
HAL Id: hal-04845076
https://hal.science/hal-04845076v1

Submitted on 18 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling Collision Avoidance Behavior With
Zero-Speed Pedestrians

Laura Echeverri, Jean-Michel Auberlet, Jean-Paul Hubert

To cite this version:
Laura Echeverri, Jean-Michel Auberlet, Jean-Paul Hubert. Modeling Collision Avoidance Behavior
With Zero-Speed Pedestrians. IEEE Transactions on Intelligent Transportation Systems, 2024, 25 (8),
pp.9608-9617. �10.1109/TITS.2024.3376077�. �hal-04845076�

https://hal.science/hal-04845076v1
https://hal.archives-ouvertes.fr

Modeling Collision Avoidance Behavior with Zero-speed
Pedestrians

Journal: Transactions on Intelligent Transportation Systems

Manuscript ID T-ITS-22-12-3145.R2

Manuscript Type: Regular Papers

Date Submitted by the
Author: 26-Jan-2024

Complete List of Authors: Echeverri, Laura C; Université Gustave Eiffel, Laboratoire Ville Mobilité
Transport
Auberlet, Jean-Michel; Université Gustave Eiffel, COSYS-PICS-L
Hubert, Jean-Paul; Université Gustave Eiffel, AME-DEST

Keywords: Pedestrian dynamics, collision avoidance, Simulation, Virtual agents

Abstract:

In this paper, we present an improved collision avoidance algorithm
conceived to deal with zero-speed pedestrians in a crowd. A zero-speed
pedestrian is a pedestrian who stops for a short, undefined period to
rest, use a phone, or communicate with others, and then resumes
walking later. Zero-speed pedestrians can be encountered in places such
as shopping centers, sidewalks with retail stores, or public gatherings.
 When integrated into a crowd simulation, zero-speed pedestrians can
cause blockages, particularly livelocks, as observed when using the
Optimal Reciprocal Collision Avoidance (ORCA) algorithm. A livelock in a
simulation is a situation where an agent is blocked but still has room to
move. If the livelock is not handled properly, it will invalidate the
simulation runs. We provide insight into the causes of livelocks and
propose a modification of ORCA that successfully prevents livelocks from
occurring in typical situations in which they can be observed using ORCA.
Among other applications, this model can be used as a crowd
management tool to evaluate the impact of zero-speed pedestrians on
crowd flow.

Note: The following files were submitted by the author for peer review, but cannot be converted to PDF.
 You must view these files (e.g. movies) online.

ORCA-ZeroSpeed-IEEE.tex
bibliography.bib
Images.rar

PLEASE KEEP CONFIDENTIAL

IEEE Intelligent Transportation Systems Transactions

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. X, NO. X, 2024 1

Modeling Collision Avoidance Behavior with
Zero-speed Pedestrians

Laura C. Echeverri, Jean-Michel Auberlet, and Jean-Paul Hubert

Abstract—In this paper, we present an improved collision
avoidance algorithm conceived to deal with zero-speed pedestri-
ans in a crowd. A zero-speed pedestrian is a pedestrian who
stops for a short, undefined period to rest, use a phone, or
communicate with others, and then resumes walking later. Zero-
speed pedestrians can be encountered in places such as shopping
centers, sidewalks with retail stores, or public gatherings. When
integrated into a crowd simulation, zero-speed pedestrians can
cause blockages, particularly livelocks, as observed when using
the Optimal Reciprocal Collision Avoidance (ORCA) algorithm.
A livelock in a simulation is a situation where an agent is blocked
but still has room to move. If the livelock is not handled properly,
it will invalidate the simulation runs. We provide insight into
the causes of livelocks and propose a modification of ORCA that
successfully prevents livelocks from occurring in typical situations
in which they can be observed using ORCA. Among other
applications, this model can be used as a crowd management
tool to evaluate the impact of zero-speed pedestrians on crowd
flow.

Index Terms—Pedestrian dynamics, Collision Avoidance, Sim-
ulation, Virtual Agents.

I. INTRODUCTION

CROWD simulation research involves the development
and use of algorithms to understand, reproduce, or pre-

dict the behavior of human crowds [1]. These algorithms have
many applications, including entertainment (e.g., computer
games and movies), safety considerations (e.g., crowd man-
agement and evacuation analysis), and urban planning (e.g.,
infrastructure design and evaluation) [1]–[5].

Agent-based models treat pedestrians as individual agents
interacting with each other. This way, human interaction can
be modeled through the influence that neighboring agents exert
on one another. For this purpose, in each simulation step, a
new velocity is computed for each agent depending on the
neighboring agents and obstacles, and the rules prescribing
its local behavior [1]. By giving each agent autonomy, agent-
based models make it possible to reflect the variety of ways
in which pedestrians affect each other’s behavior.

In the simulation of pedestrian navigation, collision avoid-
ance is the most studied individual-level behavior. According
to Cutting et al. [6], humans avoid collisions by answering
two successive questions: Will a collision occur? When will

Manuscript received December 1, 2022; revised x; accepted x. Date of
publication x; date of the current version x. This work was supported by
French National Research Agency through the ”Laboratoire d’Excellence”
(LABEX) Urban Futures. (Corresponding author: Laura C. Echeverri.)

Laura C. Echeverri is with Univ Gustave Eiffel, Ecole des Ponts, LVMT,
F-77454 Marne-la-Vallée, France (e-mail: laura.echeverri-guzman@enpc.fr).

Jean-Michel Auberlet is with Univ Gustave Eiffel, COSYS-PICS-L, F-
77454 Marne-la-Vallée, France (e-mail: jean-michel.auberlet@univ-eiffel.fr).

Jean-Paul Hubert is with Univ Gustave Eiffel, AME-DEST, F-77454 Marne
- la- Vallée, France (e-mail: jean-paul.hubert@univ-eiffel.fr).

the collision occur? The answers to these questions result from
the visual perception of the environment and the presence of
moving or static obstacles. Accordingly, collision avoidance
algorithms mimic the strategies a pedestrian uses to avoid
a potential collision with other pedestrians and obstacles by
making assumptions about the agents’ perceptions.

