
HAL Id: hal-04846233
https://hal.science/hal-04846233v1

Preprint submitted on 18 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rough analysis of two scale systems
Arnaud Debussche, Martina Hofmanová

To cite this version:

Arnaud Debussche, Martina Hofmanová. Rough analysis of two scale systems. 2024. �hal-04846233�

https://hal.science/hal-04846233v1
https://hal.archives-ouvertes.fr


Rough analysis of two scale systems

Arnaud Debussche1 and Martina Hofmanová2
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Abstract

We address a slow-fast system of coupled three dimensional Navier–Stokes equations where the
fast component is perturbed by an additive Brownian noise. By means of the rough path theory,
we establish the convergence in law of the slow component towards a Navier–Stokes system with an
Itô–Stokes drift and a rough path driven transport noise. This gives an alternative, more general
and direct proof to [9]. Notably, the limiting rough path is identified as a geometric rough path,
which does not necessarily coincide with the Stratonovich lift of the Brownian motion.
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1 Introduction

Fluid models have numerous applications, in particular in the modeling of climate, oceans, atmosphere
etc. These systems are often described mathematically by a system of partial differential equations. In-
creasingly, we recognize the importance of random effects influencing these phenomena and the necessity
of incorporating such effects for both qualitative and quantitative predictions.

In [1, 27], in a similar spirit as [28], the classical derivation of fluid models from Reynold Transport
Theorem has been revisited. A stochastic component was added to the velocity field to represent
small scales that are challenging to account for in numerical simulations, leading to the derivation of a
Stochastic Reynolds Transport Theorem. Applying this to basic physical balance laws yields stochastic
versions of fluid equations, known as Location Uncertainty (LU) models. Interestingly, these equations
contain a transport noise and an additional advection term induced by the noise, referred to as the
Itô-Stokes drift. Other derivations of stochastic fluid equations have also been proposed. For instance,
in [25], a stochastic velocity component was introduced, and a variational principle was employed to
derive a stochastic version of the Euler equations as critical points of a stochastic energy. This approach,
known as the SALT model – Stochastic Advection by Lie Transport – also incorporates transport noise
but differs from LU models in that it preserves more geometric quantities. Importantly, in both models,
the noise is interpreted in the Stratonovich sense.

From a mathematical perspective, the stochastic Navier–Stokes equations with transport noise rep-
resent a timely and active area of research. These equations were first studied in the seminal work
[5] and have recently gained further attention. A significant discovery was made in [19], where it was
shown that one can construct sequences of noise covariance operators such that the noise vanishes in
the limit, while the Itô–Stratonovich correction persists. The limiting deterministic equation retains a
trace of the vanishing noise, manifesting as an additional elliptic operator termed enhanced viscosity.
This phenomenon has been further explored in [12, 15].

On another front, multiscale approaches have been developed to model small and large scales dif-
ferently. For instance, in [26], small-scale terms in the equations were neglected and replaced by noise,
though this analysis was restricted to finite-dimensional models. Inspired by this, [16, 17] examined
a multiscale system of Euler equations, proving convergence to the Euler equations with transport
noise. Similarly, in this work, we study a slow-fast system parameterized by a small scaling parameter
ε ∈ (0, 1):

∂tu
ε = Auε + b(uε + vε, uε), (1.1)

dvε = Avεdt+ b(uε + vε, vε)dt+ ε−1Cvεdt+ ε−1Q1/2dW, (1.2)

where A, C are linear operators, b a nonlinear term, and the second equation is driven by a cylindrical
Wiener process W on some probability space (Ω,F ,P ), with a covariance operator Q. Additional
assumptions on the operators and parameters will be presented in Section 2.1.

Our primary goal is to rigorously analyze the asymptotic behavior of system (1.1), (1.2) as ε → 0,
focusing on the interactions between the large- and small-scale components under stochastic perturba-
tions. In particular, we derive the limit of (1.1) as a stochastic dynamics driven by a certain transport
noise, along with the Itô–Stokes drift. The limiting behavior we obtain emphasizes the role of stochastic
transport noise as an effective model reduction for systems where large-scale dynamics are influenced
by fast, highly oscillatory components.

A key example is the coupled Navier–Stokes system:

∂tu
ε + (uε + vε) · ∇uε +∇pε = ν∆uε, divuε = 0, (1.3)

dvε + (uε + vε) · ∇vεdt+∇qεdt = ν∆vεdt+ ε−1Cvεdt+ ε−1dW, div vε = 0, (1.4)

where t ∈ [0, T ], uε and vε represent velocity fields on a bounded domain O ⊂ R3. The pressure fields
pε and qε ensure the validity of the divergence-free conditions divuϵ = div vϵ = 0, and W is a Wiener
process on [L2(O)]3. The parameter ε ∈ (0, 1) denotes a small scaling, and ν > 0 is the viscosity. These
equations are supplemented with boundary conditions which can be Dirichlet or, if O is the torus,
periodic. For simplicity, we consider periodic boundary conditions. Therefore, (1.3), (1.4) is of the
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form (1.1), (1.2) provided A is the Stokes operator, b is the Navier–Stokes nonlinearity, and Q1/2 is the
covariance operator of the divergence-free part of W. We refer to Section 2.1 for further details.

This system represents a decomposition of the Navier–Stokes equations into a slow-varying, large-
scale component uε and a fast-varying, small-scale component vε. The fast component is driven by a
large additive stochastic noise and, for the particularly relevant case of C = − Id, it experiences a large
friction, which can also be interpreted as a scale separation. The noise amplitude is chosen such that,
formally, as ε→ 0, the fast component vε converges to the white noise Q1/2dW . Consequently, the term
(vε · ∇)uε in the large-scale equation (1.3) is expected to converge to a transport noise. However, as
we shall demonstrate, this formal reasoning is incomplete due to the emergence of the Itô–Stokes drift
which arises in the limiting system.

In [16, 17], the non viscous case – ν = 0 – was studied and the limit ε → 0 established thanks to a
Wong-Zakai type argument. It has to be noted that in [16, 17], the Itô–Stokes drift is not present due
to an extra assumption on the noise needed in their argument.

The asymptotic behavior of the system (1.1), (1.2) as ε→ 0 was recently studied in [9]. The analysis
in [9] is based on the perturbed test function method introduced in [29], which has since been widely used
in the literature. The approach of [9] relies on several assumptions: certain regularity of the operator
Q, symmetry and certain smoothing properties of C (as e.g. C = −(−∆)γ/2 for some γ > 1/4), and
commutativity of C and Q. Under these conditions, they prove that uε converges in law to a solution
of

du = Audt+ b(u, u)dt+ b (r, u) dt+ b((−C)−1Q1/2 ◦ dW, u),

where r̄ denotes the Itô–Stokes velocity as given in (1.10) below. Particularly, the stochastic integral is
understood in Stratonovich’s sense.

In contrast to the approach in [9], our work introduces a more direct method to address the limiting
behavior as ε → 0. This approach allows us to significantly relax the assumptions on the operator
C, encompassing physically relevant cases such as C = − Id. Moreover, we do not require C to be
symmetric, nor do we assume it commutes with Q. Rather surprisingly, in such situations, the stochastic
integral in the limit equation is no longer Stratonovich; instead, a non-trivial finite-variation perturbation
arises. It is defined explicitly in terms of the operators C and Q. We interpret the resulting stochastic
integral within the framework of rough paths. More specifically, our analysis is grounded in the theory
of unbounded rough drivers, introduced in [3] and further developed in [10, 14, 21, 22]. We extend this
theory to accommodate infinite-dimensional rough paths, which may have broader applications. As is
typical in rough path theory, our approach imposes stricter regularity conditions on Q compared to
purely probabilistic methods such as those in [9].

In a parallel development, certain concepts from the present article were integrated with those from
[9] and further advanced to establish anomalous and total dissipation in passive scalar equations and
Navier–Stokes equations advected by solutions to the randomly forced Navier–Stokes equations, as
presented in [23].

1.1 Summary of main results and ideas

We now provide a brief outline of our method. Unlike the approach taken in [9], we introduce a
decomposition of the form vε = ε−1/2wε + rε where the components evolve according to the following
system of equations:

∂tu
ε = Auε + b(uε + ε−1/2wε + rε, uε), (1.5)

dwε = ε−1Cwεdt+ ε−1/2Q1/2dW, wε0 = 0, (1.6)

∂tr
ε = ε−1Crε +A(ε−1/2wε + rε) + b(uε + ε−1/2wε + rε, ε−1/2wε + rε), rε0 = vε0. (1.7)

We do not present the details of the construction of solutions for this system at each fixed level
of ε ∈ (0, 1), as these can be derived using classical techniques similar to those in [9]. Specifically,
the rescaled Ornstein–Uhlenbeck process wε exists on any probability space that includes a Q-Wiener
process Q1/2W , and is uniquely determined and measurable with respect to Q1/2W . Moreover, it
possesses a unique invariant measure µ, which is independent of ε. See [7, 8] for further details.
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Additionally, for each fixed ε ∈ (0, 1) there exists a probabilistically and analytically weak solution
to the system (1.5), (1.6), (1.7). In other words, for every ε ∈ (0, 1) there exists a probability space
(Ωε,Fε,P ε), a Q-Wiener process Q1/2W ε and processes uε, wε, rε that solve (1.5), (1.6), (1.7) in the
analytically weak sense. The proof of existence is based on a Galerkin approximation combined with the
method of stochastic compactness, as was employed, for instance, in [13] for the stochastic Navier–Stokes
equations.

It is important to note that in the framework of probabilistically weak solutions, both the probability
space and the Wiener process form part of the solution itself. This distinguishes probabilistically
weak solutions from probabilistically strong solutions, where the probabilistic elements are specified
in advance. A typical example of the latter is the Ornstein–Uhlenbeck process defined by (1.6), as
discussed above. In general, the existence of probabilistically strong solutions can only be ensured for
problems where uniqueness holds. One notable exception is the method of convex integration, which
allows for the construction of non-unique solutions in various fluid dynamics models (see, for instance,
[24]). However, for the system (1.5), (1.6), (1.7), the question of uniqueness remains unresolved and
may not hold, as suggested by recent studies [2, 6, 24]. This uncertainty regarding uniqueness is the
primary reason we focus our analysis on probabilistically weak solutions.

With the existence of solutions for each fixed level ε, our next objective is to reformulate the system
(1.5), (1.6), (1.7) in the framework of rough path theory, enabling us to derive estimates that are uniform
in ε. This step is detailed in Section 3, following the introduction of the basic concepts of rough path
theory in Section 2.2. For a detailed introduction to the theory of rough paths, we also refer the reader
to the monograph [18].

Our ultimate aim is to handle the singularity in (1.5) caused by the term of order ε−1/2. Specifically,
this term is expected to converge to a stochastic integral, and we aim to quantify this convergence within
the framework of rough paths. To this end, we introduce the process yε, defined by

dyε

dt
= ε−1/2wε, yε0 = 0, (1.8)

so that the critical term in (1.5) can be expressed as b(ε−1/2wε, uε) = b (dyε/dt, uε) . This is where
rough path theory becomes crucial: although the time derivatives dyε/dt exhibit singular behavior and
blow up as ε → 0, for instance in finite variation, it is still possible to establish their convergence in a
suitably weaker sense. This convergence is nonetheless strong enough to allow us to pass to the limit in
the entire system (1.5), (1.6), (1.7).

To this end, we define (Y ε,1, Y ε,2) as the canonical rough path lift of yε corresponding to the first-
and second-order iterated integrals:

Y ε,1st :=

∫ t

s

ε−1/2wεrdr, Y ε,2st :=

∫ t

s

(yεr − yεs)⊗ dyεr , 0 ⩽ s < t ⩽ T.

This object is well-defined since yε exhibits sufficient regularity in time. Our goal is to establish that, in
an appropriate rough path framework, (Y ε,1, Y ε,2) converges to a well-defined limit. More specifically,
the convergence occurs in the space of α-Hölder continuous rough paths, with values in a suitable
Sobolev space, for every α ∈ (0, 1/2). Implicitly, the first component Y ε,1 is α-Hölder continuous in
time, while the second component Y ε,2 enjoys 2α-Hölder continuity in time, uniformly with respect to
ε. Furthermore, we identify the limit rough path, which, rather surprisingly, deviates from the classical
Stratonovich lift of a Wiener process.

Our first main result can be stated as follows, with the precise formulation – including the function
spaces – presented in Theorem 4.1. The detailed proof can be found in Section 6.

Theorem 1.1 1. The canonical rough path lift (Y ε,1, Y ε,2) converges as ε → 0 a.s. in the sense of
rough paths to a rough path lift (B1, B2) of the Wiener process B := (−C)−1Q1/2W . The second
component is given in terms of Itô’s stochastic integration as

B2
st :=

∫ t

s

δBsr ⊗ dBr + (t− s)

∫
w ⊗ (−C)−1wdµ(w),
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with µ being the unique invariant measure of (1.6). Alternatively, B2 is given in terms of
Stratonovich’s stochastic integration as

B2
st =

∫ t

s

δBsr ⊗ ◦dBr + (t− s)M,

where M is antisymmetric and explicitly defined in terms of operators C and Q.

