Fig. 1) is

used (between 0 and 100%). The trig function of Fig. 3 is used

with lmin = 0 and lmax = 1 and this value is compared with

the Probability slider value. If the value is higher, the gain

grain is set to 0 and the grain is not played.

Markers The starting index in Fig. 3 is by default chosen ran-

domly in the buffer. However, in the case of sound file as the sound

source, it is possible to use “markers” given as a list of samples

index (using the waveform primitive). In this case, the starting

3
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index of each grain is chosen randomly among these markers. This

feature helps the composer to select time instants in the soundfile

where the sound grains are of interest. An example of such mark-

ers in a sound sample are shown in Fig. 5:

Figure 5: Markers in red are used to supervise the starting index

choice for each grain in the sound sample.

2.3. Grain Spatialization

For each grain, the spatialization stage is performed in HOA for-

mat as a source point with the ambitools encoder (encoder.dsp

)4. The HOA order L ∈ N is set at compilation time. The spheri-

cal coordinates are randomly picked within intervals set in the user

interface at runtime (see Fig. 1). To do so, the trig function of

Fig. 3 is used. In this way, the radius, azimuth and elevation ranges

define a spherical shell sector in which the grain swarm evolves.

Optionnally, the grain coordinates and amplitudes signals are for-

warded into bargraphs to transmit these values through Open

Sound Control (OSC) or as output signals in SuperCollider, using

the faust2supercollider script, unlocking the swarm visu-

alization in AntesCollider (see Sec. 3.2).

2.4. FAUST Compilation

The Granulator in its current version uses 8 decorrelated random

noises signals5 for each of the N stream. In addition, each of the

N monophonic stream is encoded into (L + 1)2 HOA signals.

Moreover, to switch between recorded buffer or sound file at run

time, both signal are computed at runtime, as well as 20 signals per

stream for the grains envelopes. Finally, there are 28N +(L+1)2

audio rate signals to compute at runtime. As L and N increase

the FAUST compiler takes a rapidly increasing time to evaluate

and progagate the code and produce the binary output, if at all.

This can be seen in Fig. 6 for increasing N and L. Therefore,

we suggest compiling the Granulator keeping the value of N low

and launching several instances of the plug-in in the host software.

Note that use of the no.rnoises primitive in the code is there-

fore essential to use different seeds for the noise generators of the

various plug-in instances.

4https://sekisushai.net/ambitools/docs/encoder.

html
5One random signal for each of the following parameters: duration,

reading speed, starting index, reading direction, probability, radius, az-
imuth and elevation.

Figure 6: The time spent by the FAUST on the evaluation and prop-

agation steps for: A constant HOA order L = 3 and increas-

ing number of grain streams N ; A constant grain streams number

N = 4 and increasing HOA order. The values are obtained using

faust -time -t 0 granulator.dsp on a conventional

laptop.

3. ANTESCOLLIDER INTEGRATION

Figure 7: Interaction between Ambitools and Antescollider.

AntesCollider [8] is a library for composing and writing elec-

tronic music, created using the Antescofo [10] programming lan-

guage. It consists of two elements: an audio rendering engine, the

SuperCollider [11] servers (scsynth), and a synchronous program-

ming language to control them, Antescofo. The goal of this inte-

gration is to dynamically create real-time audio processing chains

with fine control over parameters over time. The expressiveness

of the Antescofo language and its temporal control allow for ef-

ficient and concise creation and on-the-fly restructuring of audio

processing, simplifying and adding flexibility to synthesis control.

The main motivations behind the creation of this library are both

musical and compositional. They aim towards the conception of

an environment that can extend the composer’s palette and imagi-

nation in order to create music with a strong component of interac-

tivity, thanks to score following and data processing derived from

performance, such as audio signal analysis and gesture tracking of

performers. This interactivity can also be easily extended to other

4
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media, such as video, through the integration of communication

protocols like OSC. AntesCollider integrates advanced functions:

• dynamic audio chain creation,

• preset saving and loading,

• graphical monitoring,

• spatial composition thanks to the integration of the Am-

bitools [12, 7] library,

• algorithmic control (with examples of physical models (boids,

mass-spring), KNN in parameter spaces, etc.).

3.1. Granulator Unit Generator

The Granulator tool of Sec. 2 is integrated within Antescollider as

a Unit Generator (UGEN) in SuperCollider (see Fig. 7). To do so,

the granulator.dsp code is compiled using the

faust2supercollider script. An example of use within An-

tesCollider is shown in the code of Fig. 9.

3.2. 3D Visualization

To visualize the grain swarm from the Granulator, we use the Open-

Frameworks 6 C++ library for real-time image and video synthesis.

To receive data from the Granulator UGEN, an OSC connection

is used with the SuperCollider scsynth (see Fig. 7). The UGEN

sends the spherical coordinates as well as the amplitude in dB of

each grain in real-time at the audio rate. It is then converted into

OSC messages via the SendReply.ar command in a SynthDef

in SuperCollider. This implementation allows for real-time visu-

alization of the 3D position of each grain in space, as well as their

amplitude: the grain dynamically changes size based on the am-

plitude7. In parallel with this implementation, a 3D Ambisonic

energy visualizer is used to display energy on a spherical surface.

The UGEN for this energy visualizer uses a sampling decoder from

the sampling_decoder.dsp8 tool of the Ambitools library

on a 974-node Lededev grid [13]. This 3D Visualization tool is

shown in Fig. 8:

4. CONCLUSIONS

We have developed a new spatial granular synthesis tool, the “Gran-

ulator”, integrated into the Ambitools v1.3 library and implemented

in the AntesCollider library. The “Granulator” is the result of re-

search and creation at GRAME9. The development and addition

of various parameters were carried out by considering elements of

spatial and musical perception, with the aim of using it in real-

time, both with audio files and live input. Resource optimization

through programming in FAUST and its deployment in SuperCol-

lider (using the faust2supercollider script) allows for a

versatile, dynamic, HOA, multi-grain granulator where all param-

eters can be modified in real-time, providing great flexibility and

richness both in timbre and spatial impession. Its implementation

in the AntesCollider library, thanks to the Antescofo synchronous

programming language, enables the creation of intuitive spatial

6https://openframeworks.cc/
7Note that if the grain amplitude is 0 (as when its probability is 0), it

disappears in the visualization.
8https://sekisushai.net/ambitools/docs/

sampling_decoder.html
9https://www.grame.fr/

Figure 8: The 3D visualization of the grain swarm. Here N = 30
grain streams are used. The grains are represented in green, their

size is proportional to they amplitude. The acoustic energy of the

resulting HOA scene is shown in purple. A dummy head facing the

front direction is placed at origin and represented in grey.

morphologies in direct relation to instrumental performance and/or

with fine control of all parameters in a multimodal way. Future de-

velopments include the possibility of creating spatial zones based

on timbre, through the use of audio descriptors. This involves

the idea of creating and recreating spatial soundscapes based on

characteristics such as pitch, spectrum, dynamics, roughness, and

more. The Granulator will be extensively used for the creation

of a new piece for trumpet and live electronics, “Gnomon”, com-

missioned by GRAME and to be premiered in June 2025 in Lyon,

France.
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// Example of creating a track in AntesCollider and initialize a Granulator:

// First of all, we instantiate a 'mix_group' (a group of tracks) in ambisonic,

// in this case, in 4th order on the scsynth server 'server1'

obj::mix_group_HOA(''group_hoa1'', ''server1'', ''HOA_GRAME_ADTN3D'', 4)

// Then, instantiate the track 'granulator_track' in the group 'group_hoa1'.

// All tracks instantiated in this group will inherit the order of the group (in

this case, 4th order).

obj::crea_track_HOA(''granulator_track'', ''group_hoa1'', fade_in = 1, amp = -6,

encoder = false, doppler = 0)

// Retrieve the audio bus and assign it to the Antescofo variable '$hoa_bus'.

$hoa_bus := $tracks(''granulator_track'').$hoa_inter_bus

// Add the module (SuperCollider SynthDef) 'Granulator8_4' to the track '

granulator_track', a UGEN with 8 grain streams in

// 4th order and set the initialization parameters for the granular synthesis module

'Granulator8_4'

$tracks(''granulator_track'').mod_add([''Granulator8_4'', ''globTBus'', $hoa_bus,

radius_max, 1, radius_min, 0.1, azimuth_max, 180, azimuth_min, -180,

elevation_max, 45.0, elevation_min, -45.0, read_speed_max, 1.5,read_speed_min,

0.5, duration_max, 0.51, duration_min, 0.001, shift_min, 0.0, shift_max, 0.5,

sound, 4, env_0, 8, env_1, 0, env_crossfade, 0])

// Set the initialization parameters for the granular synthesis module '

Granulator8_4'.

$tracks(''granulator_track'').set(''Granulator8_4'', [radius_max, 1, radius_min,

0.1, azimuth_max, 180, azimuth_min, -180,

elevation_max, 45.0, elevation_min, -45.0, read_speed_max, 1.5, read_speed_min, 0.5,

duration_max, 0.51, lduration_min, 0.001, shift_min, 0.0, shift_max, 0.5, sound

, 4, env_0, 8, env_1, 0, env_crossfade, 0])

// Change parameters in real-time (live coding)

$tracks(''granulator_track'').set(''Granulator8_4'', [record_input, 0])

$tracks(''granulator_track'').set(''Granulator8_4'', [grains_probability, 0.05])

$tracks(''granulator_track'').set(''Granulator8_4'', [reverse_forward_max, 1])

$tracks(''granulator_track'').set(''Granulator8_4'', [reverse_forward_min, -1])

$tracks(''granulator_track'').set(''Granulator8_4'', [record, 0])

$tracks(''granulator_track'').set(''Granulator8_4'', [azimuth_min, -30])

$tracks(''granulator_track'').set(''Granulator8_4'', [azimuth_max, 30])

$tracks(''granulator_track'').set(''Granulator8_4'', [elevation_min, -20])

$tracks(''granulator_track'').set(''Granulator8_4'', [elevation_max, 40])

$tracks(''granulator_track'').set(''Granulator8_4'', [radius_max, 10])

$tracks(''granulator_track'').set(''Granulator8_4'', [radius_min, 1])

//Move parameters with continuous controls, in this case at different speeds using

random LFOs.

$tracks(''granulator_track'').rand_lfo(''Granulator8_4'', azimuth_min, 0, 360, 0, ''

linear'', 120)

$tracks(''granulator_track'').rand_lfo(''Granulator8_4'', azimuth_max, 0, 360, 0, ''

linear'', 90)

$tracks(''granulator_track'').rand_lfo(''Granulator8_4'', elevation_min, -30, 0, 0,

''linear'', 30)

$tracks(''granulator_track'').rand_lfo(''Granulator8_4'', elevation_max, 0, 90, 0, '

'linear'', 55)

$tracks(''granulator_track'').rand_lfo(''Granulator8_4'', radius_min, 0.1, 2, 0.1, '

'linear'', 160)

$tracks(''granulator_track'').rand_lfo(''Granulator8_4'', radius_max, 1, 10, 1, ''

linear'', 40)

Figure 9: Example of the Granulator usage in AntesCollider.
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ABSTRACT

Differentiable Digital Signal Processing is the application of dif-

ferentiable programming, whereby a computer program may be

differentiated end-to-end, to audio tasks. Coupled with gradient-

based optimisation methods, differentiable signal processors are

central to a variety of audio problems and can be incorporated into

machine learning architectures.

In this paper it is shown that, using the environment expres-

sion and pattern matching abstraction, it is possible to write FAUST

code that is differentiable end-to-end. A system for writing FAUST

programs that are automatically differentiable in the forward-mode

is developed and a parameter optimisation example presented. Dif-

ferentiable programming in FAUST could serve as a platform for

native approaches to machine learning problems in the audio do-

main.

1. INTRODUCTION

Differentiable programming is a programming paradigm whereby

a computer program can be differentiated end-to-end [1]. The

sensitivity of a differentiable program’s outputs to perturbations

of its parameters can be computed via automatic differentiation

(AD, autodiff) [2, 3], producing a partial derivative with respect

to each input parameter. End-to-end differentiability is a desirable

quality in the creation of computer programs that perform gradient-

based optimisation, and differentiable programming via automatic

differentiation is the foundation for contemporary approaches to

machine learning [4].

Differentiable Digital Signal Processing (DDSP) is the appli-

cation of differentiable programming to DSP operations [5]. The

acronym DDSP was coined by Engel et al. [6], who used it to refer

to the specific case of combining differentiable signal processors

with a neural network architecture, but in principle any DSP system

featuring recursive optimisation using gradients found as partial

derivatives of a loss function fits this label [5], including work dat-

ing as far back as the late 1980’s [7]. In addition to Engel et al.’s

timbre transfer implementation via a differentiable spectral mod-

elling synthesiser, DDSP has been applied to audio tasks such as

source separation [8], filter optimisation [9], and echo cancellation

[10] — see [5] for a comprehensive review.

This paper introduces the concept of a differentiation arith-

metic [2] to FAUST, facilitating the creation of differentiable audio

algorithms in the FAUST language. A framework for forward mode

automatic differentiation is outlined and applied to a simple, but

illustrative, parameter optimisation problem. The possibility of

writing differentiable code in an audio domain specific language

paves the way for novel approaches to problems at the intersection

of DSP and machine learning.

2. ALGORITHMIC DIFFERENTIATION

Methods for computational differentiation are typically charac-

terised as falling into one of three camps: numerical, symbolic, and

automatic. Numerical differentiation produces numerical values for

derivatives via approximation by finite differences, and will be fa-

miliar to those acquainted with finite-difference time-domain audio

synthesis methods [11]. Symbolic differentiation takes a computa-

tional expression and generates the corresponding expression for

its derivative; this approach may resonate with users of MATLAB’s

Symbolic Math Toolbox [12] or the Maple programming language

[13]. Automatic differentiation describes an arithmetic for accu-

mulating both the numerical output of a computational expression

and the numerical value of its derivative; it is an arithmetic of this

kind that underpins the current crop of Python libraries for machine

learning [4].

A certain ambiguity abounds with regard to how automatic

and symbolic differentiation relate to each other [14], and partisan

views have been expressed over which is more efficient [15]. The

ambiguity may be ascribed in part to the former’s nature as “partly

symbolic and partly numerical” [4], and perhaps also to the fact that

programs composed symbolically may be differentiated automati-

cally [16]. For our purposes, we shall defer to Rall, who, writing

in the mid-1980’s, before the waters were muddied by legions

of machine learning researchers, observed (to paraphrase): sym-

bolic approaches produce formulas whereas automatic approaches

produce numerical outputs [2]. The latter do so, however, by im-

plementing differentiation rules, symbolically, at the level, as we

will see, of the primitive operations of the programming language

upon which they are based.

2.1. The Arithmetic of Automatic Differentiation

Two principal modes of automatic differentiation are alluded to

in scholarly works on the topic: forward (or tangent) mode, and

reverse (or adjoint) mode [1, 3, 4]. These modes describe, in effect,

two directions of derivative propagation through a computation

graph; in forward mode, the computation of the undifferentiated,

or primal output is accompanied by a tangent computation, with

derivatives accumulated from inputs to outputs; in reverse mode,

a forward primal pass is complemented by a reverse adjoint pass,

during which derivatives accumulate from outputs to inputs (consult

[3] for a detailed mathematical treatment of both). For a graph,

f : RN → R
M , with input variables, xi, and output variables, yj ,

forward mode requires N passes to compute the Jacobian matrix

Jf =









∂y1
∂x1

· · · ∂y1
∂xN

...
. . .

...
∂yM
∂x1

· · · ∂yM
∂xN









, (1)
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whereas reverse mode calls for M passes. Viewed through the

lens of computational parsimony, this points at reverse mode be-

ing preferable for differentiating programs where input variables

outnumber output variables, such as a digital audio synthesiser

with many parameters and perhaps one or two output channels. In

practice, reverse mode demands a bookkeeping strategy such as a

“tape” mechanism [17, 18] to take account of the dependencies of

each node in the graph during the forward pass, and thus ensure

accurate derivative accumulation during the reverse pass. This need

for a structured overview of the computational graph introduces a

degree of complexity that forward mode does not impose.

2.1.1. Dual Number Arithmetic

An interesting property of forward mode automatic differentiation

lies in the possibility of formulating differentiation in a manner

similar to the complex numbers [2, 19]. Where complex arithmetic

uses the imaginary unit i to designate the imaginary part of a com-

plex number z = x+ iy, with i2 = −1, differentiation arithmetic

uses the nilpotent symbol, ε, for which ε2 = 0, and ε ̸= 0 [19, 3]:

U = u+ εu′ , (2)

where u′ = du
dx

is the derivative of u with respect to some input

variable x.

Using this arithmetic, the sum of two functions, and the addi-

tion rule of differentiation, emerge quite naturally as the sum of U
and V = v + εv′,

(u+ εu′) + (v + εv′) = u+ v + ε(u′ + v′) . (3)

Similarly, the product rule, via simple polynomial expansion

(u+ εu′)(v + εv′) = uv + uεv′ + vεu′ + ε2u′v′

= uv + ε(uv′ + vu′) , (4)

the final term cancelling due to the presence of ε2.

This arithmetic may be more conveniently expressed, for com-

putational purposes, as one of ordered pairs [2, 20] or dual numbers

[19, 21, 22],

U = ⟨u, u′⟩ . (5)

The addition and product rules now take the following forms:

U + V = ⟨u, u′⟩+ ⟨v, v′⟩ = ⟨u+ v, u′ + v′⟩ (6)

UV = ⟨u, u′⟩⟨v, v′⟩ = ⟨uv, uv′ + vu′⟩ . (7)

The first component of each dual number is the rule for evaluation

of the operation, the second is the rule for differentiation [2]; these

are the primal and tangent respectively [3, 18]. In dual number

differentiation arithmetic, an independent variable can be expressed

as X = ⟨x, dx
dx

⟩ = ⟨x, 1⟩, and a constant C = ⟨c, dc
dx

⟩ = ⟨c, 0⟩.
If we wish, for example, to compute the numerical values for the

primal and tangent of a polynomial (x+ 1)(x− 2) at x = 2, we

set X = ⟨2, 1⟩ and supply appropriate values for the constants:

(⟨2, 1⟩+ ⟨1, 0⟩)(⟨2, 1⟩ − ⟨2, 0⟩) = ⟨3, 1⟩⟨0, 1⟩ = ⟨0, 3⟩ .

We find that our arithmetic produces the expected numerical re-

sults automatically via composition of the fundamental operations

characterised by equations (6) and (7).

Differentiation arithmetic of this sort is a special case of a

more general gradient arithmetic [2], which comes into effect when

multiple variables are present, and thus multiple partial derivatives

must be calculated:

U = ⟨u,∇u⟩, ∇u =
∂u

∂x
=









∂u
∂x1

...
∂u

∂xN









. (8)

2.2. Extending FAUST’s Arithmetic

One quality generally possessed by automatic differentiation im-

plementations is that of allowing the programmer to write differen-

tiable programs with minimal changes to the syntax of their code.

This is typically achieved either by source code transformation or

operator overloading [19, 3] — neither of which is available in the

FAUST language.1 We could take an approach similar to Wengert’s

1964 demonstration of the composition of differentiable functions in

Fortran [23] and define differentiable functions diffAdd, diffMul,

etc. each accepting and returning dual numbers; thanks to FAUST’s

pattern matching abstraction, however, we can go one better, achiev-

ing something akin to, albeit slightly more verbose than, operator

overloading.

Pattern matching has been used extensively in the FAUST li-

braries. The basics.lib library, for example, provides a function

with a recursive pattern matching definition for taking an element

from a list:

// Take the first element , the head;

take(1, (head , rest)) = head;

// Take the only element;

take(1, head) = head;

// Take the n-1th element from the rest.

take(n, (head , rest)) = take(n-1, rest);

Listing 1: Definition of the take function from FAUST’s

basics.lib library.

The physmodels.lib library provides pm.chain for creating

chains of bidirectional signal blocks [24]. chain(A) simply returns

the signal block A; chain(A:As) creates a recursive structure con-

taining A and chain(As). Similarly, wdmodels.lib facilitates the

creation of wave digital filter models via primitive elements, resis-

tors, capacitors, etc. [25], whose behaviour is defined via pattern

matching syntax. Both libraries extend FAUST’s arithmetic with

their own rules, with the aim of achieving a particular goal within

the syntax provided by FAUST.

If one’s particular goal was to be able to compose reciprocal

expressions, one could create an arithmetic of the following form,

using pattern matching to avoid division by zero:

import (" stdfaust.lib");

recip (0) = recip(ma.EPSILON);

recip (0.0) = recip (0);

recip(expr) = 1,expr : /;

a = log (1);

b = _,2 : ^;

c = -;

1Transformations are in fact possible at the level of the FAUST compiler,
and automatic differentiation could occur as a compilation step. For reasons
of scope, this paper focuses solely on the topic of automatic differentiation
in the FAUST language itself.
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process = recip(a),recip(b) : recip(c);

Listing 2: Definition of a simple scheme for computing automatic

reciprocals in FAUST via pattern-matching.

Wrapping our expressions in recip gives us automatic reciprocals

without affecting the fundamental composability of FAUST’s primi-

tives. Note that if we were to insert the expression recip(-) = +;

at the top of the program, the final operation, rather than returning

1/(a− b) would be overridden, in a manner of speaking, returning

a + b instead. An approach along these lines will form the basis

for the creation of differentiable FAUST primitives.

3. DIFFERENTIABLE PROGRAMMING IN FAUST

As described in section 2.1, in forward mode, primal and tangent

outputs are found during a forward pass through the computation

graph, which fits neatly with the left-to-right propagation of signals

through a FAUST block diagram. Reverse propagation of signals

is entirely possible in FAUST (indeed forward mode demands it as

a final, backpropagation step — see section 3.3), and it is by way

of nested recursive composition that the physmodels.lib library

accomplishes simulated bidirectional wave propagation; the struc-

tures underpinning physmodels.lib are purely linear, however,

and, at the time of writing, no general scheme for the creation of

branching bidirectional structures, such as reverse mode requires,

has been found.2

Consequently, this section is concerned with the description of

an approach to differentiable programming in FAUST based on for-

ward mode automatic differentiation. End-to-end differentiability

is predicated on the availability of derivative expressions for the

primitive operations of the language; presented in the subsections

that follow is an approach to defining FAUST primitives that are

differentiable in forward mode.

3.1. Defining a Differentiable Primitive

As a basic starting point, consider the addition primitive; in FAUST

one can write:

process = +;

which yields the diagrammatic representation:

+

process

Figure 1: Block diagram of a FAUST program consisting of a lone

addition primitive.

2Reverse mode does not entirely elude the capabilities of FAUST, but it
does not generalise easily. For a small reverse mode example, see https://
gist.github.com/hatchjaw/8b3eb17aae27e91d0927ac8cb3eba9cd#

file-reverse_multivariate-dsp.

FAUST primitives, and block diagrams constructed from them, are

signal processors. A semantic distinction is drawn, however, be-

tween a block diagram, D, and the signal processor represented

by that block diagram, notated JDK [26]. We can think of D as a

symbolic expression, in FAUST syntax, and JDK as a processor that

acts upon a vector of input signals and, in turn, produces a vector

of output signals. A signal is a discrete function of time, and a

member of the set S of all signals; the value of a signal at time n
is analogous to a numerical output. The semantic scheme for the

addition operator is described as [26]

J+K : S2 → S

J+K(s1, s2) = (y)

y[n] = s1[n] + s2[n] .

(9)

Note that FAUST’s addition primitive has no special knowledge of

its arguments, their history, provenance, etc., it just consumes them

and returns their sum. In FAUST’s arithmetic, the addition of two

signals is simply well-defined.

Suppose that the block diagram, Y = +, is dependent on

some variable x, and that we wish to know how sensitive Y is to

perturbations in x. We can produce an analytic expression for this

sensitivity by differentiating Y with respect to x. Recall, from

equation (6), that a dual-number addition takes the form of two

additions in parallel; in FAUST, that could be expressed as:

diffAdd = +,+;

process = diffAdd;

+

+

process

Figure 2: Block diagram of a FAUST program representing a naive

implementation of a dual signal differentiable addition primitive,

consisting of two parallel additions.

We can think of this as consisting of two block diagrams in parallel;

interpreted as a signal processor, we can refer to its output as a dual

signal, ⟨y, y′⟩.
Just as the addition primitive has no special knowledge of

its input signals, nor does diffAdd, but at this stage the notion

of differentiable addition is not well-defined. In order for this

new primitive to behave as it should, it is necessary to define an

accompanying semantic scheme. First, we denote Sd to be the set

of all dual signals: Sd = S
2; differentiable addition can then be

defined as

JdiffAddK : S2
d → Sd

JdiffAddK(⟨s1, s
′

1⟩, ⟨s2, s
′

2⟩) = (⟨y, y′⟩)

⟨y[n], y′[n]⟩ = ⟨s1[n] + s2[n], s
′

1[n] + s′2[n]⟩ .

(10)

10
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In its form in figure 2, diffAdd is not consistent with the scheme

that we have just defined; this can be remedied with FAUST’s route

primitive:

diffAdd = route(4, 4,

(1, 1), (2, 3), (3, 2), (4, 4)) : +,+;

process = diffAdd;

+

+

process

Figure 3: Block diagram of a FAUST program representing a dual

signal differentiable addition primitive. Via appropriate signal

routing, valid dual signal output is produced.

diffAdd is now semantically sound, implementing equation (6),

and describing a dual-signal differentiable addition primitive. As

alluded to in section 2, this primitive implements its differentiation

rule symbolically, via appropriate signal routing, and will produce

the correct numerical output automatically; it is self-contained,

well-defined, and composable with other similarly well-defined

primitives.