In the quest to include diverse behaviors within agent-based
pedestrian simulations, we consider the possibility for agents
to stop for a short time. Pedestrians may stop for a while to
rest, use a phone, look at a store window, or communicate with
others. They tend to stop where they must do so and it is hard
to tell how much the stop will last [7]. People around them
have to adapt their behavior to avoid collisions with them. We
aim to model collision avoidance in a crowd where people
can stop for a moment and continue on their way. To better
identify stopping pedestrians in modeling, we use the term
zero-speed agent.

Second after the Social Force Model, proposed by Helbing
and Molnár [8], one of the most widely adopted algorithms
for collision avoidance is the Optimal Reciprocal Collision
Avoidance (ORCA) algorithm, introduced by van den Berg et
al. [9]. Previous studies have successfully employed ORCA
to model pedestrian collision avoidance behavior [10], [11].
ORCA anticipates agent collisions by calculating the agent’s
new velocity and position based on the velocity and position
of its closest neighbors. This new position deviates minimally
from the agent’s intended path in the absence of other agents.
However, similar to other collision avoidance algorithms,
ORCA is susceptible to scenarios in which agents are blocked
by others on their course to their destination [12]. If the
blockage is not handled properly, the simulation becomes
useless.

One of these situations concerns the presence of zero-speed
agents. If a zero-speed agent is in the path of another agent
toward its destination, the latter could be blocked, even if there
is room to move. We call this type of blockage a livelock,
as opposed to a deadlock, where an agent is completely
immobilized with no room to move. ORCA was originally
designed to handle agents in perpetual motion, and therefore,
the inclusion of zero-speed agents can lead to the occurrence
of livelocks that invalidate the simulation runs.

To address this problem, several algorithms have been
proposed to mitigate deadlocks, either by integrating ORCA
with alternative approaches or by developing novel collision
avoidance strategies (see [12]–[16]). Nonetheless, to the best
of our knowledge, no existing study has specifically addressed
the challenge of livelocks arising from interactions with zero-
speed agents.

The main contributions of this paper are as follows:

Page 1 of 13

PLEASE KEEP CONFIDENTIAL

IEEE Intelligent Transportation Systems Transactions

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

2 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. X, NO. X, 2024

1) We provide insight into the reasons behind livelocks in
ORCA through examples illustrating typical situations
in which they can be observed using this algorithm.

2) We propose a modification of ORCA that avoids livelock
with zero-speed agents. This modification enriches the
model without altering the overall behavior of the algo-
rithm. If a livelock is likely to occur, the model computes
a new velocity that is still collision-free but allows the
agent to change direction to avoid the livelock. Thus
the simulation can continue without interruption. Our
modification successfully prevents livelocks in the illus-
trative examples, demonstrating its usefulness in crowd
modelling in the presence of zero-speed pedestrians.

This paper is organized as follows. First, in Section II,
we provide an overview of prior research on algorithms for
pedestrian collision avoidance, as well as diverse strategies
employed to mitigate blockages in ORCA or to outperform it.
Next, Section III offers a succinct summary of the ORCA algo-
rithm, facilitating an understanding of the potential emergence
of livelocks. Subsequently, in Section IV, we present two
examples illustrating the two cases that lead to livelocks when
using ORCA and provide insight into their causes. Later on,
Section V introduces our proposed modification to the ORCA
algorithm, designed to anticipate the occurrence of livelocks
involving zero-speed agents. This section also includes the
outcomes obtained by applying our proposed solution to
the aforementioned examples. Finally, our conclusions and
perspectives on future work are presented in Section VI.

II. RELATED WORK

In this section, we first present a brief description of the
main classes of pedestrian collision avoidance algorithms and
position ORCA as a member of one of these classes. We
then provide an overview of approaches that aim to mitigate
blocking scenarios using ORCA, or to outperform its blocking
avoidance capabilities.

A. Algorithms for pedestrian collision avoidance

Collision avoidance algorithms can be classified into four
main classes: force-based, velocity-based, vision-based, and
data-driven [1]. Force-based models use an analogy with
Newtonian physics to consider that an agent is subject to
attractive and repulsive forces that act on its acceleration.
Attraction forces allow an agent to move toward a spe-
cific goal. Repulsive forces cause agents to repel each other
and surrounding obstacles. The Social Force Model (SFM),
proposed by Helbing and Molnár [8], is the first force-
based model and also a model widely used today. Force-
based models update an agent’s position only based on the
current positions of its neighbors, disregarding their velocities.
This approach constrains the models’ ability to adequately
incorporate temporal anticipation. Such an approach differs
from the behavior typically observed in pedestrians, who often
proactively anticipate the actions of others [17].

In velocity-based models, agents anticipate future collisions
by predicting the trajectories of neighboring agents based on
their current positions and projected velocities. In this type of

model, the navigation space is translated into a velocity space,
and the agent must avoid velocities that lead to collisions with
other agents, assuming that each agent maintains a constant
velocity for at least a short time. Velocity-based models are
computationally more expensive than force-based models but
are said to better reflect human behavior [1]. A prominent
example of these models is the Optimal Reciprocal Collision
Avoidance (ORCA) algorithm, proposed by van den Berg
et al. [9]. By defining a half-plane containing collision-free
velocities with each agent, it selects a velocity from the inter-
section of these half-planes that minimally deviates from its
preferred velocity. This method provides sufficient conditions
for collision-free motion by giving each agent half of the
responsibility for avoiding pairwise collisions. Moreover, it
is computationally more efficient than other velocity-based
models [1].

Vision-based algorithms mimic human navigation based on
what humans can see. In retina-based approaches, the most
developed category, agents and obstacles are abstracted as
pixels to interact with. By focusing on human perception,
vision-based algorithms do not consider the complete space
of feasible velocities, but instead use gradients. This makes
these methods more limited than the velocity-based methods
in terms of the information available. Additionally, they are
more computationally expensive than either velocity-based or
force-based algorithms because processing pixels means that
each agent needs to process more information to move [1].

Data-driven methods use real human crowd trajectories to
replicate their patterns without explicitly stating the rules
governing their behavior. They have been criticized for making
it difficult to understand the behavior of the produced model.
This hinders the possibility of adjusting the model or improv-
ing its performance in specific cases [1].

