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A B S T R A C T

Respiratory infections acquired in hospital depend on close contact, which may be affected by hospital popu
lation density. Models of infectious disease transmission typically assume that contact rates are independent of 
density (frequency dependence) or proportional to it (linear density dependence), without justification. We 
evaluate these assumptions by measuring contact rates in hospitals under different population densities. We 
analysed data from a study in 15 wards in which staff, patients and visitors carried wearable sensors which 
detected close contacts. We proposed a general model, non-linear density dependence, and fit this to data on 
several types of interactions. Finally, we projected the fitted models to predict the effect of increasing population 
density on epidemic risk. We identified considerable heterogeneity in density dependence between wards, even 
those with the same medical specialty. Interactions between all persons present usually depended little on the 
population density. However, increasing patient density was associated with higher rates of patient contact for 
staff and for other patients. Simulations suggested that a 10 % increase in patient population density would carry 
a markedly increased risk in many wards. This study highlights the variance in density dependent dynamics and 
the complexity of predicting contact rates.

1. Introduction

The transmission of airborne pathogens such as SARS-CoV-2, Influ
enza, RSV or resistant bacteria continues to present a risk to patients in 
healthcare settings (Almasaudi, 2018; Ng et al., 2022; Özen et al., 2023), 
in spite of the introduction of effective hygiene methods such as masks 
(Chu et al., 2020) and hydroalcoholic gel (Kratzel et al., 2020). Droplet 
transmission requires close proximity contacts between infectious and 
susceptible individuals (Jayaweera et al., 2020), while aerosol trans
mission is more likely within close proximity (Tang et al., 2021). 
Knowing the factors that influence the occurrence of those contacts is 
important in understanding the risk of nosocomial outbreaks. Such 

contact may occur between two individuals for a specific medical 
function, during casual contact e.g. socialising, or unintentionally e.g. 
waiting on adjacent chairs, and this may influence how often and for 
how long it occurs.

Mathematical models of infectious disease transmission generally 
rely on the assumption of homogeneous mixing among all individuals in 
the population. A fundamental question in developing such homoge
neous mixing models is the dependency between the density of the 
population and the force of infection (de Jong et al., 1995; McCallum 
et al., 2001). We assume that such a dependency occurs through the 
contact rate (Box 1a).

The most common assumption is frequency dependence (FD) in 
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which the number of potentially infectious contacts is independent of 
the population density, which is typically considered appropriate for 
sexually transmitted infections (Lloyd-Smith et al., 2004), among many 
other types of infections. The other common assumption is linear density 
dependence (LDD), usually referred to simply as “density dependence”, 
although we reserve that term here for any non-zero dependence on 
density. This is more appropriate for pathogens which spread during 
unconstrained contacts between individuals. While these can be 
considered assumptions on a spectrum of density dependence, very few 
studies have considered an in-between case (Box 1b). However, this has 
implications for modelling a population with changing population size: 
if the number of individuals increases while the prevalence of infec
tiousness stays the same, this would increase the risk under LDD, but not 
under FD (Box 1c).

Over the last 20 years, most infectious disease modelling studies 
have assumed either FD or LDD, without verifying the realism or 
exploring the effect of this assumption (Hopkins et al., 2020). Only 2 
studies have explored these assumptions on data involving directly 
transmitted human pathogens (Bjørnstad et al., 2002; Hu et al., 2013). 
Bjørnstad et al. found that pre-vaccination measles dynamics in British 
cities most closely resembled FD transmission (Bjørnstad et al., 2002), 
while Hu et al. found that a non-linear density dependence (NDD) best 
explained the transmission of the 1918 influenza across US states (Hu 
et al., 2013).

A review of 100 papers modelling SARS-CoV-2 transmission in the 
general population up to June 2020 found that 70 % assumed FD, and 
30 % LDD, with none allowing for NDD or flexible density dependence 
(Nightingale et al., 2021). The authors followed this review by fitting 
transmission models to the COVID-19 mortality rate in UK local au
thority areas under different assumptions of population density depen
dence, when this density was perturbed by social distancing guidelines. 
In addition to FD and LDD, the authors fitted a third model, that of 
saturating density dependence in which the transmission rate increased 
non-linearly with increasing population density, up to an asymptotic 
maximum transmission rate. They found that this saturating model 
provided the best fit to the data, while acknowledging that mortality 
rates may have many different contributing factors beyond changes in 
contact rate. Crucially, their paper demonstrates that the use of FD 
models overestimated, and LDD models underestimated, the effect on 
mortality rates of increasing population density.

