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Abstract 39 

Background: Theoretical and empirical contributions have identified insula as key in 40 

addiction. However, anatomical modifications of the insula in addictive states, and their 41 

variations across substance use disorders (SUD), remain to be specifically explored. We 42 

therefore explored the specificities and commonalities of insula grey matter (GM) 43 



alterations in severe alcohol use disorder (sAUD) and severe cocaine use disorders 44 

(sCUD). 45 

Methods: We explored insula GM volume through a refined parcellation in twelve 46 

subregions (six bilateral): anterior inferior cortex (AIC), anterior short gyrus (ASG), middle 47 

short gyrus (MSG), posterior short gyrus (PSG), anterior long gyrus (ALG) and posterior 48 

long gyrus (PLG). Using a linear mixed model analysis, we explored the insula volume 49 

profiles of 50 patients with sAUD, 61 patients with sCUD and 36 healthy controls (HC). 50 

Results: In both sAUD and sCUD, we showed overall insular lower volume with a right-51 

sided lateralization effect, and a major volume deficit in bilateral ALG. Moreover, 52 

differences emerged across groups, with higher left AIC and PLG volume deficits in 53 

sCUD compared to sAUD and HC. 54 

Conclusions: We offered the first joint exploration of GM insular volumes in two SUD 55 

through refined parcellation, thus unveiling the similarities and dissimilarities in volume 56 

deficit profiles. Our results bring evidence complementing prior ones suggesting the 57 

core role of the right and posterior insula in craving and interoception, two crucial 58 

processes in addiction. Left AIC and PLG group differences also show that, while insula 59 



is a region of interest in SUD, sCUD and sAUD generate distinct insular profiles, which 60 

might parallel clinical differences across SUD. 61 

Keywords: Parcellation, MRI, Brain volume, Addiction 62 

Introduction 63 

The insula is an ultra-connected cortical region [1] involved in wide array of processes, 64 

including sensory (e.g., olfaction [2]), affective [3] and cognitive (e.g., cognitive control 65 

[4]) domains. The insula also has a key functional role in interoception, the ability to 66 

build a representation of the internal self of the body, encompassing sensing, 67 

interpretation, integration and regulation of internal signals [5].  68 

Interoceptive signals, traditionally defined as emanating from beneath the skin, are 69 

brought to insula through the lamina I spinothalamocortical pathway (also called 70 

interoceptive pathway) [6-8]. In the insula, those signals follow a posterior-to-mid-to-71 

anterior processing, generating a progressive refinement of interoceptive representation, 72 

notably through associations between insula and concomitant brain regions [6,8-9]. In 73 

the posterior insula, bodily information is processed, providing an objective 74 

representation of visceral bodily states, notably through connections with parietal 75 



regions [10], such as the somatosensory cortex [11]. Then, in the rostral insula, a 76 

subjective meta-representation of interoceptive information is hypothesized [7], 77 

capitalizing on connections with the frontal cortex [10,12].  78 

Such involvement in interoception through connections with somatosensory and frontal 79 

areas had led theoretical models to postulate that insula constitutes a pivotal region in 80 

addictive disorders, notably for the emergence of a key process in these disorders, 81 

namely craving. Insula would integrate visceral interoceptive information related to 82 

bodily effects of the substance consumed and refine such message with higher level 83 

processes such as emotion and motivation [13]. In addition, through its bidirectional 84 

connection to the amygdala-striatal neural system and prefrontal cortex [14], the insula 85 

would enable an association between bodily effects of a substance and its pleasurable 86 

effects, while disabling cognitive control [15-16]. Behavioral consequences of such 87 

neural processing would therefore be craving, the irrepressible urge to further seek the 88 

substance and its consumption, contributing to the onset and/or maintenance of 89 

substance use disorder (SUD) [16-17].  90 



Such theories of insula as key craving neural substrate received initial empirical 91 

support through a seminal study reporting insular lesions to result in addictive 92 

behaviors cessation, due to a sudden craving hiatus [18]. Moreover, insular lower volume 93 

is found across substances–being, thus, conceptualized as being part of a common 94 

addiction neural substrate [19]. However, while these empirical reports provide 95 

invaluable information regarding insular role in addiction, they remain quite imprecise as 96 

they relied on an overall exploration of insula. As previously mentioned, insula is not an 97 

anatomically and structurally unified region, as it is rather composed of multiple 98 

subregions with different functions [20-21]. Preclinical studies have supported such 99 

argument by showing that rostral and posterior insula have differentiated involvement 100 

levels in rats’ drug-seeking behaviors (i.e., inactivation of anterior insula leads to 101 

decrease in cocaine-seeking behavior, while posterior insula inactivation has no effect 102 

