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Optimized Virtual Sources Distributions for 3-D
Ultrafast Diverging Wave Compounding Imaging:

A Simulation Study
Goulven Le Moign, Patrice Masson, Olivier Basset, Hervé Liebgott and Nicolas Quaegebeur

Abstract— Ultrafast ultrasound imaging allows observing rapid phenomena; combined with 3-D imaging it has
the potential to provide more accurate analysis on organs which leads, at the end, to better diagnosis. Coherent
compounding using diverging waves is commonly used to reconstruct high quality images on large volumes
while keeping frame rate high enough to allow dynamic analysis. In practice, the virtual sources that drive
the diverging waves are often distributed by a deterministic way: following a regular grid, concentric rings
and spirals. Even though those deterministic distributions can offer various trade-off in terms of imaging
performance, other distributions can be considered to improve imaging performance. It is herein suggested
to look at alternative virtual sources distributions for optimizing the lateral resolution and the secondary lobes
level on several PSFs by means of a multiobjective genetic algorithm. The optimization framework leads to
seven pseudo-irregular distributions of virtual source distributions that have not yet been found in the literature.
An analysis on the imaging performance with a simulated phantom shows that these new distributions offer
different trade-offs between lateral resolution and contrast, respectively measured on point-like reflectors and
anechoic cysts. As an example, one of these optimized distributions improves the lateral resolution by 16% and
gives equivalent contrast values on cysts, when compared to a concentric-rings-based distribution.

Index Terms— 3-D ultrafast ultrasound imaging, 2-D ultrasound probe, diverging wave compounding, virtual
sources, multiobjective genetic algorithm

I. INTRODUCTION

IN medical imaging, echography has become a standard tool
in many specialties like cardiology [1], vascular medicine

[2] or kidney investigation [3]. Echography is evolving and
new applications, still at the research stage, have recently
emerged like functional brain imaging [4] or vector flow
mapping [5]. These advances are mainly enabled by the use of
innovative broad insonifications, that can achieve frame rates
of several kHz depending on the depth of the investigation
[6]. Although these recent advances have allowed 2-D fast
imaging, exploring the third spatial dimension is still a chal-
lenging task for fast ultrasound imaging. Probe technologies
have evolved to perform 3-D imaging by using 2-D arrays
that can explore a whole volume without having to move the
probe. Such arrays typically contain thousands of elements,
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which requires numerous channels to be addressed. Hence,
implementing 2-D arrays in 3-D fast ultrasound imaging has
been suggested by limiting the number of channels, by using
either sparse array [7], [8], Row Column Addressing (RCA)
[9], [10] or µ-beamforming strategies [11], [12]. Another
aspect to consider in such implementation is the way the
probe is driven to explore a given volume. Multiline transmit
[13], fan-beam [14] and broad insonifications by plane waves
or diverging waves using Coherent Compounding [15], [16]
also, appear as good candidates to do so. Moreover, recent
works allow performing Coherent Compounding with RCA
and sparse probe technologies [17], [18]. Several studies have
tested 3-D plane or diverging wave sequences [16], [18] and
they have shown, like in 2-D imaging, that the choice of the
number of virtual sources relies on a compromise between
imaging volume rate and quality. Improving the image quality
by adding more virtual sources is limited at a certain point, as
a plateau becomes evident beyond a certain number of virtual
sources [16], [19].

Even though the number of virtual sources is fixed accord-
ing to a desired imaging volume rate, they can be distributed
in many ways. Regular-grid-distributions are often used as a
generic approach. It has been reported in [20] and [21] for 2-D
ultrasound imaging that the spatial periodicity of the virtual
sources can generate grating lobes. Thus, a trade-off has to
be made between the lateral resolution and the grating lobes.
Additionally, employing aperiodic ring-based and spiral-based
plane wave distributions enhances contrast in simulations [22]
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and experiments [23], while maintaining frame rate and spatial
resolution.