In healthcare settings, to our knowledge, this question has never 
been explored, despite a high frequency and intensity of contacts be
tween individuals (patients and health care workers) and high epidemic 
risk (Temime et al., 2020). Studies have been conducted to identify the 
rate at which patients and types of hospital staff come into close contact 
(Duval et al., 2018; Najafi et al., 2017), and more recently in a context of 
COVID-19 pandemic (Shirreff et al., 2024). Here, after a systematic re
view of modelling studies of SARS-CoV-2 transmission in healthcare 

Box 1. Explanation of common assumptions around density dependence, with an illustration of the general case.
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with regards to their assumptions about FD or LDD dynamics, we 
interrogate this question through the analysis of data providing detailed 
information on close proximity interactions over a 36 h period between 
hospital users, collected in 15 French hospital wards. We conducted the 
analysis at the level of the ward, and across all wards in aggregate.

2. Materials and methods

2.1. Literature review

We categorised the density dependence assumptions papers model
ling the spread of SARS-CoV-2 in healthcare, using the list analysed in a 
review article (Smith et al., 2023). Based on our examination of the 
methods section in each paper, their transmission dynamics were cat
egorised as FD, LDD, non-linear, or based on empirical estimates of 
contact rate.

2.2. Dataset

Data on close proximity contact patterns were collected during April- 
June 2020 across 15 hospital wards with a range of specialties in eight 
university hospitals across Paris (including one paediatric hospital), 
Lyon and Bordeaux (Shirreff et al., 2024). These wards included three in 
infectious diseases, two in geriatrics, two in adult emergency, two in 
medical intensive care units (ICUs), one in surgical ICU, one in internal 
medicine, one in pneumology, and three wards in a dedicated pediatric 
hospital: general pediatrics, emergency and neonatal ICU.In order to 
minimise the potential effect of weekend days on staffing and admis
sions, studies in all wards began on days from Monday to Friday, with 
only two beginning on Friday and therefore overlapping with the 
weekend.

Wearable sensors were offered to all individuals on entering or 
leaving the ward, including patients, visitors and healthcare workers 
(HCW). The times at which sensors were given to and recovered from 
participants were recorded. The sensors detected the presence of other 
sensors every 10 s within approximately 1.5 m, and recorded the iden
tity of the other sensor and the duration of the contact. Further details on 
the study population have been published previously (Shirreff et al., 
2024).

2.3. Population density

The study period was divided up into time windows between in
stances of arrival or departure of any participant, during which the 
population size was constant. The recorded times at which sensors were 
given and recovered was used to identify the number of persons present, 
Nw, during each time window w. It was assumed that the functional area 
of the ward did not change during the study period, meaning that the 
number of persons present could be assumed to represent the population 
density.

In order to prevent possible artefacts introduced into the data during 
the short period during which the sensors were being distributed or 
recuperated, in which the apparent density was low but the true density 
(including those who did not have active sensors) may have been higher, 
we excluded time windows at the start and end of the study when the 
numbers of active sensors were low. For the main analysis, all data 
collected at the beginning of the study period before the first 10 sensors 
were active on the ward, or at the end of the study period after the final 
10 sensors were active, were discarded.

2.4. Contact rates

As one person can have multiple simultaneous contacts, we define 
the contact rate as the total number of cumulative minutes in contact for 
a person, per minute that they spend on the ward.

Within each time window w, the observed contact rate cobs
w is 

calculated from the total contact time across all participants, where miw 
is the total cumulative number of minutes in contact for individual i in 
time window w, divided this by the total person minutes in which these 
events can occur, being the product of the number of persons present 
and the duration of the time window dw. 

cobs
w =

∑Nw

i
miw

Nwdw 

2.5. Model for NDD contact rates

We propose a model which captures FD, LDD and NDD dynamics 
with a single non-linearity index parameter ϕ. This determines how the 
contact rate during a time window w would be affected by the popula
tion density during that time window.

The contact rate during time window w, cw, is modelled as follows: 

cw = a(ϕ)Nw
ϕ 

where a(ϕ) is a scaling parameter specific to that dataset and that value 
of ϕ. Under this model, a value of ϕ = 0 is equivalent to FD, ϕ = 1 is 
equivalent to LDD, and other values represent NDD, being partially 
density dependent for 0 < ϕ < 1, but with values of both ϕ < 0 (nega
tive density dependence) or ϕ > 1 (more than linear density depen
dence) also being possible (Box 1b).

