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Abstract
Bacteria play key roles in the function and diversity of aquatic systems, but aside from study of specific bloom sys-

tems, little is known about the diversity or biogeography of bacteria associated with harmful cyanobacterial blooms
(cyanoHABs). CyanoHAB species are known to shape bacterial community composition and to rely on functions pro-
vided by the associated bacteria, leading to the hypothesized cyanoHAB interactome, a coevolved community of syn-
ergistic and interacting bacteria species, each necessary for the success of the others. Here, we surveyed the
microbiome associated with Microcystis aeruginosa during blooms in 12 lakes spanning four continents as an initial
test of the hypothesizedMicrocystis interactome. We predicted that microbiome composition and functional potential
would be similar across blooms globally. Our results, as revealed by 16S rRNA sequence similarity, indicate that
M. aeruginosa is cosmopolitan in lakes across a 280� longitudinal and 90� latitudinal gradient. The microbiome com-
munities were represented by a wide range of operational taxonomic units and relative abundances. Highly abundant
taxa were more related and shared across most sites and did not vary with geographic distance, thus, like Microcystis,
revealing no evidence for dispersal limitation. High phylogenetic relatedness, both within and across lakes, indicates
that microbiome bacteria with similar functional potential were associated with all blooms. WhileMicrocystis and the
microbiome bacteria shared many genes, whole-community metagenomic analysis revealed a suite of biochemical
pathways that could be considered complementary. Our results demonstrate a high degree of similarity across global
Microcystis blooms, thereby providing initial support for the hypothesizedMicrocystis interactome.
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Seasonally recurrent harmful algal blooms, particularly those
of toxic cyanobacteria (cyanoHABs), are a global phenomenon
of growing concern impacting water quality, ecosystem ser-
vices, and human health associated with freshwater systems
(Paerl and Otten 2013). Accelerating eutrophication and cli-
mate change (e.g., rising temperatures and shifting hydrological
regimes) has resulted in the proliferation, intensification, and
prolongation of cyanoHABs around the world (Carey et al.
2012; O’Neil et al. 2012; Paerl and Paul 2012; Mantzouki et al.
2018). Water quality in freshwater systems is intimately linked
to anthropogenic activities. With rapidly expanding agricul-
tural and urban development, as well as prolonged stratification
periods due to global warming, many systems have become
eutrophic or at risk of eutrophication. Although there is debate
regarding the roles of specific nutrients in cyanoHAB dynamics
(Conley et al. 2009; Paerl et al. 2011, 2016; Schindler 2012;
Schindler et al. 2016), there is general agreement that increased
nutrient inputs lead to increases in cyanobacterial biomass.
CyanoHABs can alter ecosystem function by causing anoxia,
depleting dissolved nutrients, and shifting zooplankton com-
munities, all which alter carbon flows (Paerl and Otten 2013).
Such blooms can produce hundreds of secondary metabolites,
including hepatotoxins, neurotoxins, and dermatotoxic irri-
tants, all of which can pose serious health threats to humans,
livestock, and wildlife (Carmichael 2001; Huisman et al. 2018).

CyanoHABs, once thought to be homogeneous
populations, are now known to be accompanied by a diverse
suite of heterotrophic bacteria (Eiler and Bertilsson 2004;
Steffen et al. 2012; Xu et al. 2018), which may play an impor-
tant role in cyanobacterial bloom health and duration. First,
Bell and Mitchell (1972) defined this potential interactive rela-
tionship between cyanobacteria and heterotrophic bacteria as
the “phycosphere” (Paerl and Kellar 1978, 1979; Paerl and
Millie 1996). It is well known that cyanobacteria generate
abundant dissolved organic carbon resources to the benefit of
nearby heterotrophs that can subsequently return benefits to
the cyanobacteria, including removal of reactive oxygen spe-
cies, CO2 generation, and nutrient recycling (Dziallas and
Grossart 2011, 2012; Steffen et al. 2012; Paerl and Otten
2013). Moreover, Microcystis has been shown to alter ambient
environmental conditions by decreasing oxygen concentra-
tions and light availability (Paerl and Otten 2016), as well as
by altering CO2 and pH levels (Havens 2008), which are likely
to affect nearby bacteria. Indeed, studies have found that
cyanobacterial bloom species strongly impact bacterial com-
munity composition (e.g., Nodularia—Salomon et al. 2003,
Microcystis—Li et al. 2011; Steiner et al. 2017). Specifically,
heterotrophic bacteria can form close-knit aggregates with
Microcystis, and studies have shown greater similarity between
attached Bacteria and Archaea communities than between
free-living assemblages during Microcystis blooms (Cai et al.
2014; Yang et al. 2017; Batista et al. 2018; Xu et al. 2018).

One reason for this close association could be that, like other
Bacteria and Archaea (Swan et al. 2013; Giovannoni et al.