In this paper, a generic framework is proposed for searching
and assessing other geometries of virtual sources distribu-
tions that can offer competitive imaging performance. This
framework is inspired by previous studies on sparse array
distributions [24], radar [25] and acoustic source localization
[26] that have been suggested in the literature; these studies
generally aim at improving the spatial resolution and contrast
of an imaging system by reducing both the main beam width
and the secondary lobes of an array. Several algorithms have
been suggested in the literature to handle such optimization,
like Simulated Annealing [27], Genetic Algorithm [28] or
Particle Swarm Optimization [29]. The present study also
focuses on optimizing the lateral resolution and the side lobes
level. A first optimization approach would be to define a
single objective function by aggregating both metrics into
a single one. This requires to choose a priori weighting
coefficients to set up the priority between the two metrics.
However, these coefficients need to be set carefully to avoid
a quality metric to be overwhelmed by the other one. An
optimization based on Non-Dominated Solutions (NDS) [30]
is suggested to bypass this problem, and also because such
approach allows to find a set of solutions with a single
optimization. Some evolutionary algorithms [30], [31] have
been adapted to handle such multiobjective approach: it is the
case for multiobjective particle swarm optimization (MOPSO)
[32] and non-dominated sorting genetic algorithm (NSGA-
II, or MOGA for MultiObjective Genetic Algorithm) [33].
A MOPSO [34] have been tried, as well as the MOGA
from the Global Optimization Toolbox in Matlab [35]. The
MOGA has been chosen, following better preliminary results.
In general, the side area of a reconstructed image in ultrasound
imaging has lower levels for the quality metrics. In order
to better distribute the levels of the quality metrics outside
the center of the probe, a special attention is given to the
homogeneity of the quality metrics. The global framework,
objective functions and multiobjective optimization algorithm
are detailed in Section II. The optimized distribution that have
been found are presented in III-A. The imaging performance
when using optimized distributions are compared to nine
deterministic distributions in Section III-B.

II. METHOD

A. Configuration for the simulation
The overall configuration that includes the probe, the in-

spected volume and virtual sources is illustrated in Fig. 1
and described thereafter. A fully populated 2-D probe of
1,024 (32 × 32) elements is considered and simulated using
the Matlab based toolbox FIELD II [36], [37]. The pulse-echo
bandwidth of the elements is 40%. The inter-element pitch is
set to λ/2 ≃ 257 µm, with λ = cp/f0 where cp = 1540 m/s
denotes the propagation velocity of the compressional waves,
and f0 = 3 MHz the center frequency of the probe. The
elements are separated by a λ/20 kerf. The total aperture of
the probe (footprint) is 8.4 mm × 8.4 mm.

A total of 25 virtual sources (VS) are used in the proposed
study. This number is considered high enough for capturing
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Fig. 1: Configuration of the study, from top to bottom:
positioning of the 25 virtual sources (VS), 2-D probe of
32 × 32 elements, nine scatterers used for the optimization
and a pyramidal region used for a volumetric analysis in the
results section

geometrical tendencies in the distributions while keeping a
high relative imaging volume rate. This should safely result
in a sufficiently high imaging volume rate for 3-D cardiac
applications such as 3-D ultrafast echocardiography. The opti-
mization process, presented later in this section, is responsible
for distributing the VS inside a “box”. This box bounds the VS
from −10 mm to 10 mm in the x and y directions and from
−40 mm to −10 mm in depth. These positions are continuous
variables. In the case of an ideal probe, we assume that a
distribution with a given symmetry will guarantee the same
symmetry in computed metrics over a given volume. On the
contrary, a non-symmetrical VS distribution will lead to non-
symmetrical quality metrics over the volume, which indicates
a preferential direction with the probe. As we impose the
homogeneity of quality metrics to be of primary concern, only
symmetrical distributions are considered. Considering this, a
central symmetry of order N over the z axis with N → ∞
would be required. However, in practice, homogeneity of
quality metrics is limited by the probe square shape and
element discretization. Thus, a bi-planar symmetry system is
selected in the present study. The two planes of symmetry are
the xz plan on y = 0 and the yz plan on x = 0. This symmetry
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can be seen in Fig. 1 by looking at the “replicated VS” (in
black) that are distributed according to the “VS” (in red).