The contact rate model is calibrated for a given dataset and given 
value of ϕ using the scaling parameter a(ϕ) such that the total contact 
time T over all time windows and individuals present is the same for the 
observed and modelled contacts: 

T =
∑

w
cobs

w Nwdw =
∑

w
cwNwdw 

The value of T can be calculated from observed data simply as the 
total cumulative contact time across all individuals and time windows: 

T =
∑

iw
miw 

The contact rate model is substituted into this equation to give; 

T =
∑

iw
miw =

∑

w
a(ϕ)Nw

ϕNwdw 

This can be rearranged to calculate the scaling parameter a(ϕ) as 
follows: 

a(ϕ) =

∑

iw
miw

∑
wNw

ϕNwdw 

2.6. Statistical inference

The likelihood l (w,ϕ) of observing a given contact rate cobs
w in time 

window w is calculated according to an exponential distribution with 
mean cw (equivalent to rate 1

cw
). This likelihood function was chosen 

because the distribution of cobs
w in each ward takes the form of an 

exponential distribution.
The total log likelihood for this value of ϕ is calculated by summing 

the log likelihood over all time windows. 

L(ϕ) =
∑

w
log(l (w,ϕ) )

Non-linear index parameters and their 95 % credibility intervals 
were estimated using a Markov Chain Monte Carlo algorithm from the 
FME package in R (R Core Team, 2022; Soetaert and Petzoldt, 2010). A 
normal prior with standard deviation 1 was used to favour the most 
plausible values in situations with few datapoints, and with mean 0.5 in 
order to be agnostic between the FD and LDD models. No statistical 
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inference was required for fitting of the FD and LDD models, as the value 
of ϕ was fixed at 0 and 1, respectively.

2.7. Diurnal models

Under the assumption that night and day time behaviours may be 
different, we conducted analyses in which we separated the time win
dows which began during the day time (08:00–19:59) from those that 
began in the night time (20:00–07:59). For each time period p, a sepa

rate value of the index, ϕp and the scaling parameter a
(

ϕp

)
, were 

estimated.
The total likelihood for an index ϕp was calculated by summing the 

log likelihood over all time windows falling within time period p, and 
this value was used for inference of ϕp. The overall likelihood of a 
diurnal model for model comparison was calculated by summing the log 
likelihood over all day and night time windows, using the best ϕp value 
in each period p.

2.8. Subsetting contact rates

Some analyses targeted specific populations. For those, we consid
ered only the contacts that individuals of type x formed with individuals 
of type y (e.g. HCW forming contacts with patients), and during a spe
cific time period p such as day or night time.

The observed contact rate is subset, where the relevant population 
size in window w, Nwx, is that of the type forming contacts, x, and miyw is 
the total minutes of contact formed by individual i (of type x) with all 
individuals of type y in time window w. 

cobs
wxy =

∑Nw

i∈x
miyw

Nwxdw 

The rate at which type x contacts type y during time window w, cwxy, 
is then modelled as follows, where the relevant population size Nwy is of 
that type with whom contacts are being formed, y, and where time 
window w falls within period p. 

cwxy = axyp
(
ϕxyp

)
Nwy

ϕxyp for any w ∈ p 

The contact formation model is calibrated using the scaling param
eter axyp

(
ϕxyp

)
for that value of ϕxyp such that the total contact time 

between x and y in time period p, Txyp, is the same for modelled observed 
contacts. 

Txyp =
∑

wϵp
cobs

wxyNwxdw =
∑

wϵp
cwxyNwxdw 

This can be rearranged to calculate the scaling parameter for that 
subset of contacter, contactee and time period, and for the specific value 
of ϕxyp. 

axyp
(
ϕxyp

)
=

∑Nw

i∈x
miyw

∑
wNwy

ϕxyp Nwxdw 

The likelihood l
(
w,ϕxyp

)
of observing the contact rate cobs

wxy, is 
calculated according to an exponential distribution with mean cwxy 

(equivalent to rate 1
cwxy

).
The total log likelihood for this value of ϕxyp is then calculated by 

summing the log likelihood over all time windows in period p. 

L
(
ϕxyp

)
=

∑

wϵp
log

(
l (w,ϕxyp)

)

2.9. Aggregating all wards

The analysis was primarily conducted on each ward separately. We 

additionally conducted an analysis with data from all wards aggregated, 
and estimated a single value of ϕ and the scaling parameter a(ϕ) for the 

non-diurnal models, or values ϕp and the scaling parameters a
(

ϕp

)
for 

the diurnal models.

2.10. Models for comparison

Details of all models to be tested against the data are given in Table 1.
The model likelihood for all types of contacter and contactee and 

non-diurnal models was calculated according to the likelihood across all 
time windows with ϕ̂, the most likely value of ϕ.

Model likelihood = L(ϕ̂)
In models with only contacter type x and contactee type y, the overall 

likelihood for non-diurnal models was calculated according to the 
likelihood across all time windows with ̂ϕxy , the most likely value of ϕxy.

