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Abstract 

On a global scale, a considerable amount of life, property, and resources are lost because of the 

increasing frequency and severity of flooding occurrences. This necessitates the development 

of worldwide, thorough flood risk assessments and urbanization policies. This work used 

sophisticated remote sensing data hydraulic models to create an effective and appropriate 

methodology to flood risk assessment in a coastal city located in in western Algeria.   In the 

first stage, Sentinel-2 optical data was classified using deep learning and machine learning 

methods for land cover and land use (LULC). The CNN deep model based on LULC was 

selected because of its outstanding overall accuracy. Then, a 1-D HEC-RAS hydraulic model 

was performed, integrating LULC maps with a higher precision, topography using a digital 

surface model (DSM) derived from Pléiades tri-stereo data, and another digital elevation model 

(12 meters). Flood hydrographs were as well constructed for four scenarios (10, 20, 50, and 100 

years) using hydrometric data. The 1D flood mode was indeed validated using a flood event 

data. Flood hazard, LULC and flood risk maps were derived. Results show the high flood hazard 

areas are concentrated on the left bank of the Oued Allala river and urban cities near to the 

coast. According to the results of the flood hazard simulation of 100 years, built-up areas and 

roads are the LULC classes most affected by flood hazard, with more than 94.4% and 69.34 % 

for DSM tri-stereo and DEM models, respectively. As well, results of flood risk assessment by 

combining hazard risk and LULC vulnerability show that for the DSM model, 0.48%, 44.55%, 
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and 53.11%, and 54.04% of flooded areas are in low, medium, and high flood risk, respectively. 

For the DEM model, 3.14%, 45%, and 51.04% of flooded areas are in low, medium, and high 

flood risk, respectively. Results confirmed that topographic resolution of models and LULC 

accuracy of CNN models can highly affect hydraulic simulation output results. Based on the 

obtained results, Ténès city needs necessary planning for flood risk management, particularly 

in the coastal area. Derived maps can serve as valuable information for regional and national 

decision-making. 

Keywords: flood risk, flood-prone area, LULC, machine and deep learning, hydraulic model, 

vulnerability, flood scenarios, Pléiades tri-stereo.  

1. Introduction 

Floods are becoming more frequent and severe worldwide, resulting in significant losses in 

terms of people, property, and resources. The International Disaster Database Emergency Events 

Database (EM-DAT project) estimates that since 2020, floods have affected over 5,000 persons 

worldwide, with approximate increases of +2 percentage points in the economic damage caused 

by floods as a share of global GDP. Consequently, effective planning for flood-prone regions 

and conducting hydraulic analyses are crucial components in reducing and managing flood risks 

(Kumar and Singh, 2024; Nguyen and Kim, 2023; Garcia and Liu, 2022; Smith and Thompson, 

2022). In Algeria, various environmental and socioeconomic factors contribute to flood risk. 

The occupation of flood-prone areas has become a pressing issue, as many Algerian cities have 

developed around springs and rivers, particularly in coastal regions. Unfortunately, as urban 

development encroaches on these flood zones, vulnerability to flooding increases. This situation 

necessitates careful temporal and spatial consideration in the implementation of policies for 

effective planning and flood risk management (Bornane et al., 2019; Goumrasa et al., 2021; 

Boutaghane et al., 2022; Mokhtari et al., 2023). 

Hydraulic and hydrological models, including conceptual, empirical, probabilistic, and 

physically based models, are employed for flood forecasting. These models have been developed 

over decades using field data and river observations. However, they face limitations due to 

insufficient data, lack of long-term observations, and difficulties accessing flood-prone areas. 

As well, unidimensional one-dimensional or two-dimensional hydraulic models, such as HEC-

RAS (Hydrologic Engineering Centers River Analysis System) require precise spatial 

delineation of land use and land cover (LULC) in flood-prone areas, along with accurate 

topographical data (Psomiadis et al., 2021; Soliman et al., 2022; Phyo, 2023).  
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To address these challenges, remote sensing has emerged as a powerful tool for flood risk 

assessment and floodplain mapping in recent decades. High and very high spatial resolution 

(HSR and VHSR) satellite imagery provides essential data for delineating floodplains and 

assessing socio-economic damage and risk (Schumann et al., 2015; Domeneghetti, 2019; 

Munawar et al., 2022). The integration of remote sensing with hydraulic models offers 

unprecedented opportunities to simulate water depths and flood hazard characteristics, 

enhancing the spatial representation of floods. Remote sensing data significantly improves these 

models by providing timely and accurate information on LULC, topography, and hydrological 

conditions.  

Literally, LULC maps serve as critical input data for hydraulic models, aiding in understanding 

how various surfaces—such as urban areas, forests, wetlands, and agricultural lands—interact 

with rainfall and runoff processes. As well, LULC accuracy has a strong impact on modeling 

quality (Lu et al., 2023; Natarajan et al., 2020 ; Yalcin, 2020).  The classification of LULC 

through satellite data, machine learning and deep learning techniques has gained significant 

traction in the scientific community. Traditional machine learning algorithms, including support 

vector machines (SVM) (Nandam and Patel, 2021), random forests, (Adugna et al., 2022; 

Niculescu et al., 2020; Zaabar et al., 2021) and decision trees, remain vital for LULC 

classification. These methods are often combined with deep learning techniques to improve 

classification performance and interpretability.  Deep learning models, particularly 

convolutional neural networks (CNNs), have become foundational for LULC classification, 

excelling in processing high-dimensional data like satellite imagery and automatically extracting 

features essential with distinguishing different LULC types (Bhosle and Musande, 2019; 

Kattenborn et al., 2021; Zaabar et al., 2022).   

Among the recent developments of deep learning in the field of  LULC using Machine and Deep 

Learning we recall: Remote sensing image classification using an ensemble framework without 

multiple classifiers (Dou et al., 2024); Scene classification of high-resolution remotely sensed 

images based on ResNet (Wang et al., 2019); Large-scale land use/land cover extraction from 

Landsat OLI images using feature relationships matrix based deep-shallow learning (Dou et al., 

2024); Crop type mapping in the central part of the North China Plain using Sentinel-2 time 

series and machine learning (Luo et al., 2023). 

In (Lu et al., 2023) study, the authors emphasized the LULC Classification using UAV Remote 

Sensing through Transformer–CNN Hybrid models. Integrated features in the proposed method 

considered both global and local context pieces of information. Three deep learning models, 
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including DE-UNet and DE-UN, were tested on UAV images and achieved the highest LULC 

classification accuracy. In similar, (Wang et al., 2023) presented a new extraction framework 

for land cover characterization in mining areas based on deep MFE-ResNet model. The method 

was combined with an object-based approach applied on Gaofen-2 satellite. The model was 

compared with six other deep learning methods and analysed for accuracy in two several study 

areas of varying sizes from two different perspectives. According to results in this work, mining 

areas information were well acquired and this confirms the contribution of these deep models to 

challenge such issues.  

Therefore, the effectiveness of LULC usage hinges on the quality of the classification produced. 

Accordingly, land cover data can serve as input for hydraulic models, running or be utilized as 

post-processed information to evaluate the flood vulnerability of each land cover class.  