The considered media is homogeneous, isotropic and with-
out attenuation. To take into account a whole imaging volume,
a total of 27 scatterers are distributed (Fig. 1) and used to
compute 3-D Point Spread Functions (PSF). They are located
at [20; 40; 60] (mm) in depth (z) and at [−5; 0; 5], [−10; 0; 10]
and [−15; 0; 15] (mm) in lateral directions x and y for the
indicated depth location respectively. Regarding the symmetry
system imposed on the VS distribution and the previous
assumption on the quality metrics, only 9 of the 27 scatterers
are used for the optimization. The 25 VS are used for each PSF
to construct. Time-domain signals received by the elements,
usually called Radio Frequency (RF) signals, are simulated
using FIELD II with a sampling frequency of 48 MHz.
Each PSF is calculated individually in order to decrease the
computational load, instead of putting all the scatterers and
then construct a whole imaging volume. For this reason and
with a given VS distribution, all the RF signals are computed
for each VS, probe element and scatterer. So, for a given VS
distribution, it results in the calculation of 230,400 RF signals
(number of VS × number of probe elements × number of
individual scatterers). A standard time-domain delay-and-sum
beamforming is used to construct envelope volumes using
a Graphics Processing Unit [38] with Nvidia CUDA [39];
these signals are log-compressed afterward. No apodization
has been used for reconstruction, in order to avoid favorizing
or deteriorating the imaging performance of a given fraction
of the imaging volume.

B. Imaging criteria and extracted metrics

In order to assess other geometries of VS with respect
to quality metrics and their homogeneity over an imaging
volume, two quantitative metrics are defined on PSF. The first
one measures the width of the main lobe at −6 dB (Full Width
at Half Maximum, FWHM) on log-compressed volume; the
second measures the amplitude of the highest secondary lobe
(Secondary Lobes Level, SLL) on log-compressed volume.

A total of 9 individual scatterers are used in order to
construct 9 PSF in order to represent a given volume; each
PSF is used to measure a FWHM and SLL values. The
metric that measures the FWHM is based on a measurement
of the position of the voxels that exceed −6 dB (volumes
are log-compressed). All voxels above −6 dB are projected
along an axis being the direction between the center of the
probe and the position of the scatterer. The mean diameter of
that 2-D projection is then computed and used as the lateral
resolution metric, similarly to FWHM in 2-D echography that
is often used to assess the lateral resolution of an imaging
system [40]. Regarding the geometry of the probe and the
beamforming described previously, a natural expansion of the
lateral resolution nearly proportional to the depth is usually
observed. As the study focuses on the homogeneity of the
quality metrics over the volume, the measurement of the
FWHM in mm is converted into an angle (θFWHM) viewed

from the center of the probe:

θFWHM = 2 tan−1

(
FHWM
2z

)
. (1)

An SLL detection is performed on each PSF (log-compressed)
volumes in order to extract the second metric. High SLL
reduces the contrast of an ultrasound imaging system [41],
that is why the latter is considered as a second quality metric.
This estimation is done using a 3-D lobes’ detection toolbox
(MinimaMaxima3D [42]) in Matlab, and is displayed in dB
relatively to the amplitude of the main lobe.

C. Multiobjective optimization

For each of the 9 scatterers, the values of θFWHM and SLL
are concatenated into two datasets referred as DFWHM and
DSLL:

DFWHM = [θFWHM1, . . . , θFWHM9] (°),
DSLL = [SLL1, . . . ,SLL9] (dB).

(2)

For a first set of objective functions in the optimization, the
assessment of the of the homogeneity of these datasets is done
with a dispersion measurement by computing the standard
deviation σ:

σ1 = σ(DFWHM),

σ2 = σ(DSLL).
(3)

Concurrently, a second set of objective functions is suggested,
based on the maximum value on the datasets:

max1 = max(DFWHM),

max2 = max(DSLL).
(4)

For the first set of objective functions described in Eq. (3),
the spread across the different scatterers is minimized by
reducing the standard deviation, allowing a direct reduction
of the inhomogeneity across the quality metrics of the 9
PSF. However, when considering the second set of objective
functions, the idea is to increase the lower values of FWHM
and SLL in the dataset to guarantee a maximal threshold for
FWHM and SLL. Finally, the two objectives for FWHM and
SLL homogeneity are concatenated into multiobjective vectors
of two values, [σ1, σ2] and [max1,max2].

