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A Risk-Aware Motion Planning Framework with Nonlinear
Risk-Constrained Optimization

Elie Randriamiarintsoa1, Johann Laconte2, Charifou Orou Mousse1, Benoit Thuilot1 and Romuald Aufrère1

Abstract— In this paper, we present a risk-aware motion
planning framework for resilient navigation in occupancy grid
maps. Navigating in unknown environments involves complex
interactions with the surroundings that must be effectively
managed by the robot. Recently, these interactions are fre-
quently expressed as risk constraints, where risk is defined
as potential threats that could hinder the robot from ac-
complishing its objectives. However, when the risk constraint
involves nonlinearities, common numerical solvers are severely
hampered in finding a feasible solution and are prone to failure.
Therefore, we present a novel risk-aware navigation strategy
based on motion primitives and the Nonlinear Model Predictive
Control (NMPC) method to address nonlinear risk constraints
within discrete maps. We demonstrate the effectiveness of our
approach through a practical application of a robust risk
assessment method that takes into account both the state of the
environment and the state of the robot. In addition to enhancing
the decision-making capabilities of the robot, our framework
offers a more resilient motion planning process that enables the
robot to navigate risky scenarios where standard optimizers are
likely to fail and lead to dangerous trajectories.

I. INTRODUCTION
As autonomous robots start to roam the world, it becomes

paramount to consider potential risks during navigation,
especially in unknown environments. These risks encompass
various scenarios, demanding continuous monitoring and
adaptive responses. In Figure 1, the robot must consider
not only avoid collisions with obstacles but also, in a more
general view, it has to assess the severity of damage that the
interactions with the environment can cause when it moves
towards its goal. With a goal located behind the roundabout,
the robot must cross a speed bump to avoid colliding with the
traffic cones, but it needs to adjust its speed to ensure safe
traversal of the speed bump. Therefore, developing a resilient
motion planning framework necessitates the incorporation
of a sophisticated risk function that not only assesses the
likelihood of collision but also evaluates their potential
severity.

To address this challenge, traversability analysis is crucial,
and occupancy grid maps are the most popular choice for
mapping the environment. Standard techniques using occu-
pancy grid maps divide the environment into traversable and
non-traversable regions, but are prone to errors, and also limit
the nuance of behaviors in complex environments, as the
one shown in Figure 1. As such, novel techniques have been
developed to assess more complex risk on grid map, taking
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Fig. 1. An illustration of a scenario where a robot must successfully
navigate through a speed bump to reach a position behind the roundabout.
Using our framework, the vehicle is able to cross this environment while
considering the risks involved during navigation.

into account both the state of the environment and the state
of the robot. This leads to a more nuanced analysis, though
it comes with increased complexity.

In recent years, Model Predictive Control (MPC) has
become more and more popular thanks to the ever-growing
computational capabilities of embedded computers. Unlike
classical approaches, MPC methods are optimizing the con-
trol of the robot within a specified time-window, enabling
anticipation of changes in the trajectory or the environment.
While the MPC is very efficient for linear problems, chal-
lenges arise when dealing with nonlinear problems. Sys-
tems with small nonlinearities can often be linearized, but
highly nonlinear models require more advanced techniques to
solve. In the context of risk-aware navigation, the Sequential
Quadratic Programming (SQP) [1] method is commonly used
to address nonlinear optimization problems. Furthermore,
SQP-type approaches have been widely adopted in robotics
due to their ability to operate in real time. However, a
common criticism of SQP-based MPC (and nonlinear MPC
methods in general) is that they can be prone to local
minima or fail to find a feasible solution. In this work, we
introduce a new framework based on a motion library and a
NMPC approach to handle a highly nonlinear risk constraint
on continuous trajectories traversing the environment. Our
contributions are i) a resilient NMPC framework for risk-
aware navigation; ii) an analysis of this architecture using
the Lambda-Field framework [2]; and iii) a demonstration
of the effectiveness of our framework for risk management
on a robot in a real-world application.



