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Abstract. Recent works have shown the predominance of Deep Learn-
ing models, particularly LSTM, over traditional rainfall-runoff models [1].
However, while operational hydrology requires accurate discharge fore-
casts, these models are predominantly designed for simulation. As a draw-
back, they are also limited of performing data assimilation or persistence
analysis, which remain crucial for effective forecast and analysis. There-
fore, we propose, using three DA techniques, to separately integrate the
benchmark models LSTM [1] and SACSMA [2] into an orchestrator to
provide forecasts. Using the CAMELS dataset [3], the DA technique’s
added-values are assessed comparing to original benchmarks on 3 levels
of lead time. The results indicate significant improvement, and remain
relevant to the classical conclusions on DA expectations.

1 Introduction

In operational hydrology, discharge forecast models remain essential. However,
providing forecast remains a challenging task. The use of data assimilation (DA)
techniques remains one of the best strategies to overcome these challenges, it is
even more crucial for short-term discharge forecasts [4, 5]. These techniques,
including persistency analysis [6], may be inappropriate on simulation models.

Through years, numerous hydrologic models have been developed. Based on
assumption on the hydrological processes, the existing may be of physics-based,
conceptual or empirical including data-driven type [7]. While data-driven mod-
els rely mainly on statistical relationships between rainfall and discharge, recent
studies have stated their predominance over the classical approaches [1]. Domi-
nated by the Deep Learning (DL) models, the most popular include Multilayer
Perceptron (MLP), Long-Short-Term Memory (LSTM) [1] and Transformers [8].
They owe their success to the availability of large dataset, advances in computing
capacity, powerful optimization algorithms (ADAM, SGD) and effective feature
engineering. However, these models have been mainly designed for discharge
simulation, and barely provide persistence analysis. Therefore we propose here
to address these limitations using three DA techniques on pre-trained benchmark
models, while assessing their improvement gains.

We use an MLP as a forecasting orchestrator of the benchmark works of
[1] and [2] through three distinct DA techniques: (1) assimilate the recent dis-
charge data; (2) assimilate the benchmark models simulation; (3) post-process



the benchmark model simulation errors. We perform direct discharge forecasting
at 1-, 3-, and 7-day lead time, using weather forecast as either perfect data or
sampled from the historical records.

2 Methodology and materials

2.1 Data presentation

This study uses the CAMELS dataset [3], particularly the Maurer’s forcings of
531 basins on the 1989-2008 period. Discharge are from the USGS streamflow.
The training/calibration and evaluation period cover respectively the 1989-2006
and 2006-2008 period. The ensemble forecasting data is sampled on a date-to-
date basis on the historical record, and only on 56 basins.

2.2 Data assimilation techniques

Using discharge from both record and simulations (benchmarks), we perform
DA through three approaches. These approaches are formulated as following:

• Prediction assimilating the recent discharge measures (Qo
t:t−p) as in Eq.1.

Q̂t+hp = f(Qo
t:t−p, X

f
t+hp:t−n, Xt:t−n) (1)

• Prediction informed with other models simulation (Qs
t+hp:t−p), as in Eq.2.

Q̂t+hp = f(Qs
t+hp:t−p, Q

o
t:t−p, X

f
t+hp:t−n, Xt:t−n) (2)

• Simulation error post-processing (ePP) within three steps: estimating the
error (εt), then get predicted at the specified lead time ε̂t+hp, finally used

to correct the simulation at the same lead time Q̂t+hp. See Eq.3.

εt = Qo
t −Qs

t

ε̂t+hp = f(εt:t−p, Q
o
t:t−p, X

f
t+hp:t−n, Xt:t−n)

Q̂t+hp = Qs
t+hp + ε̂t+hp (3)

Where, upper-script notations f ,o ,s indicate respectively meteorological fore-
casts, observed runoff, and assimilated data. Under-scripts t, hp, n and p stand
for actual time step, forecast lead time, sequence length on forcing and assimi-
lated data. Forcings (and discharge) are marked with an X (and Q) respectively.

2.3 Models and setup

We use the regional LSTM proposed in [1] and the SACSMA from [2] to only
simulate the flow on the whole 1989 - 2008 period. For the forecasting orches-
trator (MLP) configuration, only the hidden layer (HL), learning rate (LR) and
the activation function (F) have been optimized utilizing a grid search cross-
validation. The dominant hyper-parameters are HL : [120, 90], [120, 90, 60],
LR : [0.01, 0.001], F : [ReLU, Tanh].