Our research is part of a project that aims to study differ-
ent sidewalk configurations and their influence on pedestrian
behavior. To achieve this, we aim to simulate various behav-
iors commonly observed on sidewalks, including pedestrians
stopping for short periods. Our choice of ORCA is based
on its advantages over other collision avoidance techniques.
ORCA generates realistic trajectories while ensuring collision-
free movement. Nonetheless, it is important to note that ORCA
may encounter scenarios where agents are blocked and cannot
move, whether they have room to move (livelock) or not
(deadlock) [12].

B. Algorithms for preventing blockage

Collision avoidance algorithms are prone to situations where
one or more agents are blocked, unable to continue their
trajectory to their goal [12]. Such situations can render the
current simulation unusable. We distinguish two types of
blockage: livelock and deadlock. A livelock is when an agent
is blocked while still having room to move. A deadlock is
when an agent is blocked with no room to move, possibly
colliding with other agents. Although real pedestrians can face
blockage situations they tend to solve them quite quickly. This
has not yet been able to be reproduced by many collision
avoidance algorithms [12], [13], [18]. That is why one of the

Page 2 of 13

PLEASE KEEP CONFIDENTIAL

IEEE Intelligent Transportation Systems Transactions

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

ECHEVERRI et al.: MODELING COLLISION AVOIDANCE BEHAVIOR WITH ZERO-SPEED PEDESTRIANS 3

core concerns when developing or improving these algorithms
is to avoid blockage situations.

In the original formulation of ORCA, van den Berg et al. [9]
conceived a strategy to escape from the deadlock in densely
packed conditions. In such conditions, velocities can become
zero to avoid collisions. Their strategy consists of selecting the
safest possible velocity for the blocked agent. This strategy
does not, however, prevent blockages from occurring and
some blockage avoidance approaches have been proposed to
improve or outperform ORCA.

Approaches proposed to outperform ORCA’s blockage
avoidance include the following. Zhou et al. [13] proposed
a Buffered Voronoi Cell (BVC) collision avoidance algorithm
in which each agent computes its Voronoi cell and plans a
trajectory to the point in the cell that is closest to its goal. A
BVC is a set of points that are closer to an agent than to any
other agent, retracted by the physical extent of the agent. The
authors presented a heuristic solution to deal with livelocks,
which arise when certain agents obstruct each other in a
manner that prevents at least one agent from reaching its goal
through its control algorithm. In such cases, the blocked agent
is in a vertex of its BVC that is the closest point to its goal.
To resolve the blockage, the agent chooses one of its adjacent
edges to detour along. Their algorithm showed comparable
performance to ORCA in experiments with multiple dynamic
robots moving in arbitrary dimensions. It should be noted,
however, that their approach relies solely on current positions
for collision avoidance, which limits its ability to effectively
anticipate collisions.

Şenbaşlar et al. [14] also used BVC for collision avoidance,
taking as input pre-planned trajectories, built using discrete
planning. They compared their method to ORCA, and ORCA
combined with discrete planning. Their experiments revealed
that agents using their approach, as well as those employing
ORCA coupled with discrete planning, successfully reached
their destination. Conversely, agents following only the ORCA
approach could become trapped when attempting to navigate
around static obstacles, a situation we can also refer to as a
livelock. This problem arises because ORCA focuses primarily
on collision avoidance and requires additional strategies for
agents to successfully circumvent static obstacles [9]. It is
worth noting, however, that their method takes more compu-
tation time compared to ORCA.

Lastly, Semnani et al. [15] proposed an adaptation of the
flocking algorithm proposed by Reynolds [19] capable of
generating paths that are both collision-free and deadlock-
free, even within densely packed scenarios. In such scenarios,
agents using ORCA might not be able to reach their goal
positions because the conventional motion of these agents
toward their goals is obstructed by other agents that have
already reached their final destinations. Note that these latter
agents should not be confused with zero-speed agents, as zero-
speed agents retain the possibility of resuming motion.

Approaches that enhance blockage avoidance achieved with
ORCA include the following. Dergachev et al. [12] combined
three algorithms for multi-agent navigation: Theta* algorithm
for individual path planning, ORCA for collision avoidance,
and multi-agent path-finding for avoiding deadlocks. When

an agent encounters a potential deadlock, such as navigating
through a narrow passage, it switches to a coordinated path-
planning mode. In this mode, the agent collaborates with its
neighbors to construct a joint conflict-free plan, executing
it before returning to independent navigation. The authors
conducted a comparative study, contrasting their method with
the combination of ORCA and Theta*. Their approach notably
reduced the occurrence of deadlocks; however, it tends to be
time-intensive due to its centralized decision-making nature.
Finally, Arul and Manocha [16] coupled BVC and reciprocal
velocity obstacles for collision avoidance. Their deadlock
resolution strategy consists of identifying if an agent is yet
to reach its goal position but with zero speed. If so, the agent
identifies the neighboring agent that is closest to the direction
of its goal location and switches positions with it to end the
blockage. Their method is less conservative than ORCA and
has similar runtime performance.

In reviewing the literature, we can make two observations.
First, the proposed approaches rely on combining ORCA
with other algorithms, such as path planning, or introducing
alternative collision avoidance techniques. To the best of our
knowledge, no established approach directly modifies ORCA
itself to avoid blockage. Second, it becomes apparent that there
is a gap in research addressing the problem of livelock arising
from agents getting stuck around zero-speed agents. Şenbaşlar
et al. [14] proposed a strategy for dealing with livelocks arising
from attempts to circumvent static obstacles. However, this
approach proves inapplicable to scenarios involving zero-speed
agents, since these agents can resume motion at any time.
However, livelocks can occur in ORCA when agents interact
with zero-speed agents, as we show in Section IV. We address
this situation by proposing a modification of ORCA. This
modification does not rely on the use of auxiliary algorithms
in addition to ORCA. Before presenting this modification, we
provide a brief overview of ORCA in the following section.