Solaimani et al., (2024) explored in the present study, the capability of Random Forest (RF) and 

Support Vector Machine (SVM) algorithms investigated in combination with Sentinel series and 

Landsat-8 images to prepare the 2019 flood map. Then, the flood hazard map of these areas was 

prepared using the new hybrid Fuzzy Best Worse Model-Weighted Multi-Criteria Analysis 

(FBWM-WMCA) model. Results of the study showed effective flood output maps with the best 

accuracy of LULC input maps.  

(Phyo, 2023) proposed an efficient method of flood inundation by HEC-RAS modelling and 

GIS mapping for disaster risk management. The authors emphasized using remote sensing input 

data such as land use, land cover, soil type, curve number, and differences in analytical 

simulation utilizing 1D and 2D to enhance the body of work. For classifying the dam size, the 

ICOLD Large Dams Classification and USACE Embankment Size Classification Criteria were 

used because they match Myanmar’s condition for hazard potential and inflow design flood. 

This research investigates the potential impacts of climate change on flood frequency and 

intensity in Algeria, providing a framework for future risk assessments. 

In similar, Digital elevation models (DEMs) are essential for analyzing flood hazard and 

conducting risk assessments. They play a significant role in accurately depicting river 

geometries and floodplains, which can affect hydraulic flood simulations and the extent of 

simulated flood events. Recent advancements in optical and radar satellite sensors have enabled 

the acquisition of highly precise DEMs, which are frequently utilized in hydraulic modeling 

studies (Annis et al., 2020; Casas et al., 2006; Das et Lindenschmidt., 2021; Ettritch et al., 2018; 

Fathy et al., 2019; Lamichhane et Sharma., 2018; Mihu-Pintilie et al., 2019). These studies 
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predominantly employ models derived from light detection and ranging (LIDAR), the Shuttle 

Radar Topography Mission (SRTM), the Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER; Tuia et al., 2011), the Canadian Digital Elevation Model 

(CDEM), unmanned aerial vehicles (UAVs), and the Advanced Land Observing Satellite 

(ALOS; Zhang et al., 2019). 

Recently, the emergence of stereoscopic satellite systems has further improved the capabilities 

of remote sensing sensors, allowing for the generation of digital elevation models from 

stereoscopic optical images. The Pléiades system, in particular, offers high-resolution Digital 

Surface Models (DSM) of complex terrains due to its ability to capture up to three images of the 

same area with stereo angles ranging from 6° to 28° (Bagnardi et al., 2016; Lacroix et al., 2015). 

Despite their potential, these models are rarely taken advantage for hydraulic flood modelling 

due to their recent introduction and specific acquisition conditions. For instance, Bennani et al. 

(2019) assessed flood risk in a semi-arid region of Morocco using topographic data from 

Pléiades tri-stereo, demonstrating that these models are suitable for hydraulic simulations and 

provide valuable opportunities for flood risk mapping in complex areas. The recent availability 

of high-resolution elevation data allows for the implementation of hydraulic simulation 

approaches across various catchments, facilitating the creation of accurate floodplain maps. 

The main objective of this study is to employ a comprehensive, synergistic approach to analyze 

the flood risk of the Oued Allala River, which flows through the coastal city of Ténès in western 

Algeria. This analysis integrates remote sensing techniques with hydraulic simulations. Two 

topographic models, the DSM from Pléiades stereo and the DEM model, were acquired to 

construct the river and floodplain geometries, which were then compared. LULC used 

classifications were derived from previous research conducted by the authors, utilizing Sentinel-

2 images processed through deep learning and machine learning models. Hydraulic simulations 

were executed using the HEC-RAS model and the most accurate LULC classification, and the 

accuracy of the modelling outcomes were validated against surveyed data from a flood event 

that occurred in 2017. Subsequently, hazard, vulnerability, and flood risk maps were generated 

based on the outputs of the hydraulic modelling. 

 

2. Study area  
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The study area is located in northern Algeria, midway between Algiers and Oran along the 

Mediterranean coast (Figure 1). The region is influenced by the Mediterranean climate and is 

characterized by a warm, temperate climate with high rainfall during the winter months.  

The city, on the one hand, plays an important regional role due to its geographical location and 

its current and future facilities. According to a study by the Agence Nationale de Gestion 

Intégrée des Ressources en Eau (AGIRE), the population is expected to reach 50,000 by 2029. 

The urban areas mobilized to meet the needs of this population are increasingly developing, 

and they are mobilized around the urban center of Ténès to meet the needs of this population.   

In recent years (November 2001, November 2011, and November 2012), the city of Ténès has 

experienced flooding in its lower zone. Homes and infrastructure have been damaged, and 

sometimes lives have been lost. The most critical area corresponds to the coastal urban sector 

of the region. It includes small plains and adjacent hills around the confluence of the Oued 

Allala and Boufessousa rivers. These floods have developed due to the size of the watersheds 

and forest massifs, which aggravate forest fires and make it difficult to transport sediments and 

vegetation. The runoff from this drainage channel crosses a plain that narrows to about 900 

meters before being discharged into the sea. In addition, seawater rises at the mouth of the river, 

preventing the floodwaters from draining properly. Furthermore, due to its regional importance, 

geographical location, and high risk of natural disasters, this study area was selected as part of 

the National Flood Control Strategy. 

Therefore, in this study, the Oued Allala watershed was selected for the application of the 

proposed methodology. The Allala Basin includes the city of Ténès and its coastal area. It is 

located between 36.30° and 36.55° N latitude and between 1.05° and 1.45° E longitude, south 

of Ténès. The total area of the watershed is 307 km², and the main river of the watershed is 35 

km long. The region has a maximum and minimum elevation between 1,032 and 44 m, 

respectively, and includes Ténès. It is a tourist city, a port city, and the second-largest city in 

the Wilaya of Chlef. 

The region has a Mediterranean climate characterized by warm and temperate weather, with 

heavy rain in the winter. The average temperature is 18.6 °C, and the average total annual 

rainfall is about 585 mm (Kastali et al., 2021). The Allala watershed has a variety of landscapes, 

including urban areas, forests, and agricultural lands. The northern part of the basin is covered 

with pine forests. Annual crops such as cereals cover the southern part of the basin. This 
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diversity of land use categories requires a thorough understanding and identification of the 

landscape elements that are at risk of flooding in the area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Location of the study site  

3. Materials and methods 

The workflow of the proposed method consisted of the following steps: (1) data 

collection and preprocessing, (2) land cover classification and validation using the 

proposed convolutional neural networks (CNN) model combined with object-based 

image analysis (OBIA), (3) hydraulic model construction, (4) model calibration and 

simulation, and (5) flood hazard and vulnerability map generation. Figure 2 shows a 

flowchart of the developed methods. 

 

Study area 

Chlef City 

Algeria 
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Figure 2. Flowchart of the proposed methodology 

3.1. Data and preprocessing 

3.1.1. Remote sensing data  

• Sentinel-2 data    

For the detailed delineation LULC of the Allala watershed, remote sensing data with different 

spatial resolutions were obtained. The data consists of a single Sentinel-2 at Level 2A image, 

atmospherically corrected. The Sentinel-2A image was acquired free of charge via the ESA 

platform (https://scihub.copernicus.eu/) on March 8, 2020. This image has 13 spectral bands 

and a high spatial resolution ranging from 10 to 60 m. The high spatial, spectral, and temporal 

resolution of Sentinel-2 satellites makes them well suited for LULC monitoring programs due 

to their high revisit frequency (10 days for a single Sentinel-2 satellite and 5 days for the 

combined constellation). Sentinel-2 band were then resampling to obtain a single resolution (10 

m). Detailed specifications of Sentinel-2 image are described in table 1. 