Model likelihoodxy = L
(

ϕ̂xy

)

In diurnal models including all types of contacter and contactee, the 
overall model likelihood was calculated by summing the likelihoods for 
both time periods, each with the best value index parameter

Model likelihooddiurnal =
∑

p=day,nightL
(

ϕ̂p

)

or with specific contacter and contactee combinations

Model likelihooddiurnalx,y =
∑

p=day,nightL
(

ϕ̂xyp

)

Model comparison was conducted using AIC:
AIC = 2k − 2 ∗ Model likelihood∎
and for each ward the dAIC was calculated as the difference in AIC 

relative to the best model.

2.11. Sensitivity analysis

We conducted a sensitivity analysis in which the threshold of sensors 
required at the beginning or end of the study was modified: this was by 
default 10, but we repeated the analysis with a threshold of 0 (no 
exclusion) or 20 sensors. We also repeated analysis of diurnal models in 
which the start of the day period was 04:00, 06:00 and 10:00, in addition 
to the principle analysis in which the day started at 08:00.

Table 1 
Models of density dependence in contact rate.

Model Non- 
linearity 
index 
parameter 
(s), ϕ∎

Scaling 
parameter 
(s), a(ϕ∎)

Diurnality Number of 
estimated 
parameters 
(k)

Frequency 
dependence

Set at 0 One 
calibrated

Non-diurnal: 
same dynamic 
across day and 
night time

1

Linear 
density 
dependence

Set at 1 One 
calibrated

1

Non-linear 
density 
dependence

One 
estimated

One 
calibrated

2

Frequency 
dependent - 
diurnal

Set at 0 Two 
calibrated

Diurnal: index 
and scaling 
parameters 
estimated 
separately for 
day 
(08:00–19:59) 
and night time.

2

Linear 
density 
dependence - 
diurnal

Set at 1 Two 
calibrated

2

Non-linear 
density 
dependence - 
diurnal

Two 
estimated

Two 
calibrated

4
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2.12. Overcrowding scenario

In order to examine the effect a change in population density would 
have on the epidemic risk, we proposed a hypothetical scenario in which 
the population density increased by 10 %, and evaluated the change in 
expected contact rate under the best-fit model.

This was calculated for a population of type x making contact with 
type y during time period p as follows:

(Contact rate increase under 10% population increase)xyp =

1.1ϕxyp − 1

3. Results

3.1. Literature review

We conducted a review to examine how nosocomial SARS-CoV-2 
transmission is modelled in the literature. Of 40 papers which describe 
dynamic models of nosocomial transmission published up to February 
2022, 25 assumed FD (Baek et al., 2020; Booton et al., 2021; Bosbach 
et al., 2021; Ding et al., 2021; Evans et al., 2021a; Gómez Vázquez et al., 
2022; Gudina et al., 2021; Hall et al., 2021; Holmdahl et al., 2022, 2021; 
Huang et al., 2021; Kahn et al., 2022; Litwin et al., 2022; Love et al., 
2021a, 2021b; Lucia-Sanz et al., 2023; Martos et al., 2020; Nguyen et al., 
2021a, 2021b; Obama et al., 2021; Pham et al., 2021; Rosello et al., 
2022; Runge et al., 2022; Schmidt et al., 2022; Wilmink et al., 2020) and 
11 assumed LDD (Dy and Rabajante, 2020; Evans et al., 2021b; Fosdick 
et al., 2022; Hollinghurst et al., 2022; Kluger et al., 2020; Lasser et al., 
2021; Qiu et al., 2021; Sanchez-Taltavull et al., 2021; Sánchez-Taltavull 
et al., 2021; See et al., 2021; Zhang and Cheng, 2020). No papers 
assumed partial density dependence or NDD. The remaining 4 papers 
used empirically measured contact networks, so no additional assump
tion was necessary (Hüttel et al., 2021; Smith et al., 2020; Tofighi et al., 
2021; Vilches et al., 2021).

3.2. Size of dataset

Across the 15 wards, 2114 individuals (1320 HCW, 573 patients and 
221 visitors) participated in the study for a total of 1,374,902 min spent 
on the wards with active sensors. These recorded a total of 33,946 
unique contacts, lasting a total of 333,542 min. Average contact rate was 
0.15 contact minutes per person minute spent on the ward, with ward- 
level averages ranging from 0.08 to 0.26. The distribution of contact 
rates among all time windows appeared broadly exponential across all 
wards (Supplementary Fig. S 1).

3.3. Model comparison

When the analysis was conducted by ward on all individuals present 
in the hospital, the most frequently selected model was the diurnal non- 
linear density-dependent model, favoured in 7/15 wards (Table 2). The 
remaining 8 wards favoured a non-diurnal model, of which 5 favoured a 
frequency-dependent model, 2 favoured a linear density-dependent 
model, and 1 a non-linear model.

When we focused on contacts with patients only, the non-linear 
diurnal model was favoured in the majority of wards, both when 
considering contacts formed by HCW with patients (Table 3, 9 wards out 
of 15) or by patients with other patients (Table 4, 6 wards out of 11).

