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Abstract—In a Global Navigation Satellite System (GNSS)
denied environment, it is difficult to use classical navigation
methods as the position of the robot is unknown. This paper
presents a robot control method using cycles. The cycle
paradigm first proposes to control the robot by making it
follow a cycle while its position remains unknown. This cycle
is then moved and stabilized using a few measurements in the
environment which is assumed to be known. Once the cycle
is stable, the position of the robot is easier to estimate. This
makes it possible to navigate frugally and stealthily, without
getting lost.

Index Terms—Marine Robotics, Control, Stability

I. Introduction
Classical methods for navigation rely on control laws

based on an estimation of the robot position. This posi-
tion estimate is derived from exteroceptive sensors such
as GNSS receivers or acoustic positioning solutions in
marine robotics [1]. However, these sensor measurements
may not always be accessible, especially in GNSS-denied
environments, or in sensitive environments where acoustic
positioning systems cannot be deployed. In these cases,
the robot must rely on proprioceptive sensors for state
estimation through dead-reckoning.

A prevalent trend in enhancing the robustness of sys-
tems involves an increase in the number of sensors to
collect more data. While this strategy adds complexity to
system design and may requires more computing power,
it can also reduce the stealthiness of robots. Conversely,
there is a rising interest in frugal approaches within
robotics that advocate for using minimal information and
computational power to control robots [2].

Additionally, bio-mimetism is gaining traction in
robotics. Biomimicry provides elegant and efficient so-
lutions in robotics. For example, control laws inspired
by bees may improve state estimation for flying robots
using optical flow based visual odometry [3]. For under-
water navigation, some marine animals can navigate long
distances without any position estimation. They rely on
proprioceptive and some exteroceptive sensors to perform
cycles through the seasons. That is the case for migratory
birds or sea turtles [4].

This work has been supported by the French Government Defense
procurement and technology agency (AID).

A video of experiments is available at https://teusner.github.io/
projects/icra2025.

The goal of this work is to draw inspiration from these
methods and to develop a method that allows a robot
to navigate in a zone without getting lost, and without
external positionning system. The proposed approach is to
control the robot along cycles. This cycle described by the
trajectory of the robot is then moved in the environment
toward a stable cycle using a few exteroceptive measure-
ments. By using cycle navigation, the robot can operate
with limited information while maintaining stealth. This
method is also close to frugal approaches as it uses minimal
information and computational power.

Using stable cycles for controlling and localizing robotic
systems represents a new paradigm. The objective of this
work is to formalize the application of cycles in robotics,
demonstrate their stability, and showcase their practical
implementation. In this work, control modules for using
stable cycles in vehicle navigation will be built iteratively.

II. Dynamical system
A. Evolution function

Consider a system with a state x ∈ S, a constant
input u ∈ U , and governed by the continuous evolution
equation (1) [5]–[7].

ẋ(t) = fu(x(t)) (1)

There exists a flow function ϕu : S × T → S which
is the solution of the differential equation (1) with initial
condition x0 ∈ S [7], satisfying properties of Equation 2.

∀(x0, t1, t2) ∈ S × T 2

ϕu(x0, t1) = x(t1)

ϕu(x0, 0) = x0

ϕu(ϕu(x0, t1), t2) = ϕu(x0, t1 + t2)

(2)

Note that the analytical expression of the flow function
ϕu is not always available. However, an approximation of
this function can be computed by numerical integration
of the differential equation (1).

B. Cyclic Timed Automata
The system can be controlled by a timed automata as

defined in [8], [9]. A timed automata is a finite state
machine extended with a finite collection of real-valued
clock variables controlling the transitions between states.

https://teusner.github.io/projects/icra2025
https://teusner.github.io/projects/icra2025


Fig. 1 shows an example of cyclic timed automata, which
is a determinist automata, with only one transition in and
one transition out of each state, and which has a cycle
shape.
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Fig. 1: Timed automata

In this automata, a clock c is continuously ticking and
is reset to zero after each transition. Transitions between
states si occurs when the clock c exceeds a duration di(ω),
where ω is a parameter vector introduced to control the
duration of each state.