2. If the operators C and Q commute and C is symmetric thenM = 0 and (B1, B2) is the Stratonovich
lift of B.

We observe that the rough path lift of B obtained in the limit generally differs from the Stratonovich
lift via an antisymmetric finite variation part, denoted by M . Nevertheless, due to the antisymmetry of
M , the lift (B1, B2) remains a geometric rough path, as expected for limits of canonical lifts of smooth
paths. Under the assumptions of point 2., we recover the result of [9], albeit via a completely different
approach. Moreover, if Q is the identity on Rd and −C is a d × d matrix with strictly positive real
parts of all eigenvalues, we not only recover but also extend the result of Theorem 3.8 in [18]. This
earlier work examined the behavior of the zero-mass limit of physical Brownian motion in a magnetic
field, where a nontrivial antisymmetric part M (in our notation) also emerged in the limit rough path.
However, in that setting, the non-triviality of M stemmed from the non-symmetry of C. In contrast,
our result demonstrates that M can still be nontrivial even when C is symmetric, provided C does not
commute with Q.

The proof of Theorem 1.1 is based on the Kolmogorov continuity criterion for rough paths, specifically
Theorem 3.3 in [18]. In particular, the convergence of the second component of the rough path is derived
from ergodic properties of the Ornstein–Uhlenbeck process through a suitable variant of an ergodic
theorem, which we develop in Section 5.

The result of Theorem 1.1 serves as the first essential building block for passing to the limit in the
system (1.5), (1.6), (1.7). The second crucial aspect is identifying a suitable notion of solution to this
system that remains stable under the convergence provided by Theorem 1.1. This notion must also be
compatible with the uniform estimates on uε, wε, rε as ε→ 0, ensuring that it is possible to pass to the
limit as ε→ 0 and identify the limit equation.

At this stage, we prefer not to discuss the precise definition of such a solution, as it requires a more
sophisticated framework involving the theory of unbounded rough drivers, which can be understood
as unbounded operator-valued rough paths. For further background on this formalism, we refer to [3],
where unbounded rough drivers were originally introduced. Details related to our specific setting can be
found in Section 2.2, and the derivation of the rough path formulation of (1.5), (1.6), (1.7) is discussed
in Section 3. Specifically, in Definition 3.1, we introduce the concept of a probabilistically weak rough
path solution to (1.5), (1.6), (1.7). This is a solution that is weak in both analytical and probabilistic
sense, and it satisfies the equations in the sense of rough paths.

Finally, we arrive to our second main result, which is formulated in Theorem 4.4. The proof of this
result is presented in Section 7 and Section 8.

Theorem 1.2 Let the initial values (uε0)ε∈(0,1) and (vε0)ε∈(0,1) be given so that both (uε0)ε∈(0,1) and

(ε1/2vε0)ε∈(0,1) are bounded in L2 uniformly in ε. There exist probabilistically weak rough path solutions

(uε, (−C)−1Q1/2W ε)1 to (1.5), (1.6), (1.7) that converge in law to a probabilistically weak rough path
solution to

du = Audt+ b(u, u)dt+ b (r, u) dt+ b(∗dB, u), (1.9)

where r is the so-called Itô–Stokes velocity

r :=

∫
(−C)−1b(w,w)dµ(w) (1.10)

1Recall that, for probabilistically weak solutions, the Brownian motion in (1.6) is part of the solution and hence it a
priori depends on ε, leading to the replacement of W in (1.6) by the Brownian motion W ε.
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with µ being the unique invariant measure of (1.6), and the stochastic integral with respect to B corre-
sponds to the integration with respect to the rough path (B1, B2) obtained in Theorem 1.1.

As demonstrated, the rough path theory serves as a valuable tool for directly identifying the limit
stochastic integral. This approach may hold potential interest for other problems in the context of
approximation–diffusion.

Overall, our construction is implicitly probabilistic, and the convergence of the system (1.5), (1.6),
(1.7) to (1.9) is established in law. On the one hand, the convergence of rε to the Itô–Stokes velocity,
as proved in Section 7.4, leverages the ergodic properties of the Ornstein–Uhlenbeck process discussed
in Section 5. On the other hand, the final passage necessitates a combination of probabilistic and
rough path arguments. To this end, we develop a rough path variant of the stochastic compactness
argument, which is based on the Skorokhod representation theorem. A purely rough path approach is
hindered among others by the fact that the a priori uniform estimate for rε holds only in expectation (cf.
Section 7.3). Consequently, the analysis of the rough path formulation of (1.5), particularly regarding
the remainder estimates in Section 8.1 and the time regularity of uε in Section 8.2, becomes uniform
only after taking expectation. This issue complicates the passage to the limit in Section 8.3 and requires
careful consideration.
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2 Preliminaries

2.1 Function spaces, operators and noise

We first introduce the basic functional setting related to the Navier–Stokes equations. The reader is
referred to [31, Chapter 2] for further details. Let H denote the L2(T3;R3) space of vector fields of zero
mean and divergence and let ⟨·, ·⟩ be the associated inner product. By (ek)k∈N we denote an orthonormal
basis of H. P denotes the Leray projection onto H which is defined by Pu = u −∇∆−1divu. A is the
Stokes operator Au = ν∆P for a viscosity constant ν > 0. Here ∆ is the Laplace operator on T3, i.e.
with periodic boundary conditions. By Hn, n ∈ R, we denote the domains of fractional powers of −A
equipped with the graph norm

∥u∥Hn := ∥(−A)n/2u∥H .

b is the Navier–Stokes nonlinearity
b(u, v) = −P(u · ∇v).

It is a continuous operator H ×H → H−θ0 as well as H ×H1 → H−θ0+1, where θ0 > 1 + 3/2, as can
be seen from its bilinearity combined with the estimates

|⟨b(u, v), w⟩| ⩽ ∥u∥H∥v∥H∥∇w∥L∞ ≲ ∥u∥H∥v∥H∥w∥Hθ0 ,

|⟨b(u, v), w⟩| ⩽ ∥u∥H∥∇v∥H∥w∥L∞ ≲ ∥u∥H∥v∥H1∥w∥Hθ0−1 ,

which hold true for smooth divergence free vector fields u, v, w by the Sobolev embedding. We fix a θ0
close to 1 + 3/2 throughout the paper. Moreover, the symmetry property ⟨b(u, v), w⟩ = −⟨b(u,w), v⟩
leads to the cancellation ⟨b(u, v), v⟩ = 0.

Next, we are concerned with assumptions on the operator C and we refer the reader to [11] for an
introduction to semigroup theory. Let σ > 2 + 3/2 be fixed throughout the paper, close to the given
lower bound. The operator C is the infinitesimal generator of a strongly continuous semigroup (eCt)t⩾0

6



on Hσ, −C is invertible and the adjoint C∗ generates the adjoint semigroup (eC
∗t)t⩾0 = ((eCt)∗)t⩾0.

We assume that there exist ι > 0, γ ⩾ 0 such that

∥eCt∥L(Hσ) ≲ e−ιt, (2.1)

∥(−C)−1(eC(t−s) − Id)∥L(Hσ;Hσ) ≲ |t− s|1/2, (2.2)

∥(−C)−1∥L(Hσ ;Hσ) + ∥(−C)−1∥L(H−θ0 ;H−θ0 ) ≲ 1, (2.3)

−⟨w,Cw⟩ ≳ ∥w∥2Hγ . (2.4)

An example of such an operator is given by C = −ρ(−A)ς +K for some ρ > 0, ς ⩾ 0 and a suitable
(lower order) perturbation K. For γ = 0, we can take ς = 0 and K a bounded operator on H of norm
less than ρ. For γ > 0, we can take ς ≥ γ and K a bounded operator from H γ̃+σ to Hσ with γ̃ < γ so
that C is a sectorial orperator in Hσ and (2.2) holds (see [20]). Under the additional assumption that
K(−A)−ς is bounded from Hσ to itself and from H−θ0 to itself with sufficiently small norm, the other
assumptions hold by perturbation.

We proceed with the assumptions on the noise. For foundations of infinite-dimensional stochastic
analysis we refer to [8]. The driving process W is a cylindrical Wiener process on H and the covariance
operator Q is symmetric, nonnegative and trace class and

∥Q1/2∥L2(H;Hσ) ≲ 1, (2.5)

where L2(H;Hσ) is the space of Hilbert–Schmidt operators from H to Hσ. Additionally, we make the
slightly stronger assumption that there exists ϑ ∈ (0, 1] so that

∥(−C)ϑQ1/2∥L2(H;Hσ) ≲ 1. (2.6)

Finally, we have:
∥(−C)−ϑ(eC(t−s) − Id)∥L(Hσ ;Hσ) ≲ |t− s|ϑ/2. (2.7)

Indeed, this is clearly true for ϑ = 0 so that this follows by interpolation with (2.2).

2.2 Rough path theory

In this section, we introduce the formalism of the rough path theory and particularly the concept of
unbounded rough driver introduced in [3]. For a thorough introduction to the theory of rough paths,
we refer to [18].

Throughout the paper, T > 0 is given. For a path g : [0, T ] → E to a Banach space E we denote its
increment by δgst = gt − gs, 0 ⩽ s ⩽ t ⩽ T . Let ∆T := {(s, t) ∈ [0, T ]2; s ⩽ t}. For a two-index map
g : ∆T → E we define its increment by δgsrt = gst − gsr − grt.

For a Hilbert space E, E ⊗ E denotes the completion of the algebraic tensor E ⊗alg E with respect
to the Hilbert–Schmidt norm. More precisely, we define the inner product on E ⊗alg E by

⟨a⊗alg b, c⊗alg d⟩E⊗E = ⟨a, c⟩E⟨b, d⟩E

and E⊗E is then the completion of E⊗algE with respect to the norm ∥ · ∥E⊗E = ⟨·, ·⟩1/2E⊗E . This space
can be idendified with the space of Hilbert–Schmidt operators L2(E) := L2(E;E), see [30].

A two-index map ω : ∆T → [0,∞) is called control if it is continuous, superadditive, i.e. for all
s ⩽ r ⩽ t

ω(s, r) + ω(r, t) ⩽ ω(s, t),

and ω(s, s) = 0 for all s ∈ [0, T ].
Let α ∈ (0, 1]. We denote by Cα2 ([0, T ];E) the closure of the set of smooth two-index maps g : ∆T →

E with respect to the seminorm

∥g∥Cα
2 ([0,T ];E) := sup

s,t∈∆T ,s̸=t

∥gst∥E
|t− s|α

.
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Taking closure of smooth functions guarantees separability and, consequently, the space Cα2 ([0, T ];E) is
Polish.

Let p ⩾ 1. By Cp−var
2 ([0, T ];E) we denote the space of continuous two-index maps g : ∆T → E with

finite p-variation, i.e.

∥g∥Cp−var
2 ([0,T ];E) := sup

π∈P([0,T ])

 ∑
(s,t)∈π

∥gst∥pE

1/p

<∞,

where the supremum is taken over all partitions π of [0, T ].
By Cp−var

2,loc ([0, T ];E) we denote the space of two-index maps g : ∆T → E such that there exists a

covering {Ik}k of [0, T ] so that g ∈ Cp−var
2 (Ik;E) for all k. We denote by Cp−var([0, T ];E) the set of

all paths g : [0, T ] → E so that δg ∈ Cp−var
2 ([0, T ];E). We note that Cα2 ([0, T ];E) ⊂ Cp−var

2 ([0, T ];E)
provided p = 1/α. Also, if g ∈ Cp−var

2 ([0, T ];E) then

ωq(s, t) := ∥g∥p
Cp−var

2 ([s,t];E)

is a control.
We proceed with a definition of a Hilbert space-valued rough path.

Definition 2.1 Let α ∈ (1/3, 1/2). A continuous E-valued α-rough path is a pair

Y = (Y 1, Y 2) ∈ Cα2 ([0, T ];E)× C2α
2 ([0, T ];E ⊗ E)

which satisfies Chen’s relation

δY 1
srt = 0, δY 2

srt = Y 1
sr ⊗ Y 1

rt, 0 ⩽ s ⩽ r ⩽ t ⩽ T.

The space of continuous E-valued α-rough paths is denoted by Cα([0, T ];E).
For the trace class covariance operator Q as defined above, the Q-Wiener process Q1/2W is given

by the formula Q1/2W =
∑
k∈NQ

1/2ekWk for a sequence (Wk)k∈N of mutually independent real-valued
Wiener processes. Its Stratonovich rough path lift reads as

W 1
st := (δQ1/2W )st =

∑
k∈N

Q1/2ek(δWk)st,

W 2
st :=

∫ t

s

(δQ1/2W )sr ⊗ ◦dQ1/2Wr =
∑
k,ℓ∈N

∫ t

s

(δWk)sr ◦ dWℓ,r(Q
1/2ek ⊗Q1/2eℓ)

and is a continuous Hσ-valued α-rough path, see e.g. Exercise 3.16 in [18]. In particular, the regularity
of the second component follows via Kolmogorov’s continuity criterion (see e.g. Theorem 3.1 in [18])
together with Nelson’s estimate for p ∈ [2,∞) and Itô’s isometry: rewriting the stochastic integral in
Itô’s form gives

W 2
st =

∫ t

s

(δQ1/2W )sr ⊗ dQ1/2Wr +
1

2

∑
k∈N

(t− s)(Q1/2ek ⊗Q1/2ek).