[22]). Recent human studies further underlined the need for refined exploration of 103 

insular subregions: in alcohol use disorder, insula has a differential volume deficit profile, 104 

with both lateralization (i.e., right-sided [23]) and subregions (i.e., lower volume in 105 

posterior insula [24]) specificities. In cocaine use disorder, similar right-sided volume 106 



deficit lateralization effect has been observed [25] but there are no refined explorations 107 

of insula subregions.  108 

Despite these preliminary results, two major methodological limitations are 109 

impeding results generalization across addiction field and, therefore, the understanding 110 

of insula contributions in addiction onset and maintenance. First, heterogenous 111 

parcellation techniques followed in insular studies lead to discrepancies in the 112 

localization and numbers of insular subregions [26]. While, in rodent studies, an 113 

anatomical parcellation of the insula is followed, in the human field insular parcellation 114 

relies on functional (activation results), hindering comparisons between human and 115 

animal fields but, also, within human field [26]. There are currently studies reporting 116 

parcellation ranging from 2 to 13 anatomical or functional insula subregions [20], 117 

hindering studies results comparison. Second, the lack of direct and refined comparison 118 

of insular subregions specificities across different substances. The few studies exploring 119 

grey matter (GM) volume across substances rely almost exclusively on voxel-based 120 

morphometry (VBM) technique [27], following whole-brain approaches rather than 121 

targeting specific regions of interests, generating results at the overall insular level. 122 

Therefore, these studies did not explore specifically similarities and differences in GM 123 



abnormalities in different SUD at the insular subregions level. Noteworthy, the few VBM 124 

studies exploring brain morphology across SUD report notably shared volume deficit of 125 

the insula [27-28]–thus, again, providing first insights on insula role across addictions, 126 

while lacking in precise and refined exploration of the insula subregions profile of 127 

volume deficit for given substances.  128 

We aimed at overcoming these limitations in addiction, by exploring GM insula 129 

subregions volume in two SUD: patients presenting a severe alcohol use disorder (sAUD) 130 

or a severe crack/cocaine use disorder (sCUD). We applied refined parcellation technique 131 

that allowed for insula bilateral parcellation in six subregions, thus ending up with a 6*2 132 

insular parcellation [29]. Such atlas-based parcellation combines macro-anatomical and 133 

probabilistic technics, therefore enabling future studies comparisons, as probabilistic 134 

atlas allows for variability in shapes and volumes across subjects [29-30]. 135 

We hypothesized a main group effect, with patient groups showing significant 136 

lower volume compared to healthy control (HC). Given the lack of prior direct 137 

comparison of insula GM volume using refined parcellation between SUD, we had no 138 

specific hypothesis regarding the shared and dissimilar GM insula subregions profiles 139 



between sAUD and sCUD. Noteworthy, having shown in a prior study [24] that sAUD 140 

had a right-sided and antero-posterior gradient of GM volume deficit compared to HC, 141 

we wanted to go further by exploring the commonalities and differences in the pattern 142 

of abnormalities of insula in addiction, by adding a sCUD group to our priorly published 143 

data.   144 

 145 

Methods 146 

Participants 147 

We recruited 61 patients (12 females) with a DSM-5 diagnosis of sCUD (DSM-5 criteria, 148 

American Psychiatric Association, 2013). The current study comprised also 50 patients (6 149 

females) with a diagnosis of sAUD (DSM-5 criteria, American Psychiatric Association, 150 

2013), and 36 HC (6 females), priorly described in [24]. sCUD and sAUD were early 151 

abstainers recruited by clinicians from inpatient treatment units (sCUD: Fernand Widal 152 

Hospital and Garches Castle Clinic, France; sAUD: Caen University Hospital, France). 153 

Patients underwent a first assessment during which clinicians assessed SUD. When 154 

included in the study, sAUD showed no more physical symptoms of alcohol withdrawal–155 



as assessed by Cushman’s scale [31]. HC, group-matched with sAUD and sCUD for 156 

education level and gender, were recruited in Caen. HC reported a low pattern of 157 

alcohol consumption (score <6 for female and <7 for male at the AUDIT [32-33]), no 158 

symptoms of severe depression (score <29 at the Beck Depression Inventory-II; BDI [34]) 159 

and did not present signs of global cognitive alteration (score >126 at the Mattis 160 

