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Introduction 

Thermosets correspond to 10% of global polymer production 400 Mt/y. [1] Most of them 

present outstanding properties which are essential for designing high-performance composites 

(wind turbine blades, aeronautics, etc.). Among precursors, bisphenol A, bismaleimide (BMI) or 

phenol-formaldehyde are well suited to produce chemically crosslinked networks used as 

matrices for composites. Their rigid chemical structures, i.e.  high aromatic content and/or fused 

cycles, results in materials with glass transition temperature (Tg) exceeding 100 °C. These 

precursors are petroleum-based and often pose risks to human health, leading to intensive 

research in the past decades for sustainable and safer alternatives. [2] However, common bio-

based thermosets from vegetable oils [3] or cashew nut shell liquid derivatives [4] often lack the 

high Tg required for high-performance applications. Building blocks based on furanic (5-

hydroxymethylfurfural, furfural) and aromatic (eugenol, vanillin) groups bear potential as 

precursors for high Tg polymers. [2, 5 ,6]  
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Among natural compounds, the peculiar chemical structure of eugenol holds a strong 

potential to prepare suitable thermosets for high performance composite applications. Eugenol is 

a non-edible natural phenol, which can lead to monomers with relatively similar structures to 

many petroleum-derived monomers. Eugenol does not have the plasticizing aliphatic chain(s) of 

cardanol and vegetable oils but only a short allylic moiety directly grafted on the para-position 

of the phenolic ring Thus, higher thermo-mechanical properties are achievable with eugenol 

while keeping potential chemical modification on the alkene function. [3, 4] Several reviews 

dealing with eugenol-based polymers appeared in the last years. The main focus was put on the 

possibilities of functionalization offered by eugenol to obtain high Tg thermoset for the 

manufacture composites, coatings or target fire-retardancy. [7, 8, 9, 10, 11, 12] This review aims 

at emphasizing the growing potential of eugenol for high-performance applications 

(construction, automotive, aeronautics, …). Starting with a survey of the functionalization routes 

of eugenol (methoxy, phenol, allyl, aromatic) we will summarize the different pathways to 

prepare eugenol-based precursors with constrained structures (biphenyls, Alder-ene, 

benzoxazines). Finally, fire-retardant polymers achievable by the introduction of specific spacers 

between eugenol molecules are presented (silicones, phosphates, cyclophosphazenes). 

 Functionalization routes eugenol 

Nowadays, 6 kt/y of oil are extracted from the clove tree world-wide. [13] Eugenol 

represents 70 to 90 w.% of clove-oil and can be recovered in good yields. Eugenol can also be 

synthesized from lignin derivatives, which opens the way to massive production. It is already 

used to synthesize part of the 50 kt/y of vanillin.[7, 8] The cosmetic and pharmaceutic industry 

are major consumers of eugenol for its intrinsic wide range of biological activities and anti-

oxidant properties (among others). [7, 14 , 15] An array of other applications is possible using 

eugenol’s functionalization routes (methoxy, hydroxyl, aromatic, allyl, Scheme 1). [7, 9, 10, 11]  

Their chemistries can be exploited, alone or together, to graft chemical functions and introduce 

spacers. Another of the advantages of eugenol is its low oxygen concentration, which limits the 

reduction reactions which must often be carried out on natural derivatives. 

 



 

Scheme 1. Eugenol's reactive sites  

Transformation of the methoxy group has been limited but it can be converted to a 

hydroxyl function by either oxidative O-Demethylation or sillylation followed by hydrolysis. [7, 

16] This modification allows to introduce another hydroxyl, either for direct polymerization or 

for further functionalization via the phenol route. 

The phenol route is of significant interest for the production of monomers. Phenolic 

hydroxyls can be (hydroxy)alkoxylated yielding more reactive aliphatic alcohols which can be 

employed for rigid poly(urethane) foams. [7, 17] Esterification with anhydrides or acyls is a way 

to graft functional groups or dimerise/trimerise eugenol with rigid or flexible spacers to tune the 

Tg of the resulting materials. [18] Phosphorylation with phosphorous oxychloride yields a 

eugenol trimer. The introduction of phosphorylated moieties is a strong asset when fire-retardant 

properties are targeted (vide infra). [12, 19,20]  

O-Glydicylation can be employed to introduce an epoxy ring, a convenient function for 

the manufacture of thermosetting resins (about 8% of the thermosets are epoxies). [11, 21] O-

Glycidylation involves epichlorohydrin. Although it can be bio-based, this compound is both 

carcinogenic and toxic, thus greener paths for O-Glycidylation are desirable. [22, 23]  Hydroxyl 

 



group can undergo Willamson etherification or Tsuji-Trost allylation to give allyl functions. [2, 7, 

24] A major interest of allyl functions is their ability to undergo thiol-ene click reactions either in 

a thermally (composite matrices) or photo-initiated process (coatings, 3D printing). As one allyl 

group is already present on eugenol, the addition of another one is convenient to access pluri-

functionality. [7, 25]  

 Thiol-ene click reaction is one of the most advantageous routes to functionalize allylic 

moieties. [26] It is suitable to introduce either flexible or rigid spacers between eugenol dimers. 