Here the Itô–Stratonovich correction is of finite variation in Hσ ⊗ Hσ by (2.5), whereas for the Itô
stochastic integral it holds by the trace class assumption together with Itô’s isometry

E

[∥∥∥∥∫ t

s

(δQ1/2W )sr ⊗ dQ1/2Wr

∥∥∥∥2
Hσ⊗Hσ

]
= E

[∫ t

s

∥(δQ1/2W )sr ⊗Q1/2 · ∥2L2(H;Hσ⊗Hσ)dr

]
,

where
∥(δQ1/2W )sr ⊗Q1/2 · ∥2L2(H;Hσ⊗Hσ) =

∑
ℓ∈N

∥(δQ1/2W )sr ⊗Q1/2eℓ∥2Hσ⊗Hσ
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= ∥(δQ1/2W )sr∥2Hσ

∑
ℓ∈N

∥Q1/2eℓ∥2Hσ = ∥Q1/2∥4L2(H;Hσ)|(δWk)sr|2,

and therefore by (2.5)

E

[∥∥∥∥∫ t

s

(δQ1/2W )sr ⊗ dQ1/2Wr

∥∥∥∥2
Hσ⊗Hσ

]
≲
∫ t

s

E|(δWk)sr|2dr ≲
∫ t

s

|r − s|dr ≲ |t− s|2.

Accordingly,
(E[∥W 2

st∥
p
Hσ⊗Hσ ])

1/p ≲ (E[∥W 2
st∥2Hσ⊗Hσ ])1/2 ≲ |t− s|.

Unbounded rough drivers can be seen as operator valued rough paths with values in the space of
unbounded operators. In what follows, we work with a scale of Banach spaces (Em, ∥ · ∥m)m∈R+

such
that Em+l is continuously embedded in Em for every m, l ∈ R+. We denote by E−m the topological
dual of Em.

Definition 2.2 Let α ∈ (1/3, 1/2). A continuous unbounded α-rough driver with respect to the scale
(Em, ∥ · ∥m)m∈R+

is a pair A = (A1,A2) of two-index maps such that

∥A1
st∥L(E−m,E−(m+1)) ≲ |t− s|α, m ∈ [0, 2], (2.8)

∥A2
st∥L(E−m,E−(m+2)) ≲ |t− s|2α, m ∈ [0, 1], (2.9)

and Chen’s relation holds true, i.e.

δA1
srt = 0, δA2

srt = A1
rtA1

sr, 0 ⩽ s ⩽ r ⩽ t ⩽ T. (2.10)

The above definition appeared already in a number of works, see e.g. [10], [14], [21], [22]. In our
present setting we let Em = Hm, m ∈ R. In order to control the term leading to the Itô–Stokes drift in
Section 8.1 below, we will make use of the bounds

∥A1,∗
st φ∥L∞ ≲ ∥φ∥H3 |t− s|α, (2.11)

∥A2,∗
st φ∥L∞ ≲ ∥φ∥Hθ0+1 |t− s|2α. (2.12)

By Sobolev imbedding (2.11) follows from (2.8) with m ∈ (3/2, 2] but (2.12) does not follow from (2.9)
and needs to be verified. We also note that it would suffice if (2.11), (2.12) were true with arbitrary
positive exponents on their right hand sides, not necessarily α and 2α, respectively.

3 Rough formulation of the problem

We intend to use rough path theory to formulate the equation (1.5) for uε, to obtain uniform estimates
and to pass to the limit. In order to apply the theory of [10] and [21], we understand the noise term
ε−1/2b(wε, uε)dt as an unbounded rough driver term of the form dAεuε. More precisely, we define yε

via (1.8) so that we obtain formally

ε−1/2b(wε, uε)dt = −P[dyε · ∇uε], (3.1)

where P denotes the Leray projection. We show in Theorem 4.1 below, that the so-defined process
yε, lifted canonically to a rough path, converges to a certain rough path lift of the Brownian motion
B = (−C)−1Q1/2W in the sense of rough paths Cα([0, T ];Hσ). In other words, letting

Y ε,1st := δyεst = δ

(∫ .

0

ε−1/2wεrdr

)
st

, Y ε,2st :=

∫ t

s

δyεsr ⊗ dyεr , 0 ⩽ s, t ⩽ T,

defines a rough path in the sense of Definition 2.1. In particular, under our assumptions on C, Q, it is
an Cα([0, T ];Hσ)-valued rough path.
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As the next step, we shall compose it additionally with the gradient and the Leray projection as
required in (3.1), in order to define the corresponding unbounded rough driver Aε. In order to guess the
form for its second component, we first work formally and iterate the equation (1.5) into itself. Focusing
only on the key terms containing wε, we obtain

δuεst = · · · −
∫ t

s

P[ε−1/2wεr · ∇uεr]dr

= · · · −
∫ t

s

P[ε−1/2wεr · ∇uεs]dr +
∫ t

s

∫ r

s

P[ε−1/2wεr · ∇P[ε−1/2wεθ · ∇uεθ]]dθdr + · · ·

= · · · −
∫ t

s

P[ε−1/2wεr · ∇uεs]dr +
∫ t

s

∫ r

s

P[ε−1/2wεr · ∇P[ε−1/2wεθ · ∇uεs]]dθdr + uε,♮st , (3.2)

where we expect the remainder uε,♮st to be of order o(|t− s|) as a distribution with respect to the spatial
variable. In the first term on the right hand side of (3.2) we recognize the first component of the
unbounded rough driver and we define

Aε,1st φ := −P[Y ε,1st · ∇φ]. (3.3)

To identify the second component of the rough driver from the second term on the right hand side
of (3.2), we first recall that by definition

Y ε,2st =

∫ t

s

δ

(∫ .

0

ε−1/2wεθdθ

)
sr

⊗ d

(∫ .

0

ε−1/2wεθdθ

)
r

=

∫ t

s

∫ r

s

ε−1/2wεθdθ ⊗ ε−1/2wεrdr.

Consequently, we define for φ ∈ C∞(T3)

(Aε,2st φ)(x) := A2(Y ε,2st , φ)(x), (3.4)

where the operator A2 does not depend on ε, is bilinear and acts on (Hσ ⊗Hσ)× C∞(T3) as

A2(f ⊗ g, φ)(x) = P[g(x) · ∇P[f(x) · ∇φ(x)]]. (3.5)

With this definition, the second term on the right hand side of (3.2) equals to Aε,2st uεs.
In addition, using the Chen’s relation for rough paths (which in particular holds true for canonical

lifts given by Lebesgue–Stieltjes integration), namely,

δY ε,2srt = Y ε,1sr ⊗ Y ε,1rt ,

together with the bilinearity of the operator A2, we obtain

δ(Aε,2φ)srt = (δAε,2)srtφ = A2(δY ε,2srt , φ)

= A2(Y ε,1sr ⊗ Y ε,1rt , φ) = P[Y ε,1rt · ∇P[Y ε,1sr · ∇φ]] = Aε,1rt Aε,1sr φ.

Hence (Aε,1,Aε,2) satisfies the Chen’s relation (2.10).
It remains to verify the corresponding analytic estimates (2.8), (2.9) as well as (2.12). For our

application we work with the L2-scale of Sobolev spaces defined in Section 2.1, namely, we let Em := Hm,
m ∈ R. From the continuity of the Leray projection on Hm, m ∈ R, together with the fact that
div Y ε,1st = 0 we obtain for m ∈ [0, 2] and φ ∈ H−m, ∥φ∥H−m ⩽ 1

∥Aε,1st φ∥H−(m+1) = sup
ψ∈Hm+1,∥ψ∥Hm+1⩽1

⟨Y ε,1st · ∇φ,ψ⟩ = sup
ψ∈Hm+1,∥ψ∥Hm+1⩽1

⟨Y ε,1st · ∇ψ,φ⟩

⩽ sup
ψ∈Hm+1,∥ψ∥Hm+1⩽1

∥Y ε,1st · ∇ψ∥Hm ⩽ ∥Y ε,1st ∥Wm,∞ ≲ ∥Y ε,1st ∥Hσ ,
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provided Hσ ⊂Wm,∞.
Similarly, we use div yεs = divψ = 0 and integration by parts to obtain

⟨Aε,2st φ,ψ⟩ =
〈∫ t

s

dyεr · ∇P[δyεsr · ∇φ], ψ
〉

=

〈
φ,

∫ t

s

δyεsr · ∇P[dyεr · ∇ψ]
〉

Accordingly, it holds for m ∈ [0, 1] and φ ∈ H−m, ∥φ∥H−m ⩽ 1

∥Aε,2st φ∥H−(m+2) = sup
ψ∈Hm+2,∥ψ∥Hm+2⩽1

〈
φ,

∫ t

s

δyεsr · ∇P[dyεr · ∇ψ]
〉

⩽ sup
ψ∈Hm+2,∥ψ∥Hm+2⩽1

∥∥∥∥∫ t

s

δyεsr · ∇P[dyεr · ∇ψ]
∥∥∥∥
Hm

⩽ ∥Y ε,2st ∥Hσ⊗Hσ ,

provided Hσ ⊂Wm+1,∞.
To summarize, for (2.8) and (2.9) we require σ to be such that by Sobolev embedding Hσ ⊂W 2,∞,

that is, σ > 2 + 3/2. Regarding (2.12), we use the embeddings Hθ0+1 ⊂W 2,∞, Hσ ⊂W 1,∞ to obtain

∥Aε,2,∗st φ∥L∞ =

∥∥∥∥∫ t

s

δyεsr · ∇P[dyεr · ∇φ]
∥∥∥∥
L∞

≲ ∥φ∥Hθ0+1∥Y 2,ε
st ∥Hσ⊗Hσ .

It will be seen in Theorem 4.1 below that the desired bounds and even convergence of (Y ε,1, Y ε,2) as
an Hσ-valued rough path in the sense of Definition 2.1 hold true.

Finally, in order to complete the derivation of the rough path formulation of (1.5), we denote the
remaining drift part in (1.5) of finite variation as

µεt := µε,1t + µε,2t :=

∫ t

0

[Auεs + b(uεs, u
ε
s)]ds+

∫ t

0

b(rεs, u
ε
s)ds. (3.6)

Consequently, (1.5) rewrites as

δuεst = δµεst + Aε,1st uεs + Aε,2st uεs + uε,♮st , (3.7)

where δfst = ft − fs and the equation is understood in the sense of distributions with a remainder uε,♮st
of order o(|t− s|). More precisely, we have the following definition.

Definition 3.1 Let ε ∈ (0, 1).We say that ((Ωε,Fε, (Fε
t )t⩾0,P

ε), uε, rε,W ε) is a probabilistically weak
rough path solution to (1.5), (1.6), (1.7) provided

1. (Ωε,Fε, (Fε
t )t⩾0,P

ε) is a stochastic basis with a complete right-continuous filtration;

2. W ε is a cylindrical (Fε
t )t⩾0-Wiener process on H;

3. rε ∈ L2(0, T ;Hγ) P ε-a.s. is (Fε
t )t⩾0-adapted and (1.7) holds true in the analytically weak sense

P ε-a.s.;

4. uε ∈ Cweak(0, T ;H) ∩ L2(0, T ;H1) P ε-a.s. is (Fε
t )t⩾0-adapted;

5. Aε = (Aε,1,Aε,2) defined via (3.3) and (3.4) is an unbounded α-rough driver on (Hm)m∈R in the
sense of Definition 2.2 and satisfying (2.12);

6. the remainder given P ε-a.s. by

uε,♮st := δuεst − δµεst − Aε,1st uεs − Aε,2st uεs, 0 ⩽ s ⩽ t ⩽ T,

belongs to C
p/3−var
2,loc ([0, T ];H−3) P ε-a.s. with p = 1/α, where the drift µε was defined in (3.6).

The above definition is designed with the aim of the passage to the limit ε → 0. In particular, we
did not make use of any regularity claims which cannot be proved uniformly in ε.
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4 Detailed presentation of main results

The key to our strategy lies in the following convergence result, which consequently also implies the
convergence of the unbounded rough drivers Aε = (Aε,1,Aε,2) in an appropriate sense. The proof can
be found in Section 6.

Theorem 4.1 Let yε be given by (1.8). Then the canonical rough path lift (Y ε,1, Y ε,2) of yε given by

(Y ε,1, Y ε,2) :=

(
δyεst,

∫ t

s

δyεsr ⊗ dyεr

)
s,t∈[0,T ]

converges as ε → 0 to a rough path lift (B1, B2) of the Brownian motion B = (−C)−1Q1/2W . The
convergence holds true in Lq(Ω; Cα([0, T ];Hσ)) for all α ∈ (1/3, 1/2) and q ∈ [1,∞). The second
component B2 is given in terms of Itô’s stochastic integration as

B2
st :=

∫ t

s

δBsr ⊗ dBr + (t− s)

∫
w ⊗ (−C)−1wdµ(w), (4.1)

with µ being the unique invariant measure of (1.6). Alternatively, B2 is given in terms of Stratonovich’s
stochastic integration as

B2
st =

∫ t

s

δBsr ⊗ ◦dBr + (t− s)M, (4.2)

where for all k, ℓ ∈ N

⟨M, ek ⊗ eℓ⟩ =
〈
1

2
[(−C)−1Q∞ −Q∞((−C)−1)∗]ek, eℓ

〉
and

Q∞ :=

∫ ∞

0

eCtQ(eCt)∗dt. (4.3)

In other words, M is antisymmetric and (B1, B2) is a geometric rough path.
Furthermore, with the convention (Y 0,1, Y 0,2) := (B1, B2), the mapping

[0, 1] → Cα([0, T ];Hσ), ε 7→ (Y ε,1, Y ε,2)

is Hölder continuous P -a.s. and for all q ∈ [1,∞)

E

[
sup

ε∈(0,1)

∥Y ε,1∥qCα
2 ([0,T ];Hσ)

]
+ E

[
sup

ε∈(0,1)

∥Y ε,2∥q
C2α

2 ([0,T ];Hσ⊗Hσ)

]
≲ 1. (4.4)

In particular, the convergence (Y ε,1, Y ε,2) → (B1, B2) as ε→ 0 holds true in Cα([0, T ];Hσ) P -a.s.