2014), Cyanobacteria have small genomes compared with
eukaryotes (Herdman et al. 1979; Humbert et al. 2013). While
this may be beneficial for rapid reproduction and evolution, it
is not necessarily conducive for cyanoHAB formation. Genome
reduction can lead to loss of functions (Giovannoni et al.
2014), but can also confer a selective advantage if the organism
can obtain the lost function through a public good as described
by Morris et al. (2012) in the Black Queen Hypothesis. This
hypothesis suggests that natural selection can act on “leaky”
functions where a public good is produced and available to the
whole community. Coupled with selection toward smaller
genomes to reduce replication-related fitness costs, some mem-
bers of the community can receive metabolic products as public
goods, which are useful metabolites or other necessary
resources that are leaked into the cell-external environment.
With such products available extracellularly, these “leaky”
functions become dispensable and once lost confer a selective
advantage to that organism (Pande and Kost 2017). Garcia
et al. (2015) proposed that this coevolved community of syner-
gistic and interacting bacteria species was a bacterial commu-
nity microbiome or “interactome,” analogous to the
microbiome concept described for humans (Human Micro-
biome Project Consortium 2012), soils (Fierer 2017), and coral
reefs (Bourne et al. 2013). We hypothesize that the bacteria
associated with Microcystis may be providing functions that
help sustain it during blooms.

Given the small size of bacterial genomes and presumed
ubiquity of Microcystis aeruginosa (Kützing) Kützing, if there
exists a mutualistic interactome, we would predict a micro-
biome of a certain species of associated bacteria or perhaps met-
abolic functions to be preserved across geographically distinct
M. aeruginosa blooms. We would also expect communities to be
more similar than predicted by traditional biogeographic the-
ory, where community similarity is expected to decrease with
increasing geographic distance (MacArthur 1984; Nekola and
White 1999; Green and Bohannan 2006; Nemergut et al. 2013).
As a first test of this prediction, we examined community com-
position and function of the M. aeruginosa bloom microbiomes
from 12 lakes across four continents, addressing the specific
prediction that if global Microcystis blooms were composed of
the same taxon, the blooms would support and require a simi-
lar suite of bacterial-provided functions, thus leading to highly
similar bacterial communities across Microcystis blooms regard-
less of geographic location.

Methods
Sample collection

Samples were collected from 12 lakes spanning the globe dur-
ing the peak of the Microcystis blooms between May 2016 and
July 2017 (Fig. 1). Three surface water samples were taken from
each lake with a clean 1000-mL beaker or Erlenmeyer flask and
set aside undisturbed for 10 min to allow the cyanobacteria to
float to the surface. Concentrated Microcystis biomass was
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poured off the top of the flask or beaker through a Nitex screen
(100 μm pore size) stretched between a PVC pipe and PVC cou-
pler to collect large Microcystis aggregates on the screen. Each
Nitex screen was rolled up using forceps and transferred into
2-mL screw cap tubes containing 1.0 mL DNA preservative
(DNA/RNA Shield, Zymo Research). This process was carried out
for each water sample. Tubes were stored at −20�C until ship-
ping. They were shipped at ambient temperature and once
received were stored at −20�C prior to extraction.

DNA extraction and sequencing
DNA extraction from the preserved samples was performed

using Zymo Research Quick-DNA Fecal/Soil Microbe Miniprep
Kits (Zymo Research) following the manufacturer’s rec-
ommended protocol. The procedure involved placing the Nitex
screen into the lysis tube with glass beads, followed by mixing
with a Bead Beater vortex mixer (BioSpec products) for 2 min as
a first step in the extraction process. Extracted DNA was
collected by decanting and used as a template for amplifying
bacterial 16S rRNA gene through PCR. Forward (S-D-Bact-
0341-b-S-17, 50-CCTACGGGNGGCWGCAG-30) and reverse
primers (S-D-Bact-0785-a-A-21, 50-GACTACHVGGGTATCTAAT
CC-30) were used for targeting the V3 and V4 regions of bacterial
16S rRNA gene (Klindworth et al. 2013). Each 50-μL PCR reac-
tion mix contained 2 μL of template (~ 30 ng), 2 μL of each
primer (0.4 μM, final concentration), and 25 μL PCR master mix
containing DreamTaq polymerase (Thermo Fisher Scientific).
Thermocycler conditions were as follows: 94�C for 3 min
followed by 28 cycles of 94�C for 30 s, 55�C for 60 s, and 72�C
for 75 s, and a final elongation step at 72�C for 10 min.
PCR products were visualized on 1% agarose gels to confirm
amplification and then purified by QIAquick PCR purification
kit (Qiagen) to remove primers. From each purified sample,
4 μL were added to a second PCR mixture containing
barcoded primers for multiplexed Illumina sequencing. Through

re-amplification for another eight cycles in the second PCR reac-
tion, each sample received a unique “barcode” sequence as previ-
ously described (Wawrik et al. 2012). The secondary PCR
products were quantified with the Qubit dsDNA BR Assay kit (Life
Technologies) on a Qubit 2.0 Fluorometer. Amplicons of all sam-
ples were pooled in an equimolar amount. Pooled samples were
purified using a QIAquick PCR Purification Kit (Qiagen) and
requantified with the Qubit. Paired-end sequencing of the library
was performed at the Oklahoma Medical Research Foundation,
using the MiSeq Reagent Kit (v3) with the read length set to
2 × 300 base pairs (bp).