Overall, the emergency wards (adult and paediatric) favoured a non- 
linear diurnal model, whereas within other ward specialties (ICUs, 
Geriatry, Infectious Diseases) the best model was not consistent between 
different wards with the same specialty.

When all wards were analysed in aggregate, the best model was the 
non-diurnal frequency-dependent model.

3.4. Estimated density dependence

When we estimated the parameters of the contact rate model for each 
ward and across all types of interactions, we found that, even in cases 
where the best-fit model was non-linear, the estimated index parameter 
was close to or its 95 % credibility interval included zero (Fig. 1), 
implying close to frequency-dependent interactions overall. Night time 
interactions tended to exhibit somewhat more density dependence, as 
did HCW contacts with patient, but remained overall much closer to 
frequency than to density dependence. However, interactions between 
patients tended to display much more density dependence, even when 
the interactions were aggregated across all wards (Fig. 1). In many 
wards the contact rates had a greater than linear relationship with the 
population size of patients. In some wards there were no interactions 
between patients and therefore this could not be estimated.

There were also many instances of apparent negative relationships 
between population density and contact rate. These can be seen in 
comparison to the data (Fig. 2), for example in Medical ICU #2, the 
Adult emergency wards during the day, and Paediatric emergency 
during the night. Many instances where the frequency dependent model 
was the best may have favoured this model because a model with 
monotonic change in relation to population density did not capture the 
changing contact rate (Fig. 2, Supplementary Fig. S 1 and Supplemen
tary Fig. S 2). The range of possible slopes estimated for non-linear 
models is shown in Supplementary Fig. S 3.

When we considered contacts formed with patients by specific types 

Table 2 
Comparison of models of contact rate between all persons on each ward. Each row represents a ward, and each column a model. For a given model the dAIC value is 
given relative to the best model for each ward (indicated by dAIC = 0).

Diurnal or non-diurnal Non-diurnal Diurnal

Ward Frequency dependent Linear density dependence Non-linear Frequency dependent Linear density dependence Non-linear

Adult emergency #1 19.5 342.2 16.4 7.6 337.6 0
Adult emergency #2 14.7 349.8 14.8 9.4 347.7 0
General paediatrics 26.1 38.3 23.0 28.0 26.5 0
Geriatry #1 0 200.5 2.0 3.2 158.4 5.7
Geriatry #2 5.0 507.9 5.9 68.3 715.0 0
Infectious diseases #1 65.7 52.2 49.8 65.9 46.2 0
Infectious diseases #2 0 122.5 1.3 15.7 126.6 8.1
Infectious diseases #3 0 407.8 1.5 1.7 333.7 2.6
Internal medicine 16.7 0 1.3 12.8 0.8 3.9
Medical ICU #1 5.4 417.7 0 9.6 267.6 0.2
Medical ICU #2 25.5 492.5 13.8 14.1 486.6 0
Neonatal ICU 0 411.2 0.6 14.6 428.4 4.4
Paediatric emergency 6.7 253.0 8.4 7.4 152.7 0
Pneumology 0 162.8 1.7 0.8 71.7 4.5
Surgical ICU 34.9 0 1.7 43.8 9.3 13.3
All wards 0 3696.3 1.0 47.7 3107.8 34.0
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of staff, we observed that although there was much variation between 
wards, nurses and auxiliary nurses generally experienced more density 
dependent contacts with patients, with many instances of more than 
linear density dependence (Fig. 3). Physicians experienced more highly 
density-dependent contacts, as did administration staff, although there 
were many wards in which these specific models were not estimable due 
to lack of contact with patients.

3.5. Sensitivity analysis

Varying the threshold number of activated sensors (Supplementary 
Table S 1) or the period considered to be daytime (Supplementary 
Table S 2) did not have systematic effects on the best-fit model for each 
ward, which remained quite consistent.

3.6. Overcrowding scenario

In order to illustrate the implications for nosocomial risk, we 
calculated the expected increase in contact rate for day and night time in 
each ward, based on its best fit model, under a scenario of 10 % increase 
in population density (Fig. 4). While the majority of wards would 
experience only small changes in contact rates between all persons 
present, there were exceptions such as the General paediatrics and 

Infectious diseases #1 wards where the model predicted a more than 
10 % increase. When considering how a change in the patient density 
would impact contact with patients, many more wards would exhibit a 
greater than 30 % increase in contact rate. For those wards with a 
negative non-linear fit however, the increase in population density 
would correspond to a reduction in contact rate.

4. Discussion

We explored here the patterns of density dependence in hospital 
contacts based on unique real-world data on interactions between in
dividuals in hospitals. We exploited data collected from proximity sen
sors in several types of hospitals over day and night shifts and between 
types of hospital users, we examined the contact rates and how these 
evolved under changing population density.