Dementia Rating Scale; MDRS [35]). All participants spoke French fluently and presented 161 

no major medical/neurological disorders. HC and sAUD presented no polysubstance 162 

abuse except for nicotine (assessed by the DSM-5 criteria, American Psychiatric 163 

Association, 2013). sCUD were all primarily treated for a CUD. However, due to 164 

characteristics inherent to this population, 62% of sCUD presented problematic alcohol 165 

use, 21% problematic opioid use, 18% problematic THC use and 18% problematic 166 

benzodiazepine use. Table 1 reports socio-demographic, clinical, neuropsychological and 167 

substances-related variables.  168 

The study protocol was approved by ethical boards (sCUD: Comité de Protection des 169 

Personnes Ile de France IV 15/01/2015 and Agence Nationale de Sécurité du 170 

Médicament 10/10/2014, no. IDRCB: 2014-A01169-38; sAUD and HC: Caen University 171 

Hospital ethical bord, CPP Nord Ouest III, no. IDRCB: 2011-A00495-36) and complied 172 



with the Declaration of Helsinki’s ethical standards. All participants provided informed 173 

written consent prior to the study participation. 174 

Table 1 175 

Procedure 176 

Volumetric data acquisition 177 

For sCUD, high-resolution T1-weighted anatomical image were acquired with a Siemens 178 

Magnetom 3T scanner (CENIR Imaging Center in Paris), using a 3D fast-field echo 179 

sequence (176 sagittal slices, thickness = 1 mm, repetition time = 2300 ms, echo time = 180 

2.9 ms, flip angle = 9◦ , field of view, 256x256 mm2, matrix, 256x256). 181 

For sAUD and HC, high-resolution T1-weighted anatomical image were acquired on a 182 

Philips Achieva 3T scanner (Philips Healthcare/Philips Medical Systems International B.V., 183 

Eindhoven, The Netherlands) using a 3D fast-field echo sequence (sagittal, repetition 184 

time = 20ms; echo time = 4,6ms; flip angle = 10°, 180 slices, slice thickness = 1mm, 185 

field of view = 256x256 mm2, matrix = 256x256). 186 

Volumetric data pre-processing 187 



We processed volumetric magnetic resonance imaging (MRI) data using Statistical 188 

Parametric Mapping software (SPM12; Welcome Department of Cognitive Neurology, 189 

Institute of Neurology, London, UK). We segmented MRI data into GM and normalized 190 

them spatially to Montreal Neurological Institute (MNI) template (voxel size = 1.5mm3, 191 

matrix = 121x145x121). We modulated these normalized GM images by Jacobian 192 

determinants to correct brain volumes for brain size. We obtained a GM mask by taking 193 

unmodulated HC’s GM images in MNI space, averaging them, and thresholding resultant 194 

mean image at 0.5. We applied resulting GM mask to modulated GM maps. 195 

While images were obtained from two different scanners, they had the same tissue 196 

properties (T1-weighted), acquired and reconstructed at the same resolutions (1mm3 197 

isotropic). They were also optimally processed to produce the best tissue maps with 198 

corresponding resolutions [36]. Moreover, scanner differences are known to be minimal 199 

and statistically insignificant when compared to group differences [37]. 200 

Volumetric Regions of Interest (ROI) extraction 201 

We extracted each individual insular volumes using Faillenot’s GM brain atlas [29], which 202 

provides six bilateral insular GM regions of interest (ROI): six left (no 20, 86, 88, 90, 92 203 



and 94) and six right (no 21, 87, 89, 91, 93 and 95). The six subregions are, from most 204 

rostral to posterior insula: anterior inferior cortex (AIC), anterior short gyrus (ASG), 205 

middle short gyrus (MSG), posterior short gyrus (PSG), anterior long gyrus (ALG), and 206 

posterior long gyrus (PLG). 207 

Statistical analyses 208 

We performed all statistical analyses on Jamovi 2.2.5 [38-39] using a significance level of 209 

alpha 0.05 (bilateral).  210 

To explore group differences in insular GM ROI volumes, we normalized each of the ROI 211 

measure by individual total intracranial volume (TIV) to correct for head-size differences. 212 