 

 

Satellite Data Hydrometric data  Topographic models 

Pléaides 

tri-stereo 
Sentinel-2 

DSM 

 Tri-stereo 

DEM  

(12 m) 

LULC classification and 

validation 

Water surface profile 

Flood hazard 

assessment  
Flood risk zoning  LULC vulnerability to flood risk 

D
a

ta
 a

n
d

 p
re

-p
ro

ce
ss

in
g
 

H
E

C
-R

A
S

 m
o

d
el

 c
o
n

st
ru

ct
io

n
 

G
IS

 p
o

st
-

p
ro

ce
ss

in
g

 

Manning coefficient layer 

generation 

Flood characteristics generation 

(depth limits, Velocity) 

Construction of a 

flood hydrographs 

River cross sections generation 

Return periods 

analysis   

HEC-RAS 

calibration  

https://scihub.copernicus.eu/


 

9 
 

Table 1. Provided additional acquisition properties of Sentinel-2 imagery. 

Data band Wavelength (nm) 
Spatial 

Resolution (m) 

Sentinel 2A 

Acquired on 

March 8, 

2020 

2 492.4 

10 
3 559.8 

4 664.6 

8 832.8 

5 704.1 

20 

6 740.5 

7 782.8 

8a 864.7 

11 1613.7 

12 2202.4 

1 442.7 

60 9 945.1 

10 1373.5 

 

• Topographic data 

The main objective of using topographic models in this research was to create our proposed 

hydraulic model to delineate flooded areas and flood characteristics. A comparison of DSM tri-

stereo and DEM-12 m spatial resolution models was carried out in order to evaluate the effect 

of accurate urban topography on the hydraulic simulation procedure. 

The DSM was extracted from the stereoscopic tri-image Pléiades with a very high spatial 

resolution. With its constellation and two satellites flying in sun-synchronous orbits with an 

inclination of 98.2° and an offset of 180°, the Pléiades system is the first of its kind to acquire 

at least three near-synchronous images of the same region at stereo angles varying between 6° 

and 28°. This stereoscopic capability makes it possible to generate accurate THRS-based DSMs 

for complex topographic surfaces (Lacroix et al., 2015). A single tri-stereoscopic Pléaides 

image covering the Allala watershed was acquired on October 22, 2022. 

3.1.2. Hydrometric data 

All hydraulic simulation calculations were performed using a hydrometric series of maximum 

daily flow discharges from the Sidi Akkacha hydrometric station over a 45-year period from 

1972 to 2017, thanks to the presence of a hydrometric station monitoring the Oued Allala 
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watershed. The hydrometric data are provided by the Agence Nationale des Ressources 

Hydriques (ANRH). However, since data from the hydrometric station are not updated after 

2017, we were able to obtain flow data up to 2017 within the parameters of this study and in 

light of national policy. Homogeneity tests were then performed to verify the independence and 

identical distribution of the chronic observations. In this sense, Wilcoxon (Kosiorowski et al., 

2019), independence (Wald and Wolfowiz, 1943), and stationarity homogeneity tests were 

applied to the studied series of flows. In addition, according to the type of flooding that 

characterizes northern Algeria and, in particular, the studied region, multiple probability 

adjustment laws were tested on a series of maximum instantaneous flows. The adjustment law 

chosen to determine the quantiles corresponding to the return periods is the one best suited to 

the hydrological dataset. According to the results of the probability distribution, the flood 

hydrograph was constructed for four return periods (10, 25, 50, and 100 years).  

3.2. Integrated land cover derived for the CNN model and HEC-RAS model for flood 

hazard assessment 

3.2.1. LULC classification based on machine learning models  

Previously derived LULC maps (Zaabar et al., 2021) were used as an indispensable database 

for the hydraulic simulation step, mainly to assess the impact on flood vulnerability. Machine 

and deep learning models were performed to LULC classifications. In the current proposed 

methodology, the derived classification with the highest overall accuracy index (OA) more than 

92.2 % value was employed. It involves LULC classification using integrated method based on 

object-level image (OBIA) and CNN algorithm applied on Sentinel-2 image. LULC categories 

were identified using visual analysis and interpretation of the Pléiades VHSR image, producing 

eight predominant classes: water, barren land, buildings, agricultural land, non-agricultural 

land, roads, medium vegetation, and forest. Sample generation was split into two categories: 

training and test samples. The generation provided two vector datasets: training vector, which 

applied during the classification process; whereas the test vector was used in both accuracy 

assessments. CNN is a deep learning model technique designed for image classification. A 

representative CNN architecture consists of sequential layers (e.g., convolutional, pooling, and 

fully connected layers) and interconnected output layers using nonlinear operations (Wang et 

al., 2018). CNN architecture was created in Trimble eCognition Developer v.10 software 

(eCognition, 2021). The main layers characterizing CNN structural design implemented were 

the hidden, convolution, pooling, and fully connected layers; whereas the process consisted of 



 

11 
 

three main steps: creation of sample patches; generation of and training the model; and model 

application (figure 3).   

 

 

 

 

 

 

Figure 3. CNN architecture of Sentinel-2A image (Zaabar et al., 2022) 

Based on training vector data represent classes, a 10000 32x32 pixels samples patches were 

created for predefined LULC classes. Two hidden layers, applied with max pooling and two 

kernel parameters of 7 and 3, respectively, were used to create and train the CNN architecture. 

Eight heatmaps are then created used as input of OBIA classification of LULC for the whole 

satellite image (figure 4).  

 

 

 

 

 

Figure 4. LULC classification performed with CNN model. 
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The LULC map was used as input layer in HEC-RAS model to generate layers of Manning 

roughness coefficient layer. Manning values, which determine surface roughness, were 

assigned according to different LULC categories, as classified by Sentinel-2 data. The 

appropriate determination of Manning values takes into account the presence of construction, 

bare areas, and agricultural or vegetated areas to provide a more realistic simulation of flood 

flow generation.  