Remark 4.2 Note that M is antisymmetric so the limit (B1, B2) is indeed a geometric rough path, as
it was expected anyway since it is a limit of canonical lifts of smooth paths.

Moreover, if C and Q commute and C is symmetric then Q∞ = 1
2 (−C)

−1Q and M = 0. Hence, we
recover the result of [9] obtained by a completely different method.

Finally, if Q is an identity on Rd and −C is a d × d matrix so that all its eigenvalues have strictly
positive real part, we recover the result of Theorem 3.8 [18]. Our result is in fact stronger since we
prove that the convergence holds almost surely and we have the uniform bound (4.4), whereas in [18]
the supremum with respect to ε is outside the expectation. In [18], the non-triviality of M (in our
notation) originated in the non-symmetry of C. However, our result shows that M can be nontrivial
even for symmetric C provided C does not commute with Q.
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Based on Theorem 4.1, we are able to identify the limit of the rough path formulation of (1.5),
namely (3.7), as the corresponding rough path formulation of (1.9). As the next step, we define the
notion of probabilistically weak rough path solution to (1.9) analogously to Definition 3.1. To this end,
we define the limit unbounded rough driver A = (A1,A2) as in (3.3), (3.4) but using the limit rough
path (B1, B2) from Theorem 4.1 instead of (Y ε,1, Y ε,2). More precisely, we let

A1
stφ := −P[B1

st · ∇φ], A2
stφ := A2(B2

st, φ), (4.5)

where A2 was defined in (3.5). The limit drift is given analogously to (3.6) as

µt :=

∫ t

0

[Aus + b(us, us)]ds+

∫ t

0

b (r, us) ds, (4.6)

with the Itô–Stokes velocity r̄ defined in (1.10).

Definition 4.3 We say that ((Ω,F , (Ft)t⩾0,P ), u,B) is a probabilistically weak rough path solution to
(1.9) provided

1. (Ω,F , (Ft)t⩾0,P ) is a stochastic basis with a complete right-continuous filtration;

2. B is an (Ft)t⩾0-Wiener process on H with covariance (−C)−1Q((−C)−1)∗;

3. u ∈ Cweak(0, T ;H) ∩ L2(0, T ;H1) P -a.s. is (Ft)t⩾0-adapted;

4. the remainder given by

u♮st := δust − δµst − A1
stus − A2

stus, 0 ⩽ s ⩽ t ⩽ T,

belongs to C
p/3−var
2,loc ([0, T ];H−3) P -a.s. with p = 1/α. Here, the drift µ was defined in (4.6)

whereas the unbounded rough driver A = (A1,A2) in (4.5).

Our main result reads as follows, the proof spreads over Section 6, Section 7 and Section 8.

Theorem 4.4 Let the initial values (uε0)ε∈(0,1) and (vε0)ε∈(0,1) be given so that both (uε0)ε∈(0,1) and

(ε1/2vε0)ε∈(0,1) are bounded in H uniformly in ε. There exists a family ((Ωε,Fε, (Fε
t )t⩾0,P

ε), uε, rε,W ε),
ε ∈ (0, 1), of probabilistically weak rough path solutions to (1.5), (1.6), (1.7), such that

∥uε∥L∞
T H + ∥uε∥L2

TH
1 ≲ 1 P ε-a.s. and Eε[∥rε∥2L2

TH
γ ] ≲ 1 (4.7)

with implicit constants independent of ε.
For every such family of probabilistically weak rough path solutions there exists a subsequence, still

denoted by ε→ 0, such that (uε, (−C)−1Q1/2W ε) converges in law to a probabilistically weak rough path
solution to (1.9).

In view of the above discussion, the existence of a probabilistically weak rough path solution to
(1.5), (1.6), (1.7) for every ε ∈ (0, 1) can be proved by classical arguments via Galerkin approximation
together with the stochastic compactness method. We omit the details of the construction but we derive
the uniform estimate (4.7) in Section 7.1 and Section 7.3.

Remark 4.5 Furthermore, we note that by Skorokhod representation theorem, for every family

((Ωε,Fε, (Fε
t )t⩾0,P

ε), uε, rε,W ε), ε ∈ (0, 1),

of probabilistically weak rough path solutions to (1.5), (1.6), (1.7), there exists a sequence ε → 0 and
a family ((Ω̄, F̄ , (F̄ε

t )t⩾0,P ), ūε, r̄ε, W̄ ε) of probabilistically weak rough path solutions such that the
laws of (uε, rε,W ε) and (ūε, r̄ε, W̄ ε) coincide. Thus, without loss of generality, we assume from now on
that the approximate solutions (uε, rε,W ε) in Theorem 4.4 are defined on a common probability space
(Ω,F ,P ).
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5 Ergodicity of the Ornstein–Uhlenbeck process

In Section 6 as well as in Section 7.4, we will need a suitable ergodic theorem in order to deduce the
convergence of the second component of the rough path Y ε,2 and the convergence towards the Itô–Stokes
velocity r̄ given by (1.10). More precisely, letting w̃t = wεεt both problems reduce to the convergence of
the ergodic average

lim
t→∞

1

t

∫ t

0

F (w̃s)ds =

∫
F (w)dµ(w),

where µ is the (unique) invariant measure for w̃ and F is a certain quadratic function. We observe that
w̃ solves

dw̃ = Cw̃dt+Q1/2dW̃ (5.1)

with some cylindrical Wiener process W̃ . As a matter of fact, since in view of Remark 4.5, wε actually
satisfies (1.6) with a Wiener process W ε, the rescaling W̃ also depends on ε. However, this dependence
is irrelevant for the sequel and we drop it for notational simplicity, as we only use the law of W̃ in our
arguments.

We denote by w̃(w) the unique solution to (5.1) with the initial condition w ∈ H. It is Gaussian
and if w ∈ Hσ then in view of (2.1) and (2.5) it satisfies the global-in-time estimate

sup
t∈[0,∞)

E[∥w̃t(w)∥2Hσ ] ≲ ∥w∥2Hσ +

∫ ∞

0

∥(−∆)σ/2eCtQ1/2∥2L2(H)dt <∞. (5.2)

This can be obtained directly from the mild formulation. Moreover, (5.1) generates a Markov process
with the unique invariant measure µ = N (0, Q∞) with Q∞ defined in (4.3), see e.g. Theorem 11.17,
Theorem 11.20 [8].

The desired ergodic theorem needed for Section 6 reads as follows.

Proposition 5.1 Let F : Hσ → Hσ ⊗ Hσ be quadratic in the sense that F (w) = a1(w) ⊗ a2(w) for
some bounded linear operators a1, a2 : Hσ → Hσ ⊗ Hσ. Let w̃ be a solution to (5.1) with an initial
condition w̃0 ∈ Hσ. Then for all t ∈ [0,∞)∥∥∥∥E[F (w̃t)]− ∫ F (w)dµ(w)

∥∥∥∥
Hσ⊗Hσ

≲ e−ιt(1 + ∥w̃0∥2Hσ ), t ⩾ 0, (5.3)

where ι is the parameter from assumption (2.1), and

E

[∥∥∥∥1t
∫ t

0

F (w̃s)ds−
∫
F (w)dµ(w)

∥∥∥∥2
Hσ⊗Hσ

]
≲

1

t
(1 + ∥w̃0∥4Hσ ). (5.4)

Proof Let (fk)k∈N be an orthonormal basis of Hσ. Recall that w̃ is Markov and denote its Markov
semigroup by (Pt)t⩾0. It acts generally on a function

Hσ → Hσ ⊗Hσ, w 7→ φ(w) =
∑
k,ℓ∈N

⟨φ(w), fk ⊗ fℓ⟩Hσ⊗Hσfk ⊗ fℓ

component-wise as

(Ptφ)(w) := E[φ(w̃t(w))] =
∑
k,ℓ∈N

E[⟨φ(w̃t(w)), fk ⊗ fℓ⟩Hσ⊗Hσ ]fk ⊗ fℓ,

where w̃t(w) denotes the solution to (5.1) with the initial condition w ∈ Hσ. In order to prove (5.3) we
now write

E[F (w̃t)]−
∫
F (w)dµ(w) = E[F (w̃t)]−

∫
(PtF )(w)dµ(w) =

∫
E[F (w̃t)− F (w̃t(w))]dµ(w)
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=

∫
E[a1(w̃t)⊗ a2(w̃t − w̃t(w)) + a1(w̃t − w̃t(w))⊗ a2(w̃t(w))]dµ(w)

and using the fact that w̃t − w̃t(w) = eCt(w̃0 − w) we further obtain

= e−ιt
∫

E[a1(w̃t)⊗ a2(e
ιteCt(w̃0 − w)) + a1(e

ιteCt(w̃0 − w))⊗ a2(w̃t(w))]dµ(w).

Since the above integral is controlled by the assumption on a1, a2, (2.1) and the integrability of the
invariant measure µ as∥∥∥∥∫ E

[
a1(w̃t)⊗ a2(e

ιteCt(w̃0 − w)) + a1(e
ιteCt(w̃0 − w))⊗ a2(w̃t(w))

]
dµ(w)

∥∥∥∥
Hσ⊗Hσ

≲
∫

E[∥w̃t∥Hσ∥w̃0 − w∥Hσ + ∥w̃0 − w∥Hσ∥w̃t(w)∥Hσ ]dµ(w) ≲ (1 + ∥w̃0∥2Hσ ),

(5.3) follows.
For (5.4), we first define F̄ :=

∫
F (w)dµ(w) and write

E

[∥∥∥∥1t
∫ t

0

F (w̃s)ds− F̄

∥∥∥∥2
Hσ⊗Hσ

]
=

2

t2

∫ t

0

∫ t

r

E[⟨F (w̃s)− F̄ , F (w̃r)− F̄ ⟩Hσ⊗Hσ ]dsdr.

Since r ⩽ s, it holds by the Markov property

E[⟨F (w̃s)− F̄ , F (w̃r)− F̄ ⟩Hσ⊗Hσ ] = E[⟨F (w̃r)− F̄ ,E[F (w̃s)− F̄ |Fr]⟩Hσ⊗Hσ ]

= E[⟨F (w̃r)− F̄ , (Ps−r(F (·)− F̄ ))(w̃r)⟩Hσ⊗Hσ ]

⩽ (E[∥F (w̃r)− F̄∥2Hσ⊗Hσ ])1/2(E[∥(Ps−r(F (·)− F̄ ))(w̃r)∥2Hσ⊗Hσ ])1/2.

By assumption on F and (5.2) we have

sup
r∈[0,∞)

E[∥F (w̃r)− F̄∥2Hσ⊗Hσ ] ≲ 1 + E[∥w̃r∥4Hσ ] ≲ 1 + ∥w̃0∥4Hσ ,

whereas by (5.3) and (5.2) we obtain

E[∥(Ps−r(F (·)− F̄ ))(w̃r)∥2Hσ⊗Hσ ] ≲ e−2ι(s−r)(1 + E[∥w̃r∥2Hm ])2 ≲ e−2ι(s−r)(1 + ∥w̃0∥4Hσ ).

Therefore,

E

[∥∥∥∥1t
∫ t

0

F (w̃s)ds− F̄

∥∥∥∥2
Hσ⊗Hσ

]
≲

1

t2

∫ t

0

∫ t

r

e−ι(s−r)dsdr(1 + ∥w̃0∥4Hσ ) ≲
1

t
(1 + ∥w̃0∥4Hσ )

which completes the proof. 2

The same proof applies to other quadratic functions F . For instance, in Section 7.4 we make use the
following variant.

Corollary 5.2 Let F : Hσ → H be quadratic in the sense that there exists a bounded bilinear operators
a : Hσ × Hσ → H such that F (w) = a(w,w). Let w̃ be a solution to (5.1) with an initial condition
w̃0 ∈ Hσ. Then for all t ∈ [0,∞)

E

[∥∥∥∥1t
∫ t

0

F (w̃s)ds−
∫
F (w)dµ(w)

∥∥∥∥2
H

]
≲

1

t
(1 + ∥w̃0∥4Hσ ).

