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1 Introduction
Robust optimization has emerged as a prevalent method for dealing with uncertain parameters
in optimization. Static robust optimization problems with polyhedral or convex uncertainty
sets lead to deterministic equivalent formulations that are often in the same complexity class as
their deterministic counterparts [4, 2]. However, robust optimization problems in which some
of the decisions can be delayed until after the uncertain parameters are revealed, known as
adjustable robust optimization, still pose theoretical and numerical challenges. In this paper,
we focus on adjustable robust optimization problems with fixed and continuous recourse.
Although these problems have received significant attention from the research community
with various approaches for their exact and approximate solution [1, 3, 5, 6], existing exact
algorithms still do not perform well. In this paper, we propose a novel reformulation of the
problem with an exponential number of semi-infinite constraints and develop a decomposition
algorithm to solve it. We then show through numerical experiments that this algorithm
significantly outperforms the state-of-the-art exact algorithms on a location-transportation
problem.

Section 2 describes our methodological contributions, Section 3 presents our numerical
results, and we finally provide conclusions and future research directions in Section 4.

2 Methodological development
We study the exact solution of linear adjustable robust optimization problems with continuous
and fixed recourse formalized as follows:

min
x∈X

c⊤x + max
ξ∈Ξ

min
y∈R

ny
+

0 (P )

s.t. Wy ≥ h(ξ)− T (ξ)x.

Here x ∈ X denotes the first-stage variables, ξ ∈ Ξ denotes the uncertain parameters and
y ∈ Y(x, ξ) := {y ∈ Rny

+ |Wy ≥ h(ξ) − T (ξ)x} denotes the second stage variables with their
respective feasible regions. Although (P ) is written with a second-stage feasibility problem, it
subsumes the cases where the second-stage problem is an optimization problem. Throughout,
we assume that X is compact, Ξ is a polytope, T (·) and h(·) are affine functions of ξ ∈ Ξ, and
(P ) has an optimal solution.

In the remainder of this section, we first recall the two classical algorithms, namely constraint
generation (CG) [3] and constraint-and-column generation (C&CG) [6]. We then present a
novel reformulation of (P ) and develop a decomposition algorithm to solve it.



2.1 CG and C&CG algorithms

We start by reformulating (P ) as a monolithic mixed-integer linear programming problem with
an exponential number of constraints (and variables). To do so, we first integrate the effect
of uncertainty into the constraints of the first-stage variables, x, so as to obtain an equivalent
nonlinear monolithic reformulation of (P ):

min
x∈X

c⊤x (1)

s.t. max
ξ∈Ξ

min
y∈R

ny
+

W y≥h(ξ)−T (ξ)x

0 ≤ 0. (2)

(1)-(2) is equivalent to (P ) since, for given x ∈ X , the left-hand-side of (2) is equal to +∞ if
and only if there exists ξ ∈ Ξ such that the inner minimization problem in (P ) is infeasible.

We next use linear programming duality on the inner minimization problem of constraint
(2). Since the objective function of the primal problem is zero, the corresponding dual feasible
set, Π := {π ∈ Rmy

+ | W ⊤π ≤ 0}, is a pointed polyhedral cone. Moreover, the dual solution
π = 0 is feasible for any W ∈ Rmy×ny . We conclude that the primal is infeasible if and only if
a dual solution with a strictly positive objective value exists. We, therefore, obtain:

min
x∈X

c⊤x (3)

s.t. max
ξ∈Ξ

max
π∈Π

π⊤(h(ξ)− T (ξ)x) ≤ 0.

We finally transform the maximization over ξ ∈ Ξ and π ∈ Π into a finite but exponential
number of constraints. Indeed, restricting Ξ to its extreme points, ext(Ξ), is sufficient to ensure
a valid formulation [3]. We can further restrict Π to its normalized extreme directions, denoted
dir(Π), since the left-hand-side of each constraint is a linear programming problem defined over
a pointed cone and the right-hand-side is 0. We then obtain the following reformulation of (P )
on which the CG algorithm is based:

min
x∈X

c⊤x (4)

s.t. π⊤(h(ξ)− T (ξ)x) ≤ 0 ∀ (ξ, π) ∈ ext(Ξ)× dir(Π).