3.2.2. Topographic model generation 

The hydraulic modelling process requires as input a DEM or DSM models that allows the 

representation of watercourses and floodplains. The DSM is generated from a tri-stereo image 

with a very high spatial resolution (less than 2 m), which allows the detection of vegetation 

cover, building rooftops, bare soil, and ground when nothing else is above it. A comparative 

study of DSM tri-stereo and DEM-12 m spatial resolution models was recommended to assess 

the impact of the accuracy of the urban topography on the hydraulic simulation process. The 

Pléiades system can acquire images in stereo tuples, often a pair or triplet, with n ranging from 

2 to 25. Each image is then captured at a different angle of incidence and azimuth. In order to 

calculate the DSM, it is essential to consider all or part of the generated image. Therefore, 

images are acquired from different angles for the same area of interest. The generation of DSMs 

is often performed by different commercial software packages for processing stereoscopic 

satellite images (e.g., PCI Geomatica, ERDAS) or by open-source software developed by public 

institutions. In this work, DSMs were generated using the DataTerra on-demand DSM-OPT 

(Digital Surface Models from OPTical stereoscopic very-high-resolution imagery) service. This 

service was operated by the ForM@Ter (Solid Earth) cluster (www.poleterresolide.fr/le-

service-dsm-opt/) in collaboration with the Theia (Continental Surfaces) cluster and the 

DINAMIS device. The MNS calculation takes into account terrain features, such as contrast, 

slope, and roughness, in the selection of radiometric image processing, the determination of 

image position, the correlation process, and the filtering of intermediate products. This is 

particularly useful for flood studies and simulations. In addition, we used this online tool to 

perform calculations based on the following parameters: landscape type: coastal; input images: 

the tri-stereo folder of acquired images containing images from different camera angles; area 

of interest: including the city of Ténès (northern part of the studied watershed); and DSM 

resolution factor: Here, a high factor was chosen to generate very high-resolution DSMs. The 

DSM and DEM topographic models used in the hydraulic simulation are shown in Figure 5.  

http://www.poleterresolide.fr/le-service-dsm-opt/
http://www.poleterresolide.fr/le-service-dsm-opt/
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Figure 5. Overview of the Pléiades tri-stereo DSM (left) and DEM (right) models. 

3.2.3. Creation and simulation of the hydraulic model 

Based on the maximum flows corresponding to the return periods and their distribution 

probabilities, the simulation in this study was performed for four return periods: 10 years, 20 

years, 50 years, and 100 years. For the downstream wave propagation, a one-dimensional 

mathematical flow integrated with the HEC-RAS model was used. This model is highly 

recommended for flood simulations, mainly in habergeon areas. It is easy to determine the 

energy equation in both time and space. In addition, the HEC-RAS model generates hydraulic 

characteristics with optimal numerical stability, such as flood limits, water depth, and wave 

propagation speed. In addition, the geometry of the plain was created using imported 

topographic data, including three essential components: the central line of the main channel, 

the limits of the minor bed of the main channel (main channel banks), the limits of the major 

bed (flow path), and cross-sections (cross-sections). Furthermore, the land cover raster file was 

integrated into the model using the Terrain-add land cover map tool available in RAS Mapper. 

A Manning roughness coefficient layer was created from this file by assigning roughness values 

to each land cover class.     

Once the geometry is created (Figure 6), it can be opened and visualized using the geometric 

data module, which displays the cross-sections generated and the Manning layer assignment for 

all sections. In addition, the hydraulic simulation model was designed using the steady flow 

data tool. In the case of this study, the steady flow model was selected. At this stage, water 
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profiles were created corresponding to the four return periods analyzed in the study. The 

creation of water profiles using models such as HEC-RAS requires specifications on upstream 

and downstream boundary conditions. These specifications mainly include critical heads and 

normal slopes. 

Hydraulic simulation using the steady flow analysis tool allows the modeling of flow profiles 

in fluvial, torrential, or mixed flow regimes for different simultaneous flows (USACE, 2016). 

At the start of the calculation, different characteristic layers were generated for each simulated 

water profile. The simulation results in HEC-RAS are used to generate hazard and vulnerability 

maps and flood risk assessments. These analyses are described in detail in the following 

sections, followed by model calibration, which is an essential step in confirming the reliability 

of the generated model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Layout and cross-sections of the main channel created by HEC-RAS. 

3.2.4. Hydraulic model validation 

The models were calibrated with a flood that occurred in 2017 and by varying the values of 

Manning’s roughness coefficient, supported by a comparison of the simulated waterline with 

the observed one. The values assigned to the roughness coefficient for each land cover class are 

shown in Table 2.  
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 Table 2. Calibrated Manning roughness coefficient values as a function of land-use classes. 

 

3.3. Flood risk assessment  

Risk is defined in terms of its two components: “hazard” and “vulnerability.” Consequently, 

vulnerability is assessed by running the model based on the presence or absence of flooding in 

a given land use class. Based on the depth and velocity generated by the HEC-RAS calculation 

code and on the data provided by the land use maps, a spatial model was used to assess the risk 

with these two components, with the necessary processing carried out with HEC-RAS and the 

customized graphics module interface through a geographic information system (GIS) 

environment.    

3.3.1. Flood hazard analysis 

Hydraulic and hydrological parameters often define the hazard aspect of flood risk. Flood 

frequency is considered a widely accepted indicator for estimating flood risk. In fact, water 

depth is a critical parameter in quantifying flood risk and damage potential. The hazard level 

can thus be defined by the combination of the two parameters (i.e., flood depth and flow 

velocity; Kreibich et al. 2009; Psomiadis et al. 2021). This implies that the same flood event 

will affect a particular area with the same hydraulic characteristics, regardless of the land cover 

or land use component.  

In this sense, several damage assessment criteria for flood risk have been developed, such as 

those proposed by the American Society of Civil Engineers (ASCE) and the US Bureau of 

Reclamation (USBR) In this study, the criteria proposed by the National Flood Risk Advisory 

Group (NFRAG) Committee (Smith et al., 2014) were reviewed and considered because, in a 

specific floodplain management study or emergency management analysis, there may be a clear 

need to use specific thresholds based on depth (h) and flow velocity (V). However, in a 

preliminary risk assessment or as part of a constraint analysis, there is also a recognized need 

for a combined set of hazard vulnerability curves that can be used as a general classification of 

flood risk in a floodplain. These combined flood hazard curves establish hazard thresholds that 

relate to the community’s vulnerability to extreme events. The combined curves are divided 

into six hazard classifications that relate to specific vulnerability thresholds (Table 3). The 

LULC class Water Built-up Roads 
Barren 

land 

Agricultural 

lands 

Non-

agricultural 

lands 

Forest  

Medium 

vegetation 

 

Manning 

coefficient  
0.30 0.025 0.013 0.035 0.035 0.035 0.2 0.2 
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analytical application of this criterion was carried out in HEC-RAS using specific tools to 

calculate the quantity: depth x flow velocity. In addition, the classification according to the 

thresholds defined by this criterion was performed using an algorithm that we imported into 

HEC-RAS.   

Table 3. Hazard Curves, Vulnerability Threshold, and Classification Limits (Smith et al., 2014). 

Classification 

Limit (m2/s) 
Descriptions 

Hazard Vulnerability 

Classification 

≤ 0.3 
Generally safe for vehicles, people, and 

building 
H1 

≤ 0.6 Unsafe for small vehicles H2 

≤ 0.6 Unsafe for vehicles, children, and older adults H3 

≤ 1.0 Unsafe for vehicles and people H4 

≤ 4.0 
Unsafe for vehicles and people. 

All buildings vulnerable to structural damage 
H5 

> 4.0 
Unsafe for vehicles and people 

All buildings vulnerable to failure 
H6 

These hazard classes have been reclassified into three classes for flood risk zoning: low-

medium: h*v <0.6 m²/s, medium: 0.6 m²/s <h*v < 1 m²/s, and high - very high: h*v > 1 m²/s. 