The decision space (also referred to as the search space
[31]) is restricted in order to reduce the complexity of the
objective functions and to accelerate the optimization process
[43]. Here, 75 input variables are required so that 25 VS can
freely move into a 3-D Cartesian space. A first restriction is
applied by limiting the search space. Physical boundaries have
been set up on the possible VS localization (−10 ≤ x, y ≤ 10,
−40 ≤ z ≤ −10 (mm)) as indicated in Fig. 1. In the present
study, one VS moves in the z direction and is set at the center
of the probe (x = y = 0) as suggested in the literature [15],
[16], [18], [21]. This leads to 24 3-D Cartesian coordinates
for the 24 remaining VS. Applying the bi-planar symmetry
system, as illustrated in Fig.1, reduces this number from 24
to 6. Taking all these considerations into account reduces the
amount of input variables from 75 to 19. As mentioned in the
previous section, a vector of two objectives describing FWHM
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and SLL homogeneity ([σ1, σ2] or [max1,max2]) is considered
for optimization.

A schematic view of the optimization procedure is presented
in Fig. 2, illustrating an application of MOGA to this problem.
First, an initial population is created by the algorithm: several

Fig. 2: Overview of a multiobjective genetic algorithm applied
to the VS distribution

VS distributions are generated randomly. The population is set
at 1,000 individuals. From the population, each individual (VS
distribution) is evaluated to extract either the dispersion or the
maximum value of the quality metrics datasets. Depending on
how good the individuals perform, they might be selected to
create children (new solutions) for the next population.

In the study, this selection is made by a tournament of
4 individuals. The selected individuals (parents) are used to
generate new individuals (children) by means of crossover.
In this study, the crossover fraction is set at 40% (40% of
the new population is produced by crossover). The remaining
individuals of the new population in this algorithm are created
by means of a mutation function. Mutation function is here op-
erated with the mutationadaptfeasible function from
the MOGA, that randomly selects a variable and modifies its
value by adding a step, which depends on the boundaries set
on variables and the current search space. The optimization is
stopped according to the evolution of non-dominated solutions,
generation after generation. Non-dominated solutions are here
considered optimal enough when only a few of them have been
improved after 25 generations, and when this improvement

is under 5% when compared to the previous one. A total of
250 generations have thus been reached when respecting these
conditions. At the end of the optimization, non-dominated
solutions are picked up from the last generated population
to be the optimized solutions of the problem. They are thus
shown and analyzed in the next section.

D. Deterministic distributions
Three shapes of deterministic VS distributions with a con-

stant height (height = −z) are implemented to further assess
the imaging performance obtained using the optimized VS
distributions. All the present deterministic distributions are,
as well as the optimized ones, constituted by a total of 25
VS. The first deterministic distribution to be investigated in
the section III is a 5 × 5 regular grid of VS. The second
distribution contains two concentric rings and a central VS
(x = y = 0). Each configuration is then declined into
three different configurations in terms of aperture size (5
mm, 10 mm and 20 mm) and height (10 mm, 20 mm and
40 mm). These declination have been chosen to have a set
of deterministic distributions that can be compared to the
optimized distribution, regarding to the limit set on the position
of the VS and also to the 9 scatterers taken into account
(Fig. 1).

E. Analysis of the imaging performance
1) PSF simulation: PSFs are first used to validate the

performance of the optimized distributions of VS. To this
end, a single scatterer is located at [0; 0; 40] mm (x; y; z) in
an homogeneous and anechoic media. PSFs are displayed in
planar surface C-scans with a constant depth z = 40 mm with
−7 ≤ x, y ≤ 7 (mm).

2) Phantom with anechoic cysts and reflectors: All VS dis-
tributions are used to reconstruct images from a simulated
phantom that contains point-like reflectors and spherical ane-
choic cysts. Reflectors are used to assess lateral resolution with
the full width at −6 dB on log-compressed images. Reflectors
are scatterers which have a reflection coefficient of 5. The
cyst phantom is a composition of scatterers which values are
uniformly distributed among the phantom, with a scatterer
density of 4 scatterers/mm3. The reflection coefficients of these
scatterers are normally distributed (σ2 = 1, µ = 0), and scaled
to be between −1 and 1. The anechoic cysts have no scatterers
and they are used to assess Contrast Ratio (CR) on envelop
images, here expressed by:

CR = 20 log10

(
µin

µout

)
, (5)

where µ and σ are respectively the mean and the standard
deviation of the pixels’ values inside (in) or outside (out)
cysts. Different cysts radius are used to avoid the edges of
the cysts when taking the inside region while assessing CR
values. To that end, we choose a minimum cyst radius of 2
mm plus an added value, corresponding to an approximated
lateral resolution value (1.2λF [44]). All images are simulated
with the same configuration introduced in section II.
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3) Volumetric analysis based on FWHM and SLL: All VS
distributions are used for imaging over a given volume. The
motivation for this analysis is to give hints on volumetric
imaging performance that includes out-of-plane locations in
the volume. This consists in evaluating the two quality metrics
(FWHM and SLL) used for the optimization, explained in
section II-B. These metrics come from PSFs that are calculated
from a single scatterer which is moved at several locations in
order to have numerous PSFs that cover the whole pyramidal
region shown in Fig 1. The sector angle of the pyramidal
region is fixed at 40° (20° from the normal to the probe
center); the height is 45 mm with a base starting at z =
65 mm and a top ending at z = 20 mm. This leads to a
47.3 mm×47.3 mm base and a 14.6 mm×14.6 mm truncated
apex. The single scatterer is moved inside this volume with a
step δx,y,z = 2.5 mm; a total of 3,131 PSFs are thus generated,
allowing to extract 3,131 FWHM and SLL values. Because
large bi-variant datasets needs to be analyzed, bagplots [45],
[46] have been chosen to summarize information. They are
based on half-space depth [47] which acts as a median value
for bi-variant data.

III. RESULTS AND DISCUSSION

A. Optimization results

A total number of 127 and 143 optimal solutions have been
generated respectively for the optimization based on standard
deviation [σ1, σ2] and maximum value [max1,max2]. The two
sets of non-dominated solutions are plotted in Fig. 3 in their
respective objective space, which represents the outputs of the
two objective functions, [σ1, σ2] and [max1,max2] (3). Fig. 3
shows the compromise between the two objectives: when σ1 or
max1 decreases, σ2 or max2 increases and vice versa. All the
solutions for the standard-deviation-based (σ-based) optimiza-
tion ensure a standard deviation of, at worst, 0.34° in DFWHM
and 1.19 dB in DSLL. The solutions based on maximum value
ensure at least 3.89° in FWHM and −17.4 dB in SLL, for the 9
selected scatterers. The two fronts of non-dominated solutions,
often called Pareto-front [32], [33], are discontinuous. Such
discontinuities are usual in many two-objective problems: they
exist because of the definition of non-dominated solutions [30]
and the landscape of feasible solutions of the multiobjective
function. Specific solution groups are then plotted in different
colors based on a visual check of similar VS distribution.
Solutions have then been classified into 3 distinct groups for
the σ-based optimization and 4 distinct groups for the max-
based optimization (Fig. 3). Due to the number of optimized
solutions and the similarity observed on the early stage that
is based on a visual check, a single solution is selected for
each group. These selected solutions are encircled in Fig. 3
and represent their group. These solutions are systematically
the best for FWHM (σ(DFWHM) and max(DFWHM)) and the
worst for SLL (σ(DSLL) and max(DSLL)). These specific VS
distributions are presented in Fig. 4, when looking toward the
z direction.

Fig. 4 shows the deterministic distributions from Fig. 4.a
to Fig. 4.i, previously described in II-D. The optimized distri-
butions that have been identified in Fig. 3 are displayed from
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Fig. 3: (a) Standard-deviation (σ) and (b) maximum value
(max) optimized solutions on their respective objective space.
Solutions are categorized into groups and displayed in different
colors, from top left to bottom right on the front, respectively
to the shape of the corresponding VS distributions. A single
solution from each group color is encircled for further analysis.

Fig. 4.j to Fig. 4.l for the optimization based on the standard
deviation (3) and from Fig. 4.m to Fig. 4.p for the optimization
based on the maximum (4).

Fig 4 shows how optimized VS distributions are different
from each other and from deterministic distributions. For
example in Fig. 4.j, the first distribution of the standard-
deviation-based objective function (named σ n1) has half the
VS located close to the x and y boundaries and close to
the probe constituting a pseudo-circle; the second half of VS
are located close to the center of the probe in the (x, y)
plane. However, distribution max n4 in Fig. 4.p has two
distinguishable layers: the first layer contains 9 VS that forms
a cross and the second one has the 16 remaining VS that nearly
form a regular grid close to the probe.