A constant system input u is associated to each state.
Consequently, the system follows a different evolution
function fu,i for each state of the timed automata, and
there exists a flow function ϕu,i associated to each state si.
Introducing the operator hn

i=0 to denote the composition
of functions, φ represents the flow functions over a
complete iteration of the automata. Figure 2 shows the
composition of flow functions over a cycle.

x0 x1 xn−1 xn…

fu,0, ϕu,0 fu,n−1, ϕu,n−1

φ(x0) = hn−1
i=0 ϕu,i(x0, di(ω))

Fig. 2: Composition of flow functions over a cycle

C. Synchronization condition
The duration of one iteration of the timed automata

is denoted by T (ω) and is called the cyclic period. The
cyclic period respects Equation (3).

T (ω) =

n−1∑
i=0

di(ω) (3)

The dynamical system and the timed automata are
synchronized if they meet the condition of Equation (4).
Equation (4) implies that after one iteration the system
comes back to the same state.

φ(x(t)) , x(t+ T (ω)) = x(t) (4)

The block diagram shown in Fig. 3 summarizes the
control architecture at this point, where A represent the
automata and the system is represented by its evolution
equation.

ẋ = fu(x)A
u xω

Fig. 3: Block diagram of the robot controlled by a timed
automata

As an example, consider a vehicle following the kine-
matic model of the Dubins car [10] presented in Equa-
tion (5).

ẋ =


ẋ = v · cos(θ)
ẏ = v · sin(θ)
θ̇ = u

(5)

In Equation (5), x =
[
x y θ

]T is the pose of the
robot, v is its speed supposed constant and positive, and
u, the input, is the turning rate. Hence, the trajectory of
the vehicle can follow straight lines when u = 0, and circle
arcs when u 6= 0.

The cyclic timed automata shown in Fig. 4 is designed to
control the trajectory of the vehicle such that the system is
following a square cycle as shown in Fig. 5, by alternating
straight lines and circle arcs. As after one iteration of
the automata with a zero input ω the vehicle comes
back to its initial state, the vehicle and the automata
are synchronized.

III. Cycles abstraction
A. Discretization

Moving up a level of abstraction, the cycle is now
considered as the system to control. The cycle is evolving
in the plane and the robot is still following the cycle.

By denoting by ηk the state of the cycle and ωk the
input of the cycle at the beginning of the kth iteration,
the cycle is modeled by Equation (6).

ηk =

k−1m
i=0

φ(x, T (ωi)) (6)

With the cycle abstraction, the block diagram of Fig. 3
is simplified as in Fig. 6.

Note that with a non-zero input ωk, the cycle is
destabilized and no longer meets the synchronization
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ċ = 1

|

c
>
d
3 (ω

)

c
:=

0
ċ
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Fig. 4: Square cyclic timed automata
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Fig. 5: Square cycle described by the robot trajectory

ηk+1 = γ(ηk,ωk)
ωk ηk+1

Fig. 6: Block diagram of the controlled cycle

condition of Equation (4). Yet, when the input is set back
to zero, the system goes through regular and undisturbed
cycles again.

For the square cycle example, the state of the cycle is
ηk =

[
xk yk θk

]T and corresponds to the pose of the
vehicle when starting the kth iteration of the cyclic timed
automaton.

As the cycle state has three degrees of freedom, ωk =[
ωk,0 ωk,1 ωk,2

]T is the three dimensional input of the
system. The duration of states s4, s5, and s6 will be
adjusted by adding respectively ωk, 0, and ωk,1, and ωk,2.
Note that the inputs were selected to control all three
degrees of freedom of the cycle while avoiding redundancy.

Fig. 7 shows the effect of an input on the cycle
state over five iterations. Figs. 7a, 7b, and 7c show
respectively the effect of inputs ωk,0, ωk,1, and ωk,2, and

Fig. 7d shows the effect on the cycle of a complete input
ω =

[
0.15 −0.2 −0.2

]T . The initial pose of the cycle is
then controllable.
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(a) ωk =
[
−0.15 0 0

]T
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(b) ωk =
[
0 0.1 0

]T
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(c) ωk =
[
0 0 0.15

]T
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(d) ωk =
[
−0.1 0.2 0.2

]T
Fig. 7: Cycle control under different inputs

Equation (7) models the evolution of this system for
the square cycle example.