III. RECIPROCAL COLLISION AVOIDANCE WITH ORCA

In this section, we provide a brief description of ORCA.
This is intended to provide a better understanding of the
circumstances that may lead to the potential occurrence of
livelocks. For more details on ORCA, see [9].

A. Problem definition

ORCA is a velocity-based algorithm for local navigation
in which each agent anticipates collisions by choosing its
next velocity according to the position and velocity of its
nearest neighbors. In ORCA, each agent assumes that other
agents use the same collision avoidance strategy and that the
responsibility for avoiding a collision is shared with every
other agent. At each simulation step, the model derives for
each agent a half-plane of velocities in the velocity space that
will not lead to a collision with any other agent over a fixed
time horizon into the future. The agent then chooses a velocity
from the intersection of all half-planes that is closest to its
preferred velocity, i.e., the velocity the agent would have if
no agent were in its path. The model uses linear programming
to find the optimal velocity. In this way, ORCA guides the

Page 3 of 13

PLEASE KEEP CONFIDENTIAL

IEEE Intelligent Transportation Systems Transactions

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

4 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. X, NO. X, 2024

agent as directly as possible toward its goal, while ensuring
a collision-free motion. In other words, ORCA prioritizes
direction over collision avoidance, since the velocity chosen to
ensure collision avoidance is intended to minimize deviation
from the preferred direction.

ORCA solves the reciprocal n-Body Collision Avoidance
problem, which is defined as follows. Let there be a set
of n pedestrians modeled as dynamic agents with circular
shapes in 2D. Each agent A has a current position pA, radius
rA, and velocity vA, that can be observed by other agents.
Additionally, it has a maximum speed smax

A (parameter in m/s)
and a preferred velocity vpref

A (variable, vector depending on
its destination at each step of the simulation).

The objective of the problem is that each agent A selects
its new velocity vnew

A such that all agents are guaranteed to be
collision-free for at least a fixed interval of time τ , in which
they would continue moving at their new velocity. Moreover,
this new velocity should be as close as possible to the agent’s
preferred velocity, which is in the direction of the agent’s
destination.

B. Optimal Reciprocal Collision Avoidance

At each time step ∆t, each neighboring agent B of agent A
induces a set Rτ

A|B of relative velocities of A with respect to B
that guarantees collision avoidance with B in the time horizon
τ , with ∆t ≤ τ . In other words, the set Rτ

A|B of permitted
velocities for A induced by B contains all relative velocities
of A with respect to B that will not lead to a collision between
A and B at any time before τ . The set Rτ

A|B is a half-plane
of velocities in the velocity space. Similarly, A induces a
corresponding set of permitted velocities for B, denoted as
Rτ

B|A.
Static obstacles are modeled as collections of line segments.

Collision avoidance with these obstacles follows a similar
approach to that presented for agents. Let O be an obstacle
line segment. The set Rτ

A|O denotes the half-plane of permitted
velocities for A with respect to O.

The set of velocities permitted for A with respect to all
agents and obstacles is the intersection of the half-planes of
permitted velocities induced by each other agent and obstacle.
This set is denoted as Rτ

A and is defined as:

Rτ
A = D(0, smax

A) ∩
⋂

B ̸=A

Rτ
A|B ∩

⋂
O

Rτ
A|O (1)

Here, D(0, smax
A) denotes an open disc of radius smax

A cen-
tered at vector 0 that represents the maximum speed constraint
on agent A.

The agent then selects a new velocity vnew
A to minimize the

distance to its preferred velocity vpref
A within the region of

permitted velocities, Rτ
A, that is,

vnew
A = argmin

v∈Rτ
A

∥v − vpref
A ∥. (2)

This selection process can be efficiently performed using
linear programming. The region Rτ

A is convex, bounded by
linear constraints from the half-planes of permitted velocities

induced by other agents and obstacles. The optimization prob-
lem has a unique local minimum at the intersection point of the
lines bounding two of the half-planes that define Rτ

A. To solve
this, van den Berg et al. [9] utilized the linear programming
algorithm introduced by Berg et al. [20]. It is noteworthy that
ORCA was initially designed for 2D environments; never-
theless, all definitions and the algorithm can be seamlessly
extended to 3D scenarios.

IV. WHY LIVELOCK CAN OCCUR IN ORCA WITH
ZERO-SPEED AGENTS

We define as zero-speed agent a pedestrian that remains
with zero speed for an indefinite amount of time, with the
possibility of resuming its path afterward. We distinguish it
from a regular agent, a pedestrian that has a speed different
from zero. Other agents cannot know how much time a zero-
speed agent will remain stopped. This forces them to treat it as
a dynamic agent instead of a static object to be circumvented.
ORCA works well when considering dynamic agents in con-
stant movement, but can generate livelocks when an agent
is moving close to others with zero speed. Depending on its
relative position and velocity with respect to the zero-speed
agents, an agent can get “stuck” behind them. This would
happen if the agent, “guided” by its destination, advances
towards a position near the zero-speed agents where it can no
longer “get out”. While moving in this direction the speed of
the agent in the subsequent time steps decreases until it reaches
almost zero. In other words, the agent gets “stuck” behind the
zero-speed agents. Since there may be other positions available
to move to, we say there is a livelock.

We present two scenarios that illustrate the two types of
situations that lead to livelock occurrences with ORCA. In
both scenarios, an agent navigates from left to right along a
10 × 5 m sidewalk. The simulations assume the following
parameter values: all agents have a radius of r = 0.3 m and a
maximum speed of smax = 1 m/s. The simulations use a time
step of ∆t = 0.1 s, and the collision avoidance time horizon is
τ = 1 s. These simulation parameters are based on the default
parameters of ORCA, since this paper aims to illustrate how
the livelocks could occur and how we address them.