The reformulation of (P ) on which the C&CG algorithm is based can, similarly, be derived
from (1)-(2) by introducing second-stage variables yξ for each realization ξ ∈ ext(Ξ) and
creating |ext(Ξ)| copies of the recourse problem to obtain:

min
x∈X , y∈R

|ext(Ξ)|×ny
+

c⊤x (5)

s.t. Wyξ ≥ h(ξ)− T (ξ)x ∀ ξ ∈ ext(Ξ).

Both CG and C&CG algorithms will iteratively solve and reinforce a so-called master
program, which is a relaxation of (4) or (5), until the obtained first-stage solution x̂ ∈ X
is proven to be feasible and hence optimal for (P ). To prove the feasibility of a given first-
stage relaxation solution x̂ ∈ X , a separation subproblem is solved:

max
ξ∈Ξ

max
π∈Π

π⊤(h(ξ)− T (ξ)x̂). (SP (x̂, Ξ, Π))

If the objective value of (SP (x̂, Ξ, Π)) is 0, then x̂ is feasible for (3), hence also feasible for (4)
and (5), and optimal for (P ). Otherwise, the master problem should be reinforced using an
optimal solution of (SP (x̂, Ξ, Π)) in order to cut off the current infeasible solution x̂.



Algorithm 1: Unified framework for CG and C&CG algorithms
1 (MP ) := minx∈X c⊤x
2 do
3 Let x̂ be an optimal solution of (MP )
4 Let (ξ∗, π∗) be an optimal solution of (SP (x̂, Ξ, Π))
5 if π∗⊤(h(ξ∗)− T (ξ∗)x̂) > 0 then
6 CG : add constraint π∗⊤(h(ξ∗)− T (ξ∗)x) ≤ 0 to (MP )
7 C&CG : add yξ∗ ∈ Rny with constraints Wyξ∗ ≥ h(ξ∗)− T (ξ∗)x to (MP )
8 while π∗⊤(h(ξ∗)− T (ξ∗)x̂) > 0

Output: An optimal solution of (P ) : x̂

Details of the CG and C&CG algorithms are presented in Algorithm 1 in a unified manner.
Assuming that (SP (x̂, Ξ, Π)) returns extreme points and extreme directions of Ξ and Π,
respectively, for x̂ ∈ X , the CG and C&CG algorithms converge in at most |ext(Ξ)| × |dir(Π)|
and |ext(Ξ)| iterations, respectively. In addition to an improved worst-case complexity, the
C&CG algorithm often has better numerical performance compared to CG [6]. This can be
explained by the quality of the dual bound obtained by the solution of the C&CG master
problem compared to that of CG. Indeed, by construction, the dual bound obtained by solving
the C&CG master is always larger than that of the CG master provided that the two contain
the same uncertainty realizations Ξ̃ [6]. On the other hand, adding an entire second-stage
system to the master problem at each iteration within the C&CG algorithm can hinder the
solution of the master problem, especially if many realizations are needed for convergence, or
the second-stage system has a complex structure.

2.2 Semi-infinite constraint generation algorithm

The proposed algorithm aims to combine the advantages of CG and C&CG algorithms, that
is, maintaining a smaller master problem while providing good-quality dual bounds. We start
by deriving a reformulation of (P ) on which the algorithm will be based. To do so, we change
the maximum operator over ξ ∈ Ξ and π ∈ Π in (3) to enumeration operators. We further
restrict Ξ to its extreme points ext(Ξ) to obtain equivalently:

min
x∈X

c⊤x (6)

s.t. π⊤(h(ξ)− T (ξ)x) ≤ 0 ∀ ξ ∈ ext(Ξ),∀ π ∈ Π.