2.4 Evaluation criteria

Two categories of criteria are used: (1) deterministic, using he persistence crite-
rion [6]; and (2) probabilistic distribution on the ensemble forecast, using graph-
ical chart such as Talagrand diagram [9], Receiving Operational Characteristic
(ROC) curve [10, 11], including its AUC score are used. The persistency is de-
scribed in Eq. 4, and may be ranged in (−∞, 1] where 1 indicates the perfect
model. If ≤ 0, the model is worse or as bad as a naive forecast.

PERS = 1−
∑T

t=hp (Qt − Q̂t)
2∑T

t=hp (Qt −Qt−hp)2
(4)

3 Results

The findings are presented using exclusively graphics. Separate colors ans line-
styles are used to distinguish between approaches and benchmarks. Analysis
may be based on comparison between the original benchmarks and the rest, or
between the baseline and the rest others, issuing the benefit of the DA techniques.
The line styles are as following: baseline (MLP Simple) in black, SACSMA cases
in blue to violet, LSTM cases in red to orange.

3.1 Deterministic analysis

The persistence values are plotted in Fig. 1. The number of basins is dis-
tributed on Y-axis, while the criterion is on X-axis. Unsurprisingly, it remains

Fig. 1: Persistence (PERS) values

harder to forecast on shortest lead time. Almost 20% (or 40%) of the 531 tested
basins issue a null persistence on the benchmarks (dotted). Using DA tech-
niques, the baseline has issued a better performance, lowering this rate to 4%.
Assimilating the benchmark models (dashed), the models issue is a systematic
positive gain. When post-processing the simulation errors (dash-dotted), the
performances shift in opposite directions between benchmarks and around the
baseline; better for LSTM. However, when comparing the ePP cases to the



benchmarks themselves, the improvement is clearer, even though it remains tiny
for the LSTM on the longer lead time.

3.2 Ensemble analysis

The ensemble analysis provides insight of the capacity of the models to provide
reliable and accurate forecasts. It is expected to the DA techniques to help the
models to deal with the high uncertainties linked to the weather forecasts data.
When assimilating the target values, it has been proved in [4] that this it could
weight around 50% of the information used by the models. While this may
be a limitation of DA, it remains important given the poor quality of forecast,
provided that the model is not naive.

3.2.1 Rank diagram

The reliability assessment can be done by the rank diagram, analyzing the uni-
formity with which the observation are forecasted over the time. It is then
expected a flat-distribution for the reliable forecasts. Poor quality forecasts will
issue either a Dom-shape (over dispersion), U-shape (under dispersion), Right-
or Left-skewed (systematic under-estimation or over-estimation).

Fig. 2: Rank diagram: benchmark cases in columns, approaches in row.

Following the Fig.2, the findings indicate an atypical L-shape for the SAC-
SMA (top left) and a U-shape for the LSTM (top right). For the baseline (row
2), a flat-shape can be noted with a slight dome on mid-ranged flows. When
applying the DA techniques (row 2-4), the distribution becomes more reliable,
since it looks trying to flatten the prior distributions. The success is higher on
the SACSMA cases but remain significant globally.



3.2.2 ROC curve and the AUC (Area under the ROC curve)

The ROC curve and the AUC can be used to assess the accuracy of a forecast
to detect events. Perfect (or low quality) forecast models will have AUC = 1
(or AUC ≤ 0.5) respectively. The AUC scores for all cases are shown in Fig.
3. We experiment anticipating floods events on various discharge thresholds for
both drought and flood contexts using the evaluation period. The models are

Fig. 3: AUC Scores

quite accurate to detect events in both drought and flood contexts. They look
better on floods, and wile the overall performance decreases as the lead time get
longer. Unsurprisingly, the benchmark models (without DA) issue the lowest
performances, while the baseline which strongly assimilates the discharge data
look providing the best. They can globally be ranked as : (1) MLP Simple and
MLP Informed by benchmarks; (2) ePP cases; (3) LSTM and (4) SACSMA.

4 Conclusion

This study evaluated the performances of two popular hydrologic models (LSTM
of [1] and the SACSMA of [2]) under an operational discharge forecast use.
The trade-off of the absence of the DA and the persistence analysis in their
design were addressed. Using three DA techniques, these benchmarks work
have been orchestrated into a forecasting module. The persistence on both the
benchmark models and the tested approaches confirms the gap that may exist
between simulation and forecasting. The model’s sensitivity to the weather
uncertainties is strongly improved by the assimilated data, either directly or
indirectly. These findings remain relevant to what is usually stated in hydrologic
modeling, where, it is harder to forecast on short than long-term lead times; DA
is more informative on short-term lead time, DL models outperform traditional
models, .... However, further experiments may be engaged to assess the limit of
the DA techniques, explore more sampling strategies of the weather data, extend
the criteria list in order to reveal other sides of the approaches.

—————————————————————————-
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