Consider the example illustrated in Fig. 1. Agent A is
moving from left to right. At this point of the simulation, B
and C are zero-speed agents discussing together somewhere in
the middle of a sidewalk. They are in the direction of A’s goal.
The trace of A is depicted while advancing toward its goal and
its position is provided at three different times (in seconds)
t. From this figure, we can see that A is directed to the
middle of B and C, while the agent’s speed diminishes when
approaching them (notice how the space between the points
on the trace diminishes over time). Since ORCA anticipates a
collision over a fixed time horizon τ , agent A starts changing
orientation and speed, before getting too close to the other
agents. This, however, is not enough to avoid getting into
a livelock. To inspect why this phenomenon occurs, Figures
2(a)-2(c) show the half-planes of permitted velocities for agent
A induced by agents B and C at the three different times
(in seconds) t. vnew

A , obtained by solving Equation (2), is

Page 4 of 13

PLEASE KEEP CONFIDENTIAL

IEEE Intelligent Transportation Systems Transactions

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

ECHEVERRI et al.: MODELING COLLISION AVOIDANCE BEHAVIOR WITH ZERO-SPEED PEDESTRIANS 5

Fig. 1. Trace of agent A while moving from left to right using ORCA. Agents B and C, with zero speeds, are in the middle of a sidewalk in the direction of
A’s goal. The position of A is shown in times (in seconds) (a) t = 2, (b) t = 3.3, and (c) t = 4.5. All agents have the same size (rA = rB = rC = 0.3m),
smax
A = 1m/s and τ = 1s.

(a) (b) (c)
Fig. 2. Half-planes of permitted velocities using ORCA for agent A induced by agents B and C in the example shown in Fig. 1 at times (in seconds) (a)
t = 2, (b) t = 3.3, and (c) t = 4.5 .

also depicted for each time. Let ℓτA|B and ℓτA|C be the lines
bounding Rτ

A|B and Rτ
A|C . vnew

A is the intersection point of
ℓτA|B and ℓτA|C . Since neither B nor C start moving, and A
continues to head towards the same direction, vnew

A keeps being
the intersection point of ℓτA|B and ℓτA|C , always reducing its
magnitude (see the size of the vector to vnew

A in Figures 2(a)-
2(c)). This is due to the fact that vnew

A is chosen by minimizing
the distance between vpref

A and vnew
A . The situation exposed is a

livelock, since A is blocked behind B and C and will remain
so until either B or C restarts, while there are alternative
velocities within Rτ

A that would not lead to this situation.

Fig. 3 shows the other situation in which this phenomenon
can be observed, this time with a regular agent A and a zero-
speed agent B near the edge of a sidewalk. Agent A is moving
from left to right, facing agent B. Fig. 3 provides the trace
of A over time and its position at three different times (in
seconds) t. In this figure, we can see that A is directed to a
point between the edge of the sidewalk and B owing to its
goal. Furthermore, the speed is diminishing while approaching
this point (the space between the points on the trace diminishes
over time). Let ℓτA|B and ℓτA|O be the lines bounding Rτ

A|B
and Rτ

A|O, with O being the line segment representing the
edge of the sidewalk. Figures 4(a)-4(c) show the half-planes
of permitted velocities for agent A induced by agent B and
the edge of the sidewalk as well as vnew

A at the three different

times (in seconds) t. As can be seen from these figures, in the
three times, vnew

A is the intersection point of ℓτA|B and ℓτA|O.
Since A continues to head towards the same direction and B
does not move, vnew

A continues being the intersection point
of ℓτA|B and ℓτA|O. The size of the vector to vnew

A decreases,
meaning that the agent slows down until it reaches a speed
of almost zero. However, there are other velocities in Rτ

A that
the agent could take instead.

According to the examples presented above, a livelock in
ORCA can be explained as follows. At each time step, ORCA
selects a new velocity vnew

A for agent A from the convex
region Rτ

A that is closest to A’s preferred velocity, vpref
A . As

long as a velocity is feasible and with a minimum distance
to the preferred velocity, it will be chosen, regardless of the
type of agent or obstacle to which that half-plane intersection
belongs. This is due to the choice to prioritize reaching the
destination (minimizing the distance to the preferred velocity)
over avoiding collisions. In both scenarios, vnew

A lies at the
intersection point of two bounding lines associated with zero-
speed agents or static obstacles. Since the zero-speed agents
do not restart, A is blocked. Changing the time horizon τ to
avoid a collision is not enough to evade the livelock, since
the situation depends on the agent positions, the goal of agent
A, and the presence of zero-speed agents. The livelock results
from ORCA’s collision avoidance methodology. Furthermore,

Page 5 of 13

PLEASE KEEP CONFIDENTIAL

IEEE Intelligent Transportation Systems Transactions

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

6 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. X, NO. X, 2024

Fig. 3. Trace of agent A while moving from left to right near an edge of a sidewalk using ORCA. Agent B, with zero speed, is in the direction of A’s
goal. The position of A is shown in times (in seconds) (a)t = 2, (b)t = 3.2, and (c)t = 4.3. All agents have the same size (rA = rB = rC = 0.3m),
smax
A = 1m/s and τ = 1s.

(a) (b) (c)
Fig. 4. Half-planes of permitted velocities using ORCA for agent A induced by agent B and an edge of a sidewalk in the example shown in Fig. 3 at times
(in seconds) (a) t = 2, (b) t = 3.2, (c) t = 4.3.

agent A cannot know in advance if other agents will stop and
the duration of the stop. Therefore it is not possible to plan the
change of the agent’s preferred velocity (e.g., through global
path planning techniques) to circumvent zero-speed agents in
the direction of its goal.

To avoid livelocks with zero-speed agents, we propose a
modification in the selection of vnew

A , while keeping the same
principle of ORCA. In our approach, the new velocity differs
from the one obtained by solving Equation (2), but belongs to
the region of permitted velocities Rτ

A, thus ensuring collision
avoidance. This new velocity is intended to help the agent
escape from a livelock before it is produced by anticipating
the conditions that would lead it to it.

V. LIVELOCK AVOIDANCE OR HOW TO CONSIDER ZERO
SPEEDS PEDESTRIANS WITH ORCA

In this section, we describe the modification we propose
to ORCA’s new velocity computation to account for zero-
speed agents and, consequently, avoid the potential livelocks
with them. Afterward, we show the results of applying this
modification to the examples presented in Section IV.