Model (6) is composed of an exponential number of semi-infinite constraints due to the fact
that Π is a polyhedral cone. To address the exponential nature of the constraint, we employ a
decomposition algorithm based on a relaxation of (6), similar to CG and C&CG algorithms,
defined by restricting the set of constraints to Ξ̃ ⊆ ext(Ξ):

min
x∈X

c⊤x (7)

s.t. π⊤(h(ξ)− T (ξ)x) ≤ 0 ∀ ξ ∈ Ξ̃,∀ π ∈ Π.

Then, to address the semi-infinite nature of the constraints, we can interpret them as classical
static robust constraints. One approach is to apply LP duality theory to obtain the master
problem of the C&CG algorithm with Ξ relaxed to Ξ̃. The second approach is to generate the
semi-infinite constraints dynamically as needed. This approach restricts the set of constraints
relative to each realization ξ ∈ Ξ̃ to Π̃ξ ⊆ dir(Π). Let us further denote by Π̃ := (Πξ)ξ∈Ξ̃
the family of sets of generated dual solutions associated with realizations in Ξ̃. The master
problem of the constraint generation algorithm solving (7) can be written as:

min
x∈X

c⊤x (8)

s.t. π⊤(h(ξ)− T (ξ)x) ≤ 0 ∀ ξ ∈ Ξ̃,∀ π ∈ Π̃ξ.



Any solution x̂ ∈ X of (8) is feasible for (7) if for all ξ ∈ Ξ̃ we have that zSP(x̂, ξ) :=
maxπ∈Π π⊤(h(ξ)− T (ξ)x̂) ≤ 0. We refer to this linear problem as (SP (x̂, {ξ}, Π)). Otherwise,
for some ξ̂ ∈ Ξ̃ we have that zSP(x̂, ξ̂) > 0 and π∗ ∈ arg maxπ∈Π π⊤(h(ξ̂) − T (ξ̂)x̂) should
be added to Π̃ξ̂. When no further violated cuts are found, the optimal value of (8) coincides
with that of (7). The proposed algorithm builds upon this perspective in order to further
strengthen the master problem (8) without resorting to the solution of bilinear separation
problems. Indeed, when a violated cut π∗⊤(h(ξ̂) − T (ξ̂)x̂) ≤ 0 is identified, one can perform
a cut selection operation in order to determine if a more deeply violated cut can be found by
solving the linear program (SP (x̂, Ξ, {π∗})) : maxξ∈Ξ π∗⊤(h(ξ) − T (ξ)x̂), where the optimal
value is necessarily strictly positive. If the optimal solution of this problem, ξ∗, is different
from ξ̂, then we will obtain a cut that is potentially deeper at x̂. Further, ξ∗ can now be
incorporated into Ξ̃ (if it is not already present) in order to expand the set of realizations from
which violated cuts can be generated. In the following, we call this improved version of the
constraint generation algorithm the augmented constraint generation algorithm.

Algorithm 2: Semi-Infinite Constraint Generation (SICG) algorithm
1 Ξ̃← ∅, (MP ) := minx∈X c⊤x
2 do
3 Run Algorithm 3 (which actualizes (MP ), Ξ̃, and x̂)
4 Let (ξ∗, π∗) be an optimal solution of (SP (x̂, Ξ, Π))
5 if π∗⊤(h(ξ∗)− T (ξ∗)x̂) > 0 then
6 add constraint π∗⊤(h(ξ∗)− T (ξ∗)x) ≤ 0 to (MP ) ; Ξ̃← Ξ̃ ∪ {ξ∗}