Shotgun metagenomics was used to profile functional poten-
tial and to recover whole genome sequences from theMicrocystis
and microbiome communities. Metagenomic sequencing was
performed on two replicates per sample. A 300-bp paired-end
library was constructed according to the instructions from
Illumina. The libraries were sequenced on an Illumina Genome
Analyzer IIx at the Oklahoma Medical Research Foundation.
Eighteen metagenomes (two per lake) were multiplexed on two
lanes, and a median total of ~ 48 million raw paired-end reads
was obtained for each sample (range: ~ 32–96 million, due to
variations in library loading).

Sequence processing and analysis
The 16S raw sequence data was processed via the QIIME pipe-

line (V1.9.1) (Caporaso et al. 2010), integrated with UPARSE-
OTU algorithm. Paired-end reads were joined using the
join_paired_ends.py function according to the SeqPrep method
(https://github.com/jstjohn/SeqPrep) with a minimum overlap
of 150 bp. The quality-joined fragments were demultiplexed
and primer sequences removed. After using the FASTQ Quality
Filter (q = 20, p = 80) to remove unqualified sequences, the
remaining fragments were clustered into operational taxonomic
units (OTUs) at the 97% similarity level with UPARSE OTU clus-
tering (Edgar 2013) which generates a representative set of high-
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Fig. 1. Location of the 12 lakes across the globe. These samples represent a 280� longitudinal and 90� latitudinal gradient.
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quality OTU sequences and filters out chimeric sequences via
the de novo mode (using usearch 11.0.667; Edgar 2010). Taxo-
nomic annotations were assigned to each high-quality OTU
sequence by RDP’s naive Bayesian rRNA Classifier (Wang et al.
2007) against the SILVA SSUv132 Reference Database (Quast
et al. 2012), at the confidence threshold of 80%. To perform
phylogenetic analysis, OTU sequences were also aligned against
the SILVA database with PyNAST (Caporaso et al. 2009), filtered,
and a phylogenetic tree constructed with FastTree (Price et al.
2010). OTUs that failed in alignment or were classified as either
eukaryote, archaea, chloroplast, or mitochondria were discarded
from the OTU table, as were OTUs with fewer than 100 counts
summed across samples.

To compare the community structure of the Microcystis
microbiome among lakes, we extracted non-cyanobacterial
OTUs from the OTU table, and then retrieved their associated
representative sequences. A phylogenetic tree with non-
cyanobacterial OTU sequences was constructed, as detailed
above. OTU tables without cyanobacteria were rarified to the
number of reads of the sample with the fewest reads. The
rarified OTU table with pooled replicates was used for all
downstream diversity calculation and statistical analysis.

Following quality trimming (Trimmomatic v 0.39; Bolger
et al. 2014), with reads shorter than 20 bp being discarded and
removal of human genes (MetaWRAP; Uritskiy et al. 2018), the
clean metagenomic data were assembled into contigs by de novo
assembly of each sample sequence using metaSPAdes (SPAdes
v.3.13.0; Bankevich et al. 2012). The interactome (i.e., Microcystis
and its microbiome) metagenomic assembled genomes (MAGs)
were generated for each lake using three tools with default
options: MaxBin (v.2.2.6) (Wu et al. 2015), MetaBAT (v. 2.12.1)
(Kang et al. 2015), and CONCOCT (v. 1.0.0) (Alneberg et al.
unpubl. preprint doi: arXiv:1312.4038v1 [q-bio.GN]), followed
by integration using DAS Tool (using a threshold of ≥ 70%
genome completeness) (v. 1.1.1) (Sieber et al. 2018). The com-
plete MAGs were then divided into two groups, Microcystis and
heterotrophic bacteria, and pooled across the lakes. Protein-
encoding genes of each group were annotated from the contigs
with Prokka (v1.13.3) (Seemann 2014). Duplicate genes were
removed with CD-HIT-EST (v 4.6) (Hahn et al. 2016). Genes were
then converted into protein sequences using Prokka. The protein
sequences of each group were annotated to Kyoto Encyclopedia
of Genes and Genomes (KEGG) orthologies to characterize indi-
vidual gene functions using GhostKOALA (Kanehisa et al. 2016).
To calculate the gene abundance in each sample, all KEGG anno-
tated genes were first aligned with the clean reads by bowtie2
alignment software (Langmead and Salzberg 2012). The number
of reads mapping to each gene was extracted using the SAMtools
(v1.3.1) “idxstats” command. The abundance of each gene in all
samples was calculated by get_count_table.py (https://github.
com/edamame-course/Metagenome/blob/master/get_count_
table.py). To compare the functions contributed by the micro-
biome to those of the Microcystis, we constructed complete
KEGG pathways (no less than one missing gene). Due to the

high phylogenetic and functional similarities found across lakes
(see the Results section), we pooledMicrocystisMAGs and micro-
biome MAGs (Li et al. 2018), respectively, in order to generate
the pathways. We uploaded the KO numbers into the online
KEGGmapper to construct the complete KEGG pathways.