II. RELATED WORK

A key issue in navigation tasks is finding a feasible
motion plan that takes into account the robot capabilities
to traverse its environment while ensuring safety. To address
this challenge, it is important to accurately capture the local
environment around the robot. A widely used representation
is the Bayesian Occupancy Grid (BOG) [3], which con-
sists in tessellating the environment into a grid and storing
occupancy information for each cell. BOG is commonly
used in motion planning framework to identify collision-free
paths by analyzing the probability of encountering obstacles
along potential path. However, evaluating the probability of
collision alone is not sufficient to exploit the full potential of
the robot to traverse its environment. For instance, a mobile
robot might navigate over a rough terrain or uneven surface
at a reduced speed, even if it results in minor collisions. To
make more informed trajectory decisions, several approaches
propose incorporating risk into motion planning through the
use of risk maps. In contrast to the conventional BOG, a
risk map stores the cost of traversing a given position. For
instance, Schroder et al. [4] proposed a risk map tailored
for cognitive vehicles, which prevents robots from getting to
close to vehicles or pedestrians. Conversely, Pereira et al.
[5], employed bathymetry and historical shipping traffic data
from coastal areas to develop a risk map specifically designed
for underwater vehicles. On this map, each position likely to
be occupied is assigned a probabilistic risk value, reflecting
the likelihood of hazards in those areas. Primatesta et al.
[6] also employed a risk map to assess the likelihood of an
unmanned aerial vehicle causing fatal incidents in populated
areas. Although these methods produce useful results, they
are based on the assumption that risk is solely a function of
the position of the robot in the environment. However, it is
intuitive that the risk also depends on the sate of the robot
and its capability to traverse the environment.

As such, recent works propose new methods to exploit
both the state of the environment and the state of the
robot. For instance, Hakobyan et al. [7] assessed the risk of
collisions with randomly moving obstacles by formulating a
risk-constrained trajectory optimization problem, where the
distance to obstacles must be equal to or greater than a
fixed threshold. This approach enables efficient trajectory
planning in dynamic 3D environments, allowing for varying
levels of cautious movement based on the specified threshold.
Fan et al. [8] enhanced the framework by incorporating
different risk factors, such as rough terrain, slopes, over-
hangs, and narrow passages. They define a tail risk map
by condensing risks from these different sources, employing
the Conditional Value-at-Risk (CVaR) function. The resulting
risk map is then used to assess the risks at each position. Cai
et al. [9] proposed another approach for evaluating risk by
transforming a learned speed distribution map into a risk
cost metric, where the traversability speed is captured via
experienced trajectories. They used the Model Predictive
Path Integral (MPPI) approach, introduced in [10], to solve
their optimization problem. Koval et al. [11] developed

another risk-aware path planning approach, which also uses
a priori maps.

Although previous approaches have shown effectiveness,
they evaluate risk by calculating the collision probability at
individual positions. However, Laconte et al. [12] demon-
strated that this approach falls short when assessing risk
along continuous paths. They showed that the probability
of collision, calculated as the joint probability that each cell
of a path is free of obstacles, is significantly affected by
the grid resolution. To address this limitation, Laconte et
al. [12] introduced the Lambda-Field framework, a generic
approach that allows for natural physical risk assessment
along continuous paths. In contrast to the BOG framework,
the Lambda-Field framework employs a novel mapping
approach where each cell quantifies the density of potential
collisions that may pose a risk to the robot. The Lambda-
Field framework facilitates the integration of risk along a
given path, enabling the evaluation of risks with physical sig-
nificance. The Lambda-Field framework has been extended
by Randriamiarintsoa et al. [2] to address 3D environments.
This extension introduces a new measure of physical risks
that allows the robot to traverse 3D obstacles such as speed
bumps or small road curbs at an appropriate speed.

In this work, we address the challenge of incorporating
the physics-based risk constraint introduced by Randriami-
arintsoa et al. [2] into a nonlinear constrained trajectory
optimization problem.