A. Livelock avoidance in ORCA

In the two examples presented in Section IV, vnew
A is the

intersection point of lines bounding the half-planes associated
with two zero-speed agents (Fig. 2), or a static object and a
zero-speed agent (Fig. 4). In essence, the agent, driven by its
goal, advances toward a state of livelock due to the presence
of zero-speed agents on its path. Our methodology is built

upon the anticipation of livelocks arising from interactions
with zero-speed pedestrians. We hypothesize that by “banning”
certain types of intersection points as potential candidates for
vnew
A and proposing an alternative velocity within Rτ

A, the issue
of livelock can be effectively resolved. The alternative velocity
will not lead to a collision between A and any other agent or
obstacle at any time before time τ , since Rτ

A is defined to
guarantee collision avoidance.

The banned intersection points correspond to situations in-
volving interactions with either two zero-speed agents, a zero-
speed agent and an obstacle, or two obstacles. Even though the
last scenario does not involve a zero-speed agent, we included
it because of the similarity in agent behavior around static
obstacles and zero-speed pedestrians. Our computation of the
alternative new velocity involves a modification of the linear
programming algorithm developed by Berg et [20].

We label the bounding lines of permitted half-planes to
indicate to what type of agent or obstacle they belong to. We
distinguish three labels: “regular agent”, “zero-speed agent”,
and “obstacle”. The combinations of line types that form a
banned intersection point are indicated in Table I.

The linear programming algorithm of Berg et al. [20]
adds the linear constraints (the half-planes) one after the
other, choosing the current vnew

A at each step. In the original
version of the algorithm, the solution to the intermediate linear
programs is optimal with respect to the objective function (Eq.
(2)). Our version is intended to sacrifice optimality, e.g. to
prioritize the destination in the computation of vnew

A , to escape
from livelocks with zero-speed agents or static obstacles.

We denote Sτ
A as the set of half-planes that make up the

Page 6 of 13

PLEASE KEEP CONFIDENTIAL

IEEE Intelligent Transportation Systems Transactions

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

ECHEVERRI et al.: MODELING COLLISION AVOIDANCE BEHAVIOR WITH ZERO-SPEED PEDESTRIANS 7

TABLE I
LINE TYPES COMBINATIONS RELATED TO DIFFERENT TYPES OF AGENTS

OR OBSTACLES

Regular agent Zero-speed agent Obstacle
Regular agent – – –

Zero-speed agent – X X
Obstacle – X X

Note: The line types combinations that form a banned intersection point
have an X.

region of permitted velocities, Rτ
A. We number the m half-

planes belonging to Sτ
A as Rτ

A|B1
, Rτ

A|B2
, . . . , Rτ

A|Bm
. Let

Sτ
A|Bi

be the set of the first i half-planes, together with the
maximum speed constraint D(0, smax

A), and let R∗τ
A|Bi

be the
feasible region defined by these constraints:

Sτ
A|Bi

:= {D(0, smax
A), Rτ

A|B1
, Rτ

A|B2
, . . . , Rτ

A|Bi
} (3)

R∗τ
A|Bi

:= D(0, smax
A)∩Rτ

A|B1
∩Rτ

A|B2
∩ . . .∩Rτ

A|Bi
. (4)

We have that

R∗τ
A|B1

⊇ R∗τ
A|B2

⊇ · · · ⊇ R∗τ
A|Bm

= Rτ
A (5)

since R∗τ
A|Bi

= R∗τ
A|Bi−1

∩Rτ
A|Bi

for all 1 < i ≤ m.
The solution to each linear program is unique because each

feasible region is bounded by D(0, smax
A) (see [20]). It will be

one of the vertices of the feasible region. Let 1 ≤ i ≤ m and
vi be the solution for R∗τ

A|Bi
. When adding linear constraint

Rτ
A|Bi

, we verify if the solution for the current feasible region
R∗τ

A|Bi−1
belongs to it, that is, if vi−1 ∈ Rτ

A|Bi
. If so, then

vi = vi−1. If not, then either R∗τ
A|Bi

is an empty set or vi

belongs to the line bounding Rτ
A|Bi

. We call this line ℓτA|Bi
.

If vi−1 /∈ Rτ
A|Bi

and R∗τ
A|Bi

is not an empty set, the solution
will be one of the two intersection points of ℓτA|Bi

with the
lines bounding R∗τ

A|Bi−1
. Initially, the chosen solution will

be the one minimizing the distance to vpref
A . If this solution

corresponds to a banned intersection point, we choose the
other intersection point, to ensure escaping from a livelock.
It is worth noting that our procedure remains independent
of simulation parameters other than the types of agents or
obstacles present. Furthermore, when an agent encounters
neither zero-speed agents nor obstacles, the standard collision
avoidance behavior of ORCA applies.

Algorithm 1 provides the general structure of the procedure
to obtain vnew

A . It requires m, Sτ
A, vpref

A , and smax
A , and ensures

vnew
A . The procedure starts by initializing vnew

A as the maximum
speed in the preferred direction, vpref

A (lines 1-2). Then the
algorithm enters the main for-loop to find vnew

A in Rτ
A (lines

3-10). When adding each half-plane Rτ
A|Bi

, it checks if vnew
A

belongs to it. If so, vnew
A remains the same. If not, the procedure

LinProgMod computes a point that minimizes the objective
function (Eq. (2)) or avoids a potential livelock with zero-
speed agents or obstacles, depending on the label of ℓτA|Bi

.
If the point does not exist, the linear program is infeasible

(Rτ
A is empty). In such a case, we use the strategy for densely

packed conditions as presented in [9].