Due to the low depth of coverage for Microcystis microbiome
genes, we attempted to maximize the probability of identifying
functional potential in the Microcystis microbiomes by repeating
the process outlined above for MAGs using the total meta-
genomic data. We separated the Microcystis reads from the micro-
biome reads by aligning the clean metagenomic data with
16 Microcystis genomes (10 M. aeruginosa, 1 Microcystis viridis,
1 Microcystis panniformis, 2 Microcystis flos-aquae, and 2 Microcystis
wesenbergii) using bwa v0.7.15 (Li and Durbin 2009) and splitting
the data based on this alignment. The reads were then assembled
into contigs (SPAdes v3.1.1; Bankevich et al. 2012) and the con-
tigs for each lake (Microcystis and the microbiome kept separate)
were pooled across lakes into a single group and annotated
(Prokka v1.13.3; Seemann 2014). Duplicate genes were then
removed with CD-HIT-EST (v 4.6) (Hahn et al. 2016). The protein
sequences of each group were annotated to KEGG orthologies,
the gene abundance mapped to each lake, and the data pooled
and complete KEGG pathways constructed as described above.

Raw sequence data in this study have been deposited at the
National Center for Biotechnology Information website under
BioProject accession number PRJNA575023.

Statistical analyses
All statistical analyses were completed in the R statistical

environment v.3.5.1 (R Development Core Team 2018),
except where noted otherwise. We first tested for associations
between geographic distance and community dissimilarity
across samples. We calculated the great circle geographic dis-
tance between sites using the “rdist.earth” function (fields
v.9.6). We calculated Bray–Curtis dissimilarity using “vegdist”
(vegan package v.2.5-3) (Oksanen et al. 2013). UniFrac values,
weighted by abundance, were generated in QIIME. General-
ized linear models (GLM) were used to assess the relationship
between geographic distance and community dissimilarity
measures (using default family = Gaussian, link = identity).
Deviance explained by GLMs coupled with p-values was used
to assess the significance and strength of the relationship.

To examine the phylogenetic relationship among Microcystis
microbiome bacteria within each sample (α-diversity), we calcu-
lated mean-nearest-taxon-distance (MNTD) and the nearest-
taxon-index (NTI) (Webb 2000) using the “mntd” and “ses.
mntd” commands in the Picante package v.1.7 in R (Kembel
et al. 2010; Swenson 2014). NTD is a measure of phylogenetic
distance between each OTU within a sample and its closest rela-
tive in the same sample. The mean is then calculated across all
phylogenetic distances in a sample to give a value of phyloge-
netic relatedness. To determine whether observed phylogenetic
community composition was more or less related (or structured)
than predicted by chance, null models were built by randomly
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shuffling the taxa within each community across the tips of the
phylogeny (null.model = “taxa.labels” in “ses.mntd”) and
recalculating MNTD 999 times (Stegen et al. 2012). The resulting
NTI (which is the negative output of “ses.mntd”) distribution
displays the number of standard deviations that the observed
MNTD is from the mean of the null MNTD values. An αNTI
value less than −2 indicates taxa within the community are
more distantly related than by chance (phylogenetically over-
dispersed), a value greater than 2 indicates taxa are more closely
related than expected by chance (phylogenetically clustered),
and αNTI values between 2 standard deviations of 0 indicate
that the observed community is no different from random
(Webb 2000; Stegen et al. 2012). A two-sample t-test was used to
assess whether the mean αNTI values from across all communi-
ties was significantly different from that of the null distribution.

We used beta-mean-nearest-taxon-distance (βMNTD) and
beta-nearest-taxon-index (βNTI) to quantify the phylogenetic dis-
tance among samples (see Swenson 2014 for R code). Similar to its
α-diversity analog, βMNTD is the mean of the phylogenetic dis-
tances between each OTU in a given sample to their nearest rela-
tive in the comparison sample. Null distributions were generated
by randomizing OTUs across the phylogeny and recalculating
βMNTD 999 times (Stegen et al. 2012). As before, βNTI is the
number of standard deviations that the observed βMNTD is away
from the mean of the null distribution. A value of βNTI less than
−2 indicates more phylogenetic relatedness between samples
than expected by chance, and a βNTI greater than 2 indicates less
phylogenetic relatedness between the two communities than
expected by chance (i.e., species in these communities are more
phylogenetically distant from each other). A two-sample t-test
was used to determine if the mean βNTI for two communities
was significantly different from the null expectation.