We then used the resulting ROI by TIV computed score to calculate z-scores, using HC’s 213 

mean and standard deviation. We applied a linear mixed model analysis to the resulting 214 

values, where dependent variable was the computed z-scores of GM volume, factors 215 

were lateralization, subregions and group, covariates were age and gender and random 216 

factor was participants. Significant main effects were followed by Bonferroni post-hoc 217 

tests. 218 



Moreover, due to the high prevalence of problematic alcohol use in sCUD patients, we 219 

conducted an exploratory analysis to examine whether sCUD patients with a 220 

concomitant problematic alcohol use had GM volumes that differed significantly from 221 

sCUD with no concomitant problematic alcohol use. We therefore conducted within 222 

sCUD group linear mixed model analysis, where the computed z-scores of GM volume 223 

was the dependent variable, factors were lateralization, subregions and group (i.e., sCUD 224 

with problematic alcohol use Vs. no problematic alcohol use), covariates were age and 225 

gender and random factor was participants.  226 

 227 

Results 228 

In the subsequent results section, we only report group-related interaction effects and 229 

p-values of significant post-hoc tests, for clarity’s sake (Supplementary Table 1 for all 230 

effects).  231 

Main effects 232 

Mixed-model conducted on insula subregions z-scores revealed that all main effects 233 

were significant: we found main effects of group (F(2, 144) = 39.37, p<0.001), 234 



lateralization (F(1, 1584) = 52.14, p<0.001) and subregion (F(5, 1584) = 43.95, p<0.001). 235 

Subsequent post-hoc comparisons (both p<0.001) showed lower insula volume in sAUD 236 

and sCUD compared to HC, while the two patient groups had, overall, similar insular 237 

volume. Post-hoc comparisons on main lateralization effect revealed that right insula 238 

had lower volume than left insula (p<0.001). Following subregions post-hoc 239 

comparisons, we found ALG to have significantly lower GM volume than all other five 240 

subregions (from anterior to posterior insula, all p-values <0.001): AIC, ASG, MSG, PSG 241 

and PLG. Moreover, PSG showed lower GM volume than AIC (p<0.001), ASG (p<0.001) 242 

and MSG (p=0.002). PLG had lower volume than AIC (p=0.02) and ASG (p=0.003). 243 

Group by lateralization interaction 244 

We found significant lateralization by group interaction effect (F(2, 1584) = 19.83, 245 

p<0.001), with right-sided volume deficit for sAUD (p<0.001) and sCUD (p=0.002), which 246 

was not found in HC. Moreover, sAUD and sCUD had lower right insula volume than HC 247 

and the left insula of sAUD and sCUD had lower volume than the left insula of HC (all 248 

p-values <0.001). However, for both right and left insula, post-hoc comparisons showed 249 

that sAUD and sCUD had similar GM volume.  250 



Group by subregion interaction 251 

Group by subregion interaction effect was significant (F(10, 1584) = 14.06, p<0.001). 252 

Subsequent post-hoc comparisons revealed that all of the six insular subregions of the 253 

patient groups had lower volumes than the ones of the HC (from rostral to posterior 254 

insula): AIC (sAUD: p=0.007; sCUD: p<0.001), ASG (sAUD & sCUD with both p<0.001), 255 

MSG (both p<0.001), PSG (both p<0.001), ALG (both p<0.001) and PLG (both p<0.001). 256 

Volume differences between sAUD and sCUD were not significant. 257 

Post-hoc comparisons showed that the ALG of sCUD and sAUD had lower GM volume 258 

than all other five subregions (ant-to-post): AIC (sAUD & sCUD with both p<0.001), ASG 259 

(both p<0.001), MSG (both p<0.001), PSG (both p<0.001) and PLG (both p<0.001). 260 

Moreover, the AIC of sCUD showed lower GM volume than their ASG (p=0.002), the PSG 261 

was more atrophied than their ASG and MSG, and their PLG had lower volume than 262 

their ASG and MSG (all p-values <0.001). For sAUD patients, post-hoc comparisons 263 

showed that MSG (p=0.04) and PSG (p<0.001) were more atrophied than AIC. 264 

 Group by lateralization and subregion triple interaction (Figure 1) 265 



Subregion GM volume varied significantly depending on group and lateralization (F(10, 266 