γ(ηk,ωk) = ηk +

−cos(θk) −sin(θk) 0
0 0 1

sin(θk) −cos(θk) 0

 · ωk (7)

B. World frame control
A change of input lets the cycle be controlled in the

world frame instead of in the cycle frame. Denoting by
νk the requested displacement of the cycle in the world
frame, ωk equals ζ(θk,νk) defined by (8) 1. Equation (8)
acts as a feedback linearization on the system [5], [6].

ζ(θk,νk) =

−cos(θk) 0 sin(θk)
−sin(θk) 0 −cos(θk)

0 1 0

 · νk (8)

Therefore, the system is now described by the linear
evolution equation (9) and the block diagram of the
regulated cycle is shown in Fig. 8.

ηk+1 = ηk + νk (9)

1θk can be measured with a compass or estimated



ηk+1 = γ(ηk,ωk)ζ(θk,νk)
ωk

θk
νk ηk+1

Fig. 8: Block diagram of the controlled cycle

In Fig. 9, a constant input νk,0, νk,1, and νk,2 is applied
over 5 iterations on the system and cycles are well moved
in the world frame.
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Fig. 9: Cycle control in the world frame

C. Adding Measurements
A set of measurements µk is now introduced along the

cycle. These measurements are used to close the loop and
to control the system toward a desired state. This system
is described by Equation (10).

S :

{
ηk+1 = γ(ηk,ωk)

µk = σ(ηk,ωk)
(10)

In the square cycle example, Equation (11) simulates a
depth-ranging sonar at the robot pose x. The simulated
seafloor is shown in Fig. 10a.

g(x) = 10 + min
i=0,1

{
0.1 · det(bi − ai,

[
x y

]T − ai)
}

a0 =
[
0 5

]T
, b0 =

[
−1 0

]T
a1 =

[
−1 0

]T
, b1 =

[
5 −3

]T
(11)

Three measurements are taken along the cycle, as shown
in Fig. 10b, one at the beginning position, one in the
middle of the first straight line, and one at the end of
the second straight line. The function hj , which results
from the composition of flow functions ϕu,i, gives the
measurement positions 2

D. Regulation
A regulator ensures convergence of the state of the

system toward the reference η̄ determined by µ̄. This
regulator is a simple proportional corrector that moves
and rotates the cycle depending on measurements of the
seafloor shown in Fig. 10a.

2Note that hj only depends on the state of the cycle ηk and does
not depend on the input ωk as the regulated part of the cycle is not
affecting the measurements positions as shown in Fig. 10b.
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(a) Simulated seafloor
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Fig. 10: Measurements environment and setup

Equation (12) defines the regulator, and coefficients ki
are chosen to stabilize the system. k1 modulates the cycle
position in the x direction, k2 in the y direction, and k3
modulates its orientation.

λ(µk, µ̄) =

 k1 0 0
0 0 k2

−k3 k3 0

 · (µ̄− µk) (12)

The cycle is now controlled and regulated in the plane
to reach the target state η̄ specified by µ̄. Fig. 11 shows
the block diagram of the regulated system.

ηk+1 = γ(ηk,ωk)

µk = σ(ηk,ωk)
ζ(θk,νk)λ(µk, µ̄)

ωk

θk
νk µkµ̄

Fig. 11: Block diagram of the autonomous system

From this block diagram is derived the equation of the
autonomous system given by Equation (13).

ηk+1 = ξµ̄(ηk) (13)

Equation 13 is linearized around η̄ such that it can be
written as Equation (14).

ηk+1 = A · (η̄ − ηk) (14)

By expressing eigenvalues of A relative to coefficients
ki, conditions of stability of the regulator are derived. For
a discrete system, eigenvalues have to belong to the unit
circle to ensure stability. Here eigenvalues ei are given by
Equation (15).



e0 = 1 − 0.025k0 − 0.03k1 + 0.042

√
0.35k2

0 − k0k1 +
k2
1

2

e1 = 1 − 0.025k0 − 0.03k1 − 0.042

√
0.35k2

0 − k0k1 +
k2
1

2

e2 = 1 − 0.05 · k2

(15)



By tuning values of the regulator to k0 = 1, k1 = 1,
and k2 = 1, the system is stable as all eigenvalues are in
the unit circle 3.