The abundance of KEGG genes for the Microcystis micro-
biome for each lake (mapped from the pooled total meta-
genomic data) was used to measure the community functional
dissimilarity using Bray–Curtis (pairwise comparisons between
lakes). GLM were used to assess the relationship between geo-
graphic distance and community functional dissimilarity mea-
sures (using default family = Gaussian, link = identity). To
explore important biogeochemical pathways that may be shared
or different between theMicrocystis and their associated bacteria,
we compared the complete (no more than one gene missing)
KEGG pathways between Microcystis and the microbiome. Due
to the low depth of coverage of the microbiome, we used both
the MAGs complete KEGG pathways and the total metagenome
complete KEGG pathways for this analysis to maximize the
probability of identifying a complete pathway.

Results
The sampled lakes spanned a 280� longitudinal and 90� lati-

tudinal gradient ranging from 444 to 11,777 km apart and repre-
sented M. aeruginosa blooms from four continents (Fig. 1). After

removal of Eukaryota, singletons, chloroplasts, and mitochon-
drial reads, 3.25 million high-quality reads were represented by
454 unique (97% similarity) bacterial OTUs.Microcystis (927 total
OTUs) was dominant in 10 of the 12 lakes and ranged from
65% to 84% of total sequence abundance. Both Taihu and
Wentowsee communities were made up of less than 50% Micro-
cystis (48% and 5%, respectively) sequences suggesting the lakes
were not at peak bloom phase during sampling. As such, these
two lakes were removed from subsequent analyses. Castlerock
was also removed from subsequent analyses due to a loss of one
of the triplicate samples. All Microcystis OTUs with greater than
1000 total abundance were reidentified to species using NCBI
BLAST function (Altschul et al. 1990) and were all identified as
M. aeruginosa, accounting for 79–85% of the total Microcystis
across lakes and 53–68% of all OTU abundances across lakes.
This confirms that, at least at the level of 16S rRNA sequences,
M. aeruginosa is a cosmopolitan bloom-forming species.

The 454 non-cyanobacterial OTUswere associatedwith 35 bac-
terial classes, with most OTUs identified as Alphaproteobacteria,
Bacteroidia, Gammaproteobacteria, Clostridia, Campylobacteria,
Deltaproteobacteria, Negativicutes, Phycisphaerae, Gemmatimo-
nadetes, Acidobacteriia, Ignavibacteria, SM1A07, Melainabacteria,
Cytophagia, Parcubacteria, and Anaerolineae (Fig. 2b). The abun-
dance and taxonomy of the associated bacteria differed among
sites (Fig. 2b) with Alphaproteobacteria, Bacteriodia, and
Gammaproteobacteria classes contributingmost sequences across
sites. Bray–Curtis dissimilarity values were relatively high for all
of the site comparisons indicating large differences in OTUs
among sites (Fig. 3a). Weighted UniFrac, on the other hand, was
generally low, suggesting that among sites, there were many
shared taxa (or a few shared taxa with high abundances)
with some degree of phylogenetic relatedness (Fig. 3b). These
results together suggest that there was a wide range of relative
abundances of taxa across all of the sites, including many low
abundance rare taxa (contributing to high Bray–Curtis values),
while the highly abundant taxa were more related and
shared across most sites (contributing to lower UniFrac values).
Neither of the community dissimilarity metrics were signifi-
cantly correlated with geographic distance (Fig. 3a,b; BC
GLM deviance explained = 4.1%, p = 0.2; UF GLM
DE = 0.97%, p = 0.57).

Phylogenetic α-diversity analysis using mean nearest taxon
distance and null model generation revealed on average that
within lakes, bacteria in the Microcystis microbiome were more
phylogenetically related than predicted by chance (Fig. 4,
+αNTI; t = 10.13, p < 0.001). Among lakes, the Microcystis
microbiome communities also were significantly more phylo-
genetically related than expected by chance (Fig. 4, βNTI; t =
−12.65, p < 0.001).

A total of 866 million metagenomic sequencing reads were
generated from the nine lake Microcystis-microbiome communi-
ties. After trimming and filtering, 612 million (52.4–137.6 million
per lake) clean reads were generated (Supplementary Table S1).
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Most of the clean metagenomic reads (55.2–76.6% per lake)
belonged toMicrocystis.

Analysis of only whole genome data revealed nine Microcystis
genome bins (one MAG per lake) and but only 43 microbiome
bacterial genome bins (3–10 MAGs per lake), indicating
extremely low depth coverage for the microbiome bacteria. After
removing the duplicate genes and RNA genes, 156,445 and
39,880 protein-coding genes were obtained from the micro-
biome and Microcystis genomes, respectively. Our analysis
showed that 66,861 (� 42%) of the microbiome genes, and
14,188 (~ 35%) ofMicrocystis genes were successfully assigned to
the KEGG orthology. By contrast, after removing duplicate and
rRNA genes, analysis of the total metagenomic data produced
407,658 and 54,312 protein-coding genes for the microbiome
and Microcystis, respectively, of which 139,384 (more than twice
the number compared with MAGs) and 17,817 (3629 more),
respectively, were successfully mapped to the KEGG orthology.
Microbiome gene diversity was similar across lakes (Fig. 5; low
Bray–Curtis values) and did not differ with geographic distance
between the lakes (Fig. 5; BC GLM DE = 1.97%, p = 0.41).