III. A RISK-AWARE MOTION PLANNING WITHIN GRID
MAPS

A. The Navigation Problem

Suppose a robot must reach a user-defined global position
yF ∈ R2 in an environment about which it has no prior
knowledge. Assume next that a global planner provides a
dynamic local position goal yG ∈ R2, located in the furthest
navigable region perceived by the robot. This local position is
intended to guide the robot from its current position yk ∈ R2

to the global position yF . Let xk ∈ Rn and uk ∈ Rnu

denote the state and the control input, respectively, of a
wheeled robot at time k. The discrete kinematics model of
the wheeled robot can be written as:

xk+1 = f(xk, uk)

with umin ≤ uk ≤ umax

(1)

where f : Rn×Rnu → Rn represents the kinematic function
that describes the motion of the robot, and (umin, umax)
encompasses the control limits of the robot.

Define xk:N = {xk, xk+1, · · · , xk+N} as a sequence of
N + 1 discrete states, uk:N−1 = {uk, uk+1, · · · , uk+N−1}
as a sequence of N control inputs, and m =
(m(1),m(2), · · · ,m(M)) denotes a grid map with M cells.
The risk value r, which measures the interaction between the
robot and the environment, is given by:

r = R(xk:N , uk:N−1,m) (2)

where xk:N represents the predicted trajectory obtained by
applying the control input uk:N−1, and R(·) is a nonlinear



risk function that captures the state of the grid map as well
as the motion of the robot within this map. The details of
this function are discussed in Section III-B. To coherently
combine navigation risk with the local objective of reaching
the goal yG and the local perception, we define the following
optimization problem:

minimize z(uk:N−1)
subject to g(uk:N−1) ≤ 0

R(xk:N , uk:N−1,m) ≤ rth,
(3)

where z(uk:N−1) represents the cost associated with the
mission of the robot, g(uk:N−1) encodes the controller limits
and rth denotes a user-defined risk threshold aligned with
both the user preferences and the capabilities of the robot.
The main objective is then to find the optimal control
uk:N−1 that minimizes the cost while satisfying the risk and
kinematic constraints.

B. The Risk Function

To better understand the risk function used in this frame-
work, we present in this section a brief summary of the
Lambda-Field framework we use to assess a risk on a
continuous trajectory. In contrast to the BOG framework,
which stores collision probabilities for each position in
the environment, the Lambda-Field framework stores the
intensity of a potentially dangerous event for a robot for
each region of the environment, enabling the computation of
the risk associated with these regions. For a more detailed
overview of the framework, refer to the works of Laconte et
al. [13] and Randriamiarintsoa et al. [2].

Based on previous work, 3D obstacles, such as those
depicted in Figure 1, can be handled by computing a grid
map which is called Lambda-Field. For this, a Difference
Elevation Map (DEM) of the environment is first computed
by using an accumulation of 3D lidar sensor data. Then, the
Lambda-Field is assessed by evaluating the cells as follows: a
cell m(i) is measured as hazardous if its DEM value exceeds
a threshold value Hsafe ∈ R≥0; otherwise, it is measured as
safe. The threshold Hsafe reflects the capability of the robot
to navigate over slightly elevated obstacles, therefore its
value highly depends on the size of the wheels of the robot.
When evaluating the Lambda-Field, an error region of area
e ∈ R>0 is assigned to each lidar beam which propagates the
measurement to neighboring cells. The intensity λi of each
cell is then computed by using an expectation-maximization
approach:

λi =
1

e
ln

(
1 +

hi

si

)
pi (4)

where si is the number of times that a cell is measured as
safe and hi is the number of times that a cell is measured
as hazardous. The harmful probability, denoted as pi in
Equation 4 is given by:

pi = min

( |Hi|
R

, 1

)
, (5)

where Hi is the DEM value of the cell m(i), and R is the
radius of the robot wheels. The weighting pi ensures that

only obstacles higher than the wheel radius are taken into
consideration.

The risk function R(·) shown in Equation 2, which aligns
with the capability of the robot to traverse elevated obstacles,
is defined as the maximum potential energy that the robot
wheels will absorb in the event of a collision with the
environment. Specifically, the risk value r at the position
of a collision is expressed in Joule and defined as:

r(xi, ui,m) =
1

2
kr

(
v cos(Ψ)√
kr/mR

)2

(6)

where kr is the stiffness of the robot wheels, v is the linear
speed of the robot, Ψ is the angle of attack of the collision
and mR is the mass of the robot.