3.2. Multivariate Differentiable Primitives

The above holds for single-variable differentiation arithmetic, but

what if a program features more than one dependent variable?

Consider the following (non-differentiable) example consisting of

a DC offset and a gain control applied to an input signal:

x1 = hslider ("gain", .5, 0, 1, .1);

x2 = hslider ("dc", 0, -1, 1, .1);

process = _,x1 : *,x2 : +;

Listing 3: A FAUST program that applies gain and DC offset

parameters to an input signal.

The general case of gradient arithmetic (see equation (8)) demands

a redefinition of the set of dual signals, Sd = S
N+1, where N is the

number of variables, xi, with respect to which partial derivatives

must be found. One way to implement a multivariate differen-

tiable addition primitive in FAUST could be to define diffAdd as a

function receiving N as a parameter; using FAUST’s environment

expression, however it is possible to address the problem in a more

general, and syntactically succinct fashion.

3.2.1. A Differentiable Environment

First, we can define a function for collecting, counting, and retriev-

ing variables and their partial derivatives:

vars(V) = environment {

// Count the variables.

N = outputs(V);

// Retrieve a variable by index i.

var(i) = ba.take(i, V),pds(N, i)

with {

// Compute partial derivatives of

// variable x_i.

pds(N, i) = par(j, N, i-1==j);

};

};

Listing 4: A FAUST function for defining an environment of

differentiable variables.

vars receives a list of variables, expressed via parallel composition,

e.g. X = vars((gain,dc));, where gain and dc are defined as

hslider instances; the ith differentiable variable is defined seman-

tically as

JX.var(i)K : S0 → Sd

JX.var(i)K() = (⟨y,∇y⟩)

⟨y[n],∇y[n]⟩ = ⟨xi[n],∇xi[n]⟩

=
〈

xi[n],
[

0 · · · 1 · · · 0
]T

〉

.

(11)

Next, we can define a function that takes the variable envi-

ronment produced by vars as its sole argument, and returns a

differentiable environment, containing a collection of multivari-

ate differentiable primitives. As a further improvement, we can

use FAUST’s pattern matching syntax to simplify the nomencla-

ture of the differentiable primitives; instead of exposing the name

diffAdd, for example, the differentiable addition primitive can be

named diff(+):

env(vars) = environment {

diff (+) = diffAdd with {

diffAdd = route(nIN , nOUT ,

(s1 , 1), (s2 , 2), // s1 + s2

par(i, vars.N,

// ds1/dx_i + ds2/dx_i

(s1+i+1, dx), (s2+i+1, dx+1)

with {

// Start of derivatives wrt x_i

dx = 2*i+3;

}

)

) with {

nIN = 2+2* vars.N;

nOUT = nIN;

s1 = 1;

s2 = s1+vars.N+1;

}

: +,par(i, vars.N, +);

};

// ... definitions of other

// differentiable primitives ...

};

Listing 5: Extract from the definition of a FAUST environment for

differentiable programming.

As before, the primal signal output of the differentiable addition

primitive is the sum of the primal inputs, s1[n] + s2[n]; now, how-

ever, the differentiable primitive produces vars.N tangent outputs,

each corresponding to a derivative with respect to xi. Once again,

11
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the route primitive ensures that incoming signals are delivered to

the parallel additions in the correct order.

Encapsulating listings 4 and 5 as a library in a file named

diff.lib, and defining a differentiable audio input, which, since it

does not depend on xi, has the semantic representation

JinputK : S → Sd

JinputK(s) = (⟨y,∇y⟩)

⟨y[n],∇y[n]⟩ = ⟨s[n],0⟩ ,

(12)

we can use vars and env to write a differentiable version of the

gain-plus-DC-offset program encountered earlier:

df = library ("diff.lib");

X = df.vars((gain ,dc)) with {

gain = hslider ("gain", .5, 0, 1, .01);

dc = hslider ("dc", 0, -1, 1, .01);

};

d = df.env(X);

process = d.input ,X.var (1)

: d.diff (*),X.var (2)

: d.diff (+);

Listing 6: Differentiable counterpart to the FAUST program

described in listing 3.

See figure 4 for the block diagram of this program. Note that while

the routing for the arithmetic primitives — particularly diff(*)

— may be quite complex (and would only become more involved

with the addition of further variables) the df library abstracts this

complexity away. Note also that partial derivatives of the program

are found automatically via application of the chain rule of dif-

ferentiation, imposed by the definition of semantically-consistent

dual-signal primitives.

3.3. Parameter Optimisation via Gradient Descent

Armed with the means to write end-to-end differentiable FAUST

programs, it is possible, with a few modifications (and additions

to diff.lib), to combine the code in listings 3 and 6, to create

a demonstrative parameter optimisation algorithm. An algorithm

of this kind consists of a target output, governed by parameters

that are hidden with respect to some estimated output, which itself

depends on parameters that we wish to optimise.

The algorithm in listing 3 is dependent on hidden parameters

x and produces a ground truth output signal y[n]; we assign this

algorithm to a variable named target. Its differentiable equivalent

in listing 6 is dependent on estimated parameters x̂ and produces

the dual output signal, ⟨ŷ[n],∇ŷ[n]⟩; we assign this to a variable

named estimate. The output signal produced by target and the

primal output signal of estimate can now be compared by way of

a loss function; to this end, we can employ time-domain L1-norm

loss of the form

L(y, ŷ)[n] = ||ŷ[n]− y[n]|| . (13)

Our aim is to minimise the value returned by the loss function,

i.e. to reach the point at which y[n] and ŷ[n] (and by extension x

and x̂) most closely approximate one-another. The sensitivity of

L to perturbations in x̂ can again be found by automatic differen-

tiation, subject to the provision of a differentiable absolute value

function in df.env, with the following semantic definition:

Jdiff(abs)K : Sd → Sd

Jdiff(abs)K(⟨s,∇s⟩) = (⟨y,∇y⟩)

⟨y[n],∇y[n]⟩ =

〈

|s[n]|,
s[n]∇s[n]

|s[n]|

〉

.

(14)

The loss function can then be implemented as follows:

env(vars) = environment {

// ...

lossL1(learningRate , y, yHat) =

error ,par(i, vars.N, _)

: diff(abs)

: _,scaleGrads

with {

error = yHat ,y : -;

scaleGrads = par(i, vars.N,

_,learningRate : *);

};

// ...

Listing 7: Implementation of a differentiable loss function (L1-

norm) using differentiable abs primitive.

The loss function’s partial derivatives are the gradients asso-

ciated with each variable in x̂. In our two-parameter example, L
will describe a three-dimensional surface, and ∂L

∂xi
its slope relative

to xi. Values at time n + 1 are found by scaling gradients by a

learning rate, α, and subtracting the result from values at time n:

x̂[n+ 1] = x̂[n]− α
∂L

∂x̂
[n] . (15)

In FAUST, this can be achieved via recursion, and by changing the

definition of the variables delivered to df.env. Since values will

be updated automatically via gradient descent, the sliders used in

listing 6 are no longer appropriate; instead, a bargraph instance

can be used to display the value of each variable, with a recur-

sive subtraction accumulating each parameter’s incoming scaled

gradient.

// diff.lib

var(meter) = -~_ <: attach(meter);

// gain_dc_AD.dsp

X = df.vars((gain ,dc)) with {

gain = df.var(hbargraph ("Gain", 0, 1));

dc = df.var(hbargraph ("DC", -1, 1));

};

Listing 8: Definition of differentiable variables encapsulating

recursive gradient descent.

Finally, we can create a program that takes white noise as input,

encapsulates target, estimate, and the loss function, and recurses

gradients produced by the latter back to estimate.

process = no.noise <: (

route(nvars+nInputs , nvars+nInputs ,

// Route gradients to estimate.

par(n, nvars , (n+1, n+1+ nInputs)),

12
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0

0

input

hslider(gain, 0.5f, 0.0f, 1.0f, 0.01f)

gain

1

0

pds(2)(1)

var(1)

*

*

*

+

*

*

+

diffMul

hslider(dc, 0.0f, -1.0f, 1.0f, 0.01f)

dc

0

1

pds(2)(2)

var(2)

+

+

+

diffAdd

process

Figure 4: Block diagram of a differentiable FAUST program consisting of differentiable gain and DC parameters applied to an input signal

(see listing 6).

// Route input to target & estimate.

par(n, nInputs , (nvars +1+n, n+1))

)

: target ,estimate : d.lossL1 (1e-3)

// Recurse the gradients.

) ~ (!,si.bus(nvars))

// Block the gradients , post -recursion.

: _,si.block(nvars)

with {

nvars = inputs(estimate),

inputs(target) : -;

nInputs = inputs(target) ,2 : *;

// ...

Listing 9: Excerpt from a parameter optimisation algorithm. See

listings 3, 6 and 7 respectively for definitions of target, estimate,

and d.lossL1.

This delivery of gradients from the outputs of the program back

to its inputs is commonly (and particularly in material from the field

of machine learning) referred to as backpropagation [3, 10, 27].

Whereas in reverse mode gradients arrive at the inputs inevitably

as a consequence of the reverse adjoint pass through the graph,

in forward mode a recursion such as that described in listing 9 is

required; consult figure 5 for the corresponding top-level block

diagram.

Running this program3 reveals a user interface which includes

slider elements for the parameters of the target algorithm, and

bargraphs that report the values of the parameters of estimate.

Moving a slider results in an increase in the value returned by the

3A full code example, adapted from the excerpts in this pa-
per, can be found at https://gist.github.com/hatchjaw/

59f35d0cde7aba218d785d31f26d2d83.

loss function, which is then minimised via gradient descent, the

estimated parameter values tracking the values of the target.

4. DISCUSSION

The previous section presented an approach to differentiable pro-

gramming in FAUST, but the scheme under consideration is not free

from disadvantages. Considered in the following subsections are

some limitations of the suggested automatic differentiation strategy,

plus a selection of ideas for future development.

4.1. Primitives With Poorly-Defined Derivatives

To provide comprehensive support for differentiable programming,

the formative library presented here should of course comprise dif-

ferentiable equivalents to all of FAUST’s primitives. That would in-

clude, however, the likes of floor and ceil, whose primal outputs

are discontinuous. Indeed, in implementation, the differentiable

abs function used in the loss function in listing 7 takes the liberty

of avoiding division by zero by dividing by whichever of |s[n]| and

ma.EPSILON is greater; it may prove preferable to replace abs, and

similarly problematic functions, with smooth approximations [28].

Another class of FAUST primitives not addressed here are those

relating to delays. As demonstrated by Shynk [7], IIR filters, and

thus fixed delays (including recursive delays), are differentiable in

terms of their coefficients; whether a variable delay (FAUST’s @

primitive) is differentiable with respect to the length of the delay

line, stands as a topic for future research.

4.2. Frequency-Domain Loss

The parameter optimisation example given in section 3.3 works, but

with a couple of significant caveats, the first of these being that the

13
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noise
target

estimate

lossL1(0.001f)

process

Figure 5: Top-level block diagram for the full FAUST program of which an excerpt appears in listing 9. target algorithm, with hidden

parameters, and estimate algorithm, with two optimisable parameters, process a noise signal. Their outputs are compared via a loss

function; scaled derivatives of the loss function are backpropagated such that estimated parameter values can be updated. Note that the

only output signal produced by this example program is the primal output signal produced by the loss function; to hear the primal signal

produced by estimate, one could perform additional signal routing prior to the loss function.

target and estimate algorithms receive identical signals as input,

and the second being that loss is calculated sample-by-sample in

the time domain. If decorrelated noise signals were used instead,

it is vanishingly unlikely that good parameter estimates would be

found. Some improvement may be achieved by comparing y and

ŷ after a short-duration application of ba.slidingMean, but not

if oscillators of different frequencies, or unaligned phase, were

employed instead.

One way to combat problems of this sort would be to calcu-

late loss in the frequency domain; indeed it is typically by way

of perceptually-informed spectral loss that optimisation is con-

ducted in a DDSP setting [5]. Various functions exist in FAUST’s

analyzers.lib library that could be used to this end; being based

on an FFT implementation that is restricted, however, to a sin-

gle sample hop-size, at the time of writing computational expense

places limits on the calculation of magnitude spectrograms, particu-

larly in a real-time setting.

4.3. Computational Efficiency

On that note, and as alluded to in section 2.1, forward mode is not,

on paper at least, the most efficient choice for automatically differ-

entiating programs with more inputs than outputs. Figure 4 shows

two sets of tangent calculations accompanying each primitive’s pri-

mal operation, and a number of zero signal paths (partial derivatives

of the input signal, for example). Not pictured in figure 4, the most

egregious proliferation of zeros is caused by differentiable numeri-

cal constants; a constant c, is, in dual-signal form, ⟨c,∇c⟩ = ⟨c,0⟩,
or in FAUST:

diff(c) = c,par(i, vars.N, 0);

Of course, a constant may well be followed, for instance, by a

trigonometric function — there is no guarantee that ∇c will not

contribute to a non-zero signal path, thus no scope for optimisation.

That being said, the FAUST compiler is designed with this

sort of optimisation in mind, applying various rewriting rules after

its symbolic propagation phase to simplify expressions and avoid

redundancy [29]. In effect, the compiler will attempt to produce

the most efficient possible FAUST Imperative Representation for

any given FAUST program. Nevertheless, the creation of a gen-

eralisable approach to reverse mode should be explored, and this

too would benefit from compile-time optimisations. Moreover,

forward and reverse mode can be thought of as extremes on a con-

tinuum of derivative propagation options; a combination of these

modes (dubbed cross-country mode), tailored to the structure of the

program being differentiated, would be ideal, though finding the

optimal ordering is deemed a challenge [30].

4.4. A General Pattern-Matching Syntax

Although the differentiable algorithm in listing 6 bears the same

compositional structure as its undifferentiated sibling (listing 3),4

the use of the differentiable environment, coupled with pattern

matching, inevitably leads to the necessity of wrapping primitives in

d.diff(...) notation. d.input too is an unsatisfactory solution

to the problem of there being no simple way, syntactically speaking,

of distinguishing an input signal from an identity function, which,

since they have different derivatives, is a necessity.

Ideally, an approach similar to that taken in physmodels.lib

(as described in section 2.2), whereby expressions are recursively

decomposed, with a base case to handle the desired transformations,

should be employed. In that instance, it would be possible to define

estimate in listing 9 via syntax along the lines of:

estimate = forwardAD(target);

In addition to abstracting away calls to diff(), this could permit

identifying input signals by counting the number of inputs to the

circuit passed to forwardAD. Standing in the way of this idea, how-

ever, are limitations in FAUST’s pattern matching system at the time

of writing, the principal issue being the impossibility of pattern-

matching user interface elements in the general case; i.e., to match

a hslider one needs to match its label exactly, plus the values

provided for init, min, max and step. By way of an alternative,

a strategy based on FAUST’s widget modulation syntax may help

circumvent this problem.

4This is thanks to the quality of the parallel and sequential composition
operators of having no arithmetical influence on the output of the program
— they are analogous to application of the identity function. This is not the
case for merge composition, which, having the effect of summation, would,
in a comprehensive implementation, require a differentiable transformation.
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4.5. Application to Machine Learning

Further to the caveats mentioned in 4.2, the success of the parame-

ter optimisation example presented in this paper is contingent on

the provision of deterministic input data; essentially the example

constitutes an extreme example of overfitting, solving one specific

problem, on one particular set of input data, very well, but possess-

ing no capability to generalise. Nevertheless, it shares its basis, in

the form of differentiable programming, with more sophisticated

applications of mathematical optimisation, chief amongst these

being machine learning.

Using differentiable FAUST primitives it is straightforward to

create differentiable loss functions; activation functions and ar-

tificial neurons (the latter being based on simple linear algebra

principles) could follow without much trouble. Neural network

structures, which support the training of models capable of gen-

eralising to unseen input data, would require significant effort to

implement in a composable, extensible fashion, but it is unlikely

that they lie beyond the capabilities of the language.

5. CONCLUSION

In this paper, it has been shown that differentiable programming

is possible in the FAUST language, and thus that FAUST can be

used to tackle audio problems based on principles of mathematical

optimisation. The presence of a comprehensive automatic differen-

tiation framework in FAUST would lend the language to a multitude

of DDSP problems and applications that currently lie unexplored

by FAUST programmers; in turn, the ability to tackle such problems

in a domain specific language could foster innovation in what is a

vibrant research area.

Aims for further investigation should be the implementation of

differentiation rules for all of the primitives of the language, the

development of a less intrusive syntax for automatic differentiation

transformations, and perhaps enhancements to pattern matching

at the level of the FAUST compiler. An FFT implementation of

greater efficiency, or a novel approach to perceptually-informed

loss computation, would also be of great benefit.
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ABSTRACT

This paper proposes λmmm, a call-by-value, simply typed lambda

calculus-based intermediate representation for a music program-

ming language that handles synchronous signal processing and in-

troduces a virtual machine and instruction set to execute λmmm.

Digital signal processing is represented by a syntax that incorpo-

rates the internal states of delay and feedback into the lambda cal-

culus. λmmm extends the lambda calculus, allowing users to con-

struct generative signal processing graphs and execute them with

consistent semantics. However, a challenge arises when handling

higher-order functions because users must determine whether ex-

ecution occurs within the global environment or during DSP exe-

cution. This issue can potentially be resolved through multi-stage

computation.

1. INTRODUCTION

Many programming languages have been developed for sound and

music; however, only a few possess strongly formalized semantics.

A language that is both rigorously formalized and practical is Faust

[1]; it combines blocks with inputs and outputs with five primitive

operations: parallel, sequential, split, merge, and recursive con-

nection. Almost any type of signal processing can be written in

Faust by providing basic arithmetic, conditionals, and delays as

primitive blocks. In a later extension, a macro based on a term

rewriting system was introduced that allowed users to parameter-

ize blocks with an arbitrary number of inputs and outputs [2].

This strong abstraction capability through formalization en-

ables Faust to be translated into various backends, such as C, C++,

Rust, and LLVM IR. On the other hand, Faust’s Block Diagram

Algebra (BDA) lacks theoretical and practical compatibility with

common programming languages. Although it is possible to call

external C functions in Faust, these functions are assumed to be

pure functions that do not have internal states. Therefore, while it

is easy to embed Faust in another language, it is not easy to call

another language from Faust.

In addition, a macro for Faust is an independent term rewriting

system that generates a BDA based on pattern matching. Conse-

quently, the numeric arguments for pattern matching are implicitly

required to be integers, which can sometimes lead to compile-time

errors despite the fact that BDA does not distinguish between real

and integer types. However, the implicit typing rules are not intu-

itive for novice users.

Proposing a computational model for signal processing based

on more generic computational models such as lambda calculus

has the potential to enable interoperability between many different

general-purpose languages and facilitate the appropriation of ex-

isting optimization methods and the implementation of compilers

and runtimes.

It has been demonstrated that BDA can be converted into a

general-purpose functional language using an arrow, which is a

higher-level abstraction of monads [3]. However, higher-order

functions in general-purpose functional languages are often imple-

mented using dynamic memory allocation and deallocation, mak-

ing them difficult to use in host languages designed for real-time

signal processing.

In addition, Kronos [4] and W-calculus [5] are examples of

lambda calculus-based abstractions influenced by Faust. Kronos

is based on the theoretical foundation of the System-Fω, a varia-

tion of lambda calculus in which the types themselves can be ab-

stracted (i.e., a function that takes a type as input and returns a new

type can be defined). In Kronos, type calculations correspond to

signal graph generation, whereas the value calculations correspond

to actual processing. Delay is the only special primitive operation

in Kronos, and feedback routing can be represented as a recursive

function application in type calculations.

W-calculus includes feedback as a primitive operation, along

with the ability to access the value of a variable from the past (i.e.,

delay). W-calculus restricts systems to those that can represent

linear-time-invariant processes, such as filters and reverberators,

and defines more formal semantics, aiming for automatic proofs

of linearity and the identity of graph topologies.

Previously, the author designed the music programming lan-

guage mimium [6]. By incorporating basic operations such as de-

lay and feedback into the lambda calculus, signal processing can

be concisely expressed while maintaining a syntax similar to that

of general-purpose programming languages. Notably, mimium’s

syntax was designed to resemble the Rust programming language.

An earlier issue with mimium was its inability to compile code

that contained combinations of recursive or higher-order functions

with stateful functions involving delay or feedback because the

compiler could not determine the data size of the internal state

used in signal processing.

In this paper, I propose the syntax and semantics of λmmm, an

extended call-by-value simply typed lambda calculus, as a com-

putational model intended to serve as an intermediate representa-

tion for mimium1. In addition, I propose a virtual machine and its

instruction set, based on Lua’s VM, to execute this computational

model in practice. Finally, I discuss both the challenges and poten-

tial of the current λmmm model, one of which is that users must

differentiate whether a calculation occurs in a global context or

during actual signal processing; the other is that runtime interop-

erability with other programming languages could be easier than

in existing DSP languages.

1The newer version of mimium compiler and VM based on the model
presented in this paper is on the GitHub. https://github.com/

tomoyanonymous/mimium-rs

17



Proceedings of the International Faust Conference (IFC-24), Soundmit, Turin, Italy, November 21-22, 2024

fn onepole(x,g){

x*(1.0-g) + self*g

}

Listing 1: Example of the code of one-pole filter in mimium.

2. SYNTAX

τp ::= R [real]

| N [nat]

τ ::= τp

| τ → τ [function]

Types

vp ::= r r ∈ R

| n n ∈ N

v ::= vp

| cls(λ x.e, E)

Values

e ::= x x ∈ vp [value]

| λx.e [lambda]

| let x = e1 in e2 [let]

| fix x.e [fixpoint]

| e1 e2 [app]

| if (ec) et else ee [if ]

| delay n e1 e2 n ∈ N [delay]

| feed x.e [feed]

|...

Terms

Figure 1: Definition of Types, Values and Terms of the

λmmm(Basic arithmetics are omitted).

The types and terms of λmmm are presented in Figure 1.

Two terms are introduced in addition to the standard simply

typed lambda calculus: delay n e1 e2, which refers to the previous

value of e1 by e2 samples (with a maximum delay of n to limit

memory usage to a finite size), and feed x.e, an abstraction that

allows the user to refer to the result of evaluating e from one time

unit earlier as x during the evaluation of e itself.

2.1. Syntactic Sugar of the Feedback Expression in mimium

The programming language mimium, developed by the author, in-

cludes a keyword self that can be used in function definitions to

refer to the previous return value of the function. An example of

a simple one-pole filter function, which mixes the input and last

output signals such that the sum of the input and feedback gains is

1, is shown in Listing 1. This code can be expressed in λmmm as

illustrated in Figure 2.

let onepole =

λx.λg. feed y. x ∗ (1.0− g) + y ∗ g in ...

Figure 2: Equivalent expression to Listing 1 in λmmm.

2.2. Typing Rules

Γ, x : τa ⊢ e : τb
Γ ⊢ λx.e : τa → τb

T-LAMBDA

Γ ⊢ n:N Γ ⊢ e1:τ Γ ⊢ e2:R

Γ ⊢ delay n e1 e2 : τ

T-DELAY

Γ, x : τp ⊢ e : τp
Γ ⊢ feed x.e : τp

T-FEED

Γ ⊢ ec : R Γ ⊢ et : τ Γ ⊢ ee : τ

Γ ⊢ if (ec) et ee : τ

T-IF

Figure 3: Excerpt of the typing rules for λmmm.

Additional typing rules for typical simply typed lambda calcu-

lus are shown in Figure 3.

The primitive types include a real number type, used in most

signal processing, and a natural number type, used for the indices

of delay.

In W-calculus, which directly inspired the design of λmmm,

the function types can only take tuples of real numbers and return

tuples of real numbers. This restriction prevents the definition of

higher-order functions. While this limitation is reasonable for a

signal processing language—since higher-order functions require

data structures such as closures that depend on dynamic memory

allocation—it also reduces the generality of lambda calculus.

In λmmm, the problem of memory allocation for closures is

delegated to runtime implementation (see Section 4), which allows

the use of higher-order functions. However, feed abstraction does

not permit function types to be either input or output. Allowing

function types in the feed abstraction enables the definition of

functions whose behavior could change over time. While this is

theoretically interesting, there are no practical examples in real-

world signal processing, and such a feature would likely further

complicate the implementation.

3. SEMANTICS

An excerpt of the operational semantics for λmmm is shown in

Figure 4. This big-step semantics conceptually explains the evalu-

ation process. When the current time is n, the evaluation environ-

ment from t prior samples can be referred to as En−t. If the time

is less than 0, any term is evaluated as the default value of its type

(0 for numeric types).

Naturally, if we attempt to execute these semantics directly, we

would need to recalculate from time 0 to the current time for every

sample, saving all the variable environments at each step. How-

ever, in practice, a virtual machine is defined to account for the

internal memory space used by delay and feed, and λmmm terms

are compiled into instructions for this machine before execution.

4. VM MODEL AND INSTRUCTION SET

The virtual machine (VM) model and its instruction set for running

λmmm are based on Lua version 5 VM [7].