The dependency of contact rates on population density was highly 
heterogeneous between wards, without evident associations with the 
types of wards, the hospital housing the ward or the city. We identified 
many wards and scenarios in which contact rates appeared to depend 
little on the density, suggesting frequency-dependent dynamics. How
ever, night time contacts were generally more density dependent than 
daytime ones.

Interactions that HCW form with patients, and patients with other 

Table 3 
Comparison of models of contact rate when HCW form contacts with patients, on each ward. Each row represents a ward, and each column a model. For a given model 
(columns) the dAIC value is given relative to the best model for each ward (indicated by dAIC = 0).

Diurnal or non-diurnal Non-diurnal Diurnal

Ward Frequency dependent Linear density dependence Non-linear Frequency dependent Linear density dependence Non-linear

Adult emergency #1 183.8 859.2 151.8 173.3 900.9 0
Adult emergency #2 47.1 651.8 48.5 52.3 735.4 0
General paediatrics 53.7 47.5 47.5 44.8 38.9 0
Geriatry #1 0 49.9 1.6 2.0 34.9 3.4
Geriatry #2 0 134.9 0.9 11.6 97.5 9.6
Infectious diseases #1 10.0 2.0 0.5 12.8 0 3.2
Infectious diseases #2 74.4 189.7 76.4 62.7 168.4 0
Infectious diseases #3 0 208.8 1.7 5.6 185.1 8.8
Internal medicine 8.5 79.9 0 4.2 36.5 3.3
Medical ICU #1 18.5 23.9 3.5 17.1 26.9 0
Medical ICU #2 3.3 91.3 5.3 0 95.1 0.1
Neonatal ICU 45.3 970.2 24.2 17.2 778.6 0
Paediatric emergency 52.9 29.5 11.0 48.6 13.9 0
Pneumology 155.1 1531.1 98.5 156.8 1562.3 0
Surgical ICU 80.9 24.9 7.1 81.0 27.1 0
All wards 9.0 4194.0 0 14.0 3904.2 6.0

Table 4 
Comparison of models of contact rate when patients form contacts with other patients, on each ward. Each row represents a ward, and each column a model. For a 
given model (columns) the dAIC value is given relative to the best model for each ward (indicated by dAIC = 0). Results are missing for four wards as there were no 
contacts between patients.

Diurnal or non-diurnal Non-diurnal Diurnal

Ward Frequency dependent Linear density dependence Non-linear Frequency dependent Linear density dependence Non-linear

Adult emergency #1 165.9 472.6 61.9 159.9 448.4 0
Adult emergency #2 391.8 333.2 277.1 322.5 224.5 0
General paediatrics 45.1 28.9 27.4 50.9 28.6 0
Geriatry #1 12.2 74.4 10.1 13.8 75.2 0
Geriatry #2 272.6 1221.3 82.0 7.9 0 2.6
Infectious diseases #1 - - - - - -
Infectious diseases #2 - - - - - -
Infectious diseases #3 19.3 138.0 19.3 24.8 145.7 0
Internal medicine 74.1 40.7 0 71.5 40.5 6.0
Medical ICU #1 143.4 94.7 0 149.7 101.5 13.2
Medical ICU #2 - - - - - -
Neonatal ICU - - - - - -
Paediatric emergency 108.5 164.7 110.4 68.7 119.3 0
Pneumology 18.0 0 2.0 7.9 1.9 2.7
Surgical ICU 137.0 90.4 0 146.1 97.1 7.4
All wards 591.8 53.0 0 620.9 57.4 1.3
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patients, exhibited higher density dependence, implying that contact 
rates were sensitive to increasing numbers of patients. This effect was 
particularly strong for interactions that nurses and auxiliary nurses 
formed with patients. Interestingly, another study using wearable sen
sors in an emergency department identified higher numbers of contacts 

during periods of high population density in patient-patient and HCW- 
patient interactions (Hertzberg et al., 2017), although in our study the 
results varied between the emergency wards.

Frequency dependence predominated when the wards were analysed 
in aggregate, which is consistent with previous work identifying 

Fig. 1. Estimated values of ϕ for each ward under different types of contact or time period. Each row represents a ward, and each column represents either the 
day or night time, with each pair of columns representing a type of contact (between all person present; when HCW form contacts with patients; or patients with other 
patients). The colours represent the best fit model, and the points represent the median estimate of ϕ under each scenario. If the best fit model is non-linear, the value 
of ϕ is estimated, and therefore the 95 % credibility interval is shown by the error bars. If the best fit model is frequency dependence and linear density dependence, 
the value of ϕ is fixed and only the point is shown. Circular points indicate that the best fit model is diurnal, while square points indicate non-diurnal. The vertical 
dotted and dashed lines respectively indicate the values for ϕ = 0 for frequency dependence and ϕ = 1 for linear density dependence.