From this risk definition and the Lambda-Field map, the
expected value of the risk over a trajectory crossing the cells
{m(i)}0:L−1 is computed by:

r = R(xk:N , uk:N−1,m) =

L−1∑
i=0

Kir(xi, ui,m), (7)

where

Ki = exp

−∆a

i−1∑
j=0

λj

 (1− exp(−∆aλi)) (8)

is the probability of encountering a harmful event at the
position i of the trajectory xk:N , L is the number of crossed
cells and ∆a ∈ R>0 is the area of the cells.

One can note that the Lambda-Field framework is partic-
ularly well-suited for risk assessment on continuous trajec-
tories, as the cell area ∆a appears in Equation 8, ensuring
independence from grid resolution.

C. The Motion Primitives

The optimization problem defined in Equation 3 can be
addressed by using MPC methods. MPC is an iterative
optimization-based control strategy that systematically solves
an optimization problem over a specified time horizon of
size N . At each iteration, the first optimal control input
from the resulting control sequence is applied to the robot.
This process is repeated at each sampling time interval ∆t,
allowing the controller to continuously adapt to the evolving
robot dynamics and environmental changes.

Usually, the control functions u used in a classical MPC
approach are piecewise constant functions. Let N represent
the number of control intervals over the control horizon,
and nu denote the dimension of the input vector of the
robot. While a large number N is preferred in the context
of autonomous navigation (i.e., a larger time window), the
computational cost of solving the associated optimization
problem quickly becomes intractable. To overcome this issue
and to exploit all the robot capabilities, we reduce the dimen-
sionality of the problem by using parametrized trajectories
[14]. A control family, denoted as ξ(p), maps the parameter
p ∈ Rnp to the control inputs uk:N−1 over a time horizon
of size N . The complexity of the trajectory, derived from



applying the control inputs uk:N−1 of the control family
to the direct kinematic model of the robot, is significantly
influenced by the number of parameters and the choice of
functions defining the control family.

In the context of a car-like mobile robot, we define
the parameter p as p = (p1, p2, p3, p4)⊺ ∈ R4 and the
control input as uk = (vk, δk)

⊺ ∈ R2, where vk and
δk are respectively the speed and steering angle of the
robot at time k. We model our control family using linear
functions. In this representation, the parameter p1 repre-
sents the target speed to be reached at time tvr , while p3

represents the target steering angle to be reached at time
tδr. Analogously, p2 and p4 respectively represent the target
speed and target steering angle to be reached at time tN .
In Figure 2, we depict two trajectories generated by distinct
control family parameters, pB = (2.3, 0.7, 5.0,−11.0)⊺ and
pO = (1.6, 1.6,−5.0, 11.0)⊺, shown in blue and orange,
respectively. The trajectories are computed by applying the
control family to the discrete Ackermann vehicle model:xk+1

yk+1

θk+1

 =

xk

yk
θk

+∆t

 vk cos θk
vk sin θk

vk tan δk/l

 (9)

where l is the length of the wheelbase of the robot, (xk, yk) is
the position of the rear axle center, and θk is the yaw angle of
the robot in an absolute frame. As shown in Figure 2, the se-
lection of linear functions parametrized by p1, p2, p3, and p4

is sufficient to effectively capture the movement capabilities
of a car-like mobile robot. We define the parameters tvr and
tδr to reflect the acceleration and angular speed capabilities of
the robot, broadening the spectrum of car-like mobile robots
we can control. Note that adjusting the values of parameters
p, tvr , tδr, and tN for both control inputs distinctly influences
both the shape and length of the trajectories.
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Fig. 2. Example of trajectories generated with our control family. All
trajectories are considering the kinematic constraint, the current speed vk ,
and the current steering angle δk of the robot. Two trajectories generated
from the control family are depicted in blue and orange. The trajectories
depicted in light gray are generated by others parameters.