Shared pathways were mostly assigned to carbohydrate
metabolism; amino acid, nucleotide, and fatty acid biosynthesis;
and cofactor and vitamin biosynthesis (Fig. 6). The microbiome
bacteria contained unique pathways for organic carbon trans-
portation and degradation and vitamin B12 synthesis not found
in Microcystis. Numerous pathways for organic carbon degrada-
tion (D-galacturonate, D-glucuronate, galactose, glycogen, fatty
acid, purine, pyrimidine) and transportation (e.g., proline, malt-
ose, galactose, maltose, mannose, D-xylose, fructose, rhamnose,
glycerol), as well as complete pathways for degradation of aro-
matics (mostly anthropogenic pollutants, such as toluene,
xylene, benzene, phthalate) were also identified in the micro-
biome. Numerous important anaerobic bacterial pathways,
including nitrogen fixation, denitrification, and dissimilatory
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Fig. 3. Scatter plots of community dissimilarity in the microbiome as
related to geographic distance. (a) The nonsignificant (GLM deviance
explained = 3.7%, p = 0.2) relationship between taxonomic Bray–Curtis
dissimilarity and geographic distance where the higher Bray–Curtis values
indicate fewer species in common between sites. (b) Abundance
weighted UniFrac did not scale significantly by geographic distance (GLM
DE = 0.82%, p = 0.55). Here, higher values of UniFrac indicate there is lit-
tle overlap in species between communities whereas lower values indicate
the communities are more similar.
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sulfate reduction were also detected in the Microcystis
microbiome, suggesting the anaerobic bacteria play an impor-
tant role in nutrient cycling during Microcystis blooms in these

lakes. With the exception of some genes related to carbon
cycling (purine, pyrimidine, salicylate, and catechol degrada-
tion), as well as bacterial pathways involved in methane metab-
olism (methane oxidation and formaldehyde assimilation), the
majority of potential biochemical function appeared to be asso-
ciated with the 43 microbiomeMAGs (Fig. 6 and Table S2).

Discussion
Genome reduction leads to a loss of function (Giovannoni

et al. 2014), necessitating interactions with community members
capable of carrying out those functions (Morris et al. 2012; Garcia
et al. 2015). With small genomes compared to other algae
(e.g., 4.2 vs. 34.5 Mbp, Armbrust 2004; Gregory et al. 2007),
Microcystis spp. are potentially missing some key metabolic func-
tions (Steffen et al. 2012) and might be reliant on community
members to fill in the metabolic gaps. Similar potential mutualist
interactions have recently been mapped between Microcystis and
their microbiome of associated bacteria (Xie et al. 2016; Li et al.
2018), corroborating the original idea of a “phycosphere” of func-
tional interaction within the Microcystis aggregates (Bell and
Mitchell 1972; Paerl and Kellar 1978, 1979; Paerl and Millie
1996). Moreover, bacteria have been shown to complement
algae in marine ecosystems by excreting large amounts of
exometabolites including growth factors and biosynthetic
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precursors, as well as processing toxic metabolites (Morris et al.
2011; Pérez et al. 2016; Lee et al. 2017; Wienhausen et al.
2017). Given the predominance of such data across aquatic sys-
tem, we hypothesized M. aeruginosa blooms have a microbiome
of certain species of associated bacteria or perhaps metabolic
functions that will be preserved across geographically distinct
Microcystis blooms.

M. aeruginosa was the most abundant Microcystis species
across all lakes and this confirms that, at least at the level of 16S
rRNA sequences,M. aeruginosa is a cosmopolitan bloom-forming
species. We found remarkable phylogenetic relatedness among
associated bacteria, and similar function between sites, despite
those bacteria being taxonomically distinct at the 16S rRNA
level. We found no relationship between community composi-
tion dissimilarity and geographic distance (Fig. 3a, b), indicating
no distance-decay relationship as would be expected for
dispersal-limited species (Nekola and White 1999; Green and
Bohannan 2006; Nemergut et al. 2013). We also conclude that
the functional potential of microbial communities is more
highly conserved than their taxonomic composition (Figs. 3a,
5). Similarly, Steffen et al. (2012) found that the cyanobacterial
bloom-associated bacterial communities across three lakes
(Erie, Taihu, St. Marys) differed taxonomically, while being func-
tionally similar. Thus, while OTU identity was variable across
Microcystis microbiome bacteria, functional potential appears to
have been quite similar providing evidence that under bloom

conditions, M. aeruginosa is accompanied by a common suite of
bacterial functionality, potentially forming an interactome.