15



6 Convergence of the rough driver

The goal of this section is to prove Theorem 4.1.
Proof We intend to apply the Kolmogorov criterion for rough path distance, Theorem 3.3 in [18], to
deduce that for all q ∈ [2,∞), θ ∈ (2/3, 1] and β ∈ (1/3, θ/2)

(E[∥Y ε,1 −B1∥q
Cβ

2 ([0,T ];Hσ)
])1/q + (E[∥Y ε,2 −B2∥q

C2β
2 ([0,T ];Hσ⊗Hσ)

])1/q ≲ ε(1−θ)/2. (6.1)

This then readily implies the first statement of the theorem. First, we observe that the processes
wε, yε, B are jointly Gaussian as being linear combinations ofW . Accordingly, Y ε,1−B1 and Y ε,2−B2,
respectively, live in the Wiener chaos of order 1 and 2, respectively. Hence all the Lq(Ω)-norms are
equivalent and by Theorem 3.3 in [18] it is enough to prove for all θ ∈ [0, 1]

E[∥Y ε,1st −B1
st∥2Hσ ] ≲ ε1−θ|t− s|θ, E[∥Y ε,2st −B2

st∥2Hσ⊗Hσ ] ≲ ε1−θ|t− s|2θ. (6.2)

Step 1: Regarding the first bound in (6.2), we note that according to (2.3) and (2.5) B is an
Hσ-valued Wiener process and in view of (1.6) and (1.8) it holds for t ∈ [0, T ]

yεt = Bt − ε1/2(−C)−1wεt . (6.3)

Consequently, by (2.3) and (5.2) it holds for all t ∈ [0, T ] (using again the notation w̃t = wεεt)

E[∥yεt −Bt∥2Hσ ] = εE[∥(−C)−1wεt ∥2Hσ ] = εE[∥(−C)−1w̃ε−1t∥2Hσ ] ≲ ε. (6.4)

This proves the first bound in (6.2) for θ = 0. On the other hand, aiming for the first bound in (6.2)
with θ = 1, we write

E[∥δyεst − δBst∥2Hσ ] = εE[∥(−C)−1δwεst∥2Hσ ] = εE[∥(−C)−1δw̃ε−1s,ε−1t∥2Hσ ] (6.5)

and observe that

δw̃st = (eCt − eCs)w̃0 + (eC(t−s) − Id)

∫ s

0

eC(s−r)Q1/2dW̃r +

∫ t

s

eC(t−r)Q1/2dW̃r

= (eC(t−s) − Id)w̃s +

∫ t

s

eC(t−r)Q1/2dW̃r,

which implies by (2.3)

E[∥(−C)−1δw̃st∥2Hσ ] ≲ E[∥(−C)−1(eC(t−s) − Id)w̃s∥2Hσ ] + E

[∥∥∥∥∫ t

s

eC(t−r)Q1/2dW̃r

∥∥∥∥2
Hσ

]
.

Here the second term is bounded using (2.5) as

E

[∥∥∥∥∫ t

s

eC(t−r)Q1/2dW̃r

∥∥∥∥2
Hσ

]
= E

∫ t

s

∥(−∆)σ/2eC(t−r)Q1/2∥2L2(H)dr ≲ |t− s|.

For the first one, we use (2.2) and (5.2) to get

E[∥(−C)−1(eC(t−s) − Id)w̃s∥2Hσ ] ≲ |t− s|E
[
∥w̃s∥2Hσ

]
≲ |t− s|.

Plugging this into (6.5) yields
E[∥δyεst − δBst∥2Hσ ] ≲ |t− s|. (6.6)

In other words, the first bound in (6.2) holds with θ = 1. Finally, let θ ∈ [0, 1] be arbitrary. Then by
interpolation, (6.4) and (6.6) imply

E[∥Y ε,1st −B1
st∥2Hσ ] ⩽ (E[∥δyεst − δBst∥2Hσ ])1−θ(E[∥δyεst − δBst∥2Hσ ])θ ≲ ε1−θ|t− s|θ
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and the first bound in (6.2) is verified.
As in Theorem 3.3 in [18], this readily implies

(E[∥Y ε,1 −B1∥q
Cβ

2 ([0,T ];Hσ)
])1/q ≲ ε(1−θ)/2

and in particular also proves the convergence of Y ε,1 → B1 in Lq(Ω;Cβ2 ([0, T ];H
σ)).

Step 2: To establish the second bound in (6.2) we proceed similarly as in Step 1. Towards the
interpolation argument, we first show the bound for θ = 1, afterwards for θ = 0.

Step 2.1: For θ = 1, we recall that B2 is a rough path lift of B defined in (4.1). Here the martingale
part is given by Itô’s iterated integral, which is well-defined in Hσ ⊗ Hσ due to (2.3) and (2.5), the
finite variation part is controlled due to the properties of the invariant measure µ. Therefore

E[∥B2
st∥2Hσ⊗Hσ ] ≲ |t− s|2.

Hence, we shall prove
E[∥Y ε,2st ∥2Hσ⊗Hσ ] ≲ |t− s|2. (6.7)

To this end, we apply (6.3) to get

Y ε,2st =

∫ t

s

δyεsr ⊗ dyεr =

∫ t

s

δyεsr ⊗ dBr − ε1/2
∫ t

s

δyεsr ⊗ (−C)−1dwεr .

Integrating by parts in the second term yields

ε1/2
∫ t

s

δyεsr ⊗ (−C)−1dwεr = ε1/2
∫ t

s

yεr ⊗ (−C)−1dwεr − ε1/2yεs ⊗ (−C)−1δwεst

= −ε1/2
∫ t

s

dyεr ⊗ (−C)−1wεr + ε1/2[yεr ⊗ (−C)−1wεr ]
r=t
r=s − ε1/2yεs ⊗ (−C)−1δwεst

= −ε1/2
∫ t

s

dyεr ⊗ (−C)−1wεr + ε1/2yεt ⊗ (−C)−1wεt − ε1/2yεs ⊗ (−C)−1wεt

= −ε1/2
∫ t

s

dyεr ⊗ (−C)−1wεr + ε1/2δyεst ⊗ (−C)−1wεt

= −
∫ t

s

wεr ⊗ (−C)−1wεrdr +

∫ t

s

wεrdr ⊗ (−C)−1wεt .

We estimate each term separately. The first term is controlled by Itô’s isometry as

E

[∥∥∥∥∫ t

s

δyεsr ⊗ dBr

∥∥∥∥2
Hσ⊗Hσ

]
= E

[∥∥∥∥∫ t

s

δyεsr ⊗ (−C)−1Q1/2dWr

∥∥∥∥2
Hσ⊗Hσ

]

= E
[∫ t

s

∥δyεsr ⊗ (−C)−1Q1/2 · ∥2L2(H,Hσ⊗Hσ)dr

]
,

where
∥δyεsr ⊗ (−C)−1Q1/2 · ∥2L2(H,Hσ⊗Hσ) =

∑
k∈N

∥δyεsr ⊗ (−C)−1Q1/2gk∥2Hσ⊗Hσ

= ∥δyεsr∥2Hσ

∑
k∈N

∥(−C)−1Q1/2ek∥2Hσ = ∥δyεsr∥2Hσ∥(−C)−1Q1/2∥2L2(H;Hσ).

Hence by (2.3) and (2.5) we deduce

E

[∥∥∥∥∫ t

s

δyεsr ⊗ dBr

∥∥∥∥2
Hσ⊗Hσ

]
≲ E

[∫ t

s

∥δyεsr∥2Hσdr

]
≲
∫ t

s

(r − s)dr ≲ |t− s|2,

17



where we used the estimate for the first component proved in Step 1 in the second to last inequality.
For the second term, we use (2.3) together with (5.2) to obtain

E

[∥∥∥∥∫ t

s

wεr ⊗ (−C)−1wεrdr

∥∥∥∥2
Hσ⊗Hσ

]
⩽ |t− s|

∫ t

s

E[∥wεr∥4Hσ ]dr ≲ |t− s|2.

Finally, by the same assumptions we bound the last term as

E

[∥∥∥∥∫ t

s

wεrdr ⊗ (−C)−1wεt

∥∥∥∥2
Hσ⊗Hσ

]
≲ |t− s|

∫ t

s

E[∥wεr∥2Hσ∥wεt ∥2Hσ ]dr ≲ |t− s|2.

This completes the proof of (6.7) and consequently the second bound (6.2) with θ = 1 follows.
Step 2.2: We aim at proving the second bound in (6.2) with θ = 0. Proceeding as in the analogous

part of Step 1, we want a rate of convergence of the form

sup
s,t∈[0,T ]

E[∥Y ε,2st −B2
st∥2Hσ⊗Hσ ] ≲ ε. (6.8)

To this end, it is enough to prove for all t ∈ [0, T ]

E[∥Y ε,20t −B2
0t∥2Hσ⊗Hσ ] ≲ ε. (6.9)

Indeed, by Chen’s relation for 0 ⩽ r ⩽ t

δ(Y ε,2 −B2)0rt = (Y ε,20t −B2
0t)− (Y ε,20r −B2

0r)− (Y ε,2rt −B2
rt) = Y ε,10r ⊗ Y ε,1rt −B1

0r ⊗B1
rt

= (Y ε,10r −B1
0r)⊗ Y ε,1rt +B1

0r ⊗ (Y ε,1rt −B1
rt),

meaning, if we already know the bound (6.9) for all t we may combine it with (6.4) to get (6.8).
Let us fix t ∈ [0, T ] and prove (6.9). We recall that by (6.3) it holds

Y ε,20t =

∫ t

0

yεs ⊗ dyεs =

∫ t

0

yεs ⊗ dBs − ε1/2
∫ t

0

yεs ⊗ (−C)−1dwεs.

Integrating by parts yields

Y ε,20t =

∫ t

0

yεs ⊗ dBs − ε1/2yεt ⊗ (−C)−1wεt + ε1/2
∫ t

0

dyεs ⊗ (−C)−1wεs

=

∫ t

0

yεs ⊗ dBs − ε1/2yεt ⊗ (−C)−1wεt +

∫ t

0

wεs ⊗ (−C)−1wεsds. (6.10)

In order to treat the last term, we apply the ergodic theorem from Proposition 5.1. It shall converge to
the finite variation term in the Itô expression of B2, i.e. (4.1). Namely, we need to bound

E

[∥∥∥∥∫ t

0

wεs ⊗ (−C)−1wεsds− t

∫
w ⊗ (−C)−1wdµ(w)

∥∥∥∥2
Hσ⊗Hσ

]
,

which by the change of variables r = ε−1s, dr = ε−1ds, wεs = w̃ε−1s and Proposition 5.1 rewrites as

= E

∥∥∥∥∥ε
∫ ε−1t

0

w̃r ⊗ (−C)−1w̃rdr − t

∫
w ⊗ (−C)−1wdµ(w)

∥∥∥∥∥
2

Hσ⊗Hσ



= tE

∥∥∥∥∥ 1

ε−1t

∫ ε−1t

0

w̃r ⊗ (−C)−1w̃rdr −
∫
w ⊗ (−C)−1wdµ(w)

∥∥∥∥∥
2

Hσ⊗Hσ

 ≲ ε.
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For the convergence of the stochastic integral in (6.10), we have by Itô’s isometry, (2.5) and (6.4)

E

[∥∥∥∥∫ t

0

yεs ⊗ dBs −
∫ t

0

Bs ⊗ dBs

∥∥∥∥2
Hσ⊗Hσ

]
≲ E

[∫ t

0

∥yεs −Bs∥2Hσds

]
≲ ε.

The remaining term in (6.10) is controlled as follows

E[∥ε1/2yεt ⊗ (−C)−1wεt ∥2Hσ⊗Hσ ] = εE[∥yεt ∥2Hσ∥(−C)−1wεt ∥2Hσ ]

⩽ ε(E[∥yεt ∥4Hσ ])1/2(E[∥wεt ∥4Hσ ])1/2 ≲ ε,

where we used Gaussianity and (6.4) to get

E[∥yεt ∥4Hσ ] ≲ E[∥yεt −Bt∥4Hσ ] + E[∥Bt∥4Hσ ] ≲ 1.

This completes the proof of (6.9) where B2 is given by the Itô formulation (4.1). It also completes
the proof of the second bound in (6.2) for θ = 0. Interpolating with the bound for θ = 1, the general
version of (6.2) follows.

Step 2.3: Now, it remains to verify the Stratonovich formulation (4.2). Rewriting Itô’s stochastic
integral into Stratonovich’s form we obtain

B2
0t =

∫ t

0

Bs ⊗ ◦dBs −
t

2

∑
m∈N

(−C)−1Q1/2em ⊗ (−C)−1Q1/2em + t

∫
w ⊗ (−C)−1wdµ(w). (6.11)

We intend to prove that the symmetric part of the very last term precisely cancels with the Itô–
Stratonovich corrector, i.e. the second term in (6.11). To this end, we first observe that the Itô–
Stratonovich corrector projected at ek ⊗ eℓ reads as

− t

2

〈∑
m∈N

(−C)−1Q1/2em ⊗ (−C)−1Q1/2em, ek ⊗ eℓ

〉

= − t

2

∑
m∈N

⟨(−C)−1Q1/2em, ek⟩⟨(−C)−1Q1/2em, eℓ⟩

= − t

2
⟨Q1/2((−C)−1)∗ek, Q

1/2((−C)−1)∗eℓ⟩ = − t

2
⟨(−C)−1Q((−C)−1)∗ek, eℓ⟩.

We perform the same projection to the last term in (6.11). Since µ = N (0, Q∞) with Q∞ given in (4.3)
and since it holds for any g, h ∈ H

⟨Q∞g, h⟩ =
∫

⟨g, w⟩⟨h,w⟩dµ(w),

we obtain

t

〈∫
w ⊗ (−C)−1wdµ(w), ek ⊗ eℓ

〉
= t

∫
⟨w, ek⟩⟨w, ((−C)−1)∗eℓ⟩dµ(w)

= t⟨Q∞ek, ((−C)−1)∗eℓ⟩ = t⟨(−C)−1Q∞ek, eℓ⟩.