D. Optimization Architecture

Using the parametrized control family, the optimization
problem defined in Equation 3 over a prediction time of size

N is detailed as:

minimize Z = Z1 + Z2 + Z3

subject to p1 ∈ (0, vmax)

p2 ∈ (0, vmax)

δmin ≤ p3 ≤ δmax

δmin ≤ p4 ≤ δmax

dmax ≤ ∆v ≤ amax

− ωmax ≤ ∆δ ≤ ωmax

R(xk:N , uk:N−1,m) ≤ rth

(10)

where (δmin, δmax) are respectively the minimum and max-
imum steering angle the robot can achieve, and vmax is the
maximum speed it can reach. Between two sampling times,
we constrain the speed variation ∆v and the steering angle
variation ∆δ to not exceed the maximum deceleration dmax,
maximum acceleration amax, and maximum angular speed
ωmax of the robot.

The penalty term Z1 is used to drive the robot to the local
reference position goal yG:

Z1 = (yG − yN )⊺Q(yG − yN ), (11)

where Q ∈ R2×2 is the symmetric positive definite weight
matrix used to penalize the error between the local reference
position goal yG and the last predicted position yN of the
robot. The penalty term Z2 is used to encourage the robot
to drive fast when it is feasible:

Z2 =

N−1∑
i=0

(vmax − vi)wv(vmax − vi), (12)

where wv ∈ R>0 is the weighting coefficient that penalizes
low speed and vi is the speed of the robot at time i. The
penalty term Z3 is used to prevent frequent changes in
direction.

Z3 =

N−1∑
i=0

(δk − δi)wδ(δk − δi) (13)

where wδ ∈ R>0 is the weighting coefficient that penalizes
the direction changes and δi is the steering angle of the robot
at time i.

Following the standard MPC approach, the optimization
problem defined in Equation 10 can be solved by iteratively
optimizing an initial parameter guess p0 to the optimal
parameter p∗. As depicted in Figure 3, at step k the obtained
optimal parameter pk+1 is used to compute the optimal
control uk:N−1 over the horizon of prediction N using a
block function named Control Family that maps the
control parameters to the control inputs. The next optimal
control uk+1 that will be applied to the robot is simply the
first term from the resulted optimal control inputs.

However, as the risk constraint R(xk:N , uk:N−1,m) de-
fined in Equation 10 is nonlinear, this optimization process is
prone to failures. Without proper initialization, the optimizer
will often fail to find a solution that satisfies the risk
constraint, which can lead to hazardous behaviors. It is
therefore insufficient to rely solely on the previous described
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Fig. 3. Overview of the architecture. The current state xk , control input uk , and the last optimized control family parameter pk are used by the system to
compute the next optimal control uk+1 that steers the robot towards the current goal, considering the risk involved in the map m. The system integrates
three key modules: a) an efficient optimization solver based on SQP; b) a trajectory selection process that improves the optimizer performance by providing
a good initial guess p0 for the solution; c) a safety maneuver trajectory module for recovery in case of failure.

as module (a) in Figure 3. To ensure that the risk constraint
is not violated during the optimization process, we propose
to add two modules (b) and (c).

First, a module (b) is added to the pipeline. The objective
of this module is to build a set of tentacles that explores the
environment in order to provide a well-informed initial guess
p0 to the optimizer. These tentacles are computed by using
the control family mapping ξ(·) over a set of parameters p.
This set of parameters named P in Figure 3 is obtained by
using the Library block function. This function discretizes
the continuous parameter space into a finite number of ND

parameters, taking into account the kinematic constraints
defined in Equation 10. Note that at each iteration of the
optimization process, we add the last optimized parameter
pk to the set P . Indeed, if the environment has not changed
significantly, this parameter is still likely to be close to the
optimal one. If multiple tentacles satisfy the risk criterion,
we select the one that minimizes the cost Z and pass
it to the optimizer as an intial guess p0. The optimizer
then refines this initial guess p0 as described previously.
Section IV-A demonstrates the benefits of this approach for
the optimization process.