A key challenge when executing a computational model based

on lambda calculus is handling the data structure, which is known

as a closure. A closure captures the variable environment in which

the inner function is defined, allowing it to refer to the variables
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En ⊢ e2 ⇓ vd n > vd En−vd ⊢ e1 ⇓ v

En ⊢ delay n e1 e2 ⇓ v

E-DELAY

En ⊢ λx.e ⇓ cls(λx.e, En)

E-LAM

En−1 ⊢ e ⇓ vf En, x 7→ vf ⊢ e ⇓ v

En ⊢ feed x.e ⇓ v

E-FEED

En ⊢ ec ⇓ n n > 0 En ⊢ et ⇓ v

En ⊢ if(ec) et else ee ⇓ v

E-IFTRUE

En ⊢ ec ⇓ n n ≦ 0 En ⊢ ee ⇓ v

En ⊢ if(ec) et else ee ⇓ v

E-IFFALSE

En ⊢ e1 ⇓ cls(λxc.ec, E
n
c )E

n ⊢ e2 ⇓ v2 En
c , xc 7→ v2 ⊢ ec ⇓ v

En ⊢ e1 e2 ⇓ v

E-APP

Figure 4: Excerpt of the big-step semantics of λmmm.

from the outer function’s context. If the inner function is paired

with a dictionary of variable names and values, the compiler (or

interpreter) implementation is straightforward; however, the run-

time performance is limited.

Conversely, the runtime performance can be improved using a

process called closure conversion (or lambda lifting). This process

analyzes all the outer variables referenced by the inner function

and transforms the inner function by adding arguments; thus, the

outer variables can be referred to explicitly. However, the imple-

mentation of this transformation in the compiler is relatively com-

plex.

The Lua VM adopts a middle-ground approach between these

two methods by adding the VM instructions GETUPVALUE and

SETUPVALUE, which allow the outer variables to be dynamically

referenced at runtime. The implementation of the compiler and

VM using upvalues is simpler than full closure conversion while

still avoiding significant performance degradation. In this approach,

the outer variables are accessed via the call stack rather than the

heap memory unless the closure escapes the context of the origi-

nal function [8].

In addition, upvalues facilitate interoperability with other pro-

gramming languages. Lua can be easily embedded through its C

API, and when implementing external libraries in C, programmers

can access the upvalues of the Lua runtime, not just the stack val-

ues available via the C API.

4.1. Instruction Set

The VM instructions for λmmm differ from those for the Lua VM

in the following aspects:

1. Since mimium is a statically typed language, unlike Lua,

instructions for basic arithmetic operations are provided for

each type2.

2. The call operation is split into normal function calls and clo-

sure calls owing to the static typing and to manage higher-

order stateful functions (see 4.2 for details).

3. Conditional statements are implemented using a combina-

tion of two instructions, JMP and JMPIFNEG, whereas the

Lua VM employs a dedicated TEST instruction.

2In the actual implementation, instructions such as MOVE include an
additional operand to specify the word size of values, particularly for han-
dling aggregate types like tuples.

4. Instructions related to for-loops, the SELF instruction used

in object-oriented programming, and the TABLE-related in-

structions for metadata references to variables are omitted

in mimium as they are unnecessary.

5. Instructions related to list-like data structures are also ex-

cluded from this paper, as the implementation of data struc-

tures such as tuples and arrays is outside the scope of the

λmmm description here.

The VM for λmmm operates as a register machine similar to

the Lua VM (post version 5). However, unlike traditional regis-

ter machines, it does not employ physical registers. Instead, the

register number simply refers to an offset index on the call stack

relative to the base pointer during VM execution. The first operand

of most instructions specifies the register number where the result

of the operation is stored.

A list of instructions is presented in Figure 5 (basic arithmetic

operations are partially omitted). The notation for the instruc-

tions follows the format outlined in the Lua VM documentation

[7, p.13]. The operation name, list of operands, and pseudocode

of the operation are displayed from left to right. When each of the

three operands is used as an unsigned 8-bit integer, it is represented

as A B C. If an operand is used as a signed integer, then it is pre-

fixed with s. When the two operand fields are combined into a

16-bit value, the suffix x is added. For example, when B and C are

merged and treated as a signed 16-bit value, they are represented

as sBx.

In the pseudocode, R(A) denotes the data being moved in and

out of the register (or call stack) at the base pointer + A for the

current function. K(A) refers to the A-th entry in the static vari-

able section of the compiled program, and U(A) accesses the A-th

upvalue of the current function.

In addition to Lua’s upvalue operations, four new operations—

GETSTATE, SETSTATE, SHIFTSTATE, and DELAY—have been

introduced to handle the compilation of the delay and feed ex-

pressions in λmmm.

4.2. Overview of the VM Structure

The overall structure of the virtual machine program, and instanti-

ated closures for λmmm is depicted in Figure 6. In addition to the

usual call stack, the VM has a dedicated storage area (a flat array)

to manage the internal state data for feedback and delay.
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MOVE A B R(A) := R(B)

MOVECONST A B R(A) := K(B)

GETUPVALUE A B R(A) := U(B)

(SETUPVALUE does not exist)

GETSTATE* A R(A) := SPtr[SPos]

SETSTATE* A SPtr[SPos] := R(A)

SHIFTSTATE* sAx SPos += sAx

DELAY* A B C R(A) := update_ringbuffer(SPtr[SPos],R(B),R(C))

*(SPos,SPtr)= vm.closures[vm.statepos_stack.top()].state

(if vm.statepos_stack is empty, use global state storage.)

JMP sAx PC +=sAx

JMPIFNEG A sBx if (R(A)<0) then PC += sBx

CALL A B C R(A),...,R(A+C-2) := program.functions[R(A)](R(A+1),...,R(A+B-1))

CALLCLS A B C vm.statepos_stack.push(R(A))

R(A),...,R(A+C-2) := vm.closures[R(A)].fnproto(R(A+1),...,R(A+B-1))

vm.statepos_stack.pop()

CLOSURE A Bx vm.closures.push(closure(program.functions[R(Bx)]))

R(A) := vm.closures.length - 1

CLOSE A close stack variables up to R(A)

RETURN A B return R(A), R(A+1)...,R(A+B-2)

ADDF A B C R(A) := R(B) as float + R(C) as float

SUBF A B C R(A) := R(B) as float - R(C) as float

MULF A B C R(A) := R(B) as float * R(C) as float

DIVF A B C R(A) := R(B) as float / R(C) as float

ADDI A B C R(A) := R(B) as int + R(C) as int

...Other basic arithmetic continues for each primitive types...

Figure 5: Instruction sets for VM to run λmmm.

This storage area is accompanied by pointers that indicate the

positions from which the internal state data are retrieved via the

GETSTATE and SETSTATE instructions. These positions are shi-

fted forward or backward using the SHIFTSTATE instruction.

The actual data layout in the state storage memory is statically

determined during compilation by analyzing function calls involv-

ing references to self, delay, and other stateful functions, in-

cluding those that recursively invoke such functions. The DELAY

operation takes two inputs: B, representing the input value, and C,

representing the delay time in the samples.

However, for higher-order functions—functions that take an-

other function as an argument or return one—the internal state

layout of the passed function is unknown at compile time. Con-

sequently, a separate internal state storage area is allocated to each

instantiated closure, which is distinct from the global storage area

maintained by the VM instance. The VM also uses an additional

stack to keep track of the pointers in the state storage of instanti-

ated closures. Each time a CALLCLS operation is executed, the

VM pushes the pointer from the state storage of the closure onto

the state stack. Upon completing the closure call, the VM pops the

state pointer off the stack.

Instantiated closures also maintain their own storage areas for

upvalues. Until a closure exits the context of its parent function

(known as an “Open Closure”), its upvalues hold a negative offset

that references the current execution’s stack. This offset is deter-

mined at compile time and stored in the function’s prototype in the

program. Furthermore, an upvalue may reference not only local

variables but also upvalues from the parent function (a situation

that arises when at least three functions are nested). Thus, the ar-

ray of upvalue indices in the function prototype stores a pair of

values: a tag indicating whether the value is a local stack variable

or an upvalue from a parent function and the corresponding index

(either the negative stack offset or the parent function’s upvalue

index).

For example, consider a scenario where the upvalue indices

in the program are specified as [upvalue(1), local(3)].

In this case, the instruction GETUPVALUE 6 1 indicates that the

value located at index 3 from the upvalue list (referenced by

upvalue(1)) should be retrieved from R(-3) relative to the

base pointer, and the result should be stored in R(6).

When a closure escapes its original function context through

the RETURN instruction, the inserted CLOSE instruction moves the

active upvalues from the stack to heap memory. These upvalues

may be referenced from multiple locations, particularly in cases

involving nested closures. Thus, a garbage collection mechanism

is required to free memory once these upvalues are no longer in

use.

In λmmm’s VM, since the paradigm is call-by-value and there

is no reassignment expression, the SETUPVALUE instruction is

omitted. If reassignment is allowed, open upvalues would need to

be implemented as shared memory cells, as the values might be

accessed by multiple closures that could trigger a CLOSE opera-

tion.

4.3. Compilation to the VM Instructions

Listing 2 shows a basic example of how the mimium code

in Listing 1 is compiled into VM bytecode. When self is ref-

erenced, the value is retrieved using the GETSTATE instruction,

and the internal state is updated by storing the return value with

the SETSTATE instruction before returning it via the RETURN in-

struction. In this case, the actual return value is obtained using the
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Figure 6: Overview of the virtual machine, program and instantiated closures for λmmm.

CONSTANTS:[1.0]

fn onepole(x,g) state_size:1

MOVECONST 2 0 // load 1.0

MOVE 3 1 // load g

SUBF 2 2 3 // 1.0 - g

MOVE 3 0 // load x

MULF 2 2 3 // x * (1.0-g)

GETSTATE 3 // load self

MOVE 4 1 // load g

MULF 3 3 4 // self * g

ADDF 2 2 3 // compute result

GETSTATE 3 // prepare return value

SETSTATE 2 // store to self

RETURN 3 1

Listing 2: Compiled VM instructions of one-pole filter example in

Listing 1

second GETSTATE instruction, which ensures that the initial state

value is returned at time = 0.

For example, if a time counter is written as feedx.x + 1, the

decision on whether the return value at time = 0 should be 0 or 1 is

left to the compiler design. Although returning 1 does not strictly

follow the semantics of E-FEED in Figure 4, if the compiler is

designed to return 1 at time = 0, the second GETSTATE instruction

can be omitted, and the value for the RETURN instruction should

be R(2).

A more complex example, along with its expected bytecode

instructions, is shown in Listings 3 and 4. The code defines a delay

with feedback as fbdelay, while another function, twodelay,

uses two feedback delays with different parameters. Finally, dsp

uses two twodelay functions.

After each reference to self through the GETSTATE instruc-

tion or after calling another stateful function, the SHIFTSTATE

instruction is inserted to advance the state storage position in prepa-

ration for the next non-closure function call. Before the function

exits, the state position is reset to where it was at the beginning

of the current function context using the SHIFTSTATE instruc-

tion. The total operand value for SHIFTSTATE within a function

must always sum to 0. Figure 7 illustrates how the state position

shifts with the SHIFTSTATE operations during the execution of

the twodelay function. The argument for the SHIFTSTATE op-

eration is a word size (a number of 64 bit values) and the word size

for delay is maximum delay time + 3 since the read index,
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fn fbdelay(x,fb,dtime){

x + delay(1000,self,dtime)*fb

}

fn twodelay(x,dtime){

fbdelay(x,dtime,0.7)

+fbdelay(x,dtime*2,0.8)

}

fn dsp(x){

twodelay(x,400)+twodelay(x,800)

}

Listing 3: Example code that combines self and delay without

closure call.

write index and the length of the ring buffer are added.

The state data can be stored as a flat array by representing

the internal state as a relative position within the state storage,

thereby simplifying compiler implementation; this avoids the need

to generate a tree structure from the root, which was required in

the previous implementation of mimium. This approach is similar

to how upvalues simplify the compiler implementation by treating

free variables as relative positions on the call stack.

Ring Buffer for 

delay 1

State for self
2
Ring Buffer for 

delay 2

State for self
1 1

2

3

4

5

Figure 7: Image of how the state position moves while executing

twodelay function in Listing 4.

Listing 5 shows an example of a higher-order function

filterbank, which takes another function filter—accepting

an input and a frequency as arguments—duplicates n instances of

filter and adds them together3.

The previous mimium compiler was unable to compile code

that took a function with an internal state as an argument because

the entire tree of internal states had to be statically determined at

compile time. However, the VM in λmmm can handle this dy-

namically. Listing 6 shows the translated VM instructions for

this code. Recursive calls on the first line of filterbank, as

well as calls to functions passed as arguments or obtained through

3In the previous specification of mimium [6], the syntax for the variable
binding and destructive assignment was the same (x = a). However, in
the current syntax, variable binding uses the let keyword.

CONSTANTS:[0.7,2,0.8,400,800,0,1]

fn fbdelay(x,fb,dtime) state_size:1004

MOVE 3 0 //load x

GETSTATE 4 //load self

SHIFTSTATE 1 //shift Spos

DELAY 4 4 2 //delay(_,_,_)

MOVE 5 1 // load fb

MULF 4 4 5 //delayed val *fb

ADDF 3 3 4 // x+

SHIFTSTATE -1 //reset SPos

GETSTATE 4 //prepare result

SETSTATE 3 //store to self

RETURN 4 1 //return previous self

fn twodelay(x,dtime) state_size:2008

MOVECONST 2 5 //load "fbdelay"

prototype

MOVE 3 0

MOVE 4 1

MOVECONST 5 0 //load 0.7

CALL 2 3 1

SHIFTSTATE 1004 //1004=state_size of

fbdelay

MOVECONST 3 5 //load "fbdelay"

prototype

MOVE 4 0

MOVECONST 5 1 //load 2

MULF 4 4 5

MOVECONST 5 0 //load 0.7

CALL 3 3 1

ADDF 3 3 4

SHIFTSTATE -1004

RETURN 3 1

fn dsp (x)

MOVECONST 1 6 //load "twodelay"

prototype

MOVE 2 0

MOVECONST 3 3 //load 400

CALL 1 2 1

SHIFTSTATE 2008

MOVECONST 2 6 //load "twodelay"

prototype

MOVE 2 3

MOVE 3 0

MOVECONST 3 4 //load 400

CALL 2 2 1

ADD 1 1 2

SHIFTSTATE -2008

RETURN 1 1

Listing 4: Compiled VM instructions of feedback delay example in

Listing 3
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fn bandpass(x,freq){

//...

}

fn filterbank(n,filter_factory:()->(float,

float)->float){

if (n>0){

let filter = filter_factory()

let next = filterbank(n-1,

filter_factory)

|x,freq| filter(x,freq+n*100)

+ next(x,freq)

}else{

|x,freq| 0

}

}

let myfilter = filterbank(3,| | bandpass)

fn dsp(){

myfilter(x,1000)

}

Listing 5: Example code that duplicates filter parametrically using

a recursive function and closure.

upvalues (like filter), are executed using the CALLCLS in-

struction rather than the CALL instruction. The GETSTATE and

SETSTATE instructions are not used in this function because the

internal state storage is switched dynamically when the CALLCLS

instruction is interpreted.

5. DISCUSSION

As demonstrated in the example of the filterbank, in λmmm, a

signal graph can be parametrically generated during the evaluation

of the global context, whereas Faust uses a term-rewriting macro

and Kronos employs type-level computation, as shown in Table 1.

The ability to describe both the generation of parametric sig-

nal processing and its execution content within single semantics

makes it easier for novice users to understand the mechanics of

the language. In addition, unified semantics may simplify runtime

interoperability with other general-purpose languages.

However, there is a drawback: unified semantics can cause

λmmm to deviate from the behavior typically expected in standard

lambda calculus.

Parametric Signal Graph Actual DSP

Faust Term Rewriting Macro BDA

Kronos Type-level Computation Value Evaluation

λmmm
Evaluation in

Global Context

Evaluation of

dsp Function

Table 1: Comparison of the way of signal graph generation and

actual signal processing between Faust, Kronos and λmmm.

5.1. Different Behaviour Depending on the Location of Let

Binding

By using functions with internal states that change over time in

mimium, there is counterintuitive behavior when higher-order func-

CONSTANTS[100,1,0,2]

fn inner_then(x,freq)

//upvalue:[local(4),local(3),local(2),

local(1)]

GETUPVALUE 3 2 //load filter

MOVE 4 0

MOVE 5 1

GETUPVALUE 6 1 //load n

ADDD 5 5 6

MOVECONST 6 0

MULF 5 5 6

CALLCLS 3 2 1 //call filter

GETUPVALUE 4 4 //load next

MOVE 5 0

MOVE 6 1

CALLCLS 4 2 1 //call next

ADDF 3 3 4

RETURN 3 1

fn inner_else(x,freq)

MOVECONST 2 2

RETURN 2 1

fn filterbank(n,filter)

MOVE 2 0 //load n

MOVECONST 3 2 //load 0

SUBF 2 2 3

JMPIFNEG 2 12

MOVE 2 1 //load filter_factory

CALL 2 2 0 //get filter

MOVECONST 3 1 //load itself

MOVE 4 0 //load n

MOVECONST 5 1 //load 1

SUBF 4 4 5

MOVECONST 5 2 //load inner_then

CALLCLS 3 2 1 //recursive call

MOVECONST 4 2 //load inner_then

CLOSURE 4 4 //load inner_lambda

JMP 2

MOVECONST 4 3 //load inner_else

CLOSURE 4 4

CLOSE 4

RETURN 4 1

Listing 6: Compiled VM instructions filterbank example in Listing

5
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fn filterbank(n,filter){

if (n>0){

|x,freq| filter(x,freq+n*100)

+ filterbank(n-1,filter)(x,freq)

}else{

|x,freq| 0

}

}

fn dsp(){

filterbank(3,bandpass)(x,1000)

}

Listing 7: Wrong example of the code that duplicate filter

parametrically.

tions are used compared to general functional programming lan-

guages.

Listing 7 presents an example of incorrect code that is slightly

modified from the filterbank example in Listing 5. The main dif-

ference between Listing 7 and Listing 5 is whether the recursive

calls in the filterbank function are written directly or bound

using a let expression outside the inner function. Similarly, in the

dsp function, which is called by the audio driver in mimium, the

difference lies in whether the filterbank function is executed

within dsp or bound with let once in the global context.

In a typical functional programming language, if none of the

functions in the composition involve destructive assignments, the

calculation process remains unchanged even if the variable bound

by let is replaced with its term (via beta reduction), as seen in

the transformation from Listing 7 to Listing 5.

However, in mimium, there are two distinct stages of evalua-

tion. 0: The code is first evaluated in a global environment (where

the signal-processing graph is concretized). 1: The dsp function

is executed repeatedly (handling the actual signal processing) and

may involve implicit updates to the internal states.

Although the code contains no destructive assignments, the re-

cursive execution of the filterbank function occurs only once

in Listing 5 during the global environment evaluation. Conversely,

in Listing 7, the recursive function is executed, and a closure is

generated each time the dsp function runs on every sample. Be-

cause the internal state of the closure is initialized at the time of

closure allocation, in the example of Listing 7, the internal state of

the closure is reset at each time step, following the evaluation of

filterbank.

This implies that major compiler optimization techniques, such

as constant folding and function inlining, cannot be directly ap-

plied to mimium. These optimizations must be performed after

global context evaluation and before the evaluation of the dsp

function.

To address this issue, it is necessary to introduce a distinction

in the type system to indicate whether a term should be used dur-

ing global context evaluation (stage 0) or actual signal processing

(stage 1). This can be achieved with Multi-Stage Computation [9].

Listing 8 provides an example of the filterbank code using

BER MetaOCaml’s syntax: .<term>., which generates a pro-

gram to be used in the next stage, and ~term, which embeds the

terms evaluated in the previous stage [10].

The filterbank function is evaluated in stage 0 while em-

bedding itself with ~. In contrast to Faust and Kronos, this multi-

fn filterbank(n,filter:&(float,float)->

float)->&(float,float)->float{

.< if (n>0){

|x,freq| ~filter(x,freq+n*100)

+ ~filterbank(n-1,filter)(x,freq)

}else{

|x,freq| 0

} >.

}

fn dsp(){

~filterbank(3,.<bandpass>.)(x,1000)

}

Listing 8: Example of filterbank function using multi-stage

computation in a future specification of mimium.

stage computation code retains the same semantics for both the

generation of the signal processing graph and the execution of sig-

nal processing.

5.2. A Possibility of the Foreign Stateful Function Call

The closure data structure in λmmm combines functions with the

internal states, as shown in Figure 3. The fact that filterbank

samples do not require special handling for internal states means

that external signal processors (Unit Generators: UGens), such as

oscillators and filters written in C or C++, can be called from mim-

ium, just like normal closure calls. Additionally, it is possible to

parameterize, duplicate, and combine external UGens4. This capa-

bility is difficult to implement in Faust and similar languages but

is easily achievable in the λmmm paradigm.

However, mimium currently uses sample-by-sample process-

ing and cannot handle buffer-by-buffer value passing. Because

most native unit generators process data on a buffer-by-buffer ba-

sis, there are few practical cases where external UGens are cur-

rently used. Nonetheless, in λmmm, only feed terms require

sample-by-sample processing. Therefore, it is possible to differ-

entiate the functions that can process only one sample at a time

from those that can process concurrently at the type level. As the

multi-rate specification is being considered in Faust [11], it may be

possible to facilitate buffer-based processing between an external

Unit Generator by having the compiler automatically determine

the parts that can be processed buffer-by-buffer.

6. CONCLUSION

This paper proposed λmmm, an intermediate representation for

programming languages for music and signal processing, along

with a virtual machine and an instruction set to execute it. λmmm

enables the description of generative signal graphs and their con-

tents within a unified syntax and semantics. However, users are

responsible for ensuring that their code does not create escapable

closures during the iterative execution of a DSP, which can be chal-

lenging for novice users to grasp.

In this paper, the translation of λmmm terms into VM instruc-

tions was illustrated by showing examples of code and the corre-

4In fact, in the actual implementation of mimium, an interoperation
between VM and audio driver is realized by passing and calling Rust’s
closure.
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sponding expected bytecode alongside pseudocode to describe the

behavior of the VM. More formal semantics and a detailed transla-

tion process should be considered, particularly with the introduc-

tion of multi-stage computation.

I hope that this research will contribute to more general rep-

resentations of music and sound on digital computers and foster

deeper connections between the theory of languages for music and

the broader field of programming language theory.
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ABSTRACT

This paper provides an overview of the developments in the

FAUST programming language and ecosystem since the 2022 In-

ternational FAUST Conference. Over the past two years, the

FAUST community has made significant progress in compiler en-

hancements, backend integrations, web-based tools, a new Widget

Modulation language extension, and FPGA support for audio DSP

compilation.

The Emeraude team, a collaboration between Inria, GRAME-

CNCM, and INSA Lyon, started its work in March 2022 and has

strengthened FAUST’s development and application in academic

and industrial contexts.

Additionally, a reflective process and proposed consortium

aim to empower the user community in guiding FAUST’s future

direction.

The paper also explores several industrial applications, high-

lighting the practical impact and versatility of the FAUST ecosys-

tem.

1. INTRODUCTION

The FAUST programming language and its ecosystem are key tech-

nological components used by the Emeraude team, particularly in

the Syfala project, as discussed in §3.4.1.

Furthermore, a reflective process, presented in §2, has been

initiated to strengthen the FAUST project, with plans to establish a

FAUST consortium, aiming to provide the user community with a

significant role in shaping the future of the project.

FAUST has made significant strides in compiler developments,

backends integration, and community projects. Highlights in §3

include:

• New Backends: integration within JAX, JSFX, Cmajor, and

RNBO, enhancing FAUST’s versatility across various DSP

contexts.

• Widget Modulation: enabling developers to effortlessly im-

plement voltage control type modulation to existing Faust

circuits.

• Web Developments: introduction of the faustwasm and

faust-web-component packages, modernization of

the FAUST IDE, Editor, and Playground for easier web-

based DSP integration and update WAM 2.0 plugin model.

• FPGA Support: the Emeraude team’s work on providing

an audio DSP compilation flow for FPGA platforms, Linux

support for Syfala, and development of multichannel audio

boards.

Finally, several of the main industrial applications of the

FAUST ecosystem are presented in §4.

2. THE FAUST COMMUNITY

2.1. FAUST Consortium

The FAUST project is an open-source initiative hosted on GitHub 1

and freely accessible to the public. While the community has sig-

nificantly enriched the ecosystem with architecture files, libraries,

and more, contributions to the language design and the compiler

itself have been minimal so far.

The aim of the FAUST consortium is to give the FAUST user

community a stake in the future of FAUST, by giving them the op-

portunity to see how the language will evolve, and to take an active

part in the decision-making process, in particular the development

of the roadmap.

Another goal of the FAUST consortium is to gather financial

resources to ensure the maintenance and development of FAUST in

the years to come.

Here’s the current state of our thinking and the resulting pro-

posals, bearing in mind that this is an ongoing endeavour that still

needs some work.

2.1.1. Consortium Members

The FAUST Consortium is made up of several categories of mem-

bers, according to their financial contribution to the Consortium,

which determines their level of Membership, and consequently

their rights in the running of the Consortium. The different cat-

egories are as follows:

• Guest member

• Paying member: platinum, gold, silver

Their rights and obligations will be defined in a “FAUST Con-

sortium Contract” document proposed by InriaSoft 2.

2.1.2. Consortium Organization

The consortium is supported by two governing bodies:

• the Annual General Meeting (AGM)

• the Scientific and Technical Committee (STC).

2.1.3. Annual General Meeting

The General Meeting is the governing body that ensures the

smooth running of the FAUST consortium. At its annual meeting:

1https://github.com/grame-cncm/faust
2https://www.inria.fr/fr/inriasoft-pour-la\

-diffusion-des-logiciels-open-source
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• It examines the state of the ecosystem and makes recom-

mendations on future directions and work priorities;

• It examines the consortium’s financial situation and ap-

proves the annual budget;

• It sets work priorities for the various elements of the

roadmap drawn up by the Scientific and Technical Com-

mittee;

• It coordinates communication and promotional activities,

such as the International FAUST Conference (IFC).