We found that Microcystis microbiome bacteria have func-
tional potential not found in Microcystis, and functional similar-
ity was preserved globally. Pathways involving photosynthesis
(excluding the anoxygenic photosystem II pathway) and carbon
fixation were only detected in Microcystis (Fig. 6). The micro-
biome bacteria could potentially be contributing to carbon
recycling within the aggregates as many of the pathways found
only in the bacteria are related to carbohydrate breakdown
(e.g., d-galacturonate, galactose, and glycogen degradation) and
transport (e.g., numerous transport systems). The microbiome
bacteria are likely tightly associated with the carbon sources
found in theMicrocystis aggregates. Bacteria associated with phy-
toplankton blooms have been found to utilize the carbon source
glycolate from phytoplankton (Lau et al. 2007; Paver and Kent
2010) and contain the glycolate oxidation pathway. Unfortu-
nately, the KEGG database does not contain this gene or related
pathways thus we were unable to detect it in our samples. Every
metagenomic function database has its shortcomings, and for
future studies we would recommend using multiple databases to
cover as many genes and pathways as possible. For example,
using the COG database (clusters of orthologous groups) to
search for specific genes, we in fact found that the glcD gene,
which is involved in the glycolate oxidation pathway, as well as
the microcystin production genes (mcyA-I) were present in the
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microbiome and the Microcystis, respectively, in all of our lakes.
In addition, we found that the microbiome potentially contrib-
utes methane metabolism pathways (methane oxidation and
formaldehyde assimilation) which are used to convert methane
into a useable carbon form. Recently, cyanobacteria have been
suggested to produce methane during blooms (M. Biži�c et al.
unpubl preprint, https://doi.org/10.1101/398958), although
methane is typically produced by methanogenic archaea. While
we did not analyze the archaea in our samples, other studies
have found methanogenic archaea can be closely associated
with cyanobacteria blooms (Batista et al. 2018), thus we would
expect somemethane production within aggregates.

In addition, the ethylmalonyl pathway was identified in the
microbiome bacterial genomes. The ethylmalonyl pathway is a
new acetate assimilation strategy in Rhodobacter sphaeroides, an
anoxygenic phototrophic organism that lacks the key enzyme
of the glyoxylate cycle, isocitrate lyase (Erb et al. 2007). Indeed,
genes associated with anoxygenic photosystem II were identi-
fied in six microbiome MAGs (data not shown). Sulfur is a
byproduct of anoxygenic photosynthesis and we also found evi-
dence for thiosulfate oxidation and dissimilatory sulfate reduc-
tion pathways present in the microbiome bacteria. These results
corroborate Li et al. (2018), who suggested that bacteria associ-
ated withMicrocystis (termed epibionts by Li et al.) were essential
for maintaining the redox balance and cycling different forms
of sulfur within Microcystis aggregates. In addition, the vitamin
B12 biosynthesis pathway, a necessary vitamin that Microcystis
cannot produce, was only detected in the microbiome bacteria.
Croft et al. (2005, 2006) proposed that most phytoplankton
were likely auxotrophic for vitamin B12 and other essential vita-
mins. Indeed, previous studies have also suggested that vitamin
B12 was provided to Microcystis by the associated bacteria and,
moreover, that this relationship was mutually beneficial for
both groups (Xie et al. 2016; Li et al. 2018).

Most Microcystis-blooming lakes are typically recipients of
urban and agricultural runoff. Correspondingly, we found the
Microcystis microbiome contained the degradation pathways
for many potentially harmful aromatic pollutants
(e.g., benzene, benzoate, phthalate, etc.). Microcystis could be
benefiting from pollutant degradation as many of these aro-
matics have been shown to inhibit phytoplankton growth
(Häder and Gao 2015). Xie et al. (2016) also found a group of
aggregate-associated bacteria that contributed the whole ben-
zoate degradation pathway to the community, again pointing
toward mutualism between the Microcystis and the Microcystis
microbiome. Together, these results support our hypothesis of
a coevolved interactome. We also hypothesize that many of
these microbiome functions (Fig. 6) are needed for growth and
dominance by M. aeruginosa during bloom conditions.

Loss of necessary metabolic functions is more common in
bacterial communities than previously thought (Hottes et al.
2013). Morris et al. (2012) found that the marine cyanobacte-
rium, Prochlorococcus, has lost many oxidative-stress genes and
instead relies on other microbes for removal of hydrogen