Despite these enhancements, there are still two scenarios
where the approach may fail. They are addressed by module
(c). The first scenario arises when none of the tentacles
satisfies the risk constraint. In such cases, the parameter set
P is replaced with a new set P ′ derived by perturbing the
parameters associated with the least risky trajectory found
in P using a normal distribution. This process is performed
in the block function Random Normal in Figure 3. If the
set P ′ results in tentacles that satisfy the risk constraint,
we select the one with the highest score and pass it to the
optimizer. However, if none of the tentacles meets the risk
constraint, we prioritize selecting the parameter p0 based on
minimizing risk first, followed by minimizing cost.

The second scenario arises if the module (a) fails to
converge to a feasible solution. In this instance, we first
employ the Last Best block function, as illustrated in
Figure 2. This function attempts to retrace the iterations

of the SQP Optimizer until identifying a parameter p
that aligns with the risk constraint. Since we retrace all
the iterations of SQP, it is possible to find a solution p
that both satisfies the risk constraint and minimizes the
cost, taking advantage of the nature of the SQP and the
proper initialization of the algorithm. However, there is a
possibility that no parameter p is identified, indicating that
the optimization might have started with a risky parameter
as an initial guess. This situation can occur in complex
scenarios where, based on its current configuration, the robot
faces challenges in avoiding the hazard. In such a scenario,
the Safety Maneuver function depicted in Figure 3 is
used to generate a safety maneuver consisting in steering
the robot towards the least risky region of the environment
while maximizing the robot deceleration. To achieve this, we
set the steering angle parameters (p3, p4) to values that best
minimize the risk in the SQP steps, and the speed parameters
(p1, p2) to zero values (safety maneuver parameters pSM

k+1).
It is noteworthy that an optimal solution to Equation 10

may be found during an safety maneuver, as the robot
transitions into a new configuration and may access to a
fresh set of feasible inputs.

IV. EXPERIMENTS

In this section, we first conduct a quantitative evaluation of
our framework through an ablation study. Then we demon-
strate the effectiveness of our approach through a real-world
experiment.

A. Evaluation of the optimization pipeline

In this section, we evaluate the optimization pipeline
depicted in Figure 3. Our framework is designed to identify
a feasible starting point to prevent optimization failures.
Furthermore, in scenarios where the optimizer encounters
failures, the architecture is also designed to recover and
minimize potential damage.

Figure 4 depicts the simulated environments used for
the evaluation. The initial condition is the same for each
environment, with the robot positioned at the left and facing
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Fig. 4. Simulation environments: the robot (box) has to reach the
region within the green circle while managing the risk involved in each
environment. Each path computed by using the module (a), (a)-(b) and (a)-
(b)-(c) are respectively depicted with red solid line, blue dashed line and
light green solid line. The gray-shaded rectangle represents the area of the
Lambda-Field map seen by the robot at the midpoint of the simulation.

to the right. The control input v0 and δ0 at initial time t0 are
set to zero. Each simulation have a duration limit of 30 s. The
local map size of the robot is set to 20.1m×20.1m and the
robot width is set to 66.5 cm. For all the environments, the
risk threshold rth is consistently set to 10 J and is combined
with the parameters shown in Table I. The SLSQP otpimizer
[15] is used as the backbone optimizer to solve Equation 10.

In Figure 4, the complexity of the test environments
increases from top to bottom. The environment is becoming
increasingly cluttered by different elements. The Lambda-
Field map of each simulated environment is depicted in
Figure 4 using a color scale. The color scale represents
the intensity value of each cell of the map. The higher the
intensity of a cell in the map, the more likely it is that a
dangerous event will occur in that cell. On the other hand,
a cell with zero intensity (in white in Figure 4) means that
it will never lead to a dangerous event. In the environment
e1, the risk only arises from the walls (in black in Figure 4)

TABLE I
PARAMETERS IN EVALUATION OF THE OPTIMIZATION PIPELINE

Parameter Value Parameter Value

vmax 3.35m s−1 N 30
amax 1m s−2 ∆t 0.1 s

dmax 3m s−2 Q

[
1 0
0 1

]
δmax 23◦ wv 2
δmin −23◦ wδ 4
ωmax 0.2 rad s−1 ND 81
R 20.5 cm tvr 1.5 s
l 50 cm tδr 0.5 s