2.1.4. Scientific and Technical Committee

The Scientific and Technical Committee defines the roadmap for

the evolution of the compiler and the various tools that make up its

ecosystem:

• It is responsible for the official specification of the FAUST

language and its evolution;

• It proposes a reference implementation of the compiler,

compliant with this specification, and regularly publishes

this implementation officially;

• It issues certificates of conformity for any third-party im-

plementations of the compiler to this specification;

• It defines and maintains the standard FAUST libraries, as

well as various development tools that are part of the FAUST

ecosystem;

• It maintains a set of basic architecture files;

• It develops the language’s official documentation and teach-

ing resources;

• It manages the language’s official websites and related Git

repositories.

The STC is made up of a technical manager appointed by Inria,

members of the Emeraude team working on FAUST, and possibly

one or two representatives of the members. Consortium members

are invited to suggest topics for the agenda of STC meetings.

2.1.5. Drawing Up the Roadmap

The roadmap defines short and medium-term developments for the

language, the compiler and the various tools in the FAUST ecosys-

tem. A first, fairly broad version is drawn up by the STC, based on

proposals from the FAUST community and consortium members.

In particular, the STC assesses the feasibility and labor costs of the

various points, and proposes an initial ranking according to their

importance and dependence.

The General Assembly selects and prioritizes the items to be

included in the roadmap from the STC’s proposals. It ensures that

the necessary workload does not exceed 50% of the consortium’s

available human resources. The roadmap is then officially adopted

by the General Assembly in a vote in which each member has a

number of votes corresponding to its level of membership.

2.2. Communication Channels

The now automomous FAUST Discord channel 3 is an active and

dynamic online community space dedicated to users, developers.

3https://faust.grame.fr/community/help/

#faust-on-discord

This platform serves as a hub for real-time communication, col-

laboration, and support, fostering a sense of community among

members with varying levels of expertise (see Figure 1).

Figure 1: The Faust Discord channel.

2.3. The “Powered by FAUST” Page

A page listing all the significant “Powered by FAUST” projects is

maintained: musical pieces or artistic projects, plugins, standalone

applications, integration in audio programming environments, de-

velopment tools, research projects, embedded devices, Web appli-

cations, etc. are listed.

This page is regularly enriched and as of July 2024, more than

250 projects are described (see Figure 2).

Figure 2: Excerpt of the “Powered by Faust” list.

3. DEVELOPMENTS

3.1. New Backends

Four new backends have been developed. They allow us to use

FAUST DSP programs with a larger set of targets in new applica-

tions, or to reach new communities.
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3.1.1. JAX

The introduction of the JAX backend opens up a new domain of

exploration for FAUST, significantly expanding its capabilities and

potential applications, especially in the field of machine learning.

JAX is a library for high-performance numerical computing,

particularly popular in the machine learning research community

for its flexibility in model development and its capability to handle

complex mathematical operations efficiently. It extends the capa-

bilities of NumPy by enabling automatic differentiation, allowing

us to compute gradients of functions with respect to their inputs.

JAX also supports just-in-time (JIT) compilation to highly opti-

mized machine code, which significantly improves performance

for numerical routines. It supports the creation and training of

neural networks through libraries built on top of it, like Flax and

Haiku.

With the assistance of GRAME, David Braun has contributed

a JAX backend allowing for the direct creation of differentiable

FAUST programs for potential uses in machine learning applica-

tions. It is designed to be used within DawDreamer 4, an audio-

processing Python framework that supports core DAW features

and more, also developed by David Braun.

Several Flax examples with a learnable low-pass filter, a

differentiable subtractive synthesizer, a differentiable polyphonic

wavetable synthesizer whose wavetables are learnable, as well as

a parametric equalizer written in FAUST to a QDax environment,

have been explored 5.

3.1.2. JSFX

Developed by Cockos, the creators of Reaper, JSFX 6 is a scripting

language which allows users to extend the capabilities of the DAW

with custom audio and MIDI processing scripts adapted to their

specific needs.

With the assistance of GRAME, Johann Philippe has con-

tributed a backend enabling the creation of synthesizers and ef-

fects with MIDI control, as well as polyphonic MIDI-controllable

audio plugins. Following the standard JSFX file structure, sev-

eral @init, @block, @slider and @sample blocks are filled

with the appropriate part of the generated FAUST code. The re-

sult is self-contained, with the architecture part directly inserted

by the backend (even the voices allocation and MIDI control in

polyphonic mode), allowing it to be loaded and executed in Reaper

seamlessly. A comprehensive tutorial has been written. 7

3.1.3. Cmajor

Cmajor is a C like procedural high-performance language specifi-

cally designed for audio processing providing a runtime with dy-

namic LLVM JIT based compilation. Cmajor is intended to com-

plete other technologies like C++, JUCE, and CLAP, and also sup-

port Web export. DSP is deployed with Cmajor as a patch, which

includes a description of the plugin, the source code for the DSP,

and an associated GUI implemented in JavaScript. The language

supports a signal flow through a graph structure with nodes con-

taining implementations of specific DSP building blocks.

4https://github.com/DBraun/DawDreamer
5https://github.com/DBraun/DawDreamer/tree/

main/examples
6https://www.reaper.fm/sdk/js/js.php
7https://faustdoc.grame.fr/tutorials/jsfx/

A Cmajor backend has been written to generate a processor

from a FAUST DSP program. Parameters such as sliders, buttons,

and bar graphs correspond to Cmajor’s concept of input and output

events. The actual sample computation code is generated within

the essential run() function.

A faust2cmajor script enables the creation of ready-to-

use Cmajor patches, which can be directly executed with the cmaj

runtime, or possibly exported as C++, or JUCE, CLAP, Web plu-

gins. The script supports both regular DSP programs and poly-

phonic MIDI-controllable programs. A comprehensive tutorial has

been written. 8

3.1.4. RNBO

RNBO is a library and toolchain that can take Max-like patches,

export them as portable code, and directly compile that code to

targets like a VST, a Max External, or a Raspberry Pi.

FAUST programs can be compiled to the internal codebox~

sample level scripting language. In this model, several sections

are generated for parameter definitions, DSP state construction,

initialization, the control function (called once per block), and

finally, the compute function (called at audio rate).

The faust2rnbo tool transforms a FAUST DSP program

into a RNBO patch containing a rnbo~ object and including

the codebox code (generated using the codebox backend) as a

subpatch. Needed audio inputs/outputs and parameters (with the

proper name, default, min and max values) are automatically

added in the patch. Additional options allow us to generate a spe-

cific version of the RNBO patch used in the testing infrastructure.

The code is written in Python and uses the very powerful py2max
9 library to generate the maxpat JSON format.

The script supports both regular DSP programs and poly-

phonic MIDI-controllable programs. A comprehensive tutorial has

been written. 10

3.2. Widget Modulation

An extension to the FAUST programming language, Widget Modu-

lation, has been recently developed. Inspired by Modular Synthe-

sizer, this extension enables developers to effortlessly implement

voltage control type modulation to existing Faust circuits.

Although signal modulation can traditionally be achieved by

writing the necessary code during circuit development, Widget

Modulation expressions enable it a posteriori, after the circuit has

been developed and without modifying its code. This feature al-

lows for direct reuse and customization without prior planning by

the original circuit designer. It offers a new level of expressivity

and flexibility in FAUST circuit design. A separate paper on the

subject has been proposed to IFC 2024 [7].

3.3. Web-Related Developments

The development of the FAUST to Web glue code started in 2014,

initially as a collection of JavaScript files. To streamline mainte-

nance and facilitate future development, the compiler’s C++ export

layer has been modernized using the Embind model, 11 which is

8https://faustdoc.grame.fr/tutorials/cmajor/
9https://github.com/shakfu/py2max

10https://faustdoc.grame.fr/tutorials/rnbo/
11https://emscripten.org/docs/porting/

connecting_cpp_and_javascript/embind.html
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part of the Emscripten compiler.12 Additionally, the FAUST to We-

bAudio glue code has been completely restructured and rewritten

in TypeScript, developed and distributed as a separated npm pack-

age. Several projects have been developed using this new frame-

work, demonstrating its robust performance and ease of integra-

tion.

3.3.1. The faustwasm Package

The FaustWasm library 13 provides a user-friendly high-level API

that wraps around the FAUST compiler. While the interface is pri-

marily tailored for TypeScript, it also includes API descriptions

and documentation for pure JavaScript users. This WebAssembly

version of the FAUST Compiler, suitable for both Node.js and web

browsers, has been compiled with Emscripten 3.1.31.

The library enables the compilation of FAUST DSP code into

WebAssembly, allowing it to be used as WebAudio nodes within a

standard WebAudio node graph. It also supports offline rendering

scenarios. Additionally, tools are available for generating SVGs

from FAUST DSP programs.

Users can create “mono” synthesizer and effect nodes, as well

as polyphonic nodes. MIDI support is automatically activated

when MIDI metadata is included in the DSP code for mono nodes,

and is always enabled in polyphonic mode.

Sensors (accelerometer and gyroscope) are supported, as well

as the Progressive Web Application model, so playable instru-

ments to be used on smartphones and tablets can be easily de-

ployed.

3.3.2. Modernized Faust IDE, Faust Editor and FaustPlay-

ground

As the main outcomes of Ian Clester’s Google Summer of Code

2023 projects, 14 the three FAUST IDE, FAUST Editor and Faust-

Playground projects have been modernized with updated build

tools, and the use of the faustwasm package.

3.3.3. faust-web-component

Another outcome of Ian Clester’s Google Summer of Code project

is the faust-web-component 15 package which provides two

web components for embedding interactive FAUST snippets in web

pages:

• <faust-editor> displays an editor (using CodeMirror

6) with executable, editable FAUST code, along with some

bells & whistles (controls, block diagram, plots) in a side

pane. This component is ideal for demonstrating some code

in FAUST and allowing the reader to try it out without hav-

ing to leave the page.

• <faust-widget> just shows the controls and does not

allow editing, so it serves simply as a way to embed inter-

active DSP, and can been tested here.

These components are built on top of faustwasm and

faust-ui 16 packages and are released as an npm package.

12https://emscripten.org/index.html
13https://github.com/grame-cncm/faustwasm
14https://ijc8.me/2023/08/27/gsoc-faust/
15https://github.com/grame-cncm/

faust-web-component
16https://github.com/Fr0stbyteR/faust-ui

3.3.4. Web Audio Module (WAM) 2.0

In 2015, Jari Kleimola and Olivier Larkin proposed Web Audio

Modules (WAM), a standard for Web Audio plugins and DAWs.

The 2.0 version [1], released in 2021, was a collaborative effort in-

volving many contributors, resulting in multiple open source and

free software plugins and hosts. WAM 2.0 includes an SDK, an

abstract API, numerous open source repositories with various plu-

gins, tutorials, and several hosts demonstrating WAM capabili-

ties. The design of WAM 2.0 aimed to support diverse devel-

opment workflows, from web developers using plain JavaScript,

React developers, to C/C++ developers cross-compiling code to

WebAssembly.

WAM 2.0 [2] plugins can be developed using FAUST and eas-

ily generated using the FAUST IDE 17, with the adapted targets 18.

3.4. Emeraude Team Projects

The Emeraude team is continuing its work on the FAST ANR

project 19, initiated in 2021. This project aims to facilitate high-

level programming of FPGA-based platforms for multichannel

ultra-low-latency audio processing using FAUST.

3.4.1. Syfala: Compilation of Audio DSP on FPGA

The team has been actively extending the Syfala toolchain, first re-

leased in 2022 [3]. It is meant to be a powerful audio to FPGA

compilation toolchain. All the possible use of the compilation

toolchain have been combined in a single software suite. This

section describes the extensions that have been added to Syfala

in 2023.

When compiling FAUST programs to FPGA, Syfala relies on

the High Level Synthesis (HLS) tool provided by Xilinx, which

takes a C++ program as an input. Hence, FAUST generates C++

code from a FAUST program and Syfala feeds it to HLS. The topol-

ogy of the C++ code provided to HLS has a huge impact on the

performances of the generated Intellectual Property (IP). In 2023,

a study has been conducted aiming at understanding the kind of

optimizations that can be carried out on C++ code in the context

of the high-level synthesis of real-time audio DSP programs.

Thanks to this work, the applications generated by Syfala have

been significantly optimized, allowing for much more complex au-

dio DSP algorithms to be run on the FPGA. While these findings

haven’t been integrated to the FAUST Syfala backend, they can be

used with the new Syfala C++ support. Indeed, a new mode in

Syfala allowing for C++ code to be used as a substitute for FAUST

has been added. This, combined with an exhaustive public docu-

mentation of the aforementioned optimizations will help increas-

ing the attractivity of Syfala.

3.4.2. Linux Support for Syfala

Most modern FPGA boards host a CPU SoC tightly coupled to the

FPGA. Real-time audio DSP applications running on such boards

can leverage the CPU of the board to carry out control computa-

tions or to provide high-level functionalities (i.e., user interface,

17http://www.webaudiomodules.com/docs/usage/

generate-with-faustide
18https://faustdoc.grame.fr/manual/deploying/

#exporting-wam-20-plugins
19https://fast.grame.fr
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external controllers, etc.) [3]. Up to now, the CPU portion of ap-

plications generated by Syfala was implemented as a bare-metal

kernel. In 2023, the possibility to run Alpine Linux on the CPU

of the Zybo board while carrying out audio DSP operations on the

FPGA has been added, taking a hardware accelerator approach.

This enables the compilation of complete audio applications in-

volving various control protocols and approaches such as OSC

(Open Sound Control) through Ethernet or Wi-Fi, MIDI, web in-

terfaces running on an HTTPD server, etc. It also opens the door

to the integration of hardware accelerators in high-level computer

music programming environments such as Pure Data, SuperCol-

lider, etc.

This work led to a publication at the 2023 Sound and Music

Computing conference (SMC-23)[4].

3.4.3. Syfala PipeWire Support

During the work on applications for Syfala requiring the handling

of a large number of audio channels in parallel for spatial audio, a

way to send and receive audio streams in parallel between a laptop

computer and our FPGA board has been developed. For this, an

open standard named PipeWire, which allows for the transmission

of digital audio streams in real-time over an ethernet connection

has been chosen. PipeWire was implemented in the Linux layer of

Syfala and is now perfectly integrated to the toolchain. It will al-

low us to significantly expand the scope of the various spatial audio

systems that has been working on in the context of the PLASMA

project.

3.4.4. Multichannel Audio Boards for FPGA

Two audio FPGA sister boards aiming various kinds of spatial au-

dio applications have been developed:

• One targets the Digilent Zybo Z7 (10 or 20) board and is

designed to be cost-efficient, accessible, and easily repro-

ducible. It provides 32 amplified (3W) audio outputs to

which small speakers can be directly connected. Its goal is

to provide an affordable way to deal with a large number of

audio outputs in the context of spatial audio.

• The other board that has been developed is meant to be con-

nected to a Digilent Genesys board and targets high-end

spatial audio applications with a strong focus on active con-

trol. It provides 32 ultra-low latency (10us) balanced inputs

and outputs. It is currently used as part of the FAST ANR

project for implementing FxLMS algorithms for active con-

trol.

This work has been published at the 2024 at the Sound and

Music Computing conference (SMC-24) [5].

3.4.5. FAUST to VHDL Backend

Syfala uses HLS for compiling C++ code down to VHDL, the C++

code being itself generated from FAUST . However, FAUST , as a

functional language, exhibits all the parallelism of the audio ap-

plication. The code is sequentialized in the C++ code and then

re-parallelized by the viti_hls tool for the FPGA.

An interesting alternative is to translate directly FAUST down

to VHDL. FAUST programs can be represented as audio circuits

connected together and hence provides a natural equivalence with

VHDL structural representation of such circuits. The VHDL pro-

gram is just a translation of the data-flow graph of the audio appli-

cation.

However, for an efficient implementation on FPGA, this data-

flow graph must be retimed. Retiming is an old classical transfor-

mation that adds registers in a digital circuit without changing its

functional behaviour but allowing for a much faster clock rate.

A first Faust2VHDL translator prototype was issued in 2022

generating a fully combinatorial data path on the FPGA. In 2023

the first real Faust2FPGA compiler which includes retiming and

fixed point computations has been released.

Preliminary results shows that the IP generated by our

Faust2FPGA compiler are twice smaller than the IP generated

by viti_hls. However, the use of HLS is still preferred because

many features are not included in the Faust2FPGA compiler (i.e.,

control from the ARM processor or use of the external RAM).

3.4.6. Fixed-Point Extension for the FAUST Programming

Language

This recent paper [6] addresses the challenge of efficiently utiliz-

ing fixed-point arithmetic in FAUST. Instead of the standard floats

format, fixed-point arithmetic can be more resource-efficient and

faster than floating-point arithmetic, particularly on FPGAs where

the required circuitry can be precisely configured. However, it im-

plies the careful determination of number formats at each step of

the computation tree.

The need to reconsider the representation of real numbers in

this context is highlighted, where fixed-point numbers, represented

as scaled integers, can offer significant efficiency improvements.

The introduced key concept is “pseudo-injectivity” which ensures

that output values of each function in the language retain the nec-

essary precision. The method extends the previously existing in-

terval range analysis to determine the range of values variables can

take and error analysis to manage rounding and ensure precision.

Enhancements to the FAUST compiler to facilitate automatic

fixed-point format determination have been done. The precision

constraints are propagated through the signal graph to maintain

pseudo-injectivity. Additionally, when generating C++ code, a

sfx_t macro is added in the generated code at each step of the

computation, to represent fixed-point formats with the most signif-

icant bit (MSB) and the least significant bit (LSB) values.

Results from testing on FAUST programs, such as sine wave

generation and the Karplus-Strong string synthesis algorithm, in-

dicate that the method can maintain high audio quality, though in-

ferred formats tend to be wider than necessary. Future improve-

ments will include backward propagation of precision constraints

and targeted optimizations to further refine the fixed-point format

determination.

3.5. PLASMA: Pushing the Limits of Audio Spatialization

with eMerging Architectures

Plasma (Pushing the Limits of Audio Spatialization with eMerging

Architectures) is an associate research team gathering the strength

of Emeraude and of the Center for Computer Research in Music

and Acoustics (CCRMA) at Stanford University. 20

The two main objectives of Plasma are:

20https://team.inria.fr/emeraude/plasma/

31



Proceedings of the International Faust Conference (IFC-24), Soundmit, Turin, Italy, November 21-22, 2024

• Exploring various approaches based on embedded systems

towards the implementation of modular audio signal pro-

cessing systems involving a large number of output chan-

nels (and hence speakers) in the context of spatial audio.

• Making these systems easily programmable to create an

open and accessible system for spatial audio where the

number of output channels is not an issue anymore.

Two approaches are being considered in parallel:

• Distributed using cheap simple embedded audio systems

(i.e., Teensy, etc.),

• Centralized using an FPGA-based (Field-Programmable

Gate Array) solution based on the multichannel interfaces

presented in §3.4.4.

The focus is on enhancing the hardware and computational ca-

pabilities of current spatial audio systems, rather than on the DSP

algorithms for spatial audio themselves. FAUST plays a central

role in this project by allowing us to deploy spatial audio and vir-

tual acoustics programs from the same source in a generic way.

4. INDUSTRIAL APPLICATIONS

Here is a non-exhaustive list of some recent industrial applications

of FAUST.

4.1. Expressive E

Expressive E 21 is a French company that creates innovative musi-

cal instruments and software designed to enhance expressive per-

formance. Their products include the Osmose, a standalone ex-

pressive synthesizer, and Touché, a device that adds tactile control

to existing synthesizers.

They also offer a range of software instruments and sound li-

braries, such as Noisy and Imagine, which are especially designed

to be used with the Osmose and Touché devices, but are versa-

tile enough be used with other MIDI controllers and digital audio

workstations (DAWs).

Noisy 1 and 2 products were largely created using FAUST, and

benefited from a close collaboration between Expressive E’s de-

velopment team and GRAME, in particular in developing perfor-

mance measurement and optimisation tools.

Figure 3: The Noisy2 plugin interface.

21https://www.expressivee.com

4.2. Punk Labs

Punk Labs LLC is a tiny studio of just two people creating apps,

games, music, and even social networks. They develop for desk-

tops and game consoles, mobile and embedded devices. Four plu-

gins have been developed using the Rust NIH-plug framework and

FAUST for DSP22, which allows us to develop and export VST3

and CLAP format, as well as a standalone module:

• OneTrick KEYS: a physically modeled piano synth with a

lo-fi sound.

• OneTrick URCHIN: an hybrid drum synth that models the

gritty lo-fi sound of beats from vintage records without

sampling.

• OneTrick CRYPTID: whispers of a drum machine with the

cold clanging heart of a DX7 in the fearsome frame of a

TR-808 echo in dusty backrooms of backstreet recording

studios.

• OneTrick SIMIAN: crash into the 80s with an open source

drum synth inspired by hexagonal classics like the Sim-

mons SDS-V.

4.3. Joué Play

The Joué Play 23 is a system that combines an expressive multi-

instrument, an intuitive app and interactive content, with a range of

musical instruments that use touch-sensitive technology to create

a unique playing experience. These instruments are designed to be

highly expressive, allowing musicians to play with greater nuance

and emotion. Part of the audio effects are coded in FAUST.
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ABSTRACT

Phausto is a lightweight, open-source library for live-coding mu-

sic, enabling sound generation and Digital Signal Processing

(DSP) programming. Developed in the Pharo programming lan-

guage, it incorporates the Faust compiler for robust audio capa-

bilities, using Foreign Function Interface (FFI) calls for seamless

integration. Phausto connects with platform-specific audio layers

through PortAudio, offering a consistent API across operating sys-

tems. Designed for educational settings, it targets users interested

in DSP, musicians, and sound artists with limited technical skills.

Phausto addresses two main challenges: generating audio in Pharo

applications and providing an accessible environment for program-

ming digital musical instruments. It is easy to install and supports

the latest Pharo versions, with instructions available on its GitHub

repository.

1. INTRODUCTION

Phausto is a library for live-coding music. It enables sound gener-

ation and DSP (Digital Signal Processing) programming. Phausto

is free and open source, lightweight (only 10 MB including the

Faust libraries), and an accessible tool developed primarily to pro-

vide developers with a fast and easy way to integrate sound into

their programs and applications. Phausto is well-suited for educa-

tional use, particularly in environments that emphasize hands-on,

exploratory learning. It targets users interested in learning DSP

programming, musicians, and sound artists with limited computer

proficiency who want to learn about computer music.

Phausto is implemented in the Pharo programming language.

It has an embedded Faust [3] compiler for producing the sound.

We chose Faust because it offers incredible audio-programming

capabilities [2]. The interaction between Pharo and Faust is en-

abled through Foreign Function Interface (FFI) calls to a dynamic

library allowing seamless integration with Faust libraries and the

Box-API. Phausto also manages the connections to platform-

specific audio layers via PortAudio, a cross-platform audio library

that provides a consistent API for audio input and output across

different operating systems. From educational and artistic perspec-

tives, Phausto aims to serve as a functional alternative to Faust and

as an introductory tool for users needing more advanced DSP or

custom solutions.

Phausto is easy to install. It operates on the latest stable

version of Pharo, ensuring backward compatibility up to Pharo

10. Detailed installation instructions for Phausto can be found

in the Phausto GitHub repository: https://github.com/

lucretiomsp/phausto.

∗ This work was supported by the Pharo Association

The Phausto Library addresses two key challenges:

1. generating audio in Pharo applications;

2. providing an accessible environment for sound artists with

limited computer literacy to program digital musical instru-

ments (DMIs).

2. THE PHARO PROGRAMMING LANGUAGE

We chose Pharo as our implementation platform because it has

an easy-to-read-and-learn syntax with only seven reserved words.

Pharo [4, 5] is a pure object-oriented programming language that

is dynamically typed. Pharo is a modern implementation of

Smalltalk [6, 1] that started in 2008. It is multi-platform and has

a vibrant community worldwide, welcoming coders of all experi-

ence levels.

Its simple syntax makes Pharo resemble a pidgin language1

[7]. Pharo is also an integrated development environment (IDE)

that offers a live coding environment where programmers can

modify their code during execution. At the same time, GUI wid-

gets can be opened or easily created and used in real-time devel-

opment.

3. INSIDE PHAUSTO

The communication between Faust and Pharo depends on three

technologies: the Faust dynamic engine, Pharo’s unified Foreign

Function Interface (uFFI) , and Faust Box API. Figure 1 provides

an overview of the Phausto’s architecture. In the following section

we will discuss the implementations detail of Phausto. These im-

plementation details require an advanced understanding of Pharo

and Faust, which is only relevant within the context of this paper.

The final user of Phausto does not need to know about the details

of how Unit Generators are initialised and converted to PhBox. To

combine Unit Generators and create DSP, users only need to know

how to set their instance variables and how they can be patched

together. All this information is contained in the class comments.

This concept of abstraction is fundamental within the object ori-

ented paradigm.

1In computing, a "pidgin language" refers to a programming language
with a simplified syntax and minimalistic design, akin to a pidgin language
in linguistics. Just as a pidgin language simplifies communication between
speakers of different native languages, a pidgin programming language
simplifies code writing and reading by reducing complexity and remov-
ing extraneous features. This approach aims to make the language easier
to learn and use.
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Figure 1: A simplified diagram illustrating Phausto’s framework architecture. The dynamic engine libraries use libfaust and the Faust

libraries to transform into DSP programs the strings of code or the combinations of boxes written inside Pharo. The computed samples

feeds the PortAudio stream that is finally rendered into sound by the platform specific audio driver.