Fig. 2. Correlation between contact rates and number of persons present on the ward. Each pair of panels represents the day and night time on each ward. The 
black points indicate the data, being contact rates (cumulative contact minutes per person minute spent on the ward) against number of persons present on the ward, 
for each time window. The coloured lines indicate the best fit model, with solid and dashed lines indicating diurnal and non-diurnal models, respectively. The shaded 
band represents the 95 % confidence interval of the exponential distribution around the best-fit rate.
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frequency dependence at large spatial scales despite local density 
dependence (Ferrari et al., 2011). Intuitively it is perhaps unsurprising 
that the analysis across wards did not reveal a strong relationship with 
population density, given the heterogeneity of results between wards.

Under these best fit models, we simulated a scenario in which pop
ulation density increased by 10 %, reflecting hospital overcrowding. 
While many wards would exhibit little change in contact rate, some 
others could demonstrate an increase in contact rate much greater than 

the population density increase, potentially leading to markedly 
increased epidemic risk.

Our review of healthcare transmission models in the literature 
revealed a predominance in the assumption of FD over LDD, which is 
consistent with our results if the choice between these two models is 
binary. This predominance was also reflected in an earlier review of 
SARS-CoV-2 transmission models in the community (Nightingale et al., 
2021). However, our results suggest that empirically there is great 

Fig. 3. Estimated values of ϕ for each ward by time period and type of HCW forming contacts with patients. Each row represents a ward, and each column 
represents either the day or night time, with each pair of columns representing a type of contact with patients (by nurses; auxiliary nurses; physicians; and 
administration staff). The colours represent the best fit model, and the points represent the median estimate of ϕ under each scenario. If the best fit model is non- 
linear, the value of ϕ is estimated, and therefore the 95 % credibility interval is shown by the error bars. If the best fit model is frequency dependence and linear 
density dependence, the value of ϕ is fixed and only the point is shown. Circular points indicate that the best fit model is diurnal, while square points indicate non- 
diurnal. The vertical dotted and dashed lines respectively indicate the values for ϕ = 0 for frequency dependence and ϕ = 1 for linear density dependence.

Fig. 4. Simulated effect on contact rate of an increase in population density. Each row represents a ward, and each column represents either the day or night 
time, with each pair of columns representing a type of contact (between all person present; when HCW form contacts with patients; or patients with other patients). 
The colours represent the best fit model, and the bars represent the increase in contact rate expected if the population density were to increase by 10 %. Where a non- 
linear model was the best fit, we have included error bars to demonstrate the limits of the increase in contact rate corresponding to the 95 % credibility limits of the 
estimate of ϕ.
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variation in the best model across the spectrum of density dependence, 
and while some studies used empirically estimated contact rates, these 
were in the minority, and none used a partially density dependent 
scenario.

We acknowledge that, if studies do not model a changing population 
density, then the choice of density dependence model is moot. However, 
hospital populations do fluctuate, particularly due to seasonal patterns 
of admission (Achebak et al., 2023; Upshur et al., 2005), suggesting that 
modelling such changes is important. This dynamic was particularly the 
case under a pandemic scenario in which COVID-19 drove people into 
hospitals, while cancellation of unrelated medical interventions drove 
people out.

This study provides a unique insight into these questions, by 
combining a rich dataset on contact patterns with a flexible formulation 
for translating this into changes in epidemiological risk. The data were 
collected across all types of persons present within several hospital 
wards, over more than a day, and achieved very high coverage. We were 
even able to examine density dependence among specific staff roles in 
each ward. The formulation allowed us to estimate whether these con
tact scenarios correspond to frequency dependence, linear density 
dependence, or some other relationship on this spectrum, which can be 
directly linked to models of epidemiological transmission. We 
acknowledge that other functional forms may govern the dependency 
between population density and contact rate, such as a saturating rela
tionship, where the change of contact rate with increasing population 
density decelerates as it approaches an asymptotic value, or a sigmoidal 
relationship in which the increase of contact rate with population den
sity is highest at intermediate population densities. However, we have 
chosen to use a simpler single model framework, NDD, which maps to 
the main assumptions present in the literature (FD and LDD) in order to 
best assess their appropriateness.

The results must be interpreted in the light of certain assumptions 
and limitations. We assumed that all contacts are equal in terms of 
epidemiology, whereas in reality some may be much riskier than others. 
We do not have information on whether participants were wearing 
masks or subject to other barrier methods, even though this is likely to 
be relevant for epidemic risk (Shirreff et al., 2022). We also discount the 
possibility that infection status influences contact behaviour, such as by 
isolation of patients with COVID-19. Intriguingly, mask use may also 
respond to population density, which would be a fruitful area for further 
research.