Algorithm 1 computeNewVelocity

Require: m,Sτ
A,v

pref
A , smax

A

Ensure: vnew
A

1: vpref
A ← vpref

A · smax
A

2: vnew
A ← vpref

A
3: for i← 1 to n do
4: if vnew

A /∈ Rτ
A|Bi

then
5: {vnew

A , feasible} ← LinProgMod(Rτ
A|Bi

,

R∗τ
A|Bi−1

,vpref
A ,vnew

A)
6: if feasible = false then
7: Report that the linear program is infeasible and quit
8: end if
9: end if

10: end for

Algorithm 2 presents the function LinProgMod. It
requires Rτ

A|Bi
, R∗τ

A|Bi−1
, vpref

A , and the current value
of vnew

A , to update it. The function starts by calling
ComputeIntersectionPoints, that finds the intersec-
tion points of ℓτA|Bi

and the lines bounding R∗τ
A|Bi−1

. If it is
not possible to find them, the linear program is infeasible and
the program quits (lines 1-4). After finding the intersection
points, the function retrieves the lines intersecting ℓτA|Bi

(line
5). Next, it checks whether vpref

A and ℓτA|Bi
are on the same

direction or not. This is to select which of the intersection
points corresponds to the solution of the linear program (lines
6-11). Afterward, it retrieves the labels of ℓτA|Bi

and the line
that intersects it in the corresponding direction. This is to
check if we have a banned intersection point (see Table I).
In Algorithm 2, we shorten the labels “zero-speed agent” and
“obstacle” as “z-s agent” and “obs”. In the case of a banned
intersection point, we choose the other direction, that is, we
choose the other intersection point to be vnew

A (lines 12-15).

Algorithm 2 LinProgMod

Require: Rτ
A|Bi

, R∗τ
A|Bi−1

,vpref
A ,vnew

A

Ensure: vnew
A , feasible

1: {[v1
A|Bi

,v−1
A|Bi

], feasible} ←
ComputeIntersectionPoints(ℓτA|Bi

, R∗τ
A|Bi−1

)
2: if feasible = false then
3: Report that the linear program is infeasible and quit
4: end if
5: [ℓ1, ℓ-1]← the lines intersecting ℓτA|Bi

in [v1
A|Bi

, v-1
A|Bi

]
6: dir ← 0
7: if vpref

A and ℓτA|Bi
are on the same direction then

8: dir ←1
9: else

10: dir ← -1
11: end if
12: if (label(ℓτA|Bi

) =“z-s agent” ∥ label(ℓτA|Bi
) =“obs”) &

(label(ℓdir) =“z-s agent” ∥ label(ℓdir) =“obs”) then
13: dir ← dir ×−1
14: end if
15: vnew

A ← vdir
A|Bi

Fig. 5 provides an example illustrating the approach fol-
lowed in Algorithms 1 and 2. At the beginning, D(0, smax

A)

is computed to bound the feasible region and vnew
A = vpref

A

Page 7 of 13

PLEASE KEEP CONFIDENTIAL

IEEE Intelligent Transportation Systems Transactions

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

8 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. X, NO. X, 2024

(a) (b) (c)

Fig. 5. Example of functioning of Algorithms 1 and 2. (a) D(0, smax
A) bounds the feasible region. (b) Rτ

A|B1
is added, changing vnew

A . (c) Rτ
A|B2

is added.

Originally, vnew
A = v−1

A|B2
would be chosen, but v−1

A|B2
is the intersection point of two “zero-speed agent” bounding lines. Thus vnew

A = v1
A|B2

.

(Fig. 5(a)). Then, we add half-plane Rτ
A|B1

, but vnew
A /∈ Rτ

A|B1
,

which means that a new velocity must be computed. v1
A|B1

and
v−1
A|B1

are the intersection points of ℓτA|B1
with D(0, smax

A). A
direction is chosen and, since it only involves one “zero-speed
agent” bounding line, there is no need to do anything else (Fig.
5(b)). Next, we add half-plane Rτ

A|B2
. Again, vnew

A /∈ Rτ
A|B2

.
v1
A|B2

and v−1
A|B2

are the intersection points of ℓτA|B2
with

D(0, smax
A) and ℓτA|B1

. When choosing a direction, it leads to
vnew
A = v−1

A|B2
. But v−1

A|B2
is the intersection point of two

“zero-speed agent” bounding lines, ℓτA|B1
and ℓτA|B2

. Thus,
the other direction is chosen and, finally, vnew

A = v1
A|B2

(Fig.
5(c)).

B. Results

We compare the results obtained using our methodology
with ORCA in the two examples presented in Section IV.
Fig. 6 presents the example with regular agent A facing zero-
speed agents B and C using our methodology. From the figure,
we can see that A changes direction to avoid being trapped
behind B and C. Figures 7(a)-7(c) present the half-planes of
permitted velocities for agent A induced by B and C as well
as vnew

A at three different times (in seconds) t. At t = 2, vnew
A

is the same for both methodologies, since agents B and C are
still far from A (see Figures 2(a) and 7(a)). At t = 3.3, vnew

A

with ORCA would be a banned intersection point. vnew
A would

be the intersection of the lines bounding Rτ
A|B and Rτ

A|C ,
ℓτA|B and ℓτA|C (see Fig. 2(b)). In our methodology, since B
and C are zero-speed agents, ℓτA|B and ℓτA|C are labelled as
“zero-speed agent” bounding lines. Therefore, our algorithm
chooses instead the intersection of ℓτA|B with D(0, smax

A) (see
Fig. 7(b)). Finally, at t = 4.5, A with ORCA would be blocked
in a livelock (see Fig. 2(c)). Instead, with our methodology, it
is not blocked and the simulation can continue, as shown in
Fig. 7(c).

Similarly, Fig. 8 provides the example with regular agent
A moving near the edge of a sidewalk towards zero-speed
agent B. The figure shows that agent A changes its trajectory
to avoid being blocked behind agent B. Figures 9(a)-9(c)
provide the half-planes of permitted velocities for agent A
induced by agent B and the edge of the sidewalk together
with vnew

A at three different times. At t = 3.2, ORCA would
choose a banned intersection point, corresponding to zero-
speed agent B and the edge of the sidewalk. Instead, our

algorithm chooses the intersection of ℓτA|B (the line bounding
Rτ

A|B) with D(0, smax
A) (see Fig. 9(b)). This allows agent A

to escape from a livelock. The simulation continues as shown
in Fig. 9(c).

VI. CONCLUSIONS AND FUTURE WORK

Agent-based crowd simulation algorithms allow the mod-
eling of the individual behavior of pedestrians in a crowd
and how they interact with each other. In the quest to expand
the number of behaviors that can be modeled, we considered
including pedestrians who can stop for a while and continue
walking later, we call them zero-speed agents. Pedestrians
make short stops for a variety of reasons, including resting,
using their phones, or communicating with others. Since this
can be quite spontaneous, the people around them need to
know how to react. When integrated into a crowd simulation,
zero-speed agents can cause blockages that invalidate the
simulation run.