3.3.2. Flood vulnerability analysis 

A variety of characteristics influences flood vulnerability. In this study, only land cover and 

land use are considered. In other words, floods with the same probability of exceeding the 

standard will have different levels of damage depending on land use characteristics and the 

level of damage. Vulnerability analysis, therefore, refers to the identification of land cover and 

land use areas that are likely to be affected by flooding during a given return period. Therefore, 

hazard maps were created by delineating flood zones on land cover and land use maps, and 

polygon files were used to define flood boundaries for each simulated return period. This 

describes the vulnerability aspect of a specific area to flood risk whether flooding will occur 

during the specified return period. The land cover and land use areas affected by each flood 

were reclassified to determine the total area at risk. 

3.3.3. Flood risk analysis 

Flood risk analysis combines the results of the vulnerability analysis and the hazard analysis. It 

is defined based on the relationship between the land cover and land use hazard categories and 

the flood depth and velocity hazard categories for a given area. In addition, the flood hazard 
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maps created as part of the risk analysis are compared to the land cover and land use hazard 

maps. The resulting attribute table is reclassified to establish the relationship between the two 

risk types. The analysis therefore represents the full flood risk potential for the affected land 

use, land cover categories, and flood hazard categories. 

4. Results  

In this section, we present the results of applying a 1D hydraulic model that integrates spatial 

data, mainly LULC maps, and topographic data from surface and hydraulic models to map 

flood-prone areas and assess global risk. Flood zone mapping and flood risk assessment are 

carried out for four return periods: 10 years, 20 years, 50 years, and 100 years, using the HEC-

RAS model. The results described here mainly include frequency analysis, hydraulic 

simulation, and the results of hydraulic flood parameters, hazard analysis, and vulnerability 

analysis of land use classes to flood risk. 

4.1. Flood frequency analysis and flood hydrographs 

The flood hydrograph was constructed from the results of calculating maximum flows using 

the appropriate law for the hydrometric series and the time of concentration of the Oued Allala 

watershed. As a result, the value Tc = 8 hours was selected to calculate the base and flood times 

and then to construct the flood hydrograph for the six return periods using the Sokolovsky 

method (Figure 7). The maximum flows used for the hydraulic simulation with HEC-RAS are 

312 m3/s, 470 m3/s, 770 m3/s, and 1090 m3/s, corresponding respectively to return periods of 

10 years, 20 years, 50 years, and 100 years, respectively.  

 

 

 

 

 

 

 

 

 

 

Figure 7. Flood hydrographs at the hydrometric station of Sidi Akkacha for different return 

periods: 10 years, 20 years, 50 years, and 100 years. 
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4.2. Validation model results  

Two hydraulic simulation models in HEC-RAS were created from two digital elevation models. 

The first was derived from a Pléiades tri-stereo image (DSM), and the other was from a 12-m 

resolution model. The models were calibrated with a 2017 flood event by varying the Manning 

roughness coefficient values and comparing the simulated water line with the observed one. 

Thus, the following table (Table 4) reports the comparison results between the simulated and 

observed water lines. The results show a significant correlation between the simulated water 

line for the two topographic models and the observed water line, with coefficient of 

determination values of around 0.99 and 0.98 for the tri-stereo DSM and the DEM (12 m), 

respectively. 

Table 4. Observed and simulated water level 

Station (meters) 3570 2860 1950 1450 750 350 150 

Observed water level 

(meters) 

22.7 

 

17.22 

 

13.1 

 

7.26 

 

5.9 

 

6.44 

 

5.8 

 

Simulated water level 

(DSM tri-stereo) (m) 

22.06 

 

16.03 

 

9.98 

 

7.81 

 

6.34 

 

4.85 

 

2.85 

 

Simulated water level 

(DEM 12 m) (m) 

23.11 

 

17.16 

 

13.44 

 

8.61 

 

6.83 

 

5.74 

 

5.59 

 

Determination 

coefficient R² 

DSM (tri-stereo) 

0.99 

DEM (12 m) 

0.98 

 

4.3. Results of hydraulic simulation flood parameters  

The simulation of different flood recurrence scenarios with the HEC-RAS model was allowed 

to extract the flood characteristics predicted for the two types of topographic models used 

upstream of the model. The most relevant parameters that can characterize and quantify the 

magnitude of the hazard are maximum water depths, flow velocities, the distribution of water 

surface elevations (WSE), and spatial flood boundaries. 

Figures 8-10 show the maximum water depth, flow velocity, and WSE limits of simulated 

flooding as a function of the tri-stereo DSM and DEM models for the four return periods.    
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Figure 8. Water depths simulated by DSM tri-stereo and DEM for different return periods: 10 

years, 20 years, 50 years, and 100 years. 

 
Figure 9: Simulated flow discharge velocity by DSM tri-stereo and DEM for different return 

periods: 10 years, 20 years, 50 years, and 100 years. 
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Figure 10. Simulated WSE by DSM tri-stereo and DEM for different return periods: 10 years, 

20 years, 50 years, and 100 years. 

A visual inspection of the maps produced by the two models confirms the statistical results of 

the simulations, where there are remarkable differences between the two simulation scenarios, 

particularly with respect to the spatial limits of inundation and the spatial fields of water depths. 

In fact, the tri-stereo DSM takes into account the surface elevations of infrastructure, buildings, 

bridges, and vegetation surfaces (such as medium vegetation and forests).  

As a result, the geometry generated by this model was reasonable, and these topographical 

features appeared explicitly as flow obstacles in the final maps, especially in cases where their 

elevation is high (e.g., buildings or long trees). This is not the case for the DTM (12 m), which 

includes only natural terrain and no other surface features, including infrastructure, buildings, 

and bridges. Water depths increase from upstream to downstream, and the variations are 

different when comparing the main flow channel to the floodplain. The upstream portion 

(closest to the water level) is the most vulnerable to flooding due to the presence of buildings, 

structures, infrastructure, and roads.  

Flow velocity is also an important parameter in describing simulated events. Considering the 

simulation results of the two terrain models, the simulation results of the flow velocity are 

shown in figure 9.   
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4.5. Flood hazard analysis  

Flood risk analyses are performed for the two DSM tri-stereo and DEM (12 m) models used to 

build the simulation models. Hazard maps are generated based on water depths and flow 

velocities. Initially, and following the approach of Smith et al. (2014), six classes were 

identified. These classes were then reclassified into three classes to better represent the results 

according to three levels of risk (low-medium 0–0.6, medium, and high 0.6–1, and > 1). The 

flood risk maps for the four flood recurrence period scenarios generated by the HEC-RAS 

model are shown in Figures 11 and 12 for the DSM tri-stereo and DEM-12 m models. 

Figure 11. Simulated Flood hazard classes under 1D-HEC-RAS model for DSM and DEM 

models 
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Figure 12. Produced Flood hazard maps for DSM tri-stereo and DEM models 

The results of these maps show that potential flood areas are mainly located near rivers and 

extend into the floodplain of the Oued Allala catchment. Due to population growth, these areas 

are often characterized by infrastructure and construction. This urban concentration makes these 

areas the most critical and, therefore, the most vulnerable to flood risks. The results of this 

analysis are crucial for reducing and mitigating the impact of flood risks in different urban 

parcels of the study area’s watershed. 