peroxide from the microenvironment. As such, Prochlorococcus
may benefit from hydrogen peroxide removal via the actions
of “helper” microbes in the form of a “leaky” public good
(sensu Morris et al. 2012), and the smaller genome of
Prochlorococcus affords it a selective advantage. A recent geno-
mic study has shown that M. aeruginosa also has a reduced
genome with remarkable redundancy consisting of a set of
~ 2400 core genes and a large, variable pangenome, an addi-
tional set of genes unique to different M. aeruginosa strains
likely acquired through horizontal gene transfer (Humbert
et al. 2013). We speculate that the variability within the
M. aeruginosa pangenome could be due to differences in the
need for specific functions across different environments. Hor-
izontal gene transfer and the Black Queen Hypothesis provide
two mechanisms for coping with changing environmental
needs. “Leaky” functions may be lost from Microcystis when
they are costly and a public good is available, as with the case
of oxidative-stress genes in Prochlorococcus. However, when
that public good becomes less predictable, those functions
may be recouped through horizontal gene transfer if the new
conditions provide a selective advantage to carriers for
regaining the function. Steffen et al. (2012) corroborated this
hypothesis as they found microbiome functional potential
remained static between two Microcystis blooms. However, in
one of the lakes (Taihu), Microcystis was reliant on Prote-
obacteria for nitrogen assimilation and metabolism, while in
the other lakes (Erie and St. Marys), Microcystis carried out
those functions. In the present study, we also found that the
microbiome bacteria were potentially the sole contributors of
nitrogen fixation, denitrification, and the urea cycle pathways
(Fig. 6). Microcystis cannot fix nitrogen so this may indicate
that Microcystis is relying on public goods across multiple
blooms. This interactome of M. aeruginosa and its microbiome
could be an ideal system to test for “Black Queen” functions.

Alternatively, the similarities we see in the microbiome bac-
terial community could be due in part to the Microcystis bloom
creating specific habitats that are selective of certain types of
heterotrophic bacteria. As previously mentioned, Microcystis
blooms can change local environments, creating large
amounts of particulate organic matter that have been shown
to be an important nutrient source for shaping the bacterial
community (e.g., Fogg and Harold 1952; Bell and Mitchell
1972; Paerl and Gallucci 1985). We saw through βNTI analysis
that Microcystis microbiome communities were significantly
phylogenetically related (Fig. 4), with the negative value of
βNTI indicating a common environmental filter across the
lakes—Microcystis (sensu Dini-Andreote et al. 2015). Similarly,
multiple studies (Yang et al. 2017; Shi et al. 2018; Xu et al.
2018) have shown that the Microcystis-associated (i.e., particle-
attached, which is equivalent to our use on Microcystis micro-
biome) bacterial community composition appeared to be
heavily structured by the bloom compared to free-living bacte-
ria. Over the course of a Microcystis bloom, Parveen et al.
(2013) found that Microcystis bloom aggregates provided
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habitat for a bacterial community distinct from the free-living
bacteria. In addition, specific bacteria have also been found
utilize parts of bloom aggregates. For example, bacteria in the
genus, Sphingomonas, actively break down toxins while associ-
ated with Microcystis blooms (Dziallas and Grossart 2011). This
bloom-as-habitat hypothesis could also explain the differences
in attached and free-living bacteria described in previous stud-
ies (Yang et al. 2017; Shi et al. 2018; Xu et al. 2018). This
hypothesis does not negate that Microcystis could be exchang-
ing or receiving functions from these aggregate-associated bac-
teria. Additional metagenomic and multi-year bloom studies
are needed to further parse these relationships.

The phylogenetic and functional similarities compared
with the taxonomic dissimilarities we observed provide sup-
port to a growing body of evidence suggesting that commu-
nity composition comparisons should be based on functional
genes rather than strictly taxonomy (OTUs) (Burke et al. 2011;
Oh et al. 2011). While clear similarities are shown using 16S
rRNA genes, this method is taxonomically conservative and
multiple different bacterial species could be represented by a
single OTU. 16S rRNA genes represent a very small part of the
genome, and evidence is growing which suggests that 16S
rRNA is insufficient for distinguishing freshwater bacteria. For
example, Polynucleobacter species, with 16S rRNA similarities
≥ 99%, have been shown to be distinct species based on whole
genome comparisons and ecological isolation (Hahn et al.
2016). In Microcystis, a threshold of 98–99% similarity is
suggested to be sufficient in distinguishing some species
(Harke et al. 2016). In our study, all Microcystis OTUs with
greater than 1000 sequence abundance were assigned to
M. aeruginosa at the species level, thus we are confident in this
taxonomy, but also recognize the need for more detailed taxo-
nomic analysis to further investigate the diversity of Micro-
cystis within a bloom beyond the 97% similarity threshold for
16S rRNA genes.

In the current study, we have used 16S rRNA taxonomy
paired with metagenomic functional analysis to describe the
community composition and potential function of the associ-
ated bacterial community in nine geographically distinct
Microcystis blooms. The multiple samples across continents
have allowed us to confirm that M. aeruginosa is a cosmopoli-
tan bloom former. The phylogenetic and functional similarity
of associated bacteria across sites and the sets of complemen-
tary pathways found between the Microcystis and associated
bacteria support the presence of a synergistic interactome.
These results highlight the need for deeper investigation into
Microcystis taxonomic identity and both Microcystis and micro-
biome functional capabilities at different times before, during,
and after a bloom to fully elucidate the interactome relation-
ship between M. aeruginosa and its microbiome. We conclude
that the coevolution within an interactome, that is, between
M. aeruginosa and its microbiome, could help explain the
global distribution of, and dominance by, M. aeruginosa in
diverse freshwater ecosystems.
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