We also do not consider the social fluidity i.e. whether a person’s 
cumulative contact is with a few or with many people, which would 
often be relevant for the risk of spread, since many short contacts in
creases the risk that one of these contacts is infected (Colman et al., 
2021). However, estimates of social fluidity do not take into account the 
duration of these contacts, and without knowing the prevalence of in
fectious index cases, or the saturation of risk during long contact with 
the same person, our approach provides a better link to overall risky 
contact time. Contact data such as we analyse here can be used to pro
duce contact networks, which can be extended by simulation (Duval 
et al., 2024), allowing models of disease transmission which take into 
account both contact rates and repeat contacts. Importantly, the data 
collection was conducted during the end of the first COVID-19 wave 
(April–June 2020), which may imply that it doesn’t represent “normal” 
contact behaviour, but instead a scenario in which individuals may be 
particularly avoidant due to fear of infection. However, given the 
pressures put on to healthcare institutions during the COVID-19 
pandemic, understanding the contact and density dynamics at such 
times is relevant for future disruptive events.

The models that we fit to data were not always able to capture the 
complexity of the changing contact rate. This may depend on other 
things than just population density, such as shift patterns and scheduled 
activities. Relatedly, we have assumed an equal duration of day time and 
night time periods for our diurnal models. However, we provide a 
general framework which produces a simple, easy to understand 

analysis which can be applied to other scenarios such as changes in 
hospital organisation which may affect population density.

Finally, we leveraged the daily change in population density to 
extrapolate about the effect of longer-term changes in population den
sity. Extension of this analysis to studies which have collected longer 
term data (Duval et al., 2018) would be relevant to generalising these 
results, including longer-term fluctuations in population density, and 
beyond those affected by the COVID-19 pandemic. Collection of more 
details on patients and ward activities would allow a more detailed 
analysis of the correlates of high and low contact rates, in addition to the 
population density. The inclusion in future work of the surface area of 
the wards, which was unavailable for the current study, would allow the 
extension of relative measures of population density to absolute mea
sures, enabling better comparisons between wards.

5. Conclusions

Changing population density has a substantial effect on contact rates 
in many scenarios. However, the effect varies between wards and ac
cording to the types of actors involved, and is in many cases non-linear. 
Overall contact rates often had low or no dependency on density, sug
gesting that FD models are appropriate for modelling generalised hos
pital transmission. However, contacts with patients, and contacts at 
night time, were more density dependent. Understanding this is key to 
anticipating hospital crowding as a risk factor for nosocomial outbreaks, 
as well as informing our assumptions in epidemic models. We propose 
further work to reveal how longer term changes in population density 
affect contact rate, and how they affect relevant contact behaviours such 
as mask use.
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Bjørnstad, O.N., Finkenstädt, B.F., Grenfell, B.T., 2002. Dynamics of measles epidemics: 
estimating scaling of transmission rates using a time series sir model. Ecol. Monogr. 
72 (2), 169–184.

Booton, R.D., MacGregor, L., Vass, L., Looker, K.J., Hyams, C., Bright, P.D., et al., 2021. 
Estimating the COVID-19 epidemic trajectory and hospital capacity requirements in 
South West England: a mathematical modelling framework. BMJ Open 11 (1), 
e041536.

Bosbach, W.A., Heinrich, M., Kolisch, R., Heiss, C., 2021. Maximization of open hospital 
capacity under shortage of SARS-CoV-2 vaccines—an open access, stochastic 
simulation tool. Vaccines 9 (6), 546.

Chu, D.K., Akl, E.A., Duda, S., Solo, K., Yaacoub, S., Schünemann, H.J., et al., 2020. 
Physical distancing, face masks, and eye protection to prevent person-to-person 
transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. 
Lancet 395 (10242), 1973–1987.

Colman, E., Colizza, V., Hanks, E.M., Hughes, D.P., Bansal, S., 2021. Social fluidity 
mobilizes contagion in human and animal populations. In: Hens, N., Davenport, M. 
P., Saramaki, J., Hens, N. (Eds.), eLife, e62177.

Ding, Y., Agrawal, S.K., Cao, J., Meyers, L., Hasenbein, J.J., 2021. Surveillance testing for 
rapid detection of outbreaks in facilities. arXiv:211000170 [q-bio, stat] [Internet]. 
[cited 2022 Jan 7]; Available from: 〈http://arxiv.org/abs/2110.00170〉.

Duval, A., Leclerc, Q.J., Guillemot, D., Temime, L., Opatowski, L., 2024. An algorithm to 
build synthetic temporal contact networks based on close-proximity interactions 
data. PLoS Comput. Biol. 20 (6), e1012227.
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