By integration by parts we obtain

(−C)−1Q∞ =

∫ ∞

0

(−C)−1eCtQeC
∗tdt

= [(−C)−1eCtQeC
∗t((−C)−1)∗]t=∞

t=0 −
∫ ∞

0

eCtQeC
∗t((−C)−1)∗dt

= (−C)−1Q((−C)−1)∗ −Q∞((−C)−1)∗
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hence the symmetric part reads as

Sym((−C)−1Q∞) =
1

2
[(−C)−1Q∞ +Q∞((−C)−1)∗] =

1

2
(−C)−1Q((−C)−1)∗,

which cancels the Itô–Stratonovich corrector, as claimed. As a consequence, we deduce that

B2
0t =

∫ t

0

Bs ⊗ ◦dBs + tM,

where M is antisymmetric and given by

⟨M, ek ⊗ eℓ⟩ = ⟨Ant((−C)−1Q∞)ek, eℓ⟩ =
〈
1

2
[(−C)−1Q∞ −Q∞((−C)−1)∗]ek, eℓ

〉
or alternatively

⟨M, ek ⊗ eℓ⟩ = ⟨(−C)−1Q∞ek, eℓ⟩ −
〈
1

2
(−C)−1Q((−C)−1)∗ek, eℓ

〉
.

By using Chen’s relation again to derive a formula for B2
st for general s, t ∈ [0, T ], (4.2) follows.

Step 3: Finally, we shall prove the Hölder continuity of the mapping ε 7→ (Y ε,1, Y ε,2) and the
pathwise uniform bound (4.4).

Step 3.1: First component of the rough path. For 0 < ε < η ⩽ 1 we have

wε(t)− wη(t) = (ε−1/2 − η−1/2)

∫ t

0

eε
−1C(t−s)Q1/2dWs

+η−1/2

∫ t

0

(eε
−1C(t−s) − eη

−1C(t−s))Q1/2dWs =: I1 + I2.

Using (2.1) and (2.5) we obtain

E[∥I1∥2Hσ ] = (ε−1/2 − η−1/2)2
∫ t

0

∥eε
−1C(t−s)Q1/2∥2L2(H;Hσ)ds

≲ ε−3|ε− η|2
∫ t

0

e−2ε−1ι(t−s)ds ≲ ε−2|ε− η|2,

and by (2.7), (2.1) and (2.6)

E[∥I2∥2Hσ ] ≲ η−1

∫ t

0

∥(eε
−1C(t−s) − eη

−1C(t−s))Q1/2∥2L2(H;Hσ)ds

⩽ η−1

∫ t

0

∥(−C)−ϑ(e(ε
−1−η−1)C(t−s) − Id)∥2L(Hσ;Hσ)∥e

η−1C(t−s)∥2L(Hσ ;Hσ)∥(−C)
ϑQ1/2∥2L2(H;Hσ)ds

≲ η−1|ε−1 − η−1|ϑ
∫ t

0

|t− s|ϑe−2ιη−1(t−s)ds ≲ ε−2ϑ|ε− η|ϑ.

We deduce
E[∥wε(t)− wη(t)∥2Hσ ] ≲ ε−2|ε− η|ϑ. (6.12)

We proceed with an estimate for Y ε,1 − Y η,1. It holds

Y ε,1st − Y η,1st = (ε−1/2 − η−1/2)

∫ t

s

wεrdr + η−1/2

∫ t

s

(wεr − wηr )dr
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hence in view of (6.12)

E[∥Y ε,1st − Y η,1st ∥2Hσ ] ≲ (ε−1/2 − η−1/2)2E

[(∫ t

s

∥wεr∥Hσdr

)2
]
+ η−1E

[(∫ t

s

∥wεr − wηr∥Hσdr

)2
]

≲ ε−3|ε− η|2|t− s|2 + η−1ε−2|ε− η|ϑ|t− s|2

≲ ε−3|ε− η|ϑ|t− s|2.

By Gaussianity and Kolmogorov’s criterion, this leads to

(E[∥Y ε,1 − Y η,1∥q
Cβ

2 ([0,T ];Hσ)
])1/q ≲ ε−3/2|ε− η|ϑ/2 (6.13)

with β as in (6.1). Define Y 0,1 := B1 so that the first bound in (6.1) reads as

(E[∥Y ε,1 − Y 0,1∥q
Cβ

2 ([0,T ];Hσ)
])1/q ≲ ε(1−θ)/2,

where θ ∈ (2/3, 1]. This implies the folowing.
First case: if 2ε < η then η < 2|ε− η| and therefore

(E[∥Y ε,1 − Y η,1∥q
Cβ

2 ([0,T ];Hσ)
])1/q ⩽ (E[∥Y ε,1 − Y 0,1∥q

Cβ
2 ([0,T ];Hσ)

])1/q

+(E[∥Y η,1 − Y 0,1∥q
Cβ

2 ([0,T ];Hσ)
])1/q ≲ η(1−θ)/2 ≲ |ε− η|(1−θ)/2.

Second case: if ε < η < 2ε and ε ⩽ |ε− η|γ0 for some γ0 to be chosen, then

(E[∥Y ε,1 − Y η,1∥q
Cβ

2 ([0,T ];Hσ)
])1/q ≲ ε(1−θ)/2 ≲ |ε− η|γ0(1−θ)/2.

Third case: if ε < η < 2ε and ε > |ε− η|γ0 then by (6.13)

(E[∥Y ε,1 − Y η,1∥q
Cβ

2 ([0,T ];Hσ)
])1/q ≲ ε−3/2|ε− η|ϑ/2 ≲ |ε− η|ϑ/2−3γ0/2 ≲ |ε− η|ϑ/4

provided γ0 = ϑ/6.
It follows that there exists κ1 > 0 so that for every ε, η ∈ [0, 1]

(E[∥Y ε,1 − Y η,1∥q
Cβ

2 ([0,T ];Hσ)
])1/q ≲ |ε− η|κ1 .

By Kolmogorov’s criterion we finally deduce the Hölder continuity of the mapping

[0, 1] → Cβ2 ([0, T ];H
σ), ε 7→ Y ε,1

as well as the first bound in (4.4).
Step 3.2: Second component of the rough path. We proceed similarly as before. We have

Y ε,2st = ε−1

∫ t

s

∫ r

s

wεθ ⊗ wεrdθdr

and for 0 < ε < η ⩽ 1

Y ε,2st − Y η,2st = (ε−1 − η−1)

∫ t

s

∫ r

s

wεθ ⊗ wεrdθdr

+η−1

∫ t

s

∫ r

s

(wεθ − wηθ )⊗ wεrdθdr + η−1

∫ t

s

∫ r

s

wηθ ⊗ (wεr − wηr )dθdr =: I1 + I2 + I3.

We obtain

E[∥I1∥2Hσ⊗Hσ ] ⩽ |ε−1 − η−1|2E

[(∫ t

s

∫ r

s

∥wεθ ⊗ wεr∥Hσ⊗Hσdθdr

)2
]
≲ ε−4|ε− η|2|t− s|4.
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Then

E[∥I2∥2Hσ⊗Hσ ] ≲ η−1E

[(∫ t

s

∥wεθ − wηθ∥Hσdθ

∫ t

s

∥wεr∥Hσdr

)2
]
,

by Minkowski’s integral inequality

≲ η−1

(∫ t

s

∫ r

s

(E[∥wεθ − wηθ∥
2
Hσ∥wεr∥2Hσ ])1/2dθdr

)2

≲ η−1

(∫ t

s

∫ r

s

(E[∥wεθ − wηθ∥
4
Hσ ])1/4(E[∥wεr∥4Hσ ])1/4dθdr

)2

and by Gaussianity and (6.12)
≲ ε−3|ε− η|ϑ|t− s|4.

The bound for I3 is the same. Altogether, we obtain

E[∥Y ε,2st − Y η,2st ∥2Hσ⊗Hσ ] ≲ ε−4|ε− η|ϑ|t− s|4

hence by Gaussianity and Kolmogorov’s criterion

(E[∥Y ε,2st − Y η,2st ∥q
C2β

2 ([0,T ];Hσ⊗Hσ)
])1/q ≲ ε−2|ε− η|ϑ/2.

Using now the second bound in (6.1) similarly to Step 3.1, we deduce that that there exists κ2 > 0 so
that for every ε, η ∈ [0, 1]

(E[∥Y ε,2 − Y η,2∥q
C2β

2 ([0,T ];Hσ)
])1/q ≲ |ε− η|κ2

and consequently the Hölder continuity of the mapping

[0, 1] → C2β
2 ([0, T ];Hσ), ε 7→ Y ε,2

and the second bound in (4.4) follow. 2

7 Convergence of the Itô–Stokes drift

7.1 Uniform estimate of uε

Recall that for a fixed ε all the time integrals involved in (1.5) are classical Lebesgue integrals. Hence
after a preliminary step of Galerkin approximation, the usual energy inequality immediately implies a
uniform bound for uε. This relies on the cancellation property of b and yields a.s.

sup
t∈[0,T ]

∥uεt∥2H + 2ν

∫ T

0

∥∇uεr∥2Hdr ⩽ ∥uε0∥2H . (7.1)

We note that the inequality comes from the fact that we need to proceed via Galerkin approximation
and use lower semicontinuity, as for 3D Navier–Stokes equations it is not possible to directly test the
equation by the solution itself.

7.2 Uniform estimate of wε

Using again the change of variables w̃t = wεεt together with (5.2), we have

sup
t∈[0,T ]

E[∥wεt ∥2Hσ ] = sup
t∈[0,T ]

E[∥w̃ε−1t∥2Hσ ] ≲ 1 (7.2)

and by Gaussianity this also bounds higher moments.
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7.3 Uniform estimate of rε

We proceed again via the energy inequality. Testing (1.7) by the solution itself after the preliminary step
of Galerkin approximation, multiplying by ε, taking expectation and applying the cancellation property
of b as well as Young’s inequality leads to

ε

2
∂tE[∥rε∥2H ]− E[⟨rε, Crε⟩] + εE[∥(−A)1/2rε∥2H ]

⩽ εE[⟨rε, Aε−1/2wε⟩] + εE[⟨b(uε, ε−1/2wε), rε⟩] + εE[⟨b(vε, ε−1/2wε), rε⟩]

⩽
1

2
E[∥rε∥2H ] + cE[∥wε∥2H2 ] + cE[∥uε∥4H ]+cε2E[∥vε∥4H ] + cE

[
∥wε∥4Hθ0

]
.

Thus by (2.4)∫ T

0

E[∥rε∥2Hγ ]dt ≲ εE[∥rε0∥2H ] +

∫ T

0

(E[∥uε∥4H ] + ε2E[∥vε∥4H ] + (E[∥wε∥2Hσ ])2 + 1)dt. (7.3)

While uε is already controlled uniformly in ε and ω by (7.1) and wε is controlled by (7.2), we still
need to establish the necessary bound for vε. Again after the preliminary Galerkin approximation, we
test (1.2) by ∥vε∥p−2

H vε to obtain

1

p
∂tE[∥vε∥pH ]− ε−1E[∥vε∥p−2

H ⟨vε, Cvε⟩] + E[∥vε∥p−2
H ∥(−A)1/2vε∥2H ] ⩽ ε−2 p− 1

2
TrQE[∥vε∥p−2

H ].

Consequently, in view of (2.4) it holds for p = 2

ε

∫ T

0

E[∥vε∥2H ]dt ⩽
ε2

2
E[∥vε0∥2H ] +

T

2
TrQ

and for p = 4

ε2
∫ T

0

E[∥vε∥4H ]dt ⩽
ε3

2
E[∥vε0∥4H ] +

3

2
TrQ

(
ε2

2
E[∥vε0∥2H ] +

T

2
TrQ

)
.

Plugging this bound as well as (7.1) and (7.2) into (7.3) and using the fact that the initial conditions
rε0 = vε0 are such that (ε1/2vε0)ε∈(0,1) is bounded in H uniformly in ε, we conclude∫ T

0

E[∥rε∥2Hγ ]dt ≲ 1. (7.4)

7.4 Convergence of rε

We shall prove the convergence as ε→ 0

rε → r :=

∫
(−C)−1b(w,w)dµ(w) weakly inL2(0, T ;Hγ) inL1(Ω), (7.5)

meaning that for every ψ ∈ L2(0, T ) and every φ ∈ H−γ ,∫ T

0

ψ⟨rε, φ⟩dt→
∫ T

0

ψ ⟨r, φ⟩ dt inL1(Ω).

We also show that for a subsequence the convergence can be strengthened to

rε → r inH−δ(0, T ;Hγ−δ) a.s. (7.6)
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First, we recall that the uniform bound (7.4) implies for a subsequence the weak convergence of rε in
L2(Ω × [0, T ];Hγ), so for (7.5) we shall identify the limit, strengthen the convergence in ω and show
that it is not necessary to pass to a subsequence. To this end, we observe that it follows from (1.7) for
all ψ ∈ C1

c ((0, T )) ∫ T

0

ψrεdt = ε

∫ T

0

ψ(−C)−1A(ε−1/2wε + rε)dt

+ε

∫ T

0

ψ(−C)−1b(uε + ε−1/2wε + rε, ε−1/2wε + rε)dt+ ε

∫ T

0

∂tψ(−C)−1rεdt

=

∫ T

0

ψ(−C)−1b(wε, wε)dt

+ε1/2
∫ T

0

ψ(−C)−1[Awε + b(uε, wε) + b(wε, rε) + b(rε, wε)]dt

+ε

∫ T

0

ψ(−C)−1[Arε + b(uε, rε) + b(rε, rε)]dt+ ε

∫ T

0

∂tψ(−C)−1rεdt =: Iε1 + · · ·+ Iε4 .