1584) = 4.43, p<0.001). More specifically, we found for all six right subregions that 267 

patient groups had lower volumes than HC’s (ant-to-post insula): AIC (sAUD: p=0.03; 268 

sCUD: p<0.001), ASG (sAUD & sCUD with both p<0.001), MSG (both p<0.001), PSG 269 

(both p<0.001), ALG (both p<0.001) and PLG (both p<0.001). sAUD and sCUD patients 270 

had similar subregions GM volume. 271 

However, for the left insula, the most rostral (AIC) and posterior (PLG) subregion of the 272 

insula of sCUD had lower volume than the ones of both sAUD (AIC: p=0.006; PLG: 273 

p<0.001) and HC (AIC: p<0.001; PLG: p<0.001), while sAUD and HC had similar AIC and 274 

PLG volume. For the four other insular subregions, post-hoc comparisons showed 275 

significant lower insula volumes for the two patient groups compared to HC, but no 276 

difference between sAUD and sCUD (ant-to-post): ASG (sAUD: p=0.015; sCUD: p<0.001), 277 

MSG (sAUD: p=0.002; sCUD: p=0.026), PSG (sAUD & sCUD with both p<0.001) and ALG 278 

(both p<0.001). 279 

Figure 1 280 

Exploratory sCUD (problematic alcohol use Vs. not) analysis (Supplementary Figure 1) 281 



This linear mixed model analysis found that sCUD patients who had problematic alcohol 282 

use (n=38) did not show a different pattern of GM abnormalities of the insula than 283 

sCUD with no problematic alcohol use (n=23, F(1, 59) = 0.71, p=0.40). 284 

 285 

Conclusions 286 

This study provides a novel and refined exploration of insula GM profile in two 287 

substances use disorders, thus disentangling general insular macrostructural 288 

abnormalities across substances from substance-specific volume deficit profiles. More 289 

specifically, our results have four main implications, respectively related to overall shared 290 

GM insula lower volume, volume deficits lateralization effect, similarities and specificities 291 

of the subregions GM abnormalities across substances, and specific volume deficits of 292 

left AIC and PLG in sCUD. 293 

Firstly, we showed shared alteration of overall insula GM volume in SUD. Theoretical 294 

models and empirical findings concur on insula key role in addiction [26] but a 295 

fundamental contradiction remains across previous work. On the one hand, major 296 

models [17] and seminal studies [18] theorize that addictive states are related to 297 



increased insula activation (leading to intense and irrepressible craving [40]), as notably, 298 

insular damage would lead to cessation of addictive states [18]. However, on the other 299 

hand, other studies report insula to be desensitized in addiction, as it undergoes major 300 

structural (e.g., insula GM volume deficit in SUD [27]) modifications in addiction. At the 301 

anatomical level, we found the insula to be structurally altered in addiction, since in 302 

both sAUD and sCUD we found insula to have lower volume than in HC. While 303 

anatomical findings warrant any conclusion at the functional level, we could however 304 

hypothesize that, as soon as in the subclinical binge/intoxication stage [17], an 305 

hypersensitized insula to substance-related cues would already be present [13]. Then, 306 

due to mechanisms including notably neurotoxic effect of substances, a damaged insula 307 

would thus be observed in the preoccupation/anticipation stage [17], when the 308 

addiction is already set–which, due to its impediment, would maintain the addiction. 309 

This suggests that insula would contribute to all stages of the addiction framework, 310 

albeit differently. Noteworthy, while longitudinal studies are needed to explore such 311 

hypothesis, there are already reports in binge-drinkers of insula hyperactivation (e.g., 312 

while undergoing the Iowa gambling task [41]) and of higher volumes of insula white 313 

matter, that is notably associated to alcohol craving [42]. 314 



Secondly, our results identify lateralization effect as we observed right-sided volume 315 

deficit in both sAUD and sCUD. This lateralization trend, already reported in sCUD [43] 316 

and sAUD [23], might constitute predisposing risk factor for sAUD emergence [44]. 317 

While the current study design, focusing on insula GM at the anatomical level, prevent 318 

any conclusion at the functional level, one possible explanation for this right-sided 319 

lateralization effect could be found in insular role as neural substrate of craving and 320 

interoception, which are both related to preferential activation of the right insula [45-321 