4.6. Flood vulnerability analysis 

Combining the hydraulic modeling results with the LULC maps allowed us to analyze and 

assess the exposure or vulnerability of the floodplain. The maps of flooded LULC classes and 

vulnerability according to these classes, generated from tri-stereo DSM and DEM (12 m), are 

shown in Figure 13. 
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Figure 13. Flooded LULC classes using DSM and DEM models 

With respect to the DSM tri-stereo simulation, the hydraulic analysis contributed to a total of 

41.65, 45.42, 50.65, and 54.09 ha of flooded area in the study site, corresponding to return 

periods of 10 years, 20 years, 50 years, and 100 years, respectively. 
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The different LULC classes affected by flooding, including water, forest, buildings, roads, 

medium vegetation, cultivated land, barren land, and uncultivated land, are shown in Table 5 

for the four return periods.   

Table 5: Predicted flood zones (DSM tri-stereo) for different LULC types  

 

For the 10-year return period, the classes (roads, buildings, and barren land) were the most at 

risk, with over 14.59 ha, 12.38 ha, and 6.85 ha, representing 35%, 29,7%, and 14.4% of the 

total flooded area, respectively. At the same time, for the 20-year return period, the same classes 

were the most affected by flooding, with over 15.66 ha and 13.43 ha, representing 34.47%, 

29.7%, and 17.3% of the flooded area, respectively. This result means that the surface area of 

flooded buildings increases with an increasing return period. As for the 50-year scenario, 

similar to the 10-year and 20-year scenarios, roads, buildings, and bare soil were the classes 

most affected by flooding according to the simulated model, with 17.07 ha, 14.64 ha, and 9.16 

ha of flooded area, respectively, representing 33.7%, 28.3%, and 18.1% of the total area 

affected by flooding. For the last scenario (100 years), more than 17.79 ha, 15.31 ha, and 9.96 

ha of roads, bare ground, and buildings are flooded, representing 32.9%, 28.9%, and 18.4% of 

the total flooded area, respectively.  

Therefore, the results showed that the longer the return period, the more vulnerable the plain is 

to flooding, and consequently, the flooded areas are larger in terms of surface area. 

On the other hand, for the simulation with DTM (12 m), the hydraulic analysis contributed to a 

total of 51.81, 60.61, 70.40, and 76.40 ha of flooded area in the study site, corresponding to 

return periods of 10 years, 20 years, 50 years, and 100 years, respectively. 

 

Flooded 

areas (ha) 

LULC classes 
 

Total 

(ha) Water Forest Roads 
Built-

up 

Medium 

vegetation 

Barren 

land 

Cultivated 

lands 

Uncultivated 

lands 

 

10  

years 

0.47 0.73 14.59 6.85 5.78 12.38 0.41 0.44 41.65 

 

20  

years 

0.5 0.8 15.66 7.87 6.15 13.43 0.56 0.45 45.42 

 

50  

years 

0.57 1.02 17.07 9.16 6.9 14.64 0.82 0.47 50.65 

 

100 

 years 

0.69 1.25 17.79 9.96 7.68 15.31 0.91 0.5 54.09 



 

25 
 

Table 6 shows the different LULC classes affected by flooding, including water, forest, 

buildings, roads, medium vegetation, cultivated land, barren land, and uncultivated land, for the 

four return periods.  

For the 10-years return period, the classes (roads, buildings, and barren land) were the most at 

risk, with over 12.42 ha, 11.73 ha, and 14.60 ha, respectively. 24%, 22.6%, and 28.2% of the 

total flooded area, respectively. For the 20-years return period, the building class was the most 

affected by flooding, with over 16.20 ha, representing 26.7% of the flooded area. 

This result shows that flooded construction has increased by 4.1% compared to the 10-year 

scenario. In the 50-years scenario, as in the 10-year and 20-year scenarios, the buildings and 

bare soil classes were the most affected by flooding according to the simulated model, with 

21,38 ha and 17,35 ha of flooded areas, respectively, representing 30.4% and 24.6% of the total 

area affected by flooding, respectively. For the last scenario (100 years), more than 23.79 ha 

and 18.72 ha of buildings and bare ground, respectively, were flooded, representing 31.1% and 

24.5% of the total flooded area. Similar to the DSM models, these results show that the longer 

the return period, the more vulnerable the plain is to flooding; consequently, the flooded areas 

are larger in terms of surface area. 

Table 6: Predicted flood zones (DEM 12 m) for different types of LULC  

 

Tables 7 and 8 show (for the DSM tri-stereo and DEM models) the LULC classes affected by 

flooding, broken down into the different flood risk classes, from medium-low to high-very-

high, based on the criteria (Smith et al., 2014) for the different flood recurrence scenarios.   

Flooded 

areas (ha) 

Flooded land cover classes (ha) 
 

Total 

(ha) Water Forest Roads 
Built-

up 

Medium 

vegetation 

 

Barren 

land 

Cultivated 

land 

Uncultivated 

land 

 

10  

years 

0.20 3.17 12.42 11.73 7.62 14.60 0.69 1.38 51.81 

 

20 

 years 

0.22 3.69 14.20 16.20 8.17 15.69 0.95 1.49 60.61 

 

50 

 years 

0.25 3.88 15.56 21.38 9.21 17.35 1.21 1.56 70.40 

 

100 

 years 

0.29 1.25 16.58 23.79 9.98 18.72 1.47 1.59 76.40 
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For the risk simulated by DSM tri-stereo, for all predicted return periods, the majority of 

flooded areas belong to the high-very-high (>1 m²/s) risk class with more than 35.36 ha, 40.28 

ha, 45.92 ha, and 50.9 ha, corresponding to 84.91%, 89.82%, 90.6%, and 94.1% for 10-years, 

20-years, 50-years, and 100-years return periods, respectively.  

For the 10-years return period, over 71.5% (>1 m²/s) and 15.6% (0.6–1 m²/s) of roads and 

buildings are most vulnerable to flooding, accounting for over 49% of the total area. For the 

20-year return period, over 89.82% of the class (>1 m²/s) and 12% of the class (0.6–1 m²/s), 

with over 48% and 65.6% of roads and buildings, respectively, are flooded. For the 50-years 

flood recurrence scenario, over 90.6% of the predicted flooded area is in the high and very high-

risk zone (>1 m²/s), and 8.96% is in the medium-risk zone. For both risk classes, roads and 

buildings are considered to be the classes most affected by flooding, with over 51% and 56% 

of the total flooded area for the (>1 m²/s) and (0.6–1 m²/s) classes, respectively. Considering 

the last scenario (100 years), more than 94.1% of the flooded area is at high or very high risk 

(>1 m²/s), or 57.01% for roads and buildings. For the medium-risk class (0.6–1 m²/s), 4.65% of 

flooded areas are predicted, with a very high percentage of flooded roads and buildings (over 

53.57%). 