3.1. The Dynamic Engine

The dynamic engine is a Faust DSP architecture developed by

Stéphane Letz 2. Its C API details how to create Faust objects,

initialize them with a sample rate and a buffer size and start and

stop their operation. This dynamic engine can be packaged with

an interpreter backend and a basic WaveReader for reading audio

files, instead of the default LLVM compiler backend. To meet our

design goals, we opted for the interpreter backend and the Wa-

veReader due to their lack of external dependencies. Addition-

ally, we selected PortAudio for its cross-platform compatibility.

While we acknowledge that the interpreter backend is slower com-

pared to the LLVM compiler, we do not anticipate this will impact

Phausto’s target audience.

New DSP objects can be instantiated from a string containing

a Faust program using the following function:

dsp* createDsp(const char* name_app, const

char* dsp_content, int argc, const char*
argv[], const char* target, int

opt_level);

This function is called sending the create: aString mes-

sage to the DSP class. It can be considered the easiest way for a

Faust programmer to create DSP in Phausto and it was our first

choice to test the functioning of our framework.

Alternatively, we can create a DSP object from a box or a

combination of boxes3. This approach is more flexible because

it allows the user define the connections between boxes in Phausto

2https://github.com/grame-cncm/faust/

blob/master-dev/architecture/faust/dsp/

faust-dynamic-engine.h
3A Box is an intermediate representation of a Faust primitive, or of a

DSP. Boxes expression can be created and combined though a C/C++ .
Boxes enable precise and granular manipulation of DSPs (Digital Signal
Processing units) through our higher-level Phausto API, allowing for de-
tailed tuning and adjustment of their operational parameters in Pharo code.

code, taking advantage of Pharo syntax highlighting. The follow-

ing C function is called when the asDsp message is sent to a

PhBox4

dsp* createDspFromBoxes(const char*
name_app, Box box, int argc, const char*
argv[], const char* target, int

opt_level);

Both methods return a pointer to the created DSP objects on suc-

cess, or a null pointer on a failure; if a failure occurs, a call to:

{const char* getLastError();

returns the error.

3.2. Pharo Unified Foreign Function Interface (UFFI)

A Foreign Function Interface (FFI) is a programming mechanism

that enables the use of functions and data structures written and

compiled in a different language [8]. Typically these ”foreign”

resources are shared libraries, such as .dll, .so, and .dylib

files on Windows, Linux, and macOS respectively.

The Pharo uFFI API framework allows us to use implementa-

tions written in faust-dynamic-engine.h, in libfaust

-c.h and in libfaust-box-c.h. We have implemented all

functions from faust-dynamic-engine.h as FFi calls in

Pharo. Below is an example of the FFI call used to create a DSP

from boxes:

4The PhBox class is a subclass of Pharo FFIOpaqueOject that is
essentially a pointer to a Faust box.
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PhaustoDynamicEngine >> #createDspFromBoxes

: aFaustBox

^ self ffiCall:

#( DSP * createDspFromBoxes #( const

char * ’MyApp’, #PhBox * aFaustBox,

int 0, void * 0, const char * ’ ’,

int -1 ) )

3.3. The Box API

The Faust Box API serves as an intermediate public entry point in

the Semantic Phase5 of Faust’s compilation process. It facilitates

the programmatic construction of a box expression, which is sub-

sequently used to instantiate a DSP object. Boxes can be created

by invoking a specific function defined in libfaust-box-c.h.

For example, to create a Checkbox:

Box CboxCheckbox(const char * label);

Or from a string containing a Faust program:

Box CDSPToBoxes(const char* name_app, const

char* dsp_content, int argc, const char

* argv[], int* inputs, int* outputs,

char* error_msg);

In Phausto, we have created a subclass of

FFILibrary named BoxAPI to handle all the bindings to

libfaust-box-c.h. The BoxAPI provides the interface to

the Faust Box API, which, in turn, enables us to define a custom

API for constructing DSP objects. This design allows Pharo users

to develop their own DSP without needing to understand or use

Faust syntax directly.

Currently 45 functions from the Faust Box-API have been im-

plemented as Pharo methods. This includes the five binary com-

position operations, most of the C-equivalent primitives, the Wire

and the Cut boxes, as well as all UI primitives. The following ex-

ample demonstrates the Pharo implementation of the FFI call to

the CboxHSlider function:

BoxAPI >> #boxHslider: aLabel init: initBox

min: minBox max: maxBox step: stepBox

self createLibContext.

self ffiCall:

#( #PhBox * CboxHSlider #( const char *
aLabel , #PhBox * initBox, #PhBox *
minBox , #PhBox * maxBox , #PhBox *
stepBox ) )

All functions from libfaust-box-c.h are implemented

in Pharo as methods (FFI calls) within the BoxAPI class, and are

available to use by instances of the PhBox class (see next subsec-

tion). Each method in the BoxAPI class first invokes

createLibContext method to ensure that a global compila-

tion context exists; if not, createLibContext will create one.

This compilation context will be automatically destroyed when the

asDsp message is sent to a Phausto Box.

5The Semantic Phase is the initial step in the Faust compilation chain
and consists of multiple stages. It takes Faust code as input and produces
a list of signals in Normal Form as output. This list of signals in Normal
Form is then passed to the Code Generation Phase, which compiles it into
imperative code (C++, LLVM IR, WebAssembly, etc.

3.3.1. Integrating Unit Generators with Phausto

The concept of Unit Generators was first introduced by Max Math-

ews and Johan E. Miller for the Music III program in 1960 [9].

These components serve as the foundational building blocks of

signal processing algorithms. Essentially, Unit Generators are sub-

routines that generate an output signal and may also process an in-

put signal. Each Unit Generator is designed to perform a specific

task, such as producing sound waves, applying filters, or control-

ling audio parameters. They function as modular elements within

a synthesis framework.

As a functional language, Faust does not use any hierarchi-

cal organisation of Unit Generators, which is possible in object-

oriented languages like Pharo, ChucK or SuperCollider through

inheritance and abstraction. At the same time, Faust provides hun-

dreds of DSP functions for synthesis and audio processing within

the Faust Libraries, which yield the same output of our Unit Gen-

erators. The UnitGenerator class is a subclass of the PhBox

class. Instances of the PhBox class are FFIOpaqueObjects, which

correspond to pointers to Faust Boxes. UnitGenerators exists only

in the Pharo environment and become PhBoxes when they receive

the asBox message. To understand this mechanism, consider a

simplified implementation of the LFOTriPos class, correspond-

ing to Faust’s os.lf_trianglepos. First, let’s look at its ini-

tialise method:

LFOTriPos >> #initialize

faustCode := ’import("stdfaust.lib");

process = os.lf_squarewavepos;’

freq := PhHSlider new

label: self label , ’Freq’

init: 440

min: 1

max: 2000

step: 0.001.

amount := PhHSlider new

label: self label , ’Amount’

init: 1

min: 0

max: 28000

step: 1.

offset := PhHSlider new

label: self label , ’Offset’

init: 0

min: 0

max: 800

step: 0.01.

Next, the asBox method converts the UnitGenerator into an

instance of its superclass, PhBox. :
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LFOTriPos >> #asBox

| intermediateBox finalBox |

BoxAPI uniqueInstance createLibContext.

intermediateBox := BoxAPI

uniqueInstance

boxFromString: self faustCode

inputs: self inputs

outputs: self outputs

buffer: self errorBuffer.

finalBox := freq asBox connectTo:

intermediateBox.

^ finalBox * self amount asBox + self

offset asBox

This final steps is fundamental as it enables the creation of a DSP

object from a combination of boxes. Instances of the PhBox class

serve as our entry point into the Faust compilation chain of the

backend interpreter.

The Phausto API converts the majority of Faust libraries

into Unit Generators. This design choice aligns with the object-

oriented principle of inheritance while preventing the bloat of

a single class with hundreds of methods.6 The organisation of

these units into subclasses and their interconnection capabilities

are heavily inspired by the design principles of the ChucK pro-

gramming language [10]. Indeed, in ChucK, there is no distinc-

tion between Unit Generators that operate at audio rate and those

operating at control rate [11].

All Phausto Unit Generators are provided with initialised in-

stance variables for the parameters specified in the corresponding

Faust function. When possible (i.e. the argument is neither a con-

stant value nor another function) they are initialised to a Faust

hslider or button primitive, enabling both the parameter con-

trol and the on-the-fly creation of UI elements for the given pa-

rameter. If the Unit Generator’s label has not been changed via the

label: message, all UI elements use the class name as prefix.

For example the PulseOsc has two controls: ’PulseOscFreq

’ for its frequency and ’PulseOscDuty’ for its duty cycle.

4. SYNTAX IN A NUTSHELL

To create a DSP in Phausto, simply send the asDsp message to a

Unit Generator or a combination of them. The stereo message

converts it into a stereo DSP. Next, the DSP must be initialised

and started to produce sound. A slider can be opened in the Pharo

window to control a parameter of the DSP, and finally, the sound

can be stopped.

sqr := SquareOsc new.

dsp := sqr stereo asDsp.

dsp init.

dsp start.

dsp openSliderFor: ’SquareOscFreq’.

dsp stop.

6Integrating over 200 methods directly into the DSP class would have
been impractical. Instead, we organised these methods into Unit Gen-
erators, which enhances modularity and readability. Similarly, the Faust
programming language efficiently manages large numbers of functions by
structuring them within environments.

At need, we can combine UnitGenerators by assign them to in-

stance variables, and we can change the value of a parameter with

the keyword message setValue: parameter::

pulse := PulseOsc new duty: LFOTriPos new.

dsp := pulse stereo asDsp.

dsp init.

dsp start.

dsp setValue: (Random new

nextIntegerBetween: 50 and: 800)

parameter: ’PulseOscFreq’

dsp stop.

The binary operator => from the ChucK programming lan-

guage was adopted to simplify the connection between UnitGen-

erators. This approach abstracts the connections while adhering to

the principles of modular synthesis patching.For example a simple

synth could look like this:

synth := SawOsc new => ADSREnv new =>

ResonLp new => SatRev new;

Due to the double dispatch mechanism in the Phausto imple-

mentation of the => message, its meaning depends on the argu-

ment provided. If the argument is an envelope, it performs signal

multiplication; if it is a filter or a reverb, it connects the input(s) of

a Unit Generator or a combination of them.

4.1. Dynamic Control of DSPs with Pharo Processes

Once our DSPs have been created, initialised and started,

Pharo’s syntax enables us to create algorithmic compositions.

This is achieved by defining a process that repeatedly exe-

cutes a BlockClosure for a number of times. Within this

BlockClosure, time advancement is managed by sending the

wait message to an instance of the Delay class. The process is

then initiated by sending the fork message. This approach allows

forked processes to run concurrently.

djembe := Djembe new.

dsp := djembe stereo asDsp.

dsp init.

dsp start.

pos := 0.

[128 timesRepeat:

[ dsp setValue: (Random new

nextIntegerBetween: 200 and: 900)

parameter: ’DjembeFreq’.

dsp setValue: (pos \% 1) parameter: ’

DjembeStrikePos’.

dsp trig: ’DjembeGate’.

pos := pos + 0.1.

(Delay forSeconds: 0.2) wait ] ] fork.

5. THE TOOLKIT AND TURBOPHAUSTO

In Phausto, we have implemented two sets of classes to simplify

DSP programming and to provide musicians an ensemble of in-

struments effects for programming music on-the-fly without the

need to use external audio generators.
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5.1. The ToolKit

The ToolKit is a collection of synthesisers, effects and utilities in-

cluded in the Phausto package. The name ToolKit pays tribute to

Perry Cook’s and Gary Scavone’s Synthesis ToolKit [12]. Within

the ToolKit, one can find utilities as an incrementer, an LFO that

outputs a pseudo random signal, a reader and a resetter for reading

sound files, and a basic SamplePlayer for playing back .wav files

in Pharo applications.

5.2. TurboPhausto

TurboPhausto is a collection of synthesisers and effects designed

to be the counterpart of SuperCollider’s SuperDirt engine, in-

tended for use with Coypu, the package that has been developed

over the past three years for programming music on-the-fly with

Pharo. Currently, 4 instruments and 2 effects are ready in Tur-

boPhausto:

• TpSampler- a monophonic multisample player, that looks

for all the sample in a specified folder (maximum 256 files);

• Fm2Op - a monophonic FM synth with 2 operators;

• PsgPlus - a monophonic chirpy synth inspired by Sega

Master System Programmable Sound Generator (PSG);

• Chordy - a pseudo polyphonic virtual analog synth, in

which different chords can be selected with the mode:

message;

• DelayMonoFB - a smoothed mono delay with resonant

feedback and dry/wet control;

• GreyHoleDW - a mono version of Faust’s GreyHole reverb

with dry/wet control.

All TurboPhausto synthesisers come with an AR/ADSR enve-

lope and optionally with filters and effects on their output. All the

effects are provided with dry/wet control. Here is a brief example

of an extract of a live performance using Coypu and TurboPhausto:

"create, initialize the DSP"

dsp := (TpSampler new + PsgPlus new + Fm2Op

new) stereo asDsp.

dsp init.

dsp start.

"initialize the Performance and assign the

DSP"

p := PerformanceRecorder uniqueInstance .

p performer: PerformerPhaust new.

p freq: 143 bpm.

p activeDSP: dsp.

"assign TurboPhausto instruments to

Performance sequencers"

16 downbeats index: ’1’ to: #TpSample.

16 quavers notes: ’38 41 45 50’ to: #

PsgPlus .

16 rumba to: #Fm2Op.

p playFor: 32 bars.

6. CONCLUSIONS AND FUTURE WORK

After a year of development, Phausto provides a comprehensive

solution for Pharo programmers to integrate sound synthesis into

their applications. It includes sample players, basic oscillators, en-

velopes, various physical models, resonant filters, reverbs, and de-

lays. The extensive array of Unit Generators features a streamlined

API for parameter manipulation, which has been well-received by

Pharo programmers. This was highlighted at the ESUG 2024 con-

ference7 in Lille, where Phausto earned 3rd place in the Innova-

tion Technology Awards. Additionally, TurboPhausto’s synthesiz-

ers and effects were showcased in a 30-minute live performance

titled Riding the MoofLod.

In the coming months, the primary goal will be to port all func-

tions from the Faust libraries and the Box-API. Subsequently, the

focus will shift to MIDI and polyphonic support, which may ne-

cessitate the implementation of a MIDI handler using PortMIDI,

an open-source library for which FFI bindings are already avail-

able in the Pharo-Sound package. Additionally, classes and meth-

ods will be provided to export DSPs into different architectures

directly from Phausto and to display their signal flow along with a

default GUI. Finally, an exhaustive and robust ensemble of instru-

ments and effects for TurboPhausto will be designed and imple-

mented.
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ABSTRACT

In this short paper we will present the use of FAUST based Web

Audio Modules plugins in two hosts: an open source DAW and

in an collaborative, immersive, WebXR application in the Musical

Metaverse.

1. INTRODUCTION

WAM Studio is an online Digital Audio Workstation (DAW) for

creating audio projects, designed as multi-track musical composi-

tions [1, 2]. It has been designed around the standard for Web Au-

dio plugins and hosts called “Web Audio Modules” (or “WAM”) [3].

Each track represents a different layer of content that can be recorded,

edited, played back or integrated with audio files. Some tracks can

control virtual instruments, containing only the notes to be played

and metadata. Users can add or delete tracks, play them individu-

ally or together, and arm them for recording (Figure 1). The inte-

gration of FAUST based plugins is detailed in section 2.

The Musical Metaverse (MM) [4] is an immersive virtual space

dedicated to musical activities, expanding on the broader concept

of the Metaverse. It has recently gained popularity, reigniting

interest in shared virtual environments within the realm of com-

puter music. Applications include virtual concerts, educational

tools, and collaborative musical performances. Transposing user

experiences into conventional 2D applications generally does not

work in an immersive environment, and new ergonomic and sen-

sory approaches need to be employed [5]. The WAM application

presented in this paper focuses on a persistent, real-time multi-

participant immersive world for shared music creation, exploiting

recent W3C web standards such as Web Audio, Web MIDI, We-

bXR, WebGL, WebGPU, WebAssembly, WebSockets, now imple-

mented in the web browsers of the most common VR/XR head-

sets available on the market. In this application, users can build

music installations by connecting Web Audio Modules plugins

in a graph. Most of these WAM plugins are made with FAUST.

An original approach has been developed for integrating existing

WAMs in the 3D world, with a GUI generated on the fly, providing

a user experience adapted for VR headset controllers.

2. FAUST BASED WEB AUDIO MODULES IN THE WAM

STUDIO DAW

2.1. General Features

WAM-Studio is a powerful online Digital Audio Workstation (DAW)

that utilizes cutting-edge technology to enable users to playback,

∗ This work has been supported by the French government, through
the France 2030 investment plan managed by the Agence Nationale de la
Recherche, as part of the "CA DS4H project, reference ANR-17-EURE-
0004

Figure 1: WAM Studio typical view, showing audio and MIDI

tracks with some parameter automation curves and the plugin

chain associated with the selected track.

record audio and MIDI tracks, employ high-quality plugins (ef-

fects and virtual instruments), manage latency, and perform offline

rendering[1]. The source code is readily available (mono reposi-

tory with front-end and back-end, including a simple Docker im-

age for deployment) and the application is available online 1.

The project is developed in TypeScript, deliberately avoiding

external frameworks, with the aim of making the code accessi-

ble to a wider audience and ensuring its long-term viability (min-

imal build tools). For those with a keen interest, WAM-Studio is

like an "alarm clock to be disassembled» and will reveal the se-

crets of its design and implementation to the most curious, poten-

tially uncovering insights into tasks that are not well-documented

within the Web Audio and Web MIDI communities. It has been de-

signed around the standard for Web Audio plugins and hosts called

“Web Audio Modules” (or “WAM”) [3] and serves as a compelling

demonstration of its vast potential.

Each track represents a different layer of content that can be

recorded, edited, played back or integrated with audio files. Some

tracks can control virtual instruments, containing only the notes

to be played and metadata. Users can add or delete tracks, play

them individually or together, and arm them for recording. During

recording, all other tracks play simultaneously, while armed tracks

record new content.

In WAM-Studio, each track is a container for audio or MIDI

related data, accompanied by an interactive representation of this

data, editing and processing functions, and a few default param-

eters such as the track’s volume and left/right panning. Figure 1

shows some audio tracks in WAM Studio with the associated audio

buffer region (waveforms) and MIDI regions (squares) displayed

1https://wam-studio.i3s.univ-cotedazur.fr/, source
code: https://github.com/Brotherta/wam-studio

40



Proceedings of the International Faust Conference (IFC-24), Soundmit, Turin, Italy, November 21-22, 2024

Figure 2: Audio graph of a track implementation.

and the default track controls/parameters on the left (mute/solo,

record arming, volume, stereo panning, automation curve display,

effects plugins). As many tracks can be displayed, scrolled during

playback, zoomed and edited, we used the pixi.js library to effi-

ciently manage drawing and interaction within an HTML canvas.

This library uses GPU-accelerated WebGL rendering and offers

many features for managing multiple layers on a single HTML5

canvas.

Figure 2 shows the audio graph corresponding to the process-

ing chain of an audio track. The sound goes from left to right:

first the "track player/recorder/editor" is implemented as an Au-

dioWorklet node, using custom code to render an audio buffer or a

MIDI region, then the sound goes through a chain of WAM plug-

ins for adding audio effects, then the output signal has its gain and

stereo pan adjusted, then we have another AudioWorklet node for

rendering volume in a canvas (VU-meter).

Plugin chains are managed using a special WAM plugin that

also acts as a "mini host" (Figure 3 and 4). We call it the WAM-

bank (or the "WAM pedalboard") [6]. It connects to one or more

plugin servers, which return(s) the list of available plugins as a

JSON array of URIs (a WAM plugin can be loaded simply using a

dynamic import and its URI, see [2]). From this list of URIs, WAM

plugin descriptors are retrieved, which contain metadata about the

plugins: name, version, provider, thumbnail URI, type (effect or

instrument), available inputs and outputs etc. When the pedal-

board plugin is displayed in the DAW, the chain of active plugins is

empty, and plugins can be added to the processing chain, deleted,

reordered and their parameters set.

Any configuration can be saved as a named preset (e.g. "crunch

guitar sound 1", “Synthesizer with ambient audio effects”). Pre-

sets can be organized into sound banks ("rock", "funk", "blues").

Managing the organization and naming of banks and presets is the

responsibility of the WAM-bank plugin. The parameters exposed

by this plugin correspond to all the parameters of the active preset

(i.e. the sum of the parameters of the preset’s plugins in the chain)

and can be automated by the DAW.

2.2. Rapid Development of WAM Plugins Using the Online

IDE

All WAM plugins have a URI and can be dynamically imported

into hosts using JavaScript dynamic import statements. The DAW

uses JSON configuration files that contain a list of WAM plugin

URIS. When one clicks on the FX icon of a track, an instance of

the WAM-bank plugin manager is created, and acts as a Mini-Host

for handling the chain of plugins (instruments, effects) that will be

associated with the track.

Most instruments and audio effects in the current version of

the DAW have been developed and exported using the FAUST IDE

directly, without any further modifications [7]. A step by step tu-

Figure 3: WAM Bank is a special WAM that manages the chain of

plugins associated with a track.

Figure 4: WAM plugins associated with a track

torial about how to build WAM plugins with the FAUST IDE is

available online 2

In addition, many WAMs developed by the community of de-

velopers have been made available through the "WAM Commu-

nity REST API", an endpoint from which WAMs can be requested

online [8]. As of October 2024, dozens of WAM plugins are avail-

able.

Figure 6 shows the MIDI flute instrument in the GUI Builder

of the FAUST IDE (the FAUST code comes from the example menu

of the IDE). From this GUI Builder, an optional custom GUI can

2Create your own Web Audio Plugins with the FAUST IDE: http:
//tinyurl.com/yckdyax4http://tinyurl.com/yckdyax4

Figure 5: Auto-generated CSS based GUI of the MIDI flute instru-

ment.
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Figure 6: MIDI flute virtual instrument in the GUI Builder of the

FAUST IDE

Figure 7: The Midi flute WAM in WAM Studio.

be designed (changing the position, sizes, look and feel of the but-

tons, changing the fonts used etc.), and by pressing the "Publish

/ preview WAM2" button, a WAM plugin is generated and pub-

lished on a remote server. It can be tested directly from the IDE or

downloaded as a ZIP file. Once published, its URI can be directly

used in any WAM host. Figure 7 shows it in the WAM Studio

DAW. The whole operation (compiling the source code in the IDE,

making a custom GUI, exporting it and publishing it on a remote

server) took less than two minutes. Then, making it available in

the DAW is just a matter of adding one line in a configuration file.

The DAW includes a wide range of audio effects created with

FAUST, such as a recreation of Eventide’s famous Blackhole effect

pedal, or Electro-Harmonix’s Big Muff fuzz and Stone Phaser, for

example, as well as numerous original effects covering the most

classic needs: reverbs, modulation effects, stereo enhancers, dis-

tortions, etc. Several instruments of various types have also been

integrated (flute, djembe, guitar, synthesizers).

2.3. FAUST WAMs for Optimal Performances in Host-Plugin

Communications

Based on the faustwasm module, the FAUST distribution intro-

duces a new script called faust2wam, a JavaScript tool that can

generate self-contained FAUST WAMs within the Node.js environ-

ment or dynamically within browsers. Additionally, support has

been added for polyphonic instruments and FAUST based spec-

tral processors [8]. These new generation targets (web/wam2-ts,

wam2-poly-ts, and wam2-fft-ts) are now available in the FAUST

IDE Export window and are also used by the GUI Builder pre-

sented in the previous section.

During the WAM export and publishing process, the original

FAUST code is compiled to WebAssembly, and the generated GUI

is packaged as a Web Component. All generated files are placed

in a single folder, which can be published online and downloaded.

By default, this includes two different GUIs: the auto-generated

default GUI (Figure 5) and the custom GUI, designed using the

GUI Builder and leveraging widgets from the webaudiocontrols

library (Figure 6). Two URIs are provided: one for the default

GUI and the other for the custom GUI-based WAM.

More interesting in terms of performance is that the WebAssem-

bly code runs inside an Audio Worklet, enabling custom DSP code

execution. Audio Worklets were added to the Web Audio API in

2018, and FAUST was one of the first DSLs to support them as

a target [9]. An Audio Worklet consists of two main parts: 1)

the Audio Worklet Processor, where the core custom audio pro-

cessing occurs. It’s a class that extends AudioWorkletProcessor

and processes audio in small chunks called frames this is where

the FAUST WebAssembly code runs. 2) the Audio Worklet Node,

which serves as the interface connecting the Audio Worklet Pro-

cessor to the Web Audio API’s audio graph. It bridges custom

audio processing in the Worklet with the Web Audio API context.

More specifically, the faust2wam script uses WAMProcessor

and WAMNode classes from the WAM SDK, which inherit from

AudioWorkletProcessor and AudioWorkletNode, providing addi-

tional features. In particular, WAMProcessor supports high per-

formance communication with a WAM host using Shared Array

Buffers [3].

This approach eliminates the need to create events or cross

the thread boundary between the GUI thread and the audio thread

when a host needs to communicate with a WAM plugin, for pa-

rameter automation at the sample rate or for MIDI communication
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Figure 8: Multiple participants assemble 3D WAMs to build spa-

tialized music installations.

with a virtual instrument since both the host and plugin, based on

Audio Worklets, have their processing parts running in the high-

priority audio thread.