7 while π∗⊤(h(ξ∗)− T (ξ∗)x̂) > 0
Output: An optimal solution of (P ) : x̂

Algorithm 3: Augmented constraint generation algorithm
1 do
2 feasible← true
3 Let x̂ be an optimal solution of (MP )
4 for ξ̂ ∈ Ξ̃ do
5 Let π∗ be an optimal solution of (SP (x̂, {ξ̂}, Π)) // cut generation phase
6 if π∗⊤(h(ξ̂)− T (ξ̂)x̂) > 0 then
7 feasible← false
8 Let ξ∗ be an optimal solution of (SP (x̂, Ξ, {π∗})) // cut selection phase
9 Add π∗⊤(h(ξ∗)− T (ξ∗)x) ≤ 0 to (MP)

10 if ξ∗ /∈ Ξ̃ then Ξ̃← Ξ̃ ∪ {ξ∗} // pool expansion phase

11 while ¬feasible

The overall SICG algorithm is thus composed of two decomposition algorithms, Algorithm 2
that solves (P ), and the augmented constraint generation algorithm, Algorithm 3, that solves
the master problem of the latter using cutting planes. In Algorithm 2, the relaxed master
problem is iteratively solved and reinforced until its solution x̂ ∈ X is proven feasible, similarly
to CG and C&CG algorithms. The main difference lies in solving the master problem (7)
using the augmented constraint generation algorithm. Further, when a violated constraint is
identified through the solution of the bilinear separation problem (SP (x̂, Ξ, Π)), Ξ̃ is expanded
with ξ∗, leading implicitly to the addition of a semi-infinite constraint in Line 6. In Algorithm
3, the feasibility of the current optimal solution of (8) with respect to the already generated
semi-infinite constraints in Ξ̃ is tested at Line 6. When a violated constraint is found, the
cut selection phase is performed at Line 8, potentially exhibiting a new realization ξ∗, which



augments the pool of semi-infinite constraints associated with Ξ̃.
Under the assumption that the subproblems return extreme points and extreme directions

of Ξ and Π, respectively, for x̂ ∈ X , it can be shown that Algorithm 2 converges in at most
ext(Ξ) iterations and returns an optimal solution of (P ). Although the worst-case complexity
of Algorithm 2 is the same as that of the C&CG algorithm we may expect a better numerical
performance. To see why this would be the case, we first point out that both the solution of
(7) and the master problem of C&CG with Ξ̃ ⊆ Ξ yield the same dual bound. While C&CG
uses an entire second-stage system for each realization in Ξ̃ the proposed algorithm uses only
cutting planes. Further in Line 10 of Algorithm 3 we may expand the set Ξ̃ which has the
potential to reduce the number of times a bilinear separation problem needs to be solved. We
address the effects of these improvements in our numerical section.

3 Numerical study
In this section, we test the algorithms presented in Section 2 on the robust location-transport-
ation problem, on which the C&CG algorithm is the state-of-the-art approach [6].

In this problem, a subset of locations among a set I of potential locations should be selected
(fixed cost si ≥ 0 for i ∈ I), and their capacity should be chosen (variable cost ai ≥ 0 and a
maximum capacity ci ≥ 0 for i ∈ I) with the aim of serving the uncertain demand of a set J of
customers. This demand is modeled as d̄j + d̂jδj , with d̄j , d̂j ≥ 0, where uncertain parameters
δj for j ∈ J are governed by the uncertainty set B∆

J := {δ ∈ [0, 1]|J ||
∑

j∈J δj ≤ ∆}. We further
consider that the chosen capacity of an open facility i ∈ I can be reduced by an uncertain
factor γi, with γi for i ∈ I governed by the uncertainty set BΓ

I := {γ ∈ [0, 1]|I||
∑

i∈I γi ≤ Γ}.
The available capacity at each facility i ∈ I can then be used to satisfy the demand of customer
j ∈ J at a unit cost fij with unsatisfied demand costing f̂ = max(i,j)∈I×Jfij per unit.