TABLE II
SUCCESS RATE IN FINDING A FEASIBLE SOLUTION AND TRAVERSAL

TIME FOR EACH MODULE IN DIFFERENT SCENARIOS

Environment

Module e1 e2 e3

a 26.58%-30.0 s 5.98%-30.0 s 5.98%-30.0 s
ab 84.39%-23.0 s 76.41%-27.0 s 62.13%-30.0 s
abc 100.00%-19.7 s 100.00%-20.3 s 100.00%-21.1 s

and the speed bump (in yellow-orange in Figure 4). In the
environment e2, traffic cones are added to the environment
to prevent the robot from starting out in a straight line.
Finally, a roundabout is added in the environment e3 to
significantly increase the complexity of the environment.

For each environment, we challenge the robot to reach a
target region (in green circle in Figure 4) located beyond
its field of perception. The traversal time of the robot to
reach the target region is shown in Table II. If the robot
fails to reach the target region within the allotted time, we
show in Table II the duration of the simulation instead of the
traversal time. Each percentage shown in Table II represents
the success rate of each module in finding a feasible solution
out of the total number of optimizations performed over the
30 s of simulation. It is important to note that when the
module fails, the resulting trajectory involves a risk greater
than the acceptable threshold. Since the risk of crossing an
element is related to the speed at which the robot crosses
it, this indicates that the robot is moving too fast to cross
the element safely. Therefore, the robot must adjust its speed
appropriately to ensure safe traversal and avoid any potential
damage. Note also in Figure 3 that when the module (c) is
not in use, the Braking Maneuver function ensures that
if no feasible solution is found, the robot safely comes to a
stop.

We perform an ablation study, focusing on the added value
of our modules (b) and (c). First, we use solely the module
(a) which consists in the classical NMPC. We see in Figure 4
and in Table II that this module fails to drive the robot to
its goal. In the environment e1, the optimizer fails to find
a feasible solution when a speed bump obstructs the path
to the goal, resulting in a success rate of only 26.58%. In
the environment e2 and the environment e3 the success rate
is worse because the optimizer is quickly confronted with a
risk. As the module (a) performs poorly against risk, module



(b) is added to module (a), resulting to the couple module
(a) - module (b).

The aim of the module (b) is to provide the optimizer
of the module (a) with a good starting point at all times.
In the environment e1, the couple module (a) - module (b)
successfully hits the target region within the allotted time.
Furthermore, as shown in Table II, it achieves this in only
23.0 s of traversal time. In constrat to the sole module (a),
the couple module (a) - module (b) successfully hits the
target region in the environment e2. However, the traversal
time in this environment is greater than the traversal time in
the environment e1. This is due to the presence of traffic
cones, which cluttering up the environment. As one of the
traffic cones obstructs the straight path to the target region,
and these traffic cones create unacceptable risks to cross, the
couple module (a) - module (b) must plan trajectories that
avoid these traffic cones, forcing the couple module (a) -
module (b) to take a slower but safer path. In the environment
e3, the couple module (a) - module (b) is unable to drive the
robot to the target region due to a roundabout that obstructs
the path to the goal. Figure 4 shows that the optimizer fails
into a local minimum. Indeed, in this case, the couple module
(a) - module (b) fails to find an escape route. The only
solution the couple module (a) - module (b) have found to
minimize potential damage is to sufficiently slow down the
robot to stop right in front of roundabout.

Finally, we add the module (c) which enable recovery from
failures. As shown in Table II, the addition of the module
(c) significantly reduces the traversal time of the robot from
23 s to 19.7 s in the environment e1, and 27 s to 20.3 s in the
environment e2. Figure 4 and Table II show that only the
full combination module enables the robot to reach the target
region in the environment e3. We can also see in Figure 4
that, in each environment, the robot clearly optimizes its path
to maximize speed while ensuring that the risks associated
with the environment remain below the risk threshold rth
during the traversal.