B. Imaging results

1) PSF simulation: The planar surfaces PSF are displayed
in Fig. 5. The highest secondary lobe level observed among
deterministic distributions is −22 dB dB for distribution
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Fig. 4: Shapes of the VS distribution: deterministic distributions are displayed from Fig. 4.a to Fig. 4.i, and optimized distribution
from Fig. 4.j to Fig. 4.p. Color and size of each source indicate the height (−z) of the VS: the smaller and darker, the closer
to the probe (−10 mm).

Fig. 5: PSFs over a planar surface (z = 40 mm). The −6 dB isoline is highlighted by a white line.

spiral 10 mm; by comparison, the highest secondary lobe
level observed among optimized distributions is −19 dB with
distribution max n1. Each PSF in Fig. 5 has its −6 dB isoline
highlighted by a white line. Deterministic distributions offer
in most cases a more isotropic PSF than optimized distribu-
tions: the shape of the −6 dB isoline is circular when using
deterministic distributions (from Fig 5.a to from Fig 5.i), while
this shape is more elliptical for most optimized distributions,

expect for max n3 and max n4.

2) Phantom with anechoic cysts and reflectors: Images from
the simulated phantom are presented in Fig. 6 for the xz plan.
Fig. 6 let us see that the visibility of point-like reflectors and
cysts depend on their location as well as the VS distribution
that is being used. FWHM (Eq. (1)) measured on reflectors
and CR (Eq. (5)) measured on cysts are displayed as boxplots
in Fig. 7. The lowest FWHM value observed is 2.3° for
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Fig. 6: Images in the xz plan from the simulated phantom with cysts and reflectors

distribution max n1 and the highest is 6.9° for distribution
spiral 10 mm. Distributions max n2 and max n3 are the only
two that have all their FWHM values below 4°. Distributions
max n3 and max n4 have a mean FWHM of 16% and 9%
lower (3.24° and 3.50° respectively), in comparison to dis-
tribution rings 20 mm (3.86°) while keeping equivalent mean
contrasts values measured in cysts (−19.6 dB, −19.5 dB and
−19.3 dB respectively for distributions rings 20 mm, max n3
and max n4). The lowest CR value measured when using a
deterministic VS distribution is with distribution spiral 20 mm
(−23.7 dB) while the lowest CR value measured when using
an optimized VS distribution is with distribution max n1
(−29.8 dB). The latter also have the highest CR value as
well as distribution reg 40 mm (−12.7 dB and −12.5 dB
respectively).

Fig. 7 shows an improvement of the FWHM with deter-
ministic distributions as the aperture of the VS distribution
increases. This tendency has been reported in [21]: the wider
the aperture of the VS distribution, the lower the FWHM.
Utilizing spirals as a VS distribution instead of a regular grid
improves CR; this is consistent with findings in [23], where CR
was enhanced through the use of spiral-based and aperiodic
ring-based distributions for plane waves.

3) Volumetric analysis based on FWHM and SLL: Bagplots,
based on the measurement of FWHM and SLL for 3,131

different PSFs, are plotted in Fig. 8 for all distributions.
Optimized VS distributions (from Fig. 8.j to Fig. 8.p,) always
offer a lower FWHM value of the half-space depth than deter-
ministic distributions (from Fig. 8.a to Fig. 8.i). The half-space
depth with the lowest FWHM value between deterministic
distributions stands for reg 10 mm, with a FWHM of 3.68°;
in comparison, the half-space depth with the highest FWHM
among optimized distribution is 3.59° for the distribution σ n1
and this value decreases down to 3.26° for both distributions
max n1 and max n2. Fig. 8.a and Fig. 8.p show half-space
depths with the lowest SLL value (−23.3 dB). Sizes of bags
and fences of optimized distributions (from Fig. 8.j to Fig. 8.p)
are often wider than bags and fences constructed with deter-
ministic distributions with the height of the VS being fixed at
10 mm (from Fig. 8.a to Fig. 8.c), but lower in comparison
to deterministic distributions when the height is fixed at 40
mm (from Fig. 8.g to Fig. 8.i). Distributions rings 10 mm and
spiral 10 mm have the lowest sizes of both bags and fences
while looking at SLL. To us, the flattening of bags and fences
reflects how quality metrics are homogeneous. By following
this logic, distributions rings 10 mm and spiral 10 mm offer
the most homogeneous distribution of SLL when imaging
the pyramidal region indicated in Fig. 1. Then, optimized
distribution offer then a more homogeneous distribution of
SLL than deterministic distribution when the height of the VS
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Fig. 7: Boxplots: CR measured on the 7 cysts and FWHM
measured on the 12 reflectors from the phantom images
(Fig. 6) in the xz and yz plan for all VS distributions. Mean
values are indicated by a cross mark.