Let xi, zi, hj , and yij represent the choice of opening facility i ∈ I, the capacity implemented
at i ∈ I, the unsatisfied demand of customer j ∈ J , and the quantity transported from i ∈ I
to j ∈ J , respectively. The robust location-transportation problem can be formulated as:

min
x∈{0,1}|I|, z∈R|I|

+
zi≤cixi ∀ i∈I

∑
i∈I

sixi + aizi + max
γ∈BΓ

I

δ∈B∆
J

min
y∈R|I|×|J|

+ , h∈R|J|
+

∑
(i,j)∈I×J

fijyij +
∑
j∈J

f̂hj

s.t.
∑
j∈J

yij ≤ zi(1− γi) ∀ i ∈ I

∑
i∈I

yij + hj ≥ d̄j + d̂jδj ∀ j ∈ J

In our numerical study, we compare the proposed algorithm, denoted SICG hereafter,
with the CG and C&CG algorithms. To do so, we randomly generate 80 instances with
30 facilities and 30 customers according to the procedure presented in [6]. We vary Γ and ∆ in
{0, 6, 6.5} and {10, 10.5}, respectively. To assess the contribution of each algorithmic element,
we also report the performance of versions without the pool expansion and the cut selection
phases (replaced by: ξ∗ ← ξ̂), denoted by SICG-noPE, and SICG-noPECS, respectively. All
algorithms are implemented in Julia 1.9 and run on Cascade Lake Intel Xeon Skylake Gold
6240 @ 2.6 GHz CPU machines on a single thread with a 5 hour time limit.

Our results, provided in Figure 1, show that C&CG performs significantly better then CG, as
previously observed in the literature [6]. Further, algorithms C&CG and SICG-noPECS behave
very similarly since the master problem of C&CG is equivalent to (7) for given Ξ̃ ⊆ Ξ. The
cut selection phase proves its efficiency by reducing the number of constraints and uncertainty
realizations required for convergence but does not significantly decrease the number of times
the bilinear separation problem is solved. This subproblem is clearly the bottleneck of all
algorithms, as it constitutes a significant percentage of their total execution time. It follows
that decreasing the number of times it is solved can have a considerable impact on the overall
performance, which is reflected by the superior performance of the complete SICG algorithm.
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Method Time TOT Time MP # MP # Ctr |Ξ̃| Time SP # SP
CG 4873.5 121.3 255.9 254.9 0.0 4751.5 255.9

C&CG 1192.5 2.0 12.2 682.5 11.2 1189.9 12.2
SICG-noPECS 1203.5 21.3 132.9 216.0 11.2 1181.6 12.2

SICG-noPE 1248.3 11.4 103.7 145.5 9.7 1236.3 10.7
SICG 583.9 15.0 43.1 626.3 70.8 568.0 3.8

FIG. 1: On the top, performance profiles for all instances. On the bottom, data in the table is averaged
over instances solved by all methods (201/480). Time TOT is the total time. Time MP includes the
master solution time (model (MP )) and, in SICG variants, the time to solve the linear separation
problems. #MP is the number of times (MP ) is solved. Time SP and #SP are, respectively, the time
to solve bilinear separation problems and the number of times they are solved. #Ctr is the number
of constraints and |Ξ̃| is the number of uncertainty realizations added to the master.

Indeed, the pool expansion phase augments Ξ̃ without resorting to the bilinear separation
problem, dividing the number of times it must be solved by 3.2 on average.

4 Conclusion
In this paper, we present a semi-infinite constraint generation algorithm to solve adjustable
robust optimization problems with continuous and fixed recourse. Our numerical results
demonstrate the superior numerical performance of this algorithm with respect to the state-of-
the-art on a location-transportation problem. They further emphasize the numerical difficulty
of the bilinear separation problem that needs to be repeatedly solved in all algorithms revealing
the need for further research into the solution of such problems as well as alternative ways of
certifying feasibility/optimality in the context of adjustable robust optimization.
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