3. FAUST BASED WEB AUDIO MODULES IN THE

MUSICAL METAVERSE

3.1. WAM Jam Party, Making Music in an Immersive, Col-

laborative Environment

WAM Jam Party [10] is an immersive, collaborative application

that runs in the Web Browser of VR headsets. This WAM-based

application focuses on a persistent, real-time multi-participant im-

mersive world for shared music creation, exploiting recent W3C

web standards such as Web Audio, Web MIDI, WebXR, WebGL,

WebGPU, WebAssembly, WebSockets, now implemented in the

web browsers of the most common VR/XR headsets available on

the market.

As stated in section 1, dozens of WAM plugins are now avail-

able through the WAM Community endpoint, comparable in qual-

ity and complexity to native applications [8]. Available WAMs

include note generators such as: a piano roll, a programmable

step sequencer, random note generators, chord generators, virtual

instruments: synthesizers samplers, physical modeling of instru-

ments (flute, clarinet, brass, djembe), audio effects (including all

classics: flanger, chorus, reverb, distortion, fuzz, overdrive, etc.).

The majority of the effects and instruments have been generated

with the FAUST IDE.

With WAM Jam Party, users can connect to a URL using the

VR headset web browser, and start building musical installation

in the immersive world, by adding and connecting together note

generators, virtual instruments and audio effects (Figure 8). Each

of these component is an existing Web Audio Module.

The main inspiration was Sequencer Party [8], a collaborative

online audio and MIDI editor, also based on WAMs. WAM Jam

Party is a 3D adaptation of Sequencer Party concepts.

The first prototype of WAM Jam Party uses WAM introspec-

tion to build 3D interactive GUIs from existing 2D WAM plugins,

BabylonJS for the 3D rendering of the immersive world, and a

CRDT algorithm is used synchronizing incrementally the states of

all the elements between clients. While client states are updated 3

times/s, the server saves seamlessly the ongoing session into a file

every second, making the world persistent. Special care has been

Figure 9: Big Muff fuzz, a FAUST-based WAM, and its 3D GUI.

Figure 10: Main menu for adding WAMs in the 3D scene.

taken for generating the 3D representation of WAM plugins, using

an optional JSON file for the mapping of the internal parameters

into the 3D world. Each WAM is represented by default as a box

with draggable cylinders, boxes or push buttons for its parameters

(Figure 9).

A dynamic menu made with the Mixed Reality Tool Kit (MRTK)

available in BabylonJS, proposes a large set of WAMs enabling

users to add elements in the 3D world (Figure 10). In addition,

a green and a right sphere are located on the sides of the box, en-

abling users to connect WAMs together to form an audio graph (Fig-

ure 11). Connect a step sequencer to a synthesizer to some audio

effects and you have a first basic music installation. Any element

can be moved, oriented, or have its parameters adjusted using dif-

ferent controllers (see Figure 12).

In a multi participant session, each user can perform the same

interactions (add, remove, move, rotate WAMs, connect and dis-

connect elements, adjust the parameters, move around), and mod-
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Figure 11: Example of a graph made of two note generators (step

sequencers on the left), two instruments and audio effects.

Figure 12: Parameters can be adjusted by clicking the controller

trigger while aiming at a cylinder, and dragging it vertically.

ify other users’ creations. The sound produced by each installa-

tion is spatialized and changes as you move your avatar in the 3D

world.

Each user in the virtual environment is represented by a simple

avatar consisting of a body, head, and two hands. The avatar’s head

orientation is directly mapped to the user’s VR headset orientation,

ensuring that the avatar’s gaze direction aligns with the user’s ac-

tual view within the virtual environment. The avatar’s hands are

positioned and oriented to match the user’s controller movements.

This visual representation provides a clear indication of the user’s

current actions, such as selecting WAMs or manipulating parame-

ters.

3.2. How FAUST WAMs’s 3D GUI Is Generated

Details about the UX design and interactions can be found in [10].

More interesting is the history of the first empiric tests conducted.

FAUST allows us to declare basic user interface (UI) elements to

Figure 13: Avatar of a player.

Figure 14: A FAUST 2D GUI and its 3D version using 3D models

of 2D widgets.

control the parameters of a FAUST object 3. After the compilation

of a FAUST source code an abstract representation of the UI can be

obtained for generating target dependant code. For example, the

WAM GUI Builder uses it for generating an HTML based GUI. A

first series of tests consisted in using this abstract representation

for generating a 3D GUI, as shown in Figure 14. Unfortunately,

this kind of 3D interfaces were not suited for a 3D manipulation in

VR headsets. Users found many difficulties operating 3D knobs,

sliders or switches with VR headset controllers. Also, for plugins

with too many parameters, the 3D rendered view could be confus-

ing with small labels and widgets.

Finally, the adopted solution that gave good results during user

testing was to use ad hoc 3D shapes with interactions adapted

to the VR usages. For example, 2D knobs and sliders become

draggable cylinders or boxes, switches become a push button, etc.

It also became rapidly obvious that as all original 2D elements

could not be used in 3D (i.e a synthesizer with 60 parameters con-

trolled by 2D knobs), the original abstract UI definition provided

by FAUST was no more useful. Instead, the list and type of pa-

rameters provided by the WAM API of the generated plugin was

sufficient for generating a 3D GUI on the fly. For example, the

Big Muff pedal from Figure 9 has four parameters (volume, tone

and sustain, plus the on/off switch), three of type float, and one of

3https://faustdoc.grame.fr/manual/quick-start/

#building-a-simple-user-interface Building a Simple User
Interface - Faust Documentation.
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type boolean, so we can generate a 3D GUI with three draggable

cylinders and a push button.

A configuration file also helped filtering unwanted parame-

ter 3D controllers and customizing colours, shapes, labels of the

wanted 3D parameters. A "convention over configuration" ap-

proach was used: a minimal configuration file with just the URI

of a WAM would lead to generating all parameters 3D controllers

using default values, i.e red draggable cylinders for float param-

eters. But it is also possible to indicate different colors, labels,

to hide some parameters by editing this configuration file. Fur-

thermore, this parameter based generation works with all kind of

WAMs, not only with FAUST based ones.

An interactive editor in which developers can enter an existing

WAM URI and preview their 2D and 3D GUI (using a mouse of a

VR headset) while customizing the different options (show/hide a

parameter control, etc.) is under development, and could be inte-

grated in the future in the FAUST GUI Builder.

4. CONCLUSIONS

This paper presents two innovative music applications utilizing

Web Audio Modules plugins (WAMs), most of which are writ-

ten in FAUST. We believe that FAUST and its online IDE offer

one of the best approaches to developing Web Audio Modules.

FAUST WAMs are at the heart of the applications presented: a

web-based DAW and a 3D immersive application. While the first

project shows that it is possible to recreate some of the most com-

plex audio software on the Web (see “Why You Shouldn’t Write

a DAW” 4), and plugins written in FAUST are a very important

part of this, the second project opens up new possibilities and will

certainly lead to the short-term availability of an editor for config-

uring and interactively generating reusable FAUST based 3D com-

ponents.

5. ACKNOWLEDGMENTS

We would like to thank Antoine Vidal-Mazuy for his investment in

WAM-Studio over the course of 2023 (he was its main coder and

designer), and the team behind the Web Audio Modules, without

which this DAW would never have existed. This work has been

supported by the French government, through the France 2030 in-

vestment plan managed by the Agence Nationale de la Recherche,

as part of the "UCA DS4H" project, reference ANR-17-EURE-

0004.

6. REFERENCES

[1] Michel Buffa and Antoine Vidal-Mazuy, “Wam-studio, a

digital audio workstation (daw) for the web,” in Compan-

ion Proceedings of the ACM Web Conference 2023, 2023,

pp. 543–548.

[2] Michel Buffa and Samuel Demont, “Can you DAW it On-

line?,” in IS2 2024 - IEEE International Symposium on the

Internet of Sounds 2024 / 1st IEEE International Workshop

on the Musical Metaverse (IEEE IWMM), Erlangen, Ger-

many, Sept. 2024.

4David Rowland - ADC23, https://www.youtube.com/

watch?v=GMlnh6_9aTc.

[3] Michel Buffa, Shihong Ren, Owen Campbell, Tom Burns,

Steven Yi, Jari Kleimola, and Oliver Larkin, “Web audio

modules 2.0: An open web audio plugin standard,” in Com-

panion Proceedings of the Web Conference 2022, 2022, pp.

364–369.

[4] Luca Turchet, “Musical metaverse: vision, opportunities,

and challenges,” Personal and Ubiquitous Computing, vol.

27, no. 5, pp. 1811–1827, 2023.

[5] Alberto Boem, Matteo Tomasetti, Alessio Gabriele,

Agostino Di Scipio, and Luca Turchet, “User needs in the

musical metaverse: a case study with electroacoustic musi-

cians,” 2024.

[6] Michel Buffa, Pierre Kouyoumdjian, Quentin Beauchet,

Yann Forner, and Michael Marynowic, “Making a guitar

rack plugin-webaudio modules 2.0,” in Web Audio Confer-

ence 2022, 2022.

[7] Shihong Ren, Stephane Letz, Yann Orlarey, Romain Michon,

Dominique Fober, Michel Buffa, and Jerome Lebrun, “Using

faust dsl to develop custom, sample accurate dsp code and

audio plugins for the web browser,” Journal of the Audio

Engineering Society, vol. 68, no. 10, pp. 703–716, 2020.

[8] Michel Buffa, Shihong Ren, Tom Burns, Antoine Vidal-

Mazuy, and Stéphane Letz, “Evolution of the web audio

modules ecosystem,” in Web Audio Conference 2024. Zen-

odo, 2024.

[9] Stéphane Letz, Yann Orlarey, and Dominique Fober, “Com-

piling faust audio dsp code to webassembly,” in Web Audio

Conference, 2017.

[10] Michel Buffa, Ayoub Hofr, and Dorian Girard, “Using Web

Audio Modules for Immersive Audio Collaboration in the

Musical Metaverse,” in IS2 2024 - IEEE International Sym-

posium on the Internet of Sounds 2024, Erlangen, Germany,

Sept. 2024.

[11] Yann Orlarey, Stéphane Letz, and Dominique Fober, New

Computational Paradigms for Computer Music, chapter

“Faust: an Efficient Functional Approach to DSP Program-

ming”, Delatour, Paris, France, 2009.

[12] Julius O. Smith, “Signal processing libraries for Faust,” in

Proceedings of Linux Audio Conference (LAC-12), Stanford,

USA, May 2012.

[13] Albert Gräf, “pd-faust: An integrated environment for run-

ning Faust objects in Pd,” in Proceedings of the Linux Audio

Conference (LAC-12), Stanford, USA, April 2012.

[14] Romain Michon and Julius O. Smith, “Faust-STK: a set

of linear and nonlinear physical models for the Faust pro-

gramming language,” in Proceedings of the 14th Interna-

tional Conference on Digital Audio Effects (DAFx-11), Paris,

France, September 2011.

45



IFC-24 Paper Session 3

46



Functional Ambisonic Granulator - International Faust Conference (IFC-24), Soundmit, Turin, Italy, November 21-22, 2024

FUNCTIONAL AMBISONIC GRANULATOR

David Fierro

CICM-MUSIDANSE

Université Paris 8

davidfierro@gmail.com

Alain Bonardi

CICM-MUSIDANSE

Université Paris 8

alain.bonardi@univ-paris8.fr

ABSTRACT

This paper presents a functional ambisonic granulator developed

using the Faust language, designed to generate diverse sound out-

puts from minimal inputs. Suitable for mixed music performances,

it features configurable envelopes, distributed internal parameters,

and feedback loops. The granulator’s architecture includes input

filtering, grain generation, modulation, transposition, and spatial-

ization. Two spatialization approaches are implemented: “spatial

sound transformation” and “point source to diffuse field”.

1. INTRODUCTION

This paper introduces a functional ambisonic granulator, combin-

ing granular synthesis with ambisonic spatialization using Faust’s

functional programming paradigm. Developed for the BBDMI

project,1 it aims to generate diverse sound outputs from minimal

inputs, particularly suited for performances using electrophysio-

logical signals. Its key features include:

• Configurable envelopes for grain shaping.

• Distributed internal parameters across channels.

• Strategic feedback loop positioning.

• Two distinct ambisonic spatialization techniques.

• Comprehensive user-controllable variables.

The granulator’s architecture enables a wide spectrum of sound

outputs. This paper details each component’s implementation, ex-

plores the granulator’s MaxMSP integration, and discusses future

developments to enhance user accessibility and control. In general,

the specificity of the proposed granulator lies in the highly config-

urable envelopes, the distribution of internal parameters for each

instantiated channel, and the way feedback loops are positioned.

All the codes related to this paper can be found in our Gitlab

repository.2

2. CONTEXT

The development of this granulator is proposed as a solution for

generating a mixed music sound effect that operates with mini-

mal input while producing a broad spectrum of diverse sound out-

puts. This type of sound effect is essential for our BBDMI project,

which involves the performance of mixed music using EMG and

EEG signals. Typically, the small number of extracted features

from EEG signals and the limited number of channels in EMG

devices result in a constrained set of variables for user interaction.

1BODY BRAIN DIGITAL MUSIC INSTRUMENTS. ANR-21-CE-
38-00018. https://bbdmi.nakala.fr/

2https://gitlab.huma-num.fr/bbdmi/bbdmi

The concept of granular synthesis has a rich history that in-

forms its current applications. Granular synthesis was initially

conceptualized by Iannis Xenakis in the early 1950s, who explored

the idea of sound as composed of small grains or particles, each

contributing to a complex acoustic texture [1]. Xenakis’s theoret-

ical groundwork laid the foundation for later developments in the

field.

In the 1970s and 1980s, Curtis Roads advanced granular syn-

thesis by formalizing its methods and exploring its potential in

digital sound processing. His work, particularly in Microsound,

has been instrumental in defining the techniques used in granular

synthesis today [2]. Roads highlighted the ability of granular syn-

thesis to create new soundscapes by manipulating tiny fragments

of sound, which is a core principle in the design of our ambisonic

granulator.

Further contributions to the field were made by Horacio Vag-

gione, whose work on the articulation of microtime has signifi-

cantly influenced the musical applications of granular synthesis.

In his article “Articulating Microtime”, Vaggione explores how

the manipulation of microtemporal structures can be used to create

complex sound forms that transcend traditional time scales [3]. His

approach to granular synthesis emphasizes the importance of con-

trolling the temporal evolution of grains, allowing composers to

shape intricate sound textures at a microstructural level. This con-

cept is reflected in the design of our granulator, which leverages

feedback loops and delays, creating detailed and evolving sound-

scapes.

Barry Truax’s work on real-time granular synthesis has also

been influential, particularly in the context of live performance.

Truax’s approach to real-time processing aligns closely with the

requirements of mixed music performances, where sound effects

need to be generated dynamically based on live input [4]. This is

directly applicable to the functionality of our granulator, which is

designed for live use, incorporating feedback loops and real-time

spatialization.

The design of this granulator was significantly influenced by

the functional logic of the Faust programming language. The con-

cept of a continuous signal flow, inherent to Faust, inspired the

development of a flow of grains within the granulator. Through

the incorporation of feedback loops, the granulator facilitates the

creation of intricate sound textures. The development of this gran-

ulator was also inspired by the work conducted at the CICM lab

[5]. By incorporating a final layer of spatialization, the granulator

is capable of generating spatially diffuse sound fields and creating

spatial sound transformations.

3. A LIVE MUSIC GRANULATOR

Following Truax’s model of real-time granulation, this mixed mu-

sic granulator requires an external sound input to generate audio.
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This operational approach makes it particularly suitable for live

mixed music performances. The granulator can be configured in

two distinct modes: as a multichannel sound effect with ambisonic

output, or as an ambisonic sound effect when positioned between

an ambisonic encoder and decoder.

4. MAXMSP WRAPPING

Throughout the development of our project, we have created nu-

merous objects within the MaxMSP environment. To maintain

workflow continuity, we developed a Max/MSP wrapper that fa-

cilitates interaction with the granulator within this development

environment. The wrapper was initially designed to enable dy-

namic invocation of any Faust object by simply adjusting the num-

ber of channels within a bpatcher.3 The Figure 1 illustrates the

variables within the wrapper, which include three additional op-

tions not originally present in the Faust code.

The first wrapper-specific option is the “channels” variable.

By default, dynamically changing the number of channels for a

Faust object within Max/MSP is not feasible. This variable, how-

ever, allows us to replace the Faust object by selecting the desired

number of channels, thus offering greater flexibility in the devel-

opment process.

The wrapper includes two additional variables, “randomize”

and “dump”, each providing distinct functionalities. The “random-

ize” option assigns random values to all internal variables within

their respective minimum and maximum ranges. This feature is

crucial for exploring the full range of the granulator’s capabilities,

especially given the complexity introduced by having 17 internal

variables.

The “dump” option allows users to export the current configu-

ration of the granulator for future retrieval with a single click. The

interplay between the “randomize” and “dump” functions enables

users to experiment with and save various configurations, facilitat-

ing both exploration and preservation of interesting settings.

5. ARCHITECTURE

The granulator’s behavior is determined by seven distinct compo-

nents:

• Input filtering.

• Feedback loop of the input signal with delay.

• Grains generation.

• Modulation.

• Grains transposition.

• Spatial sound transformations.

• Feedback loop with transposition.

The Figure 2 represents these 7 modules. Subsequent sections will

provide a detailed discussion of each module. It is crucial to note

that two variables significantly influence the behavior of all other

parameters in the granulator: the “variability” and “indexdistr” pa-

rameters (explained in Section 5.6.3). These variables introduce

varying degrees of randomness into each of the other parameters,

thereby impacting their behavior and interaction. The “variability”

parameter modulates the extent of randomness applied, while the

3A MaxMSP object that modularizes a patcher or subpatcher, display-
ing only specified visual elements in other patchers

Figure 1: Max bpatcher.

Figure 2: Simplified diagram.

“indexdistr” parameter governs how this randomness is distributed

across the different channels or harmonics. Together, these vari-

ables play a central role in shaping the overall sonic output by

dynamically altering the relationships between the granulator’s in-

ternal variables.

5.1. Input Filtering

The first effect applied to the input signal is a combination of low-

pass and high-pass filtering. By default, the granulator does not

apply any filtering to the input signal; however, it provides the

flexibility to dynamically adjust the input filtering as needed.

5.2. Delayed Feedback Loop

The primary objective of this module is to blend the input signal

with a delayed version of itself to create a more complex sound

texture before segmenting it into grains. By adjusting the “maxde-

lay” variable, a delay is introduced to the input signal, which is
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Figure 3: Input delayed feedback loop.

Figure 4: Envelope design.

then added to the input after being scaled by the “feedback” vari-

able. Figure 3 illustrates the structure of this module.

These two variables allow the user to either process the clean

input signal with no delay and zero feedback or to achieve a more

intricate effect by mixing the input signal with its delayed version,

with delays extending up to 10 seconds.

5.3. Grains Generation

This module is responsible for segmenting the processed input sig-

nal into grains. Two primary properties of the grain are addressed:

the size of the grain and the grain envelope. The grain size deter-

mines the duration of each grain, while the grain envelope controls

the temporal shape of the grain’s amplitude profile.

5.3.1. Grain Size

Instead of employing a rarefaction logic, the granulator operates

based on grain size and spacing. The grain size is calculated by

adding the “grainoffset” variable to the product of the “grainsize”

and the “variability” parameter. This configuration enables the

generation of grains with a uniform size or with sizes varying

within a specified range. The “spacing” variable multiplied by the

“variability” parameter will determine the spacing between grains.

5.3.2. Grain Envelope

After evaluating various envelope shapes, we determined through

experimental validation that a combination of Gaussian and loga-

rithmic waveforms provides optimal results. The “grainenvmorph”

variable enables dynamic adjustment of the envelope shape, rang-

ing from zero to one. A value of zero corresponds to a Gaussian

envelope, while a value of one corresponds to a logarithmic enve-

lope. Figure 4 illustrates the envelope shapes for different values

of the “grainenvmorph” variable. Figure 5 illustrates the creation

of grains while the “grainenvmorph” and “grainsize” variable are

changing.

5.4. Envelope Amplitude Modulation

Following the creation of each grain, this module enables the ap-

plication of amplitude modulation to each grain through a variable

modulation factor, “modfactor”. Figure 6 depicts the grain enve-

lope under three conditions: without modulation, with 50% mod-

ulation, and with 100% modulation. The variable “modfreq” sets

Figure 5: Morphing between envelopes and different grain sizes.

Figure 6: Envelope amplitude modulation.

the frequency of the amplitude modulation, ranging from 1 Hz to

15 kHz. Figure 7 demonstrates the effects of envelope modulation

at three different frequencies: 10 Hz, 20 Hz, and 40 Hz.

Initially, the module utilized a single modulating signal for all

grains. This approach led to the perception of a single, continu-

ous tone after listening to a stream of grains, which did not align

with our objectives. To address this issue, we implemented phase-

controlled modulation for each grain. This modification ensures

complete decorrelation between the shapes of the modulated en-

velopes of the grains. By employing an ad hoc modulating signal,

the granulator is able to produce grains that share the same modu-

lation characteristics without creating a cohesive tonal effect.

5.4.1. Modulating Signal Morphing

The ability to morph the waveform of the modulating signal in an

amplitude modulation (AM) system plays a crucial role in shap-

ing the sound of the resulting signal. For instance, using a square

wave as the modulation signal tends to produce a bright, aggres-

sive sound, whereas a sine wave results in a smoother, softer tone.

The granulator’s “modmorph” feature acts as an interpolation con-

troller between four waveform signals: sine, sawtooth, square, and

sine again. Figure 8 illustrates the envelopes generated by varying

values of the “modmorph” variable. It is important to note that in-

teger values correspond to pure waveforms, while decimal values

result in a morphed shape that blends two adjacent waveforms.

The design choice to position a sine wave at both the begin-

ning and end of the modulation cycle allows the user to create any

conceivable morph between the three basic waveforms. This capa-

bility enables the creation of interesting effects through waveform

morphing. By gradually transitioning from one waveform shape

to another, either rapidly or slowly, users can achieve smooth or

abrupt changes in sound texture. Figure 9 illustrates the process of

Figure 7: Variable “modfreq”.
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Figure 8: Modulating signal morphing from sine to square.

Figure 9: Mix of different modulating signals.

wave morphing applied to the grain envelope.

5.4.2. Modulating the Frequency of the Amplitude Modulat-

ing Signal

In addition to modulating the amplitude of each grain’s envelope,

the granulator also offers a variable called “modfreqmod”. This

variable controls the degree of frequency modulation applied to

the amplitude modulation of the envelope. Figure 10 illustrates the

impact of varying the “modfreqmod” variable from zero to one. In

this context, a value of 0.5 represents the absence of frequency

modulation, while values closer to zero or one introduce increas-

ing levels of frequency modulation to the amplitude modulation

envelope. This transformation enables the creation of envelopes

where the amplitude modulation can dynamically shift from a high

frequency to a low frequency, or vice versa, with each new grain.

This modulation process is applied every time a grain is generated,

allowing for varied and evolving sound textures.

5.5. Grains Transposition

At this stage of the process, the grains are transposed within a

range of -24 to +24 semitones.

5.6. Spatialisation

Given that one of CICM laboratory’s primary focus on sound spa-

tialization and our prior advancements in the field of ambisonic

Figure 10: Frequency modulation of the amplitude modulating sig-

nal.

spatialization, we decided to integrate an ambisonic spatialization

layer into the granulator. There are various approaches to con-

structing this spatialization layer, and we chose to implement two

distinct methods, each designed to produce different sonic out-

comes. Currently, we have developed two versions of the granu-

lator, each catering to different musical requirements. The version

presented in this paper differs from the second version, particu-

larly in its approach to spatialization. Here we discuss this two

approaches :

5.6.1. Spatial Sound Transformation

The version of the granulator presented in this paper employs a

method we refer to as “spatial sound transformation”. Unlike tra-

ditional spatialization approaches that focus on placing sound at a

specific point in space, this approach leverages spatialization algo-

rithms to create new and dynamic sound effects [6].

In this configuration, the granulator could function as a multi-

channel effect, with each channel acting independently, but in or-

der to achieve a more intricate spatial result, the granulator is posi-

tioned between an ambisonic encoder and decoder. This approach

contrasts with the traditional method of granulating multiple chan-

nels, placing them on the space and then projecting them through

a sound system. By using the granulator as an ambisonic effect

between the encoder and decoder, we modify the spatial represen-

tation sent from the encoder to the decoder, effectively altering

how the spatial audio is perceived.

This “spatial sound transformation” enables a wide array of

sound effects, one example is spatial decorrelation [7]. By ap-

plying different delays to each ambisonic harmonic channel, we

can alter the reconstruction of the final “sound image”, leading to

unique spatial effects. In Section 5.6.3, we will explore how each

variable of the granulator is configured to respond to different dis-

tributions among the ambisonic harmonics, further enhancing the

complexity and richness of the spatial effects.

5.6.2. From Point Source to Diffuse Field

The second implementation of the granulator adheres to a more

conventional approach to spatialization. In this version, each grain

is positioned randomly within the 2D space before entering the

final feedback loop, that will be discussed in Section 5.7.

Since each grain is spatialized using an ambisonic encoder, an

ambisonic decoder of the same order is required for proper inter-

pretation. What makes this implementation particularly interest-

ing is that the initial “image” of the spatialized sound is precisely

positioned in a specific location within the space. However, as

the sound is reintroduced through the feedback loop, these subse-

quent “images” become increasingly diffuse, ultimately creating a

more complex and enveloping diffuse sound field. This approach

leverages the spatialization algorithms to transition from a clearly

defined spatial sound to a more ambient and immersive auditory

experience.