We claim that as ε→ 0

Iε1 →
∫ T

0

ψdtr in L2(Ω;H), (7.7)

whereas Iε2 + Iε3 + Iε4 → 0 in H−θ0 in L1(Ω;H−θ0).
For the latter convergence, we estimate by (2.3)

E [∥Iε2∥H−θ0 ] ≲ ε1/2E

[∫ T

0

∥Awε + b(uε, wε) + b(wε, rε) + b(rε, wε)∥H−θ0dt

]

≲ ε1/2E

[∫ T

0

(∥wε∥H + ∥uε∥2H + ∥wε∥2H + ∥rε∥2H)dt

]
≲ ε1/2,

where the implicit constant does not depend on ε and the last inequality follows from (7.1), (7.2), (7.4).
Similarly,

E [∥Iε3∥H−θ0 + ∥Iε4∥H−θ0 ] ≲ εE

[∫ T

0

(∥rε∥H + ∥uε∥2H + ∥rε∥2H)dt

]
≲ ε.

In order to establish (7.7), we make use of the ergodic theorem from Corollary 5.2. More precisely, we
rewrite

Iε1 =

∫ T

0

ψ(−C)−1b(wε, wε)dt = −
∫ T

0

∂tψ

∫ t

0

(−C)−1b(wεs, w
ε
s)dsdt (7.8)

and observe that w̃t = wεεt leads to∫ t

0

(−C)−1b(wεs, w
ε
s)ds = ε

∫ ε−1t

0

(−C)−1b(w̃s, w̃s)ds.

Letting F (w) := (−C)−1b(w,w) we see that by (2.3) F satisfies the assumption of Corollary 5.2. Hence
we deduce for every t ∈ [0, T ]

lim
ε→0

∫ t

0

(−C)−1b(wεs, w
ε
s)ds = t

∫
(−C)−1b(w,w)dµ(w) inL2(Ω;H).

Plugging this into (7.8) we use (7.2) and apply dominated convergence theorem to obtain (7.7). Finally,
using this together with a density argument and the uniform bound (7.4), we obtain (7.5).
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We note that by weak–strong convergence this is enough to pass to the limit in the Itô–Stokes drift
in (1.5), namely in the term b(rε, uε)dt, provided e.g. the sequence uε converges strongly in L2(0, T ;H)
a.s., which we prove in Section 8.3 below using the stochastic compactness method.

It remains to verify (7.6), i.e. to show that the convergence can be strengthened to an a.s. conver-
gence but in a slightly worse topology. The uniform bound (7.4) implies in particular tightness of rε

in H−δ(0, T ;Hγ−δ) for δ > 0. Consequently, up to a subsequence, by Skorokhod representation theo-
rem, rε converges in law in H−δ(0, T ;Hγ−δ). Since the limit, i.e. r, is deterministic, the convergence
rε → r holds true in in H−δ(0, T ;Hγ−δ) in probability. Hence, taking a further subsequence, rε → r in
H−δ(0, T ;Hγ−δ) a.s.

8 Tightness and passage to the limit

This section is devoted to the completion of the proof of Theorem 4.4, which proceeds in several steps.
First, it is necessary to establish further uniform estimates in the rough path formulation (3.7). Namely,
we shall prove a uniform estimate for the remainders uε,♮ as well as a uniform time regularity of uε. We
present these results in Section 8.1 and Section 8.2 below. We note that since rε is only controlled in
expectation, cf. (7.4), also the bounds from Section 8.1 and Section 8.2 are only uniform after taking
expectations. This makes the final passage to the limit argument in Section 8.3 delicate.

Remark 8.1 For future use, we recall that by (4.4) and the estimates in Section 3, we have a pathwise
control of the required bounds of Aε, namely (2.8), (2.9) and (2.12) and they hold uniformly in ε. More
precisely, there exists K ∈ Lq(Ω) for all q ∈ [1,∞) such that P -a.s.

∥Aε,1st ∥
1/α

L(H−n,H−(n+1))
+ ∥Aε,2st ∥

1/(2α)

L(H−n,H−(n+2))
+ ∥Aε,2,∗st ∥1/(2α)L(Hθ0+1,L∞)

≲ (∥Y ε,1∥1/αCα
2 ([0,T ];Hσ) + ∥Y ε,2∥1/(2α)

C2α
2 ([0,T ];Hσ⊗Hσ)

)|t− s| ⩽ K|t− s| =: ωA(s, t). (8.1)

8.1 Uniform estimate of uε,♮

For a fixed ε, the solution uε satisfies the rough path form of (1.5), namely (3.7) in the sense of

Definition 3.1. We know a priori that the remainder uε,♮ belongs to C
p/3−var
2 ([0, T ];H−3). As a matter

of fact, it is even much better as there is no rough-in-time term in (1.5). But this regularity depends
on ε and we seek an estimate on uε,♮ which is uniform in ε. The equation (3.7) is very similar to the
rough path formulation of the 3D Navier–Stokes equations perturbed by a transport noise in [21], see
Section 2.5 and particularly (2.18) in [21]. The difference is that the drift part µε in our case includes
the additional Itô–Stokes drift µε,2, while µε,1 coincides with the drift in [21].

In Section 3 in [21] and particularly in Lemma 3.1 and Lemma 3.3, two bounds on µε,1 were used
and they are satisfied in our case as well, namely,

∥δµε,1st ∥H−1 ≲
∫ t

s

(1 + ∥uετ∥H1)2dτ

and
∥δµε,1st ∥H−θ0 ≲ |t− s|(1 + ∥uε∥L∞

T H)2.

In the case of µε,2, we estimate for a fixed ε

|δµε,2st (φ)| =
∣∣∣∣∫ t

s

⟨b(rετ , uετ ), φ⟩dτ
∣∣∣∣ ≲ ∥φ∥L∞

∫ t

s

∥rετ∥H∥uετ∥H1dτ

≲ ∥φ∥L∞

(∫ t

s

∥rετ∥2Hdτ
)1/2(∫ t

s

∥uετ∥2H1dτ

)1/2

.
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While a.s. the right hand side defines a control and hence µε,2 is of finite variation e.g. in H−θ0+1 by
Sobolev embedding, this control is not uniform in ε. Indeed, in view of (7.4) a uniform in ε bound can
only be obtained in expectation and the a.s. bound following from (7.6) is in a worse space. Hence
we prefer to use (7.4) in what follows. This is a striking difference from the setting of [21]. Another
difference lies in the weaker spatial regularity of µε,2 compared to µε,1, namely, H−θ0+1 instead of H−1.
As a consequence of this fact, we require the additional conditions on the unbounded rough driver
(Aε,1,Aε,2), cf. (2.11), (2.12) compared to (2.10) in [21].

We denote the control associated to the C1−var([0, T ];H−θ0+1) norm of µε by

ωµε(s, t) =

∫ t

s

(1 + ∥uετ∥H1)2dτ +

(∫ t

s

∥rετ∥2Hdτ
)1/2(∫ t

s

∥uετ∥2H1dτ

)1/2

. (8.2)

With this in hand, we repeat the proof of Lemma 3.1 in [21] in order to obtain the counterpart of (3.3).
Applying the increment operator δ to (3.7) for s ⩽ θ ⩽ t and using the Chen’s relation yields

δuε,♮sθt(φ) = δuεsθ(A
ε,2,∗
θt φ) + uε,♯sθ (A

ε,1,∗
θt φ),

where
uε,♯sθ = δuεsθ − Aε,1sθ u

ε
s = δµεsθ + Aε,2sθ u

ε
s + uε,♮sθ . (8.3)

To exploit the interplay between time and space regularity, we let (Jη)η∈(0,1] be a family of smoothing
operators as in [21] and we split

δuε,♮sθt(φ) = δuε,♮sθt((Id−J
η)φ) + δuε,♮sθt(J

ηφ). (8.4)

In the estimate of the first term in (8.4), we make use of the middle expression in (8.3), i.e. for φ ∈ H3,
∥φ∥H3 ⩽ 1

|δuε,♮sθt((Id−J
η)φ)| ⩽ |δuεsθ(A

ε,2,∗
θt (Id−Jη)φ)|+ |(δuεsθ − Aε,1sθ u

ε
s)(A

ε,1,∗
θt (Id−Jη)φ)|

⩽ ∥uε∥L∞
T H(∥Aε,2,∗θt (Id−Jη)φ∥H + ∥Aε,1,∗θt (Id−Jη)φ∥H + ∥Aε,1,∗sθ Aε,1,∗θt (Id−Jη)φ∥H).

Recalling the notation (8.1), the mollification estimates (2.7) in [21] and letting p = 1/α, we obtain

|δuε,♮sθt((Id−J
η)φ)| ≲ ∥uε∥L∞

T H(ωA(s, t)
2/p∥(Id−Jη)φ∥H2 + ωA(s, t)

1/p∥(Id−Jη)φ∥H1)

≲ ∥uε∥L∞
T H(ωA(s, t)

2/pη + ωA(s, t)
1/pη2). (8.5)

In order to estimate the second term in (8.4), we apply the expression on the very right hand side of
(8.3) for uε,♯ and we also use the equation (3.7) for δuε. This gives

δuε,♮sθt(J
ηφ) = δµεsθ(A

ε,2,∗
θt Jηφ) + uεs(A

ε,1,∗
sθ Aε,2,∗θt Jηφ) + uεs(A

ε,2,∗
sθ Aε,2,∗θt Jηφ) + uε,♮sθ (A

ε,2,∗
θt Jηφ)

+δµεsθ(A
ε,1,∗
θt φ) + uεs(A

ε,2,∗
sθ Aε,1,∗θt φ) + uε,♮sθ (A

ε,1,∗
θt φ).

Let us first focus on the terms with µε,1, since they did not appear in [21]. In particular, we estimate
using (2.11)

|δµε,1sθ (A
ε,1,∗
θt Jηφ)| ⩽ ωµε(s, t)∥Aε,1,∗θt Jηφ∥L∞ ≲ ωµε(s, t)ωA(s, t)

1/p∥φ∥H3 ≲ ωµε(s, t)ωA(s, t)
1/p,

and similarly using (2.12)

|δµε,1sθ (A
ε,2,∗
θt Jηφ)| ⩽ ωµε(s, t)∥Aε,2,∗θt Jηφ∥L∞

≲ ωµε(s, t)ωA(s, t)
2/p∥Jηφ∥Hθ0+1 ≲ ωµε(s, t)ωA(s, t)

2/pη2−θ0 .

The other terms can be estimated as in [21].
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Recall that we aim at showing a bound of uε,♮ in C
p/3−var
2,loc ([0, T ];H−3), that is, we intend to bound

the control
ωε,♮(s, t) := ∥uε,♮∥p/3

C
p/3−var
2 ([s,t];H−3)

.

With this notation, we obtain

|δuε,♮sθt(J
ηφ)| ⩽ ωµε(s, t)ωA(s, t)

2/p(1 + η2−θ0) + ∥uε∥L∞
T HωA(s, t)

3/p

+∥uε∥L∞
T HωA(s, t)

4/pη−1 + ωε,♮(s, t)
3/pωA(s, t)

2/pη−2

+ωµε(s, t)ωA(s, t)
1/p + ∥uε∥L∞

T HωA(s, t)
3/p + ωε,♮(s, t)

3/pωA(s, t)
1/pη−1.

With the choice of η = ωA(s, t)
1/pλ for some constant λ > 0 to be chosen below, the above bound reads

as
|δuε,♮sθt(J

ηφ)| ≲ ωµε(s, t)(ωA(s, t)
2/p + ωA(s, t)

(4−θ0)/pλ2−θ0 + ωA(s, t)
1/p)

+∥uε∥L∞
T HωA(s, t)

3/p(1 + λ−1) + ωε,♮(s, t)
3/p(λ−2 + λ−1),

where the implicit constant is universal and independent of ε, s, θ, t or other data of the equations.
Combining this with (8.5) we obtain

∥δuε,♮sθt∥H−3 ≲ ωµε(s, t)(ωA(s, t)
2/p + ωA(s, t)

(4−θ0)/pλ2−θ0 + ωA(s, t)
1/p)

+∥uε∥L∞HωA(s, t)
3/p(1 + λ−1 + λ+ λ2) + ωε,♮(s, t)

3/p(λ−2 + λ−1).

To get the desired estimate of uε,♮, we require that all the terms on the right hand side are written
as ω(s, t)3/p for some control ω. Recall that for every two controls ω1 and ω2, ω

a
1ω

b
2 is a control provided

a + b ⩾ 1. Thus particularly for the first term on the right hand side, we need 1 + (4 − θ0)/p ⩾ 3/p.
If θ0 = 1 + 3/2 + δ with δ > 0 small, this boils down to 1/p ⩽ 2/(3 + 2δ) which is indeed possible for
every p ∈ (2, 3) by choosing δ sufficiently small.

Applying the sewing lemma, Lemma B.1 in [21], we deduce

∥uε,♮st ∥H−3 ≲ ωµε(s, t)(ωA(s, t)
2/p + ωA(s, t)

(4−θ0)/pλ2−θ0 + ωA(s, t)
1/p)

+∥uε∥L∞
T HωA(s, t)

3/p(1 + λ−1 + λ+ λ2) + ωε,♮(s, t)
3/p(λ−2 + λ−1)

and accordingly

ωε,♮(s, t) ⩽ c[ωµε(s, t)p/3(ωA(s, t)
2/3 + ωA(s, t)

(4−θ0)/3λp(2−θ0)/3 + ωA(s, t)
1/3)

+∥uε∥p/3L∞
T HωA(s, t)(1 + λ−1 + λ+ λ2)p/3 + ωε,♮(s, t)(λ

−2 + λ−1)p/3].