This leads to a broad range of achievable properties. Hydrosillylation is a valuable way to obtain 

silicones with thermal resistance and potential anti-bacterial properties. [27, 28, 29] Epoxy 

functions can be obtained using oxidants such as m-CPBA or ozone. [30] The enzyme-catalyzed 

epoxidation with hydrogen peroxide was never performed on eugenol. It would be worth 

investigating. [31] Phenol oxidative-coupling is a mean to reach dimers with biphenyl moieties, 

i.e., higher Tg and better fire-resistance. [7, 24, 30, 32, 33] Benzoxazine derivatives can be 

obtained through Mannich-like reactions (via intramolecular cyclisation) . [7, 34, 35] All these 

examples are suited for thermally and/or mechanically demanding applications through the input 

of rigid and/or fire-resistant spacers.  

High-performance thermosets from Eugenol 

 Eugenol’s aromatic ring provides intrinsic rigidity to the resulting polymers. For instance, 

diglycidyl [8 ,11, 12, 36] and triglycidyl eugenol [10, 11, 12] yield thermosets with Tg between 

103 °C and 155 °C. A series of patents claimed the functionalization of eugenol with triglycidyl 

[37], dicarbonate  [38] and acrylic [39] groups as well as eugenol-based amine curing agents. 

[40, 41] They were submitted in the last two years, showcasing the interest in eugenol. Authors 

limited their approach to monoeugenol systems. The performance of eugenol-based polymers 

can be further improved through advanced chemical modification (fused cycles, dimerization). 

Light can be shed on four eugenol-derived structures for high-performance thermosets 

(Scheme 2). Biphenyl structures from oxidative coupling were reported as poly(urethanes) hard 

segments [7], di and tetra allyl eugenol [7, 11] as well as di and tetra glycidyl eugenol.  [11, 12, 

30] Such systems without spacers allowed to reach Tg as high as 216 °C (tetraglycidyl eugenol). 

 



 

Scheme 2. Promising hard segments for Eugenol-based polymers 

 Esterification can be employed to dimerise eugenol with the acyl derivatives of 

furandicarboxylic acid [42, 43] isophtalic acid and benzene-1,3,5-tricarboxylic acid yielding 

respectively dimers and trimers. [18] Similarly to biseugenol systems, thermosets from esterified 

eugenol exhibit Tg between 153 and 208 °C. 

Poly(benzoxazines) synthesized through cationic ring-opening polymerization of 

benzoxazines are a recent class of thermoset with attractive thermal and mechanical properties. 

[2, 5] The occupied ortho-position of eugenol is preventing the occurrence of chain-growth 

limiting the development of fully eugenol-based benzoxazines. Examples of copolymerization 

[7] using eugenol-based monomers and furfurylamine (T = 162 °C) [34] or n-

octadecaneamine/furfurylamine [35] are promising as attested by similar patented systems 

involving eugenol-based benzoxazines. [44, 45] 

 

 

 



Neda et al. suggested an approach where di and tetraallylbiseugenol react with 

bismaleimide to yield a thermoset with a T > 357 °C and a T5% > 475 °C (inert atm). [24] In this 

line, Alder-ene chemistry, i.e. a ene-reaction and Diels-Alder reaction followed by 

rearomatization, leads to highly constrained structures composed of fused cycles. Alder-ene 

chemistry was employed with eugenol [46], eugenyl-phosphate [47,], 

eugenol/hydroxymetyleugenol [48], eugenol-silsesquioxane [49] and eugenol-siloxane-

resveratrol. [50]  Theses Alder-ene systems with their fused aromatic, imide and alkyl cycles 

allow Tg between 250 and 380 °C. Alder-ene systems are, to the best of our knowledge, the 

eugenol-based systems with the highest Tg that were reported so far. In the case of eugenol-

phosphate, fire retardancy is achievable on top of its high Tg. [47] The following section aims to 

further highlight promising eugenol precursors bearing potential for materials with resistance to 

thermal and thermo-oxidative degradation. 