5.6.3. Ambisonic Distribution

When the granulator is used between an ambisonic encoder and

decoder, every channel of the granulator is modifying a specific

spherical (for 3D) or circular harmonics (for 2D). As every har-

monic adds complementary information to the final reconstruction

of the spatialised sound, the question of how to alter the parame-

ters of each harmonic becomes relevant. As each channel of the
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Figure 11: Ambisonic distributions.

granulator is modifying a specific harmonic, the way each internal

parameter of every channel of the granulator relates to one another

determines the characteristics of the final ambisonic reconstruc-

tion. There are numerous possibilities for distributing the granula-

tor’s internal parameters across the spherical or circular harmonics,

ranging from high-level control parameters to specific adjustments

for each harmonic. Our proposition for distributing how each in-

ternal parameter of each channel changes is based on the trans-

fer functions proposed by Alain Bonardi and Paul Goutmann in

the Faust “HOA” library. With this method the variables of each

channel will change taking in account the selected transfer func-

tion and the number of the harmonic. The “indexdistr” variable

enables users to select from various distribution patterns. Figure

11 illustrates the potential distributions as mathematical functions.

The first distribution is “x” which represents a linear distribution.

Upon selecting a specific ambisonic distribution, the internal pa-

rameters of each channel in the granulator are adjusted according

to the “variability” parameter and the corresponding value from

the selected transfer function. For instance, consider the impact

on the first low-pass and high-pass filters. For each harmonic, or

granulator channel, the frequency of these filters is calculated by

taking the base frequency value and adding an additional compo-

nent. This component is the product of the base frequency and a

scaling factor ranging from zero to one, which is distributed across

all the harmonics. For a linear transfer function, or “x”, the result-

ing sonic effect is that the higher the harmonic level, the more

pronounced the effect of each parameter becomes. This configu-

ration creates a gradient of effects, where parameters such as filter

frequency progressively intensify with the level of the harmonic,

contributing to a more dynamic and evolving sound texture.

5.7. Grains Feedback Loop and Transposition

At this stage, a grain with specific spatial properties and a modi-

fied spectrum, thanks to filtering and modulation, has already been

created. The final step in the granulator’s process involves the col-

lection of these grains through a feedback loop. This final loop

enables the granulator to produce a continuous stream of grains

rather than discrete, isolated grains at the output. As detailed ear-

lier in this paper, parameters such as grain size, spacing, and other

characteristics are adjusted before each grain is generated. The

outcome is a flux of grains with varying sizes and spectral con-

tents, which are accumulated within a time window specified by

the “maxdelay” variable.

Figure 12 illustrates the configuration of this final feedback

loop. A critical aspect of this module is the transposition within

the feedback loop. As shown in Figure 12, each grain is initially

Figure 12: Feedback loop and transposition of grains.

outputted without any transposition. However, subsequent feed-

back signal of the same grain are increasingly transposed. This

setup produces an interesting sonic effect, as the echoes of each

grain begin to “escape” into either very low or very high frequency

spectrums. The variable “transpout” controls the degree of trans-

position applied, allowing the user to shape the extent of this spec-

tral shift.

5.8. Smoothing

A 1024-sample transition buffer is employed for all input variables

to smooth the input before it is applied. This smoothing mecha-

nism mitigates abrupt changes that could otherwise result in audi-

ble clicks.

6. MACRO CONTROLS

The granulator has 17 internal variables, which exceeds what a per-

former can feasibly adjust simultaneously, especially when work-

ing with EMG/EEG signals that offer limited channels for con-

trol. To maximize the granulator’s potential, we have discovered

that employing advanced mapping algorithms, such as regression

models and neural networks, can yield highly effective results.

These approaches allow for the complex and dynamic manipula-

tion of the granulator’s parameters, enabling performers to explore

a broader range of sonic possibilities despite the constraints of lim-

ited input channels.

6.1. Regression

By employing the regression algorithm “RapidMax”,4 we success-

fully recorded various configurations of the granulator, enabling

them to evolve in response to inputs provided to the regression

model. This approach offers users the flexibility not only to ex-

plore the extensive possibilities of the granulator but also to record

these configurations and seamlessly morph between them. This

dynamic capability enhances the creative potential of the granu-

lator, allowing for the development of evolving soundscapes and

complex transitions between different sonic states.

6.2. One Layer Perceptron

A comparable approach to the regression model was adopted by

developing a single-layer perceptron neural network using Faust.

This implementation relies on vector and matrix multiplications to

evaluate the perceptron. However, as of now, we have not devel-

oped a training algorithm, so this method remains in the exper-

imental stage. Currently, we can only test random weights and

biases until an interesting outcome is achieved. The lack of a sys-

tematic training process limits the full potential of this method,

4https://github.com/samparkewolfe/RapidMax

51



Functional Ambisonic Granulator - International Faust Conference (IFC-24), Soundmit, Turin, Italy, November 21-22, 2024

but it represents a promising direction for future development in

generating and exploring novel sound configurations.

7. USER CASES AND FUTURE DEVELOPMENTS

Within the context of the BBDMI project, we have had the oppor-

tunity to test the granulator in various settings. This experience

has provided valuable insights into both the possibilities and limi-

tations of the granulator. In concert settings, we received positive

feedback regarding the granulator’s sound, which has garnered in-

terest from composers and musicians. However, despite this initial

enthusiasm, many users eventually discontinue using the granula-

tor due to its complexity.

This issue highlights the need for further development of the

internal mapping algorithms to facilitate more accessible and in-

tuitive macro controls directly within the Faust-compiled object.

Simplifying the user interface while maintaining the granulator’s

powerful capabilities is crucial for broader adoption.
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ABSTRACT

This article presents a novel extension to the FAUST programming

language called Widget Modulation. Inspired by Modular Synthe-

sizer, this high order operation enables developers to effortlessly

implement voltage control type modulation to existing FAUST cir-

cuits.

Although signal modulation can easily be achieved by writing

the necessary code during circuit development, Widget Modulation

expressions enable it a posteriori, after the circuit has been devel-

oped and without modifying its code. This feature allows for easy

reuse and customization without prior planning by the original cir-

cuit designer, offering a new level of expressivity and flexibility in

FAUST circuit design.

1. INTRODUCTION

The development of voltage control in analog sound synthesis, be-

ginning in the mid-20th century, marks a milestone in the history

of electronic music. This technique involves using electrical volt-

ages to modulate various synthesizer parameters, such as the pitch

or amplitude of an oscillator or the cutoff frequency of a filter. This

capability allows synthesis parameters to evolve, imparting timbral

richness, expressiveness, and dynamism to the sounds produced.

Key figures in the development of voltage control for analog

sound synthesis include Hugh Le Caine, Robert Moog, and Don

Buchla. Building on Hugh Le Caine’s concept of the voltage-

controlled oscillator (VCO), Robert Moog established a crucial

standard for modular synthesizers known as 1V/oct, where an in-

crease of one volt corresponds to a pitch change of one octave [1].

This standard enables a form of recursivity within the synthe-

sizer itself: the sound signals produced by one module can control

the parameters of other modules, including itself. This recursive

capability is a key factor in the richness and complexity of the

sounds generated by modular synthesizers. Let’s quote Suzanne

Ciani in [2]: “What we all love is the hands-on experience of

patching and tweaking . . . the way it engages both our brains

and our bodies, the freedom of choice it offers, the individualism,

the uniqueness.”

Implementing voltage control principals, à la Modular Synthe-

sizer, in FAUST [3] had always been straightforward. All we need

to do is add an audio input and implement a modulation operation

that describes how to combine this additional input signal with that

of the widget we want to modulate. The modulation operation can

be as simple as an addition or multiplication.

As an example, let’s start with a simple oscillator: myosc,

with a frequency control, but no modulation possibility:

import("stdfaust.lib");

myosc = vslider("freq[style:knob][scale:log

]", 440, 20, 20000,0.1)

: os.osc;

process = myosc;

Let’s now look at how to transform myosc to create a fre-

quency modulation (FM) circuit [4]. To do this, we need to mod-

ulate the frequency of the oscillator by introducing the influence

of another oscillator. Specifically, we will achieve this by adding

the output signal of the second oscillator (mymod) to the frequency

control (the “freq” widget) of the first oscillator, as in the following

code:

import("stdfaust.lib");

myosc = +(vslider("freq[style:knob][scale:

log]", 440, 20, 20000,0.1))

: os.osc;

mymod = hslider("fmod[style:knob][scale:log

]", 110, 20, 1000,0.01)

: os.osc * hslider("amod[style:knob

]", 25, 0, 1000, 0.01);

process = mymod : myosc;

The modification was minimal. All we had to do was add an

input signal to myosc and sum it with the “freq” widget of the

oscillator. However, we could do this because we had access to the

source code of myosc. If myosc had been defined in a library,

we would have had to either modify the library or duplicate the

myosc code in our program.

As we will see, Widget Modulation allows us to do the same

kind of transformation but without modifying the source code! It,

therefore, makes FAUST’s code reuse mechanisms, library()

and component() even more useful.

2. EXAMPLES OF WIDGET MODULATION

Before a more formal description of Widget Modulation, let’s con-

sider some very simple examples using dm.freeverb_demo

from the standard library.

Without inspecting the code, just by looking at the user inter-

face of dm.freeverb_demo (figure 1) we can see the names

of the various widgets that are involved and that could possibly be

modulated.

Here we are interested in the "Wet" slider that controls the

balance between the wet (reverbered) and dry (unprocessed) sig-

nals.

In order to modulate the "Wet" slider, we write:
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Figure 1: Freeverb user interface.

["Wet" -> dm.freeverb_demo]

As we can see, the syntax of a Widget Modulation deliberately

resembles that of a lambda-abstraction, although the semantics are

quite different and the two should not be confused. Here the string

"Wet" identifies the target of the modulation, the vslider("

Wet",...) in the definition of dm.freeverb_demo. Be-

cause we didn’t specify a modulation circuit, the modulation cir-

cuit is implicitly assumed to be a multiplication.

The resulting circuit has now three inputs: the new input for

the modulation signal, and the original left and right inputs of the

reverb. Moreover the signal delivered by the "Wet" slider is mul-

tiplied by the input modulation signal everywhere in the reverb

circuit.

This extra input can now be connected to an oscillator to mod-

ulate the Wet parameter as in:

1+os.osc(0.1)/4,_,_: ["Wet" -> dm.

freeverb_demo];

Here the modulation signal 1+os.osc(0.1)/4 is an oscil-

lator with a frequency of 0.1 Hz, and an amplitude of 0.25. The

1+ is used to ensure that the modulation signal is between 0.75

and 1.25.

Modulation Circuit. In the previous example, we didn’t indi-

cate a modulation circuit. To do so, we use the symbol ’:’ fol-

lowed by the modulation circuit. For example "Wet":+ indicates

the use of an addition as a modulation circuit. It means that our

previous example is equivalent to:

1+os.osc(0.1)/4,_,_: ["Wet":* -> dm.

freeverb_demo];

By writing "Wet":* we explicitly stated to use a multiplica-

tion * as a modulation circuit. Please note that the : symbol in "

Wet":* is used to separate the widget name from the modulation

circuit and should not be confused with the sequential composition

operator :, even if it also suggests an idea of connection.

We’ll come back to this later, but a modulation circuit can be

of three types. A circuit with two inputs and one output, like * or

+; a circuit with one input and one output, like *(2); or a circuit

with no input and one output, like 0.75.

1. Only a modulation circuit with two inputs, like + or * cre-

ates an external modulation input. Its first input is con-

nected to the widget, and the second one becomes the mod-

ulation input.

2. Another possibility is to describe the entire modulation cir-

cuit in a single expression, in which case there is no need

for an additional input, as in the following example:

["Wet":*(1+os.osc(0.1)/4) -> dm.

freeverb_demo];

3. Finally, we can completely replace the target widget with a

modulation circuit that has no inputs, for example:

["Wet":0.75 -> dm.freeverb_demo];

Then the slider will be removed from the user interface and

replaced by a constant value of 0.75, with potential speed

up of the computation.

Instead of replacing a widget with a constant, we can re-

place it with another widget, for example to change its name,

style, range, etc.:

["Wet":vslider("WetDry", 0.25, 0, 1,

0.01) -> dm.freeverb_demo];

In this case, all occurrence of vslider("Wet", 0.25,

0, 1, 0.01) in dm.freeverb_demo is replaced by

vslider("WetDry", 0.25, 0, 1, 0.01).

Multiple Targets. In the previous examples, we only had one

target widget. We can specify more than one by separating them

with commas as in the following example:

["Wet", "Damp", "RoomSize" -> dm.

freeverb_demo]

The resulting circuit has five inputs, three modulation inputs

and two reverb inputs. The first input modulates the "Wet" wid-

get, the second the "Damp"widget, and the third the "RoomSize

" widget. These three inputs are followed by the two inputs of the

reverb.

Please note that the above expression is equivalent to the “cur-

ryfied” version:

["Wet" -> ["Damp" -> ["RoomSize" -> dm.

freeverb_demo]]]
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[1] gain

vslider(gain, 0.0f, 0.0f, 1.0f, 0.01f)

[1] gain

*
*

vgroup(chan 0)

vslider(gain, 0.0f, 0.0f, 1.0f, 0.01f)

[1] gain

*
*

vgroup(chan 1)

hgroup(mixer)

process

Figure 2: All gain controls are modulated by the same input.

[1] v:chan 1/gain

vslider(gain, 0.0f, 0.0f, 1.0f, 0.01f)
*

vgroup(chan 0)

vslider(gain, 0.0f, 0.0f, 1.0f, 0.01f)

[1] v:chan 1/gain

*
*

vgroup(chan 1)

hgroup(mixer)

process

Figure 3: Only the gain of channel 2 is modulated.

Multiple Matches. It might happen that the same name matches

multiple widgets in different groups. In this case, all the matched

widgets will be modulated by the same audio input.

In the following example we have a kind of two voices mixer:

import("stdfaust.lib");

mixer = hgroup("mixer",

par(i,2,

vgroup("chan %2i",

*(vslider("gain", 0, 0, 1,

0.01))

)

)

);

process = ["gain" -> mixer];

Since in both channels we have “gain” widget, the modulation

will affect both channels as we can see on the bloc-diagram figure

2.

For a more specific selection of the target widget, we can in-

clude the names of some or all of the enclosing groups of the target

widget, as in ["v:chan 1/gain" -> mixer]. Here, only

the gain of channel number 1 will be modulated (see figure 3).

3. SYNTAX OF WIDGET MODULATION

In the preceding examples, we have provided an informal overview

of Widget Modulation, aiming to offer a relatively intuitive under-

standing. Now, we will present a more formal description using

syntactic rules in Backus-Naur Form (BNF), starting from the Wid-

get Modulation expression itself:

Figure 4: WidgetModulationExpression.

Figure 5: Target.

3.1. WidgetModulationExpression

WidgetModulationExpression

::= ’[’ Target ( ’,’ Target )*
’->’ Expression ’]’

A Widget Modulation expression is composed of a list of target

widgets and a modulated expression in which the target widgets

are presumably used. The targets are separated by a comma sign (,

). There must be at least one target. A Widget Modulation without

targets is not allowed. The targets and the modulated expression

are separated by the sign ->, and the whole Widget Modulation

expression is enclosed in square brackets.

3.2. Target

Target ::= ’"’ WidgetPath ’"’ ( ’:’

ModulationCircuit )?

A Target is composed of a WidgetPath that identifies the wid-

get to modulate, and an optional ModulationCircuit that indicates

how to combine the signal delivered by the widget with the mod-

ulation signal. If no ModulationCircuit is provided, the default is

multiplication.

3.3. WidgetPath

WidgetPath

::= ( ( ’h:’ | ’v:’ | ’t:’ )

GroupLabel ’/’ )* WidgetLabel

The WidgetPath is used to identify widgets in a modulated ex-

pression. It is a string composed of a widget label, optionally pre-

ceded by a sequence of group labels separated by slashes. The

widget label is matched after removing any metadata. Group la-

bels are used to disambiguate the widget to match, but they do not

have to be consecutive.

Figure 6: WidgetPath.
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3.4. ModulationCircuit

The ModulationCircuit describe how to modulate the signal pro-

duced by the target widget. It can be any FAUST circuit with up to

two inputs and one output. Three cases have to be considered:

• (2 → 1): A binary circuit with two inputs and one output,

for example + as in "Wet":+. In this case, and only in

this case, an additional input is created and the value of the

widget is combined into the binary circuit before being used

in the modulated expression.

• (1 → 1): A unary circuit with one input and one out-

put, for example *(lfo(10, 0.5)) as in "Wet":*(

lfo(10, 0.5)). In this case, the value of the widget

is routed into the unitary circuit before being used in the

modulated expression, and no additional input is created.

• (0 → 1): A constant circuit with no input and one out-

put, for example 0.75 as in "Wet":0.75. In this case all

the occurrences of widget are simply removed and replaced

by the constant circuit in the modulated expression. This

is convenient to simplify a rich interface when some wid-

gets that are not needed. In this case, no additional input is

created.

3.5. Compilation

Widget Modulation is a circuit transformation primitive that is han-

dled in the first phase of the compilation process. During this phase

the FAUST program is evaluated to produce a circuit in normal

form (a flat circuit composed solely of interconnected primitives).

Let’s illustrate this process on our previous example:

["Wet":*(1+os.osc(0.1)/4) -> dm.

freeverb_demo]

The compiler first evaluates *(1+os.osc(0.1)/4) and

dm.freeverb_demo into their respective normal forms c1 and

c2. It then computes the normal form of ["Wet":*(1+os.

osc(0.1)/4)-> dm.freeverb_demo] by replacing every

widget w labeled "Wet" occurring in c2 with w:c1.

As a circuit transformation, Widget Modulation represents a

new type of operation for FAUST, distinct from circuit composi-

tion operations (:, ,, \~, <:, :>), which assemble existing cir-

cuits without transforming them. Despite this distinction, Wid-

get Modulation fully aligns with the philosophy of a programming

language dedicated to the description and implementation of audio

circuits.

4. EXAMPLES OF MODULATION CIRCUITS

The ability to specify our own modulation circuits provides a lot

of flexibility and expressiveness to Widget Modulation. Here, we

give some examples of modulation circuits, some of which exploit

the fact that it is possible to know the minimum and maximum

values of a signal using the primitives lowest and highest,

thereby ensuring that the signal after modulation remains within

the widget’s limits.

4.1. Frequency Modulation

Let’s start with a simple example of frequency modulation show-

ing the usage of simple additive and multiplicative modulations.

Figure 7: Simple frequency modulation.

We first define an oscillator with its own user interface consist-

ing of two widgets, one controlling its frequency and the other its

amplitude.

osc(n) = hgroup("osc %2n", os.osc(f) * g

with {

f = vslider("freq[scale:log][style:knob

][unit:Hz]",440,0.25,20000,1);

g = vslider("gain[style:knob]", 0, 0,

1, 0.01);

});

The n parameter is used in the group label to distinguish os-

cillators, so that we can use more than one. The minimal value for

the frequency, 0.25 Hz, is deliberately outside the audible range in

order to use the oscillator also as a LFO.

Let’s look at a first example of frequency modulation using an

addition as the modulation circuit:

process = osc(1) : ["freq":+ -> osc(2)];

The user interface and resulting spectrum are shown in figure

7. We recognize a FM spectrum, but the amplitude of the modu-

lation oscillator is not high enough to obtain a rich spectrum. We

can fix the problem by amplifying the modulation signal:

process = osc(1)*500 : ["freq":+ -> osc(2)

];

This gives us the spectrum figure 8.

Now let’s add a third modulation stage, to modulate the “gain”

of oscillator 1 and obtain a periodic variation in the spectrum:

process = osc(0)+1 : ["gain" -> osc(1)*500]

: ["freq":+ -> osc(2)];

The resulting program can be try on line here

4.2. Advanced Modulation Circuits

In the previous examples, we did not account for the possibility of

the modulated widget signal exceeding the limits of the initial wid-

get. However, there are scenarios where this is important. There-

fore, we now present several more advanced modulation circuits

that ensure that the output value respects the range of values of
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Figure 8: Improved FM circuit.

the widget w. As a reminder, we can determine the minimum and

maximum values of a signal using the lowest and highest

primitives.

addp and add modulations. The principle here is to add a

value taken between two limits to the widget. A distinction is

made between two cases, depending on the nature of the modu-

lation signal. It could be a positive modulation signal, between

0 and +1, such as the signal from an envelope follower. Alterna-

tively, it could be an audio signal, between -1 and +1, such as the

signal from an oscillator. The obtained value is then clipped to the

limits of the widget.

The first function, addp, adds to the widget w a value between

v1 and v2 based on a positive modulation signal m ranging from

0 to +1:

addp(v1,v2,w,m) = max(lo, min(hi, w + v))

with {

lo = lowest(w);

hi = highest(w);

v = v1+m*(v2-v1);

};

The second function, add, adds to the widget w a value be-

tween v1 and v2 based on an audio modulation signal m ranging

from -1 to +1.

add(v1,v2,w,m) = addp(v1,v2,w,(m+1)/2);

mulp and mul modulations. The first function mulp multiply

the widget value w by a factor between f1 and f2 based on a

positive modulation signal m ranging from 0 to +1.

mulp(f1,f2,w,m) = max(lo, min(hi, w * f))

with {

lo = lowest(w);

hi = highest(w);

f = f1+m*(f2-f1);

};

The second one mulp multiply the widget value w by a factor

between f1 and f2 according to an audio modulation signal m

ranging from -1 to +1.

mul(f1,f2,w,m) = mulp(f1,f2,w,(m+1)/2);

mapp and map modulations. These last two functions allow

you to completely replace a widget (causing it to disappear from

the user interface) with a value that varies between two bounds

controlled by a modulation signal. The first function mapp re-

places the widget by a value between v1 and v2 based on a posi-

tive modulation signal p ranging from 0 to +1.

mapp(v1,v2,w,p) = v1 + p*(v2-v1);

4.3. Revisiting the Frequency Modulation Example

We can apply these new functions to revisit our frequency modula-

tion example. Let’s start by defining an md environment containing

all our modulation functions:

md = environment {

addp(v1,v2,w,m) = max(lowest(w), min(

highest(w), w + v))

with {

v = v1+m*(v2-v1);

};

mulp(f1,f2,w,m) = max(lowest(w), min(

highest(w), w * f))

with {

f = f1+m*(f2-f1);

};

mapp(v1,v2,w,p) = v1 + p*(v2-v1);

add(v1,v2,w,m) = addp(v1,v2,w,(m+1)/2);

mul(f1,f2,w,m) = mulp(f1,f2,w,(m+1)/2);

map(v1,v2,w,m) = mapp(v1,v2,w,(m+1)/2);

};

The revised frequency modulation example is as follows:

process = osc(0)

: ["freq":md.add(-500,500) -> osc

(1)];

It is interesting to note that the same target widget can be

modulated several times by different modulation circuits. In the

following Widget Modulation expression, two modulation circuits

are applied to the same “freq” widget. It is first modulated by an

add(-600,600), and the result by a mul(0.1,10):

["freq":md.add(-600,600), "freq":md.mul

(0.1,10) -> osc(1)]

The circuit figure 9, shows how this double modulation is im-

plemented.

To complete this section, here is a more elaborate example. It

combines double frequency modulation—by an oscillator and by

its own output signal via feedback—with the modulation of the

“gain” widgets of these two oscillators by a third oscillator.

process = osc(0) : ["gain":md.add(0,0.5) ->

(_ ,osc(1): ["freq":md.add(-600,600), "

freq":md.mul(0.1,10) -> osc(2)])~@(200)

]<: _,@(5000);
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Figure 9: Double modulation of the "freq" widget.

5. CONCLUSION

This article introduces Widget Modulation, a novel extension to

the FAUST programming language. This high-order primitive di-

rectly manipulates audio circuits, marking the first instance of such

functionality within FAUST.

Inspired by the principles of modular synthesizers, Widget Mod-

ulation enables developers to seamlessly implement voltage control-

type modulation into existing FAUST circuits. This allows for the

redesign of user interfaces without necessitating direct access to

the underlying source code.

While mastering the use of Widget Modulation may require

time, its potential to significantly influence the development of

FAUST libraries is substantial [5]. Users will be empowered to cre-

ate libraries of modules, akin to those found in modular synthesiz-

ers, featuring rich and detailed user interfaces, with the assurance

that a posteriori customization remains feasible. Furthermore, the

extension opens avenues for the development of new libraries ded-

icated to modulation circuits.
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ABSTRACT

Testing real-time capable audio algorithms in a time-variant acous-
tic environment can be a tedious process, often requiring specialised
hardware to fulfil latency constraints. In this publication, an alterna-
tive approach based on an acoustic scene simulation in TASCAR and
signal processing using FAUST is assessed and tested against actual
measurements. In dry acoustic environments, a good match of level
distribution and spatial coherence at various evaluated points can
be observed when modelling direct sound and early reflections. A
simulation of an ANC algorithm shows also comparable perfor-
mance to a measurement-based reference. Larger deviations are
observed for reverberant and anisotropic scenarios. The proposed
toolchain can be used for low-cost development and assessment
of real-time capable algorithms in time-variant acoustic scenar-
ios, as all parameters and virtual positions can be updated during
operation.