Table 7: Flood hazard risk based on areas in different LULC categories (DSM) 

Hazard class 

Flooded land cover class (ha) 

T
o

ta
l 

W
at

er
 

F
o

re
st

 

R
o

ad
s 

B
u

il
t-

u
p

 

M
ed

iu
m
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eg

et
at

io
n
 

B
ar

re
n

 l
an

d
 

C
u

lt
iv

at
ed

 

la
n

d
 

U
n

cu
lt

iv
at

ed
 

la
n

d
 

T
o

ta
l/

 r
is

k
 

cl
as

s 

10  

years 

< 0.6 0.02 0.00 0.34 0.34 0.05 0.35 0.05 0.04 1.19 

41.65 0.6–1 0.15 0.09 2.15 1.20 0.19 1.19 0.11 0.02 5.1 

>1 0.32 0.65 12.06 5.25 5.54 10.89 0.28 0.37 35.36 

20  

 years 

< 0.6 0.00 0.03 0.37 0.45 0.03 0.13 0.06 0.00 1.07 

45.42 0.6–1 0.13 0.03 1.31 1.09 0.23 1.06 0.17 0.05 4.07 

>1 0.40 0.76 13.96 6.24 5.86 12.26 0.39 0.41 40.28 

50   

years 

< 0.6 0.00 0.02 0.14 0.38 0.12 0.22 0.04 0.00 0.92 

50.65 0.6–1 0.03 0.17 1.02 1.13 0.50 0.74 0.21 0.01 3.81 

>1 0.54 0.84 15.88 7.72 6.33 13.58 0.56 0.47 45.92 

100 

years 

< 0.6 0.00 0.00 0.13 0.22 0.11 0.19 0.02 0.00 0.67 

54.09 0.6–1 0.01 0.10 0.63 0.72 0.36 0.53 0.17 0.00 2.52 

>1 0.68 1.14 16.96 9.06 7.25 14.56 0.74 0.51 50.9 
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Table 8:  Flood hazard risk based on areas of different LULC categories (DEM) 

 

In addition, with regard to the predicted flood hazard classes (DEM 12 m; Table 10), for the 

first scenario (10-years return period), over 71.5% (>1 m²/s) and 15.6% (0.6–1 m²/s) of the 

roads and buildings are most vulnerable to flooding, with over 49% of the total surface area. 

For the 20-year return period, over 65.74% of the class (>1 m²/s) and 23.4% of the class (0.6–

1 m²/s) had over 41.6% and 58% of the roads and buildings flooded, respectively.  

For the 50-year flood recurrence scenario, over 65.6% of the predicted flooded area is in the 

high and very high-risk zone (>1 m²/s), and 25.6% is in the medium-risk zone. For both risk 

classes, roads and buildings are considered to be the classes most affected by flooding, with 

over 42.1% and 68.7% of the total flooded area for the (>1 m²/s) and (0.6–1 m²/s) classes, 

respectively. Considering the last scenario (100 years), more than 69.22% of the flooded areas 

are at high to very high risk (>1 m²/s), or 43.09% concern roads and buildings, and 29.77% bare 

flooded ground. For the medium-risk class (0.6–1 m²/s), more than 25.24% of flooded areas are 

predicted, with a very high percentage of flooded roads and buildings (more than 74%). 

In summary, considering the criterion used to classify the flood risk according to the quantity 

depth x flow velocity, the high and very high-risk class has the highest percentage, with over 

Hazard risk class 

Flooded land cover class (ha) 

T
o
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l 
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) 
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s 
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eg
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n
 

B
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re
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 l
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d
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l 
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d
 

N
o

n
-

ag
ri

cu
lt

u
ra

l 

la
n

d
 

T
o

ta
l/

 r
is

k
 

cl
as

s 

10  

years 

< 0.6 0.02 0.3 1.06 2.9 0.17 1.5 0.5 0.2 6.65 

51.81 0.6–1 0 0.72 1.38 2.6 0.53 1.91 0.4 0.55 8.09 

>1 0.2 2.3 9.5 6 6.39 11.3 0.68 0.7 37.07 

20 

 years 

< 0.6 0 0.41 1.17 4 0.22 0.52 0.2 0.04 6.56 

60.61 0.6–1 0.05 1 2.25 6 0.6 3.1 0.2 1 14.2 

>1 0.2 2.45 10.21 6.4 7.74 11.6 0.55 0.7 39.85 

50 

 years 

< 0.6 0 0.1 0.4 4.25 0.23 1.02 0.12 0 6.12 

70.4 0.6–1 0.01 1.1 3.4 9.01 0.69 3 0.4 0.45 18.06 

>1 0.21 3.1 11.33 8.2 8.03 13.6 0.64 1.11 46.22 

100 

 years 

< 0.6 0 0.1 0.59 2.31 0.09 0.99 0.12 0.02 4.22 

76.4 0.6–1 0.01 0.82 2.7 11.97 0.73 2.49 0.45 0.12 19.29 

>1 0.27 3.3 12.87 9.92 8.52 15.75 0.8 1.46 52.89 
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65% of flooded areas predicted by the 12 m DTM and over 73% by the tri-stereo DSM for all 

return periods. The road and construction classes (including infrastructure, buildings, single-

family homes, and commercial spaces) represent the areas most affected by flooding in the 

majority of the proposed scenarios. The LULC vulnerability maps to flood risk for different 

return periods are shown in Figure 14.  

This result shows that the northern plain of the Oued Allala watershed is, in fact, highly 

sensitive to the risk of very high levels of flooding, where there is a real danger to vehicles and 

people. Buildings are vulnerable to structural damage and are considered vulnerable to failure. 

 

 

Figure 14. LULC vulnerability maps to flood risk for different return periods. 
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4.7. Overall risk analysis 

Figure 15 shows the total risk maps generated by the DSM tri-stereo and DEM models. Table 

9 shows the distribution of the total flood risk generated by the tri-stereo model in terms of 

surface area in hectares (ha). The risk increases with an increasing return period, and the degree 

of risk was medium to high. In terms of surface area, most of the areas at risk belong to the 

high-risk class, with more than 21.51, 23.52, 26.89, and 28.73 ha, respectively. 

 

Figure 15. Global flood risk map for different return periods. 

Table 9: Areas of the global risk classes with DSM (tri-stereo). 

 

 

 

 

 

Risk 
Area (ha) 

10 years 20 years 50 years 100 years 

Low 0.35 0.16 0.3 0.26 

Medium 19.79 21.74 23.46 25.1 

High 21.51 23.52 26.89 28.73 

Total 41.65 45.42 50.65 54.09 
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Furthermore, Table 10 illustrates the distribution of the overall flood risk generated by the DEM 

model (12 m) in terms of surface area. The risk assessment trend increases with an increasing 

return period. For the first return periods (10 and 20 years), the degree of risk was more or less 

medium to high. For the 50- and 100-year return periods, in terms of surface area, most of the 

areas at risk belong to the high-risk class, with more than 34.8 ha for the 50-years return period 

and 39 ha for the 100-years return period.  

Table 10: Areas of the global risk classes with DEM (12 m). 

 

 

 

 

 

Overall, for both simulation models, considering the most recent return periods, the risk of 

flooding is frequent in the Vieux-Ténès region, close to the coast, where infrastructures are at 

real risk. The overall risk is relatively high for the 50- and 100-years return periods, particularly 

on the right bank (from upstream to downstream) of the Oued Allala River (figure 14). From 

an operational point of view, the development of the Allala watercourse must be reinforced 

according to the results of the 100-years return period. 