Flame retardancy from eugenol-based compounds 

The global flame retardant market size was valued at USD 8.63 billion in 2022 and is 

anticipated to grow at a compound annual growth rate (CAGR) of 7.1% from 2023 to 2030. [51] 

Forty percent of the market share of flame retardants (FRs) is held by halogenated compounds. 

[52] Despite being highly efficient FRs, they are also considered as both hazardous and toxic 

chemicals. [53] Greener alternatives include silicon and organophosphorus derivatives. [52, 53] 

Though chemical functionalization, eugenol can become an intrinsically fire-retardant thermoset 

precursor. Flourishing eugenol-based structures suited for these purposes are presented in 

Scheme 3.  



 

Scheme 3. Promising Eugenol-based segments bearing fire/heat resistance. 

 

Hydrosillylation was used to introduce silicon-based spacers between eugenyl moieties. 

Even at low concentrations (≤ 3%), hydrosillylated eugenol enhanced the properties of 

waterborne poly(urethanes) [27]. When eugenol was employed in higher proportions in silicones, 

it improved their char yield and reduced their rate of thermal degradation. [28, 29] Systems 

comprising eugenol-silicon spacers [54], eugenol-polysiloxane-carbonate systems [55, 56], and 

eugenol grafted siloxane [57] have been patented since 2022, underscoring the growing interest 

in these innovative polymers. The downside of silicon spacers is their flexibility, when high Tg 

materials are targeted.  

 

 

 



If both high Tg and fire-retardancy are desired, phosphorylated eugenol offers a 

promising alternative. Eugenol was successfully spaced with organophosphorus moieties to 

enhance the fire retardancy of epoxy [11, 12, 19, 20] and allyl-terminated monomers. [58] While 

their effectiveness is somewhat limited, nitrogen-based compounds remain as the safest fire-

retardants. [52] Eugenol-based triazines were reported in poly(cyanurate) resins [59], as a side-

reaction in phthalonitrile resins [60] and in epoxy-terminated triseugenol. [61]  

The fire-retardancy of nitrogen compounds synergizes with phosphorylated ones by 

combining gas-phase and solid-phase actions. [52] Cyclophosphazenes contain both nitrogen and 

phosphorous. They are emerging as promising fire-retardant moieties. [53] Cyclophosphazene 

were reported as a spacer for eugenol with up to six left-over allyl functions. These allyl groups 

can either be used directly in thiol-ene polymerization, [62] self-polymerization [63], or undergo 

epoxidation [11, 12, 64] or involve series of reactions with the sillyl derivative of 4-

vinylbenzocyclobutene. [65] In all these cases, the authors praised the fire-retardancy or 

thermostability of cyclophosphazene-spaced eugenol. Incorporating fire-retardant spacers 

reduces the need for potentially leaking fire-retardant additives. 

Overall, key structures with high potential can be isolated from the this minireview 

(Scheme 4).  Eugenol compounds functionalized with epoxy or allyl end group offer an ease of 

manufacturing via epoxy-amine and thiol-ene chemistry, for example. In terms of polymer 

architectures, light can be shed on Alder-enes. Their constrained structures allow high Tg 

thermosets suitable for high-performance applications. Finally, the introduction of 

phosphorylated moieties is an advantageous way to increase the fire-resistance of eugenol-based 

thermosets. 

 

 

 

 

 

 



Scheme 4. Overview of the most promising monomer’s functional groups and polymer 

architectures derived from eugenol. 

 

 

Conclusion 

Eugenol, a non-edible natural phenol, is one of the most promising natural phenols whose 

commercial availability can rapidly increase by deconstruction of lignin. Indeed, it makes it 

possible to increase renewable carbon content while achieving exceptional properties required in 

many thermoset polymers, unlike many biosourced compounds. The presence of an ortho-

methoxy and a para-allylic group on a phenolic ring makes eugenol suitable for the synthesis of 

high-value added thermoset precursors. By itself, eugenol’s aromatic group is an asset for both 

high Tg and fire-retardant materials. When one combines it with the ability of eugenol to form 

biphenyls, Alder-ene, benzoxazines, phosphates or cyclophosphazenes, precursors to materials 

with high Tg (> 150 °C) and thermostability can be manufactured. These precursors, especially 

epoxy and allyl-terminated bear the potential to replace the petroleum-based standards such as 

bisphenol A, bismaleimide or phenol-formaldehyde. Thus, we can consider that eugenol-based 

precursors could find their place in mechanically and thermally demanding fields, such as 



composites for transport and aeronautics, which is still a pitfall for most derivatives of renewable 

resources. 
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