is 20 mm or 40 mm. Optimized distribution also offer a more
homogeneous distribution of FWHM than these deterministic
distributions in most cases. Bagplots can also help assess
the choice of the 9 scatterers that have been used for the
optimization. To give an example, distributions σ n1 and σ n3
are used in the following. Bags and fences that come from
Fig. 8.j and Fig. 8.l are plotted in Fig. 9. The FWHM and
SLL value that comes from the 9 scatterers of the optimization
are indicated by crosses, to make a comparison with bags
and fences. When looking at bagplots, the bag and fence
of distribution σ n1 are flattening in the FWHM direction
than SLL direction, in opposition with distribution σ n3. By
looking at these two examples, the 9 scatterers used for the
optimization follow these flattening tendencies: they have a
small variation in FWHM when FWHM’s standard deviation is
prioritized, as well as SLL when the SLL’s standard deviation
is prioritized. To us, this is an indicator that selecting those
9 scatterers was a suitable option to drive the optimization
and has an impact on the whole pyramidal region presented
in Fig. 1.

C. Limitations and perspectives

The study has been conducted through simulations; further
in-vitro and in-vivo experiments might validate the optimized
distributions that have been found. Nonetheless, several studies
[21], [48] have demonstrated agreement between in-silico and
in-vitro/in-vivo conditions for both 2-D and 3-D ultrafast di-
verging wave compounding. Such agreement is also observed
for 3-D plane wave compounding [23]. The enhancements that

the optimized distributions have shown in our study should
be comparable between in-silico simulations and potential
upcoming in-vitro/in-vivo experiments. In the presence of
moving objects, imaging performances could be enhanced by
applying a motion compensation (MoCo) technique as to the
one presented in [19], which demonstrated optimality with 25
virtual sources. Moreover, a more recent 3-D MoCo technique
shown in [48] could possibly be applied. These optimized
virtual sources distributions are anticipated to be suitable for
cardiac applications including 3-D echocardiography.

Optimizations and in-silico results have been conducted
without noise. In [21] and [18], 5 and 25 virtual sources
have been used, respectively, in 2-D and 3-D diverging wave
compounding imaging in-vitro, showing a decent signal-to-
noise ratio (SNR). Additionally, we employed all the elements
of the probe for both transmission and reception in our
simulations without any apodization. Therefore, the optimized
distributions should provide a high SNR within an angular
aperture of 30° (Fig. 1). Beyond 30°, the SNR could decrease
rapidly; the lateral positions of the virtual sources may be
adjusted to achieve a desired angular aperture. In cases of
suboptimal SNR, coded excitation [49] could be employed to
enhance the SNR and mitigate strong attenuation.

One of the goal of the bi-planar symmetry system described
section II-A was to guarantee the optimized distributions of
virtual sources to offer the same level of symmetry, for the
distribution of the quality metrics over a given volume. The
scope of the study has thus excluded the search for distribu-
tions like concentric rings if it does not respect this symmetry,
as well as spirals. The constrains imposed to the current
framework could be adapted to search for spiral-based or
concentric-based distributions, that should offer a all-roundly
symmetrical distribution of quality metrics. In addition, this bi-
planar symmetry system has resulted in optimized distributions
that yield an anisotropic PSF, except for distributions max n3
and max n4 (as shown in Fig 5.o and Fig 5.p). This has
led to anisotropic resolutions and could potentially lead to
inconsistencies in imaging performance across various lateral
directions. In order to maintain a PSF that is as isotropic
as possible, we recommend utilizing distributions max n3,
max n4, or a deterministic distribution.