To close the estimate, we choose λ such that c(λ−2 + λ−1)p/3 = 1/2. Then we can absorb ωε,♮ from the
right hand side into the left hand side. In addition, for the mollifier estimates, we need to guarantee
η ∈ (0, 1]. In view of the definition of η above and ωA and K in (8.1) we have

η = (K|t− s|)1/pλ.

Hence with the above choice of (deterministic) λ, there exists L = L(ω) so that η ⩽ 1 provided
|t− s| ⩽ L(ω). In particular, we may choose L = 1

Kλp ∼ 1
K .

This leads us to the following analog of (3.3) in [21]

ωε,♮(s, t) ≲ ωµε(s, t)p/3(ωA(s, t)
2/3 + ωA(s, t)

(4−θ0)/3 + ωA(s, t)
1/3) + ∥uε∥p/3L∞

T HωA(s, t), (8.6)

which holds true provided |t − s| was sufficiently small, given by the random but ε-independent upper

bound L. This is also the reason why the remainder only belongs to the local space C
p/3−var
2,loc ([0, T ];H−3).
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Finally, we note that for a given constant a > 0, it holds ωε,♮(s, t) ⩽ a provided |t − s| ⩽ L̃ε where

L̃ε is random and chosen in dependence of a, ωµε(0, T ), ∥uε∥L∞
T H and K based on (8.6) and (8.1). For

instance, we may define

L̃ε :=
1

K
min


(

a

4ωµε(0, T )p/3

)3/2

,

(
a

4ωµε(0, T )p/3

)3/(4−θ0)

,

(
a

4ωµε(0, T )p/3

)3

,
a

4∥uε∥p/3L∞
T H

 .

(8.7)

8.2 Uniform time regularity of uε

As the next step, we proceed with an analog of Lemma 3.3 in [21] proving time regularity of uε. Due
to the worse spatial regularity of µε,2 we estimate only ωuε(s, t) := ∥u∥p

Cp−var([s,t];H−θ0+1)
as

ωuε(s, t) ≲ (1 + ∥uε∥L∞
T H)p(ωε,♮(s, t) + ωµε(s, t)p + ωA(s, t)), (8.8)

which holds true provided |t− s| ⩽ L̃ε(ω) for a random bound L̃ε given by (cf. (8.7))

L̃ε :=
1

K
min


(

1/2p

4ωµε(0, T )p/3

)3/2

,

(
1/2p

4ωµε(0, T )p/3

)3/(4−θ0)

,

(
1/2p

4ωµε(0, T )p/3

)3

,
1/2p

4∥uε∥p/3L∞
T H

, 1/2p

 .

Within this estimate we made use of the bound for φ ∈ Hθ0−1, ∥φ∥Hθ0 ⩽ 1

|δµεst(Jηφ)| ⩽ ωµε(s, t)∥Jηφ∥Hθ0−1 ≲ ωµε(s, t)

and we chose η = ωε,♮(s, t)
1/p + ωA(s, t)

1/p as in Lemma 3.3 in [21]. The requirement η ∈ (0, 1] is the

reason for the upper bound L̃ε(ω).
Accordingly, we can bound

∥uε∥p
Cp−var([0,T ];H−θ0+1)

= sup
π∈P([0,T ])

∑
(s,t)∈π

∥δuεst∥
p
H−θ0+1 ,

where the supremum is taken over all partitions π of the interval [0, T ]. Here, we can apply (8.8)
whenever the mesh size of a partition π is at most L̃ε. If the mesh size of π is bigger, we can refine it
so that the sum of norms of increments is bounded by a sum over the finer partition times an implicit
constant which is at most (T/L̃ε)p. We deduce

∥uε∥p
Cp−var([0,T ];H−θ0+1)

≲

(
T

L̃ε

)p
(1 + ∥uε∥L∞

T H)p(ωε,♮(0, T ) + ωµε(0, T )p + ωA(0, T )),

and we used the fact that controls are super-additive and for a control ω and a ⩾ 1, also ωa is a control,
i.e. super-additive.

In view of (8.2), (8.6), (7.1) and (7.4) and using the form of L̃ε we therefore obtain for some κ > 0

E
[
∥uε∥κCp−var([0,T ];H−θ0+1)

]
≲T (1 + ∥uε0∥H)κ

×E[Kκ(ωµε(0, T )κp/2 + ωµε(0, T )κp/(4−θ0) + ωµε(0, T )κp + ∥uε∥κp/3L∞
T H)

×(ωε,♮(0, T )
κ/p + ωµε(0, T )κ + ωA(0, T )

κ/p)].

The reason we included κ is to guarantee the integrability of ωµε which due to the limited bound of rε

only admits the second moment (cf. (7.4) and (8.2)). Choosing κ small enough, recalling that K and
ωA admit moments of all orders by Remark 8.1, we further estimate as

E
[
∥uε∥κCp−var([0,T ];H−θ0+1)

]
≲ 1 + E[ωµε(0, T )2] ≲ 1, (8.9)
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where we bounded uniformly in ε as follows

E[ωµε(0, T )2] ≲ E

(∫ T

0

(1 + ∥uετ∥H1)2dτ

)2

+

∫ T

0

∥rετ∥2Hdτ
∫ T

0

∥uετ∥2H1dτ


≲ 1 + ∥uε0∥4H + ∥uε0∥2HE

[∫ T

0

∥rετ∥2Hdτ

]
≲ 1.

This shows a uniform bound of uε in Cp−var([0, T ];H−θ0+1), which by Markov inequality readily implies
tightness of uε needed in the next section.

8.3 Passage to the limit

With the above results at hand, we are able to perform the final passage to the limit in the rough path
formulation (3.7) of (1.5) and obtain a probabilistically weak rough path solution to (1.9) in the sense
of Definition 4.3. This will complete the proof of our main result, Theorem 4.4.

Even though a number of terms converge directly on any given probability space where the approxi-
mate system is solved, for uε we only obtain uniform estimates implying compactness. Recall also that
the bound of rε in L2(0, T ;Hγ) and consequently also the time regularity of uε as well as the bound for
the remainder uε,♮ are only uniform in ε after taking expectations.

We base our compactness argument on Jakubowski–Skorokhod’s representation theorem and change
the probability space. We use Jakubowski–Skorokhod’s representation theorem instead of the classical
Skorokhod’s representation theorem as one of our function spaces below is not Polish, but falls in the
category of the so-called sub-Polish space where Jakubowski–Skorokhod’s theorem applies, see Section
2.7 in [4] for more details.

More precisely, we claim that the above results imply tightness of (uε, rε, Q1/2W ε, Y ε,1, Y ε,2) in the
path space

X := (Cweak([0, T ];H) ∩ L2(0, T ;H))× (L2(0, T ;Hγ), w)× C([0, T ];H)× Cα([0, T ];Hσ),

where (L2(0, T ;Hγ), w) denotes L2(0, T ;Hγ) equipped with the weak topology. Indeed, the tightness
of uε follows from (7.1) and (8.9) by Lemma A.2 in [21], the tightness of rε is a consequence of (7.3)
since bounded sets are relatively compact with respect to the weak topology, the tightness of Q1/2W ε is
immediate since the law does not depend on ε, and the tightness of the rough path (Y ε,1, Y ε,2) follows
from Theorem 4.1.

Accordingly, Jakubowski–Skorokhod’s representation theorem yields a subsequence (still indexed
by ε for notational simplicity) and a new probability space (Ω̄, F̄ ,P ) with X -valued random variables
(ūε, r̄ε, Q1/2W̄ ε, Ȳ ε,1, Ȳ ε,2) and

(
ū, r,Q1/2W̄ , Ȳ 1, Ȳ 2

)
such that P -a.s.

(ūε, r̄ε, Q1/2W̄ ε, Ȳ ε,1, Ȳ ε,2) →
(
ū, r,Q1/2W̄ , Ȳ 1, Ȳ 2

)
in X .

Then (ūε, r̄ε, Ȳ ε,1, Ȳ ε,2) satisfies (3.7). For a detailed argument identifying the rough path (Ȳ ε,1, Ȳ ε,2)
we refer to Step 2 in the proof of Proposition 15 in [14]. Consequently, we obtain also the analogous
estimate to (8.6) for the corresponding remainder ūε,♮ on the new probability space. Here ωAε , ωµε

are replaced by their counterparts on the new probability space defined as in (8.1) and (8.2) using
(ūε, r̄ε, Ȳ ε,1, Ȳ ε,2) in place of (uε, rε, Y ε,1, Y ε,2). The result of Theorem 4.1 also holds true on the new
probability space.

One significant difference now follows from the P -a.s. convergence of r̄ε: in comparison to (7.3) we
gained the following P -a.s. uniform bound for r̄ε:∫ T

0

∥r̄ε∥2Hγdt ⩽ N (8.10)
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for some random and P -a.s. finite constant N = N(ω̄) > 0. We employ this fact below to obtain the
desired regularity of the limit remainder.

Now, we can pass to the limit in (3.7). First, we note that all the terms except for the remainder ūε,♮

converge P -a.s. to the desired limits. More precisely, based on the strong convergence in L2(0, T ;H) of
ūε we are able to pass to the limit in the Stokes as well as the convective term and combined with the
weak convergence of r̄ε in L2(0, T ;Hγ) we also pass to the limit in the Itô–Stokes drift. As in Section 7.4
we obtain that rε → r weakly in L2(0, T ;Hγ) P -a.s., where r is deterministic and time independent,
hence r̄ = r. This identifies the Itô–Stokes drift velocity in (1.9). The identification of the driving rough
path (Ȳ 1, Ȳ 2) as the corresponding lift of B̄ = (−C)−1Q1/2W̄ follows as in Theorem 4.1.

Accordingly, also ūε,♮ converges P -a.s. to some ū♮ satisfying the formula from Definition 4.3. Now,

it only remains to prove that ū♮ is an honest remainder, namely, it belongs to C
p/3−var
2,loc ([0, T ];H−3)

P -a.s.
Recall Remark 8.1 and note that the analogous claim also holds true on the new probability space.

We denote the random constant analogous to K as K̄ and denote by L̄ ∼ 1/K̄ the constant determining
the length of admissible intervals in the counterpart of (8.6) on the new probability space. Let I =
I(ω̄) = [σ(ω̄), τ(ω̄)] ⊂ [0, T ] be an arbitrary random time interval of length at most L̄(ω). Then by
the analogous estimate to (8.6) and (8.2) on the new probability space, (7.1) and (8.10), we have the
uniform P -a.s. bound

∥ūε,♮∥
C

p/3−var
2 (I;H−3)

= ω̄ε,♮(σ, τ)
3/p ≲ 1 + ω̄µε(0, T ) ⩽M, (8.11)

where M is random and P -a.s. finite and ω̄ε,♮ and ω̄µε , respectively, denote the controls associated to
the remainder ūε,♮ and the drift µ̄ε defined as in (3.6) but on the new probability space.

Based on this, we can use lower semicontinuity to conclude that ū♮ is P -a.s. a remainder, namely,

it belongs to C
p/3−var
2,loc ([0, T ];H−3) P -a.s. Fix an arbitrary ω̄. Then it holds for every smooth φ and

every s, t ∈ I(ω̄) (all random variables in the sequel are implicitly evaluated at ω̄)

|ū♮st(φ)| = lim
ε→0

|ūε,♮st (φ)| ⩽ ∥φ∥H3 lim inf
ε→0

∥ūε,♮∥
C

p/3−var
2 ([s,t];H−3)

,

which implies

∥ū♮st∥
p/3
H−3 ⩽ lim inf

ε→0
∥ūε,♮∥p/3

C
p/3−var
2 ([s,t];H−3)

= lim inf
ε→0

ω̄ε,♮(s, t).

If π is partition of I(ω̄), then by Fatou’s lemma, superadditivity of ω̄ε,♮ and (8.11), we obtain∑
(s,t)∈π

∥ū♮st∥
p/3
H−3 ⩽ lim inf

ε→0

∑
(s,t)∈π

ω̄ε,♮(s, t) = lim inf
ε→0

ω̄ε,♮(σ, τ) ⩽M,

hence finally

∥ū♮∥p/3
C

p/3−var
2 (I;H−3)

= sup
π∈P(I)

∑
(s,t)∈π

∥ū♮st∥
p/3
H−3 ⩽M.

Accordingly, we deduce that ū♮ belongs to C
p/3−var
2,loc ([0, T ];H−3) P -a.s., meaning there is a set Ω̄0 ⊂ Ω̄

of full probability P and a random covering (Ik)k=1,...,[T/L̄] of [0, T ] such that for every ω̄ ∈ Ω̄0 we have

ū♮(ω̄) ∈ C
p/3−var
2 (Ik(ω̄);H

−3) for every k = 1, . . . , [T/L̄].
Thus, we have proved that (1.9) is satisfied by (ū, B̄) in the sense of Definition 4.3. The proof of

Theorem 4.4 is therefore complete.

References

[1] Werner Bauer, Pranav Chandramouli, Bertrand Chapron, Long Li, and Etienne Mémin. Decipher-
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