E. Cycle stability
The cycle stability is proven using an interval analysis

approach. The proposed approach is to find a positive in-
variant set of state P [11], [12] for the autonomous system.
This set must satisfy the condition in Equation (16), which
means that as soon as the state of the system enters the
set P, it is forever captured in it.

ξµ̄(P) ⊂ P (16)

P =
[
[−0.75, 0.75] [−0.75, 2.25] [−2.32,−0.82]

]
is a

positive invariant set for the square example. This box
shown in blue in Fig. 12a is split into nsplit = 4 in
each dimension to reduce the wrapping effect of interval
analysis [13]. The evolution function ξµ̄ is then applied to
each box once, and the resulting boxes are plot in pink
on Fig. 12b.

As all resulting boxes are a subset of P, P is a positive
invariant set for the system, and the system is stable
around its equilibrium state.
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Fig. 12: Positive invariant set of the system P

F. Simulation results
Fig. 13a shows the simulation of the regulated cycle.

The cycle is evolving in the plane toward a position where
measured depth under the robot converge to the reference
depth µ̄ =

[
10 10 10

]T . After a few iterations, the
robot is stabilized on its stable cycle, as shown by the
measurements evolution in Fig. 13b.

IV. Application
A. Robot description

Cycle control has been tested at the Guerlédan lake on
BlueBoats by BlueRobotics, as shown in Fig. 14. Blue-
Boats are small differential autonomous surface vehicles
equipped with navigation sensors: a GNSS receiver, an

3Note that expression of A depends on the seafloor. Eigenvalues
ei are therefore determined for the seabed shown in Fig. 10a
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Fig. 13: Simulation of the regulated cycle

Inertial Measurement Unit (IMU), and a magnetome-
ter. Exteroceptive sensors are also available, such as an
echosounder to measure the depth below the robot.

Fig. 14: BlueBoat sailing on Guerlédan lake

In this trial the GNSS receiver is only used to get the
ground truth of the robot trajectory. This position is not
used in the control loop.

B. Experiment area and cycle description
The Landroanec cove on Guerlédan lake has been chosen

as the test area. The seafloor of this cove has been mapped
using a multibeam sounder and a digital elevation model
has been generated as shown in Fig. 15, but this mapping
is not known by the robot.

The BlueBoat is controlled to follow a square cycle in
this cove around the reference µ̄ =

[
10 10 10

]
.

The cycle approach is then applied on the robot, and
only three measurements are required to stabilize the
cycle on the isobath. Measurements are taken at the same
positions than in Fig. 10b to stick to the simulation shown
in Fig. 13a.

C. Experimentation results
The BlueBoat is then placed on the lake near the

targeted stable area, but not already on the isobath. Two
experiments were carried out. The two trajectories of the



Fig. 15: Digital Elevation Model of the Landroanec cove
on Guerlédan lake

BlueBoat for each experiments are shown in Fig. 16a and
Fig. 16b.

(a) GNSS Trace 1 (b) GNSS Trace 2

The robot trajectory controlled through cycle iterations
is converging toward the reference regardless of its initial
pose. The final cycle for each trial seems stable, and the
two experiments are converging toward the same area of
the lake.

V. Conclusion
Stable cycle is a new paradigm to control dynamical

systems with minimal information. Stable cycles allow a
robot to navigate in a known environment without getting
lost. First, the robot is driven along a cycle. Then this
cycle is progressively moved away using measurements in
the environment to stabilize it at a pre-defined state. With
this method, it is possible to estimate the state of the robot
as soon as the cycle is stabilized around its reference.

The limitations of this method may come from the
required prior knowledge of the environment. Indeed, to
define the stable cycle based on measurements, the map
of the environment has to be known. Then, the control of
the robot can be implemented, but all initial conditions
for the robot do not lead to cycle stabilization either, or
could lead to a stable cycle not at the planned position.

For now, stability of the method as been proven locally
around the equilibrium position and without disturbances.

However, field experiments with the BlueBoat at the
Lake of Guerlédan show that the stable cycle paradigm
can be used to control a robot to a predefined zone
without any external localization system, or in GNSS
denied environments. Cycles control could lead to new
applications in the field of maritime robotics such as
scanning an area by gradually shifting the stable cycle.
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