Section II-A indicated that no apodization has been used in
transmission and reception. In [22], [23] the imaging point is
reconstructed only if the main beam of the wave propagates
through it; employing a beamforming strategy akin to this
could further reduce SLL. Integrating this into the optimization
framework may yield additional optimized distributions.

The multiobjective functions used in the optimization frame-
work has focused on isolated PSFs. This could also be adapted
to take into account different metrics, like the homogeneity of
PSF intensity.

IV. CONCLUSION

The study has introduced novel distributions of virtual
sources for 3-D ultrafast diverging wave compounding imag-
ing, discovered through the application of a multiobjective
optimization framework. Some of these new distributions have
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Fig. 8: Bagplot from all VS distributions for 3,131 FWHM and SLL values measured in the pyramidal region indicated in
Fig. 1.

Fig. 9: Comparison between the total volume performance
from two optimized distributions and the 9 scatterers used
during the optimization, using bagplots.

exhibited an enhancement in lateral resolution, reducting it
down to 16% in comparison to deterministic distributions that
possess similar contrast and PSF isotropy properties. These
optimized distributions could be employed in cardiac applica-
tions to provide an improvement in imaging performances.
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Piero Tortoli, and Hervé Liebgott. Experimental 3-D Ultrasound Imaging
with 2-D Sparse Arrays using Focused and Diverging Waves. Scientific
Reports, 8(1), December 2018.

[19] Yinran Chen, Jan D’hooge, and Jianwen Luo. Doppler-based mo-
tion compensation strategies for 3-d diverging wave compounding
and multiplane-transmit beamforming: A simulation study. IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,
65(9):1631–1642, 2018.

[20] Bastien Denarie, Thor Andreas Tangen, Ingvild Kinn Ekroll, Natale
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Abraham, editors, Handbook of Optimization, volume 38, pages 311–
335. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[44] F.J. Harris. On the use of windows for harmonic analysis with the
discrete fourier transform. Proceedings of the IEEE, 66(1):51–83, 1978.

[45] Peter J. Rousseeuw, Ida Ruts, and John W. Tukey. The Bagplot: A
Bivariate Boxplot. The American Statistician, 53(4):382–387, November
1999.

[46] Mark Geurts. bagplot.m [source code]. https://github.com/
mwgeurts/libra/blob/master/bagplot.m, 2018. [Online;
accessed March-2021].

[47] J. W. Tukey. Mathematics and the picturing of data. Proceedings of the
International Congress of Mathematicians, Vancouver, 1975, 2:523–531,
1975.

[48] Yinran Chen, Zichen Zhuang, Jianwen Luo, and Xiongbiao Luo.
Doppler and pair-wise optical flow constrained 3d motion compensation
for 3d ultrasound imaging. IEEE Transactions on Image Processing,
pages 1–1, 2023.

[49] Feifei Zhao, Ling Tong, Qiong He, and Jianwen Luo. Coded excitation
for diverging wave cardiac imaging: A feasibility study. Physics in
Medicine & Biology, 62(4):1565, 2017.

https://www.nvidia.com/en-us/data-center/v100/
https://www.nvidia.com/en-us/data-center/v100/
https://developer.nvidia.com/cuda-toolkit
https://www.mathworks.com/matlabcentral/fileexchange/17997-minimamaxima3d
https://www.mathworks.com/matlabcentral/fileexchange/17997-minimamaxima3d
https://www.mathworks.com/matlabcentral/fileexchange/17997-minimamaxima3d
https://github.com/mwgeurts/libra/blob/master/bagplot.m
https://github.com/mwgeurts/libra/blob/master/bagplot.m

	Introduction
	Method
	Configuration for the simulation
	Imaging criteria and extracted metrics
	Multiobjective optimization
	Deterministic distributions
	Analysis of the imaging performance
	PSF simulation
	Phantom with anechoic cysts and reflectors
	Volumetric analysis based on FWHM and SLL


	Results and Discussion
	Optimization results
	Imaging results
	PSF simulation
	Phantom with anechoic cysts and reflectors
	Volumetric analysis based on FWHM and SLL

	Limitations and perspectives

	Conclusion
	References