5. Discussion 

In this work, we have tested a new approach to flood risk assessment based on the synergy of 

satellite data processing, combined with the different flood flow rates and the results of 

hydraulic simulations showing the flow for the different surface conditions of the urbanized 

environment. In terms of water depth, flow velocity, and flooded area, the 12 m DEM model 

predicted more severe flood scenarios than the DSM tri-stereo model. Remarkable differences 

were also observed in the flooded areas for all predicted return periods. In fact, the DEM (12 

m) outperformed the tri-stereo DSM with more than 10.16 ha, 15.19 ha, 19.75 ha, and 22.31 ha 

of flooded areas for 10 years, 20 years, 50 years, and 100 years, respectively. These results 

explain why the predicted risk for the DTM (12 m) is higher than that of the tri-stereo DSM. 

This overestimation therefore implies an overestimation of the damage caused by the risk, 

particularly in terms of the zoning of land exposed to the risk of flooding. Figures 16 and 17 

show examples of observed (2017 flood) and simulated (100-year) flow depths at some cross-

section stations.  

Risk Area (ha) 

10 years 20 years 50 years 100 years 

Low 1.5 1.4 1.09 2.4 

Medium 28 32.2 34.51 35 

High 22.3 27 34.8 39 

Total 51.8 60.6 70.4 76.4 
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Figure 16. Observed (2017 flood) and simulated (100-year) flow depth at 185 m cross-station 
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Figure 17. Observed (2017 flood) and simulated (100-year) flow depth at 650 m cross-station 

Furthermore, in economic terms, if flood management in the affected area considers the results 

provided by the DEM (12 m), this means that even the cost of flood zone development and 

planning projects will be higher. Nevertheless, the predicted hazard risk is reasonable, and the 

simulation results are relatively consistent with those obtained by other applications in the same 

study area. For example, Kastali et al. (2021) assessed the flood risk in the Vieux-Ténès area 

under the effect of uncertainty in the rating curves. They used a field topographic model and 

performed simulations for the 100-year flood using HEC-RAS software. Considering the 100-

year flow rate used for the simulation (1010 m3/s), which is closest to the flow rate used in our 

case, the total flooded area was 58.30 ha. Compared to the results of our study (54.09 ha) 

simulated by DSM for the 100-year flood, we find a slight difference of 4 ha. As a result, this 

model proves to be reasonable and more reliable, providing a true estimate of the flooded area. 

The detailed flooded area function of the risk class is shown in Figure 18.  
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Figure 18. Flooded area for different return periods: A) DSM tri-stereo, B)DEM (12 m). 

 

Figures 19–20 also give an overview of the results of the hazard risk analysis and the overall 

risk simulated by the 100-year return period.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Zoom on the hazard risk simulated by the 100-year flood (DSM tri-stereo) 

Low hazard 

Medium Hazard 

High hazard 
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Figure.20. Zoom on the total flood risk simulated by the 100-year flood (MNS tri-stereo). 

 

Although the very high spatial resolution satellite data used in this study contribute significantly 

to the effectiveness of such studies, they produce voluminous data that can require very 

demanding processing, revealing challenges and opportunities for many aspects of flood risk 

management systems. At the same time, the quality of the detailed information provided by the 

LULC classification perfectly contributed to the study of flooding in both aspects: hazard 

modeling and the vulnerability of flood-prone plains. This aspect has also been demonstrated 

in numerous studies (Zope et al., 2016; Sugianto et al., 2022).  

A comparison of these results with other studies carried out in the same region demonstrated 

the reliability of the approach used; in particular, the results obtained using Pléiades tri-stereo 

data.  Therefore, the powerful appearance of our study is the integration we have proposed 

between machine learning for LULC classification and hydraulic models. Other studies also 

use land use classification to build the same models, but they use less precise methods than 

machine learning. For example, in (Ahmad et al., 2023),  the LULC map was obtained from 

ESRI’s Land Cover website This  database  is available on a global scale based on ESRI 

methods of classification. In addition, the paper used a DEM with a spatial resolution less fine 
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than ours, which could influence the results, especially the LULC vulnerability maps. In similar, 

(Mohamed et al., 2023) used in their study one DEM model to assess the flood risk in the chosen 

study area. Regarding LULC, traditional methods integrated in GIS were used. Compared to 

the same studies, the main benefit of the study is the automatization of methods to conduct the 

proposed hydraulic model.  For example, the Manning’s roughness values generated from 

LULC classification, which represents a very important information in any flood simulation. In 

addition, with its potential for observing the Earth’s surface and its tri-stereoscopic capability, 

Pléiades data offers the possibility of comprehensive flood risk mapping. The topographical 

data thus generated from the Pléiades data contributed to a relatively realistic simulation of 

flooding, considering all flow obstacles, especially in urban areas, and generating flows that 

were closer to reality. Obtained maps can serve as decision-support data on a national scale and 

the implementation of real crisis management measures, in particular with the modelling of 

small floods such as the 10-year flood. On a local scale, these maps could be as well integrated 

into the communal plans of security face to flood disasters.  

Despite the advantages of the proposed synergistic method, which integrates advances in 

machine learning with land use and hydraulic modelling, there are a few limitations. Indeed, 

given the difficulty of accessing satellite data, images from active sensors are not used, which 

is one of the limitations of spatial representation of flood validation. Thus, other types of 

hydraulic models can be used for comparison with those developed under HEC RAS.  

Conclusion  

This study conducted a comprehensive analysis of flood risk, focusing on hazards and 

vulnerabilities within the Oued Allala watershed. Utilizing HEC-RAS software, flood scenarios 

were simulated across four return periods, leveraging land cover and land use (LULC) maps 

derived from the CNN deep learning model and OBIA classification, achieving an impressive 

accuracy exceeding 92%. The primary objective was to evaluate how remote sensing can 

enhance hydraulic simulation models. The methodology incorporated satellite imagery for 

LULC alongside high-resolution and topographic data, specifically from a Pléiades tri-stereo 

image and the ALOS satellite, to conduct the hydraulic model.  

Hazard maps were generated based on simulated water depths and flow velocities, which were 

then correlated with LULC in flood-prone areas to assess vulnerability. This analysis identified 

specific LULC zones that could be affected by floods of varying return periods, ultimately 

leading to a comprehensive flood risk assessment. The findings revealed that flood-prone areas 
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are predominantly situated near the river and extend into the floodplain of the Oued Allala 

watershed, characterized by urban infrastructure and development. This urban concentration 

significantly heightens vulnerability to flooding. 

The very high-resolution satellite data as well as machine and deep learning methods used in 

this work contribute significantly to the effectiveness of the constructed model. Indeed, the 

precision of the detailed information provided by the LULC classification contributes perfectly 

to the study of flooding in both aspects: hazard modeling and the vulnerability of flood-prone 

plains. This demonstrates CNN models' potential for image recognition and the delineation of 

flood-prone areas. Furthermore, the DSM created from Pléiades tri-stereo imagery offered a 

unique opportunity for accurate mapping of flood risk, enabling a realistic depiction of flood 

hazards while taking into consideration urban obstacles the same as vegetation and buildings.  

Ultimately, the findings underscore that the coastal city of Ténès is acutely vulnerable to flood 

risks, necessitating immediate action to develop a flood risk prevention plan (PPRI) 

complemented by an early warning system at critical flow points and sections. 
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