47]. In fact, according to interoception models, as interoceptive information is being 322 

processed through insula, it is in right anterior insula that interoceptive information 323 

operates its final and highest-level processing, enabling a sense of the self [7;48]. Thus, 324 

one implication of this stronger reduction of GM volume in right insula could be 325 

associated to disruption of sentient-self that is observed in SUD, which takes multiple 326 

forms such as interoceptive impairments [49], abnormal emotions experiencing and 327 

impeded decision making [50].  328 

Thirdly, sCUD and sAUD patients have differential pattern of volume deficits of insular 329 

subregions. These results, which further highlight the need to follow refined parcellation 330 

of insula, provides first insights on the patterns of commonalities and specificities in 331 



substance profiles of macrostructural abnormalities. Regarding shared insular GM lower 332 

volume between SUD, there is major GM volume deficits of the ALG (localized in the 333 

posterior insula) compared to other insula subregions. Current study results concur with 334 

prior ones regarding volume deficit of posterior insula in sCUD [51] and sAUD [52]. As 335 

above-mentioned, interoceptive information follows posterior-to-mid-to-anterior 336 

processing, corresponding to a refinement pathway [6,8-9]. In posterior insula, visceral-337 

related information (e.g., effect of substance on body) is processed [7]. While the current 338 

study design provides information solely at the anatomical level, such results could be 339 

related, at the functional level, with impairments of the first steps of interoceptive 340 

information processing, which provides objective representation of internal states [7]. 341 

This could explain impairments of body-related perception in SUD, with reports of, for 342 

example, heightened interoceptive sensibility [53] and hyperalgesia [54]. Regarding 343 

specific patterns of lower insular GM volume for sCUD and sAUD, volume deficits 344 

observed in ALG expand to surrounding subregions (i.e., PSG & PLG) in sCUD while, for 345 

sAUD, AIC seems more preserved than its concomitant subregions (i.e., MSG & PSG). 346 

However, to further explore this hypothesized parallel between interoception, craving 347 



and insula volume deficits, further studies going deeper than basic volumetric 348 

exploration and including measures of these processes are needed. 349 

Finally, exploring sAUD and sCUD patterns of insular volume deficit following 350 

twelve-subregions (six bilateral) parcellation further set lights not only to the similarities 351 

but also to the differences in patterns of insula volume deficits. While the integrity of 352 

rostral and posterior subregions of left insula (i.e., AIC & PLG) of sAUD patients is 353 

maintained, this is not the case of sCUD patients. While the current study design using 354 

anatomical data prevents any conclusion at the functional level, possible explanations 355 

for such differences could be inherent to each SUD specificities. For example, a study 356 

exploring the similarities and differences between the two disorders at the clinical level 357 

found sCUD patients to be characterized by heightened impulsivity [55]. As previously 358 

mentioned, anterior insula might highjack cognitive control [14] through its bidirectional 359 

connections with the frontal cortex [10,12]. One explanation of the study results could 360 

be that impulsivity, which is core to sCUD, is related to this specific GM lower volume of 361 

AIC. Another specificity of sCUD has also been underlined through insula maker-gene 362 

exploration and profiling, revealing that insula expresses cocaine-related genes [56]. The 363 

differentiated pattern of GM lower volume in sCUD could be related to this 364 



differentiated gene expression [1,56]. This differentiated pattern of volume deficit could 365 

also be related to specific neurotoxic mechanisms and effects of these substances [57], 366 

which could thus lead to differentiated impairments of insular GM. Thus, to further 367 

comprehend these differences and their association to differentiated volume deficit 368 

profiles, further studies are needed that could, for example, look at insula activation in 369 

sCUD and sAUD but also explore the association between macro- and microanatomy 370 

specificities of sCUD’s insula and their association to clinical profiles of sCUD patients. 371 

Moreover, it would be of interest for future studies to acquire such data on the same 372 

scanner, as our current study data were acquired on two scanners. However, given the 373 

fact that our mixed model has a R-squared conditional value of 0.78, meaning that our 374 

fixed and random model effects explain 78% of the overall variance, it is unlikely that 375 

the group effect is solely explained by the scanner effect. 376 

To conclude, the current study offers the first direct comparison of GM insular 377 

volume in two SUD, using refined parcellation. We found sCUD and sAUD to share 378 

similarities in their overall profile of insula volume deficits, notably regarding right-sided 379 

volume deficit effect but, also, in major alteration of ALG, a region related to the 380 

processing of bodily-information. However, specificities emerged when looking more 381 



precisely at insula subregions, with most anterior (AIC) and posterior (PLG) subregions of 382 

left insula being atrophied in sCUD, while preserved in sAUD. Nevertheless, the current 383 

study results lack prior literature to identify intrinsic differences of these two subregions, 384 

as studies rarely compare directly insula GM volume across substances and, to our 385 

knowledge, never using such a refined parcellation. Our results thus constitute a first 386 

step in the exploration of insula profile of volume deficit specificities in addiction more 387 

generally. 388 
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