1. INTRODUCTION

The development and testing of real-time capable audio algorithms
can be a complex undertaking. Some algorithms like active noise
control (ANC) are especially time critical and cannot be tested in
the real world with common audio hardware and processing on an
ordinary computer. Therefore, specialised hardware such as Field
Programmable Gate Arrays (FPGAs) or digital signal processors
(DSPs) are usually needed, which are often associated with consid-
erable programming effort. Although dedicated rapid prototyping
platforms are lowering the entry barrier by supporting higher-level
code written in FAUST [1, 2, 3] or MATLAB/Simulink, they are
generally costly and not always easily accessible. Another issue
of testing systems in reality is a limited repeatability. Even small
variations, for example inaccuracies in the geometrical arrangement
of acoustic sources and receivers, can change the exact outcome
of an experiment. A viable alternative to testing algorithms in the
real world can be the combination of a time-variant, real-time ca-
pable acoustic simulation environment with an implementation of
the algorithm under test in FAUST for a realistic simulation of its
behaviour.

TASCAR1 [4] is an open-source program for rendering acoustic
scenes. Originally developed for hearing aid research, it features
time-domain methods like a geometric room-acoustic simulation
using an image source model (ISM), an implementation of a sim-
ple feedback-delay network (FDN) for diffuse reverberation, and
various source and receiver types. A unique feature compared to
other simulation tools is the ability to run simulations in real-time

1https://www.tascar.org

with inputs and outputs provided as JACK Audio2 connections. All
parameters of objects like position and orientation can be changed
via Open Sound Control (OSC)3 during operation. This enables
researchers to conduct experiments in virtual scenes with variable
positions in real-time.

As TASCAR only handles acoustic scene creation, the algorithm
under test has to be implemented separately. Here FAUST’s ability
to compile applications for various architectures comes into play.
FAUST has already been used successfully for implementing active
noise control algorithms [2, 3]. After an algorithm is implemented
in FAUST, it can be compiled as standalone JACK application with
the faust2ja[...] tools. This application can receive signals
from TASCAR, process them, and send them back to the acoustic
scene simulation. Due to JACK’s real-time capability, only a small
delay equal to the audio device’s block size is introduced.

The aim of this publication is to assess the capability of TAS-
CAR and FAUST for testing and evaluation of time-variant audio
algorithms compared to a co-simulation, based on recorded signals
and measurements. In section 2, the acoustic scene simulation in
TASCAR and the performed measurements are described. Section 3
compares acoustic properties of the recorded sound field and the
acoustic scene simulation for different rooms and varying level of
detail in the simulation. Section 4 showcases the use of TASCAR

and FAUST for an ANC algorithm before summarising the findings
in section 5. Measurements and code are openly accessible [5].

2. MEASUREMENTS AND SIMULATIONS

To assess the validity and accuracy of the simulation, acoustic
properties and the ANC algorithm are evaluated for two different
rooms:

• An acoustically treated measurement chamber with non-
parallel walls, dimensions of approximately 5m×4m×3m,
and a reverberation time of less than 50ms above 300Hz
and less than 30ms above 1 kHz.

• A meeting room with an overall reverberation time of about
0.9 s and anisotropic acoustic properties (surfaces with ab-
sorbers, glass, plasterwall, and wooden cabinets).

Figure 1 shows the floor plan of both rooms.

2.1. Measurements

In the measurement chamber and meeting room, respectively, an
arrangement of eight and four Genelec 8020B loudspeakers was em-

2https://jackaudio.org/
3https://opensoundcontrol.stanford.edu
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1m

(a) Measurement chamber

1m

(b) Meeting room

Figure 1: Floor plans of the evaluated rooms with positions of
primary loudspeakers (gray), secondary loudspeakers (orange), and
the microphone array (black bar) with indicated central position
(red cross).

ployed as acoustic source. It was ensured that the level differences
between loudspeakers were below 1 dB.

The sound field in the rooms was recorded via an arrangement
of 25 measurement microphones (NTi MA2230), uniformly spaced
with a distance of 5.5 cm on a straight line, extending from the
centre of the loudspeaker arrangement. The microphones are class
1 certified according to IEC 61672 and equipped with a 1/2" capsule.
After measurements, all microphones were calibrated using a Brüel
& Kjær 4231 calibrator.4 The microphone arrangement is shown in
figure 2.

Figure 2: Microphone arrangement in the meeting room.

A DirectOut ANDIAMO AD/DA converter and microphone
preamplifier provided in- and outputs for microphones and loud-

4Due to a too high preamplifier gain in the measurement chamber, the
calibrator’s signal at 94dB caused clipping. Therefore, the digitally set-
table amplifier gain has been reduced by 10dB for calibration in this case.
Subsequently, the lower gain was used for the meeting room recordings.

speakers. The device, running at 44.1 kHz sample rate, was con-
nected via MADI with an RME sound card (HDSPe MADI in the
measurement chamber, Madiface Pro in the meeting room) to the
measurement PC. Any occurring latency caused by the AD/DA
conversion was measured and compensated on the recordings.

The sound field was captured for several primary source con-
figurations with loudspeakers playing uncorrelated uniform white
noise. In the first configuration all loudspeakers were playing,
while in the second configuration only the loudspeaker pointed
at by the microphone arrangement was active. With this source
position defined as 0◦, an additional configuration with four active
loudspeakers at {0◦, 90◦, 180◦, 270◦} was recorded in the mea-
surement chamber. Additionally, impulse responses between each
loudspeaker and microphone were obtained using multiple expo-
nential sine-sweeps [6]. For the ANC co-simulation, an additional
loudspeaker acting as a secondary source positioned closer to the
central position was set up ans measured as indicated in figure 1.
This speaker was not present during measurements of the primary
sound sources.

2.2. Simulation

The geometry and transducer locations of both assessed rooms were
recreated in TASCAR for acoustic scene simulations. As receivers in
simulations do not influence the sound field nor have any placement
constraints, a finer grid of measurement positions with a spacing of
0.5 cm, that also extended closer to the source at 0◦, was chosen.5

To assess the capability of TASCAR for acoustic sound field
simulations, different degrees of accuracy were implemented. In the
most basic case, only a free field scenario without any reflections is
considered. In the next case, early reflections are simulated based
on a 2nd order ISM. Estimations for the frequency dependent ab-
sorption coefficients are used based on the surface materials. Values
were used from the manufacturer’s data sheet on the absorber ma-
terial in the measurement chamber [7] and from a comprehensive,
openly accessible database of common materials [8]. To increase
the grade of detail further, in the next case the sources’ directivity
is adjusted. TASCAR has a cardioidmod source type, where
a cardioid directivity pattern is achieved at a defined frequency.
Towards lower frequencies an omnidirectional, towards higher fre-
quencies a narrower directivity is modelled. To get an estimate
for the frequency at which the cardioid pattern should be repro-
duced, the magnitude response of the physical loudspeaker was
measured at 0◦ and 90◦ horizontal angle. The frequency at which
both responses started to diverge by 6 dB, 940Hz, was used as the
value for the simulation. In the last case, a diffuse FDN reverb [9]
with the reverberation time taken from the measurements is added.
The different degrees of accuracy for all cases are summarised in
table 1.

Case Description

0 Free-field conditions
1 2nd order image source model (ISM)
2 2nd order ISM + source directivity
3 2nd order ISM + source directivity + FDN reverb

Table 1: Description of the simulations’ degree of accuracy.

5The simulations are split into several segments with smaller numbers
of receivers to reduce computational load and memory requirements.
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For the room acoustic evaluation, the acoustic scene was ren-
dered offline on a high performance computing node for faster
calculation as the input signal is known beforehand. Real-time
simulations are performed on an ordinary notebook.

3. ROOM ACOUSTIC PARAMETERS

To assess the quality and accuracy of the recreated, simulated sound
field, two properties are evaluated and compared to measurements
for every source setup - the level distribution and the spatial coher-
ence along the microphone arrangement.

3.1. Level Distribution

As quite simple yet effective measure, the level distribution is
based on 30 s long recordings of uncorrelated uniform white noise
for each source configuration (one, four or eight loudspeakers).
After applying the individual calibration for each microphone, the
respective root mean square (RMS) levels are calculated. The
same noise realisation has also been used as input signal for the
simulations in TASCAR for the respective source configurations.
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Figure 3: Comparison of measured and simulated sound level
distributions relative to the levels at the central position in the
meeting room along the microphone array.

Figures 3 and 4 show the level distributions with different
source configurations and rooms. All curves are normalised to the
level at the central position. In the measurement chamber with
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Figure 4: Comparison of measured and simulated sound level
distributions relative to the levels at the central position in the
measurement chamber along the microphone array.

almost free field conditions towards higher frequencies, only minor
differences between simulations and measurements can be observed.
However, in the more reverberant meeting room, differences be-
tween the simulation cases are more obvious. With only one source
active, simulation case 0 with only free field conditions shows a
too steep rise in level, as the influence of the room reflections are
neglected here. With four active sources in figure 3(b), cases 2 and
3 result in a decrease in level when leaving the central position.
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Most likely cardioidmod sources exhibit too much directivity
towards high frequencies, generating a too narrow sweet spot at
the central position. Over all scenarios, the simulations with early
reflections and omnidirectional source directivity (case 1) deliver
the most accurate results. Small ripples in the measured levels
around the central positions can be observed, most likely due to
variances between the measurement microphones.

3.2. Spatial Coherence

A second parameter often used to describe sound fields is the spa-
tial correlation between two points. It was initially proposed as
additional parameter to describe the acoustics of a closed room
[10]. Various authors derived analytical results for the correlation
in various scenarios [11, 12, 13]; In the most notable finding by
Cook et al. [10], it takes the form

R =
sin (kr)

kr
(1)

in a pure-tone diffuse sound field, where k = 2π

λ
is the wave

number with wavelength λ and r the distance between the two
observed points.

Measuring the spatial correlation can be a tedious and time
consuming process, as usually only a single frequency can be as-
sessed at once. A faster, alternative approach is to play and record
a broadband signal and calculate the coherence. It has been shown
by Jacobsen and Roisin [14], that the coherence at the evaluated
frequency corresponds to the squared correlation, if a sufficiently
fine analysis bandwidth is chosen. With this technique, all excited
frequencies can be evaluated using only a single measurement.

The coherence is analysed and compared for three different
frequencies of {300, 1000, 1700}Hz, all of which lie above the
Schroeder frequency [15] for both assessed rooms (approximately
60Hz in the measurement chamber and 260Hz in the meeting
room). Figure 5 shows the results for the measurement chamber.
Unsurprisingly, the coherence in these close to free field condi-
tions is estimated perfectly as unity over all positions for a single
source. Also for four and eight sources a good resemblance of the
measurements can be observed over the whole assessed range. In-
terestingly, simulation case 0 without any early reflections performs
best at 300Hz. This could be explained by a sub-optimal choice of
absorption coefficients for the ISM.

The coherence in the meeting room in figure 6 shows larger
differences between measurements and simulations. While simula-
tions perform relatively well at lower frequencies at positions close
to the reference location, less resemblance is seen with increased
frequency and distance. This behaviour can be explained by the lack
of proper diffuse reverberation. Discrepancies between measure-
ment and simulations with a single source at low frequencies are
most likely the result of room modes which cannot be reproduced
by a 2nd order ISM.

4. APPLICATION FOR ACTIVE NOISE CONTROL

To show the capabilities of the proposed toolchain for real-time
processing, a co-simulation of an active noise control algorithm
based on actual measurements is compared to a full simulation in
TASCAR and FAUST. Before describing the details of the simu-
lation setup, the basics of signal processing for active control are
presented.

4.1. Feedforward Filtered-X Least Mean Squares Filter

ANC can be implemented using different fundamental designs. As
this section only highlights the relevant portions of the algorithm
for the investigated scenario, the interested reader may be referred
to more detailed literature [16, 17].

A feedforward system can be used to control both determin-
istic and random disturbances. A time-advanced reference signal
x[n] is captured, filtered by a so-called control filter W (z), and
played back via transducers, also referred to as secondary sources.
The control signal u[n], the signal for the secondary sources, can
therefore be described in z domain as

U(z) = W (z)X(z) , (2)

where e.g. X(z) corresponds to the z-transform of x[n]. The
residual error signal at the listening position is now found as the
superposition of the primary disturbances d[n] and the control
signal u[n], whereby the alterations to the signal by the acoustic
plant G(z) between the secondary source and the listening position
have to be considered as well. This results in

E(z) = D(z) +G(z)U(z) = D(z) +G(z)W (z)X(z) (3)

for the z-transform of the residual error.
ANC often relies on adaptive filters to compensate for slight

variations in the acoustic scenario. An ordinary least mean squares
(LMS) filter cannot be used in this case, as the output of the control
filter is altered by the acoustic transfer path G(z) before summation
with the disturbances [18]. However, a trick can be used to find
a suitable structure. Assuming both the acoustic plant G(z) and
the control filter W (Z) are in a modelling phase linear and time-
invariant systems, the position of the two blocks can be switched
due to their commutative property. Now the reference signal is
first filtered by the plant, producing the so-called filtered reference
signal r[n], which is then used as input for the control filter. In time
domain, this results in the error signal

e[n] = d[n] +w
T
r[n] , (4)

where w = [w0, w1, . . . , wN−1]
T holds the coefficients of the con-

trol filter, r[n] = [r[n], r[n− 1], . . . , r[n−N + 1]]T is a buffer
of filtered reference signals, and N corresponds to the control filter
order.

As the control filter output now directly contributes to the
residual error signal, its coefficients can be adapted with an LMS
approach as

w[n+ 1] = w[n]− µr[n]e[n] , (5)

where µ is the adaptation stepsize.
As in a real physical system plant and control filter cannot

be switched, the reference signals are filtered for adaptation with
an estimate or measurement of the plant response Ĝ(z). This
algorithm is known as filtered-x or filtered-reference LMS (FxLMS)
filter.
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(g) 8 loudspeakers, f = 300Hz
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(h) 8 loudspeakers, f = 1000Hz
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(i) 8 loudspeakers, f = 1700Hz

Figure 5: Comparison of the spatial coherence of measured and simulated sound fields in the measurement chamber between the central
position and points along the microphone array at distance r for analysis frequencies f with corresponding wavenumber k.

63



Proceedings of the International Faust Conference (IFC-24), Soundmit, Turin, Italy, November 21-22, 2024

0.00 0.25 0.50 0.75 1.00 1.25

D istance / m

0.0

0.5

1.0

C
o
h
e
r
e
n
c
e M eas

Sim 0

Sim 1

Sim 2

Sim 3

0 1 2 3 4 5 7

kr

(a) 1 loudspeaker, f = 300Hz

0.00 0.25 0.50 0.75 1.00 1.25

D istance / m

0.0

0.5

1.0

C
o
h
e
r
e
n
c
e

0 5 10 15 20 25

kr

(b) 1 loudspeaker, f = 1000Hz

0.00 0.25 0.50 0.75 1.00 1.25

D istance / m

0.0

0.5

1.0

C
o
h
e
r
e
n
c
e

0 10 20 30 40

kr

(c) 1 loudspeaker, f = 1700Hz

0.00 0.25 0.50 0.75 1.00 1.25

D istance / m

0.0

0.5

1.0

C
o
h
e
r
e
n
c
e

0 1 2 3 4 5 7

kr

(d) 4 loudspeakers, f = 300Hz
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(f) 4 loudspeakers, f = 1700Hz

Figure 6: Comparison of the spatial coherence of measured and simulated sound fields in the meeting room between the central position and
points along the microphone array at distance r for analysis frequencies f with corresponding wavenumber k.
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4.2. Simulation Setup

The goal of the ANC experiment is to determine FAUST’s and
TASCAR’s ability to perform simulations for audio algorithms. In
this context, the real-time capability of standalone applications
written in FAUST constitutes a vital prerequisite for the success
of the combined simulation approach. As the focus lies on both
feasibility and comparability to measurements, only a setup with
a single primary source at 0◦ and a single receiver at the central
position is assessed for both rooms and all degrees of detail for
the simulations at 22 050Hz sample rate. All experiments are
performed on an ordinary notebook (Intel Core i7-13700H with 32
GB RAM, running Ubuntu Studio 24.04).

The FxLMS algorithm described in section 4.1 is implemented
in FAUST. The secondary transfer path Ĝ(z) is obtained by render-
ing an impulse response in TASCAR between the secondary source
and the receiver position. Both the adaptive filter and the plant Ĝ(z)
are implemented as FIR filters with 128 taps6 (=̂ 5.8ms). For more
efficiency, the predelay, i.e. the acoustic time of flight between
source and receiver, is cut from the secondary path and modelled as
a simple delay. A white noise innovation signal is played back by
pure data (pd). For optimal performance, it is used both as signal
for the primary source in TASCAR and as reference signal x[n]
for the FxLMS algorithm. The secondary path filter Ĝ(z) and the
adaptive filter itself are compiled as two separate programs. The
FxLMS filter generates the control signal u[n] for the secondary
sources, which is routed to TASCAR as well. TASCAR renders
the signal at the virtual microphone position sample by sample in
real-time, based on the primary and secondary sources’ signals with
the selected degree of detail. The resulting residual error signal
e[n] is then recorded in pd and transmitted to the FxLMS filter for
adaptation as well. Figure 7 shows the signal flow of the ANC
simulation. For bulk processing and better repeatability, central
control of the ANC experiment (e.g. initialisation of all applica-
tions and scenes, setting parameters via OSC) is implemented in
Python, while the JACK connections are built automatically with
the jcmess7 utility.

Record

Play

FxLMS

pd
PrimSrc in

SecSrc in

Acoustic 
Sim.

Figure 7: Signal flow of the ANC simulation using pure data (white),
FAUST (blue) and TASCAR (orange).

All FAUST scripts are compiled as standalone JACK application
by the faust2jaqt tool. The signals are routed using JACK
Audio with the virtual dummy driver at 22 050Hz sample rate and
a block size of 16 samples. Due to the recursion of the error signal

6Higher filter orders would lead to an unreasonably long build time of
the adaptive filter in its current implementation.

7https://github.com/synthnassizer/jcmess

back into to the FxLMS block for adaptation and to pd for recording,
a latency of one block (16 samples =̂ 0.726ms) is introduced on
the error signal e[n]. This latency has to be taken into account for
adaptation, meaning r[n] has to be delayed by the same amount.
For better comparability, the RMS output signal levels in TASCAR

have been calibrated for each case to match those of the actual
measurements.

For the measurement-based reference, the innovation signal
is convolved with the impulse responses measured in the physical
rooms to obtain the disturbance signal d[n] at the central position.
The disturbance signal as well as the innovation signal, used as
reference signal x[n], are processed in a Python co-simulation of
the FxLMS ANC algorithm. The same set of parameters (step size
µ, FxLMS filter order N , secondary path order) is chosen for the
ANC algorithm in Python, the loopback delay caused by JACK
in the TASCAR and FAUST simulation is modelled as well. For
a realistic scenario, a full length version of the secondary path
response G(z) is convolved sample by sample with the calculated
control signal u[n] before summation with the primary disturbances
d[n] to get the error signal e[n].

4.3. Results

Table 2 and figure 8 show a comparison of simulations and mea-
surement based co-simulations in terms of error signal levels before
and after adaptation. In a simulation with free field conditions (case
0), the residual error decays towards zero and approaches numerical
limits. However, in a real room, even a measurement chamber, this
perfect cancellation is not reached due to unavoidable reflections
and reverberation. In the measurement chamber, simulation sce-
narios with at least early reflections (cases 1 to 3) exhibit more
realistic results. A relatively similar level with engaged ANC is
achieved this way compared to the co-simulation, although with
about 5 dB to 6 dB more attenuation. It is also noticeable, that the
simulation in FAUST and TASCAR adapts slower compared to the
measurements. A look at the spectrum of the error signal before and
after adaptation in figure 9 shows that the ISM in TASCAR causes
an increased level towards low frequencies, as the extrapolated
absorption coefficients in this frequency range exhibit lower values.
This behaviour is intensified in the signal level after adaptation as
spectral tilt, most likely as early reflections in the secondary path
are not considered by the ANC algorithm with the chosen filter
order.

In the meeting room, results of both measurement and simu-
lations with early reflections show no meaningful noise reduction.
This is due to the fact, that early reflections with strong contribu-
tions cannot be controlled as they are exceeding the 128 samples
length of both adaptive filter and modelled secondary path.

Measurement Chamber Meeting Room

ANC off ANC on ANC off ANC on

Meas −39.8 −51.6 −44.7 −44.8

Sim 0 −39.8 −103.3 −44.7 −122.1
Sim 1 −39.8 −57.9 −44.7 −45.1
Sim 2 −39.8 −57.2 −44.7 −45.1
Sim 3 −39.8 −57.2 −44.7 −45.1

Table 2: Comparison of ANC performance in terms of error signal
root mean square (RMS) values in dB.
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Figure 8: Comparison of error signals for one noise realisation with ANC adaptation enabled from 5 s onwards.
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Figure 9: Comparison of 1/3 octave smoothed error magnitude spectra for one noise realisation with and without ANC.
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5. CONCLUSION AND OUTLOOK

This study assesses the capability of combining FAUST and TAS-
CAR for signal processing and acoustic scene simulations in order
to develop and test real-time capable audio algorithms. Simula-
tion results from these tools are compared to measurements in two
real rooms: a measurement chamber with an extremely short re-
verberation time, and a meeting room with anisotropic acoustic
properties. Room acoustic evaluations based on the level distribu-
tion along a microphone arrangement show a good match between
measurements and simulations just considering early reflections
and omitting source directivity. The spatial coherence is highly
similar between simulations and measurements in the measurement
chamber as well. Greater differences are observed in the more
diffuse meeting room, most likely caused by the ISM order and
lack of proper diffuse reverberation.

An active noise control algorithm is tested in TASCAR for
acoustic scene simulation and FAUST for signal processing on an
ordinary PC, using JACK Audio for signal routing. Compared
to a measurement based co-simulation, a full scale simulation in
TASCAR and FAUST exhibits comparable results when considering
at least early reflections. However, the low filter order of the imple-
mented FxLMS algorithm only permits the evaluation of relatively
dry acoustic scenarios.

The full potential of a combined simulation approach with
FAUST and TASCAR lies in time-variant simulations, as all parame-
ters and virtual positions can be updated during operation via OSC.
Future works may include the integration of head-tracking devices,
for example to develop and improve position-dependent local ANC
algorithms [19, 20].
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Presentation of Workshops

abc.lib - News From Multichannel Audio Processing in Mixed Music
Alain Bonardi and Paul Goutmann

abc.lib is an open source library written in Faust language and distributed in the form of a Max package and a
set of Pd objects.The Max and Pd distributions bring together objects for synthesis, multichannel and ambisonic
processing, as well as numerous utilities for mixed music. In this workshop, we’ll introduce the library’s ecosys-
tem. Step by step, we’ll build musical situations involving synthesis, multichannel processing and spatial sound
processing in ambisonics. We’ll take advantage of special cases to explain the approach we’ve chosen to build a
Max package for multichannel processing from a set of Faust code.

Introducing the Sound Corpus Survey: What’s that I hear? Understanding Human Sound
Description to Make Better Generative Audio Engines
Domenico Cipriani

This session consists of a 40-minute workshop and a 20-minute live performance. The workshop introduces
Phausto, a lightweight Pharo library and API for sound generation and DSP programming using Faust. Partici-
pants will learn to install tools, understand Pharo syntax, and develop DSPs, making it accessible even to sound
artists with little programming experience. The live coding performance features MOOFLOD, a Pharo tool devel-
oped through research by Evref and MINT, for creating music on-the-fly. It pairs sound generation (via Phausto)
with visualizations of rhythmic patterns and synthesis manipulation. Afterward, audience members will assess
their emotional engagement and understanding via a questionnaire.

Some useful links:

• https://linktr.ee/lucretiomsp

• https://www.youtube.com/watch?v=NpOX_UoFV_g

• https://www.youtube.com/watch?v=7nLFGuZ-I5w&t=192s
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Presentation of Demos

Experiences with Rust + Faust
Leon Gnaedinger

I want to talk about my general experiences with integrating Rust in Faust and writing audio applications with it.
This means I want to talk about how the Rust language feels around Faust, how I integrate Faust into my Rust
projects and what difficulties and positives I think there are. Next I want to talk about the ecosystem of rust-faust
integration in more detail. The options there are (nih-plug, faust-build, faust-types, faust-llvm). Maybe share
some little tricks I learned. Besides the ecosystem around the Rust + Faust, I also want to share some insights
about the broader audio dsp Rust ecosystem and share some libraries that I tend to use in my projects.

Demo of Stratus
Martin Bartlett and Landon McCoy

Demo of Stratus in general showcasing how it works. This is a guitar demo as well.

SHCdyna, a Dynamic and Interactive Application for Musical Performance
Ruolun Allen Weng and Christophe Lebreton

Developed by LiSiLoG, SHCdyna is a continuation and extension of the faust2smartphone project, first intro-
duced at International Faust Conference (IFC) 2018. SHCdyna enhances the flexibility of creating musical appli-
cations through dynamic compilation, allowing musicians and developers to create, upload, and execute Faust
projects in real-time on iOS devices. Building on the key concepts of customizable SHC (Smart Hand Computer)
interfaces, motion control, and Faust’s powerful digital signal processing (DSP) capabilities, SHCdyna opens up
new possibilities for interactive music creation. This presentation will highlight the evolution introduced in SHC-
dyna and explore its potential applications in education and live performance.

Some useful links:

• SHCdyna Doc: https://github.com/RuolunWeng/SHCdyna

• faust2smartphone: https://github.com/RuolunWeng/faust2smartphone

• Smart Hand Computer: https://www.lisilog.com/en/shc-2
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