Through this ablation study, we demonstrate the effec-
tiveness of our framework in managing risk and failures.
We have demonstrated the contribution of each module to
managing increasingly complex environments. This study
demonstrates that our framework can satisfy the risk con-
straint while minimizing traversal time.

B. Application to the Lambda-Field Framework

We applied our framework in the real-world scenario
depicted in Figure 1, where the robot encounters different
elements such as a speed-bump, traffic cones, a roundabout,
sidewalks, fences, and walls. In this experiment, the global
position to reach is deliberately placed beyond its field of
perception. The results of this experiment are presented in
Figure 5.

From the robot capabilities we set the maximum speed
parameter vmax to 1m s−1 and the steering angle range
(δmin,δmax) is set to ±13◦. Considering the robot wheel
radius R = 20.5 cm, we allow the robot to take a little
amount of risk, specifically the risk threshold is set to
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Fig. 5. The first row shows the Lambda-Field map of the environment
obtained after the traversal. The path followed by the robot is shown in
light blue and the target area is represented by a green circle. The last row
shows the speed of the robot in purple and the predicted risk during the
traversal of the environment. The risk threshold is depicted by a horizontal
dashed black line. And the times when an emergency maneuver has been
activated are depicted by vertical dashed gray lines.

rth = 0.2 J. The local map size of the robot is set to
20.0m × 20.0m. The horizon time of prediction is set to
6 s and the sample time ∆t for trajectory discretization is
set to 0.1 s. The control loop frequency is set to 10Hz. The
coefficient wv and wδ are both set to 2.0, meaning that
reducing the steering variation and maximizing the speed
are twice as important as reaching the intermediate target
position. When the final position is sufficiently close (i.e.,
when the robot enters the target area), the weight wv of the
cost Z2 is set to zero, resulting into a stabilization problem.
Additional settings are shown in Table III.

TABLE III
PARAMETERS IN THE REAL-WORLD SCENARIO

Parameter Value Parameter Value

amax 1m s−2 dmax 3m s−2

ωmax 0.225 rad s−1 l 50 cm

Q

[
1 0
0 1

]
ND 82

tvr 1.5 s tδr 0.3 s

It can be noted in Figure 5 that the robot initially follows
closely the shortest path to the global target area, since it
encounters no risk along its path. As the robot approaches
the roundabout, some traffic cones are preventing the robot
to turn right. The controller adjusts the robot course to
navigate around the roundabout in the left lane. However,
a speed bump lies on this path, increasing the risk involved.
As the risk threshold has been set to 0.2 J, the framework
controls the risk throughout the entire traversal through the
management of the robot speed. The last row in Figure 5
shows that the risk taken by the robot is systematically
below the threshold, and the few emergency maneuvers never
lead the robot to take hazardous paths. This experiment



demonstrates that our framework is applicable in real-world
scenarios.

V. CONCLUSION

In this paper, we presented a new risk-aware motion
planning framework that is designed for safe and resilient
navigation in Lambda-Field grids. We have introduced a
novel formulation for a NMPC controller that takes into
account a nonlinear risk function as a hard constraint and
supplemented it with modules to address failures of the
optimization process. We have demonstrated through an
ablation study that even in the event of occasional failures,
our architecture enables the robot to fulfill its mission while
satisfying the risk constraint in both simulation and real-
world scenarios. The real-world scenario highlights the prac-
tical relevance and applicability of our approach to unknown
environments. Indeed, we have succeeded in planning safe
trajectories that not only guarantee safety but also actively
address the risks arising from interactions with an unknown
environment.

Future works will focus on incorporating a more advanced
global planner to demonstrate the pertinence of the frame-
work in larger-scale experiments. We will explore alternative
risk metrics, such as CVaR, to account for rare but high-
impact risk events. Sequential Convex Programming will also
be explored to improve satisfaction with the risk constraint
in the optimizer. Furthermore, to enhance decision-making in
intricate scenarios, such as handling visibility problems due
to fog, rain, or darkness and, in general, lack of knowledge,
we intend to use additional risk functions derived from
these sources. Indeed, enabling mobile robots with such
capabilities will considerably improve their autonomy in
complex and unknown environments.
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