In this paper, we have presented an improved collision
avoidance algorithm designed to deal with zero-speed agents
and allow the simulation to continue. As a modification of the
well-known ORCA algorithm, our model addresses situations
where agents may be blocked by zero-speed agents in the
original ORCA version. Unlike ORCA, our algorithm prior-
itizes collision avoidance over steering, preventing potential
livelocks—situations where agents cannot move despite avail-
able space. Inspired by the natural behavior of real pedestrians
navigating around zero-speed counterparts, our algorithm aims
to enhance realism in crowd simulations.

Our procedure extends the ORCA algorithm by preventing
the agent trajectory from converging in a potential livelock
scenario with zero-speed agents. In cases where such a livelock
risk is foreseeable, the new velocity deviates from the one that
minimizes the distance to the agent’s preferred velocity. The
new velocity still belongs to the set of velocities not leading
to a collision and allows the agent to change direction to avoid
a future livelock. This way, our procedure prioritizes collision
and livelock avoidance over steering in the presence of zero-
speed agents. By not relying on the use of other algorithms
on top of ORCA, our method does not increase the difficulty
of collision avoidance.

Our approach was successful in avoiding a livelock in the
most common cases where a livelock occurs with zero-speed
agents in ORCA. Agents change the direction in a way that

Page 8 of 13

PLEASE KEEP CONFIDENTIAL

IEEE Intelligent Transportation Systems Transactions

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

ECHEVERRI et al.: MODELING COLLISION AVOIDANCE BEHAVIOR WITH ZERO-SPEED PEDESTRIANS 9

Fig. 6. Trace of agent A while moving from left to right using our modification of ORCA. Agents B and C, with zero speeds, are in the middle of a
sidewalk in the direction of A’s goal. The position of A is shown in times (in seconds) t = 2, t = 3.3, and t = 4.5. All agents have the same size
(rA = rB = rC = 0.3m), smax

A = 1m/s and τ = 1s.

(a) (b) (c)
Fig. 7. Half-planes of permitted velocities using our modification of ORCA for agent A induced by agents B and C in the example shown in Fig. 6 at times
(in seconds) (a) t = 2, (b) t = 3.3, and (c) t = 4.5 .

Fig. 8. Trace of agent A while moving from left to right near an edge of a sidewalk using our modification of ORCA. Agent B, with zero speeds, is in
the direction of A’s goal. The position of A is shown in seconds t = 2, t = 3.2, and t = 4.3. All agents have the same size (rA = rB = rC = 0.3m),
smax
A = 1m/s and τ = 1s.

allows them to escape from a livelock while continuing their
course to their destination. There are several directions for
future work. Further research should be undertaken to explore
the selection of other velocities in the region of permitted
velocities that are closer to the agent’s preferred velocity, but
that change the direction moderately. In addition, to prevent

pedestrians from stopping suddenly, another perspective is to
extend the banned points for very slow pedestrians. Also, it
would be interesting to test our model in deadlock situations.
Moreover, we would like to compare the output of our model
with real data from crowds where pedestrians stop and later
resume walking. Finally, our model can be used as a crowd

Page 9 of 13

PLEASE KEEP CONFIDENTIAL

IEEE Intelligent Transportation Systems Transactions

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

10 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. X, NO. X, 2024

(a) (b) (c)
Fig. 9. Half-planes of permitted velocities using our modification of ORCA for agent A induced by agent B and an edge of a sidewalk in the example shown
in Fig. 8 at times (in seconds) (a) t = 2, (b) t = 3.2, (c) t = 4.3.

management tool, especially for assessing the impact of zero-
speed pedestrians.

REFERENCES

[1] W. van Toll and J. Pettré, “Algorithms for microscopic crowd simulation:
Advancements in the 2010s,” in Computer Graphics Forum, vol. 40,
no. 2. Wiley Online Library, 2021, pp. 731–754.

[2] A. Schadschneider, H. Klüpfel, T. Kretz, C. Rogsch, and A. Seyfried,
“Fundamentals of pedestrian and evacuation dynamics,” in Multi-Agent
Systems for Traffic and Transportation Engineering. IGI Global, 2009,
pp. 124–154.

[3] D. C. Duives, W. Daamen, and S. P. Hoogendoorn, “State-of-the-art
crowd motion simulation models,” Transportation Research Part C
Emerging Technologies, vol. 37, pp. 193–209, Dec 2013. [Online]. Avail-
able: https://linkinghub.elsevier.com/retrieve/pii/S0968090X13000351

[4] C. T. Mathew, P. R. Knob, S. R. Musse, and D. G. Aliaga, “Urban
walkability design using virtual population simulation,” in Computer
Graphics Forum, vol. 38, no. 1. Wiley Online Library, 2019, pp. 455–
469.

[5] A. Bamaqa, M. Sedky, T. Bosakowski, B. Bakhtiari Bastaki, and
N. O. Alshammari, “Simcd: Simulated crowd data for anomaly
detection and prediction,” Expert Systems with Applications, vol. 203,
p. 117475, 2022. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0957417422008065

[6] J. E. Cutting, P. M. Vishton, and P. A. Braren, “How we avoid collisions
with stationary and moving objects.” Psychological review, vol. 102,
no. 4, p. 627, 1995.

[7] J. Gehl, Life between buildings, 6th ed. Island Press, 2011.
[8] D. Helbing and P. Molnár, “Social force model for pedestrian dynamics,”

Physical Review E, vol. 51, no. 5, pp. 4282–4286, May 1995. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevE.51.4282

[9] J. van den Berg, S. J. Guy, M. Lin, and D. Manocha, Reciprocal
n-Body Collision Avoidance, ser. Springer Tracts in Advanced
Robotics. Springer Berlin Heidelberg, 2011, vol. 70, ch. chapter
1, pp. 3–19. [Online]. Available: http://link.springer.com/10.1007/
978-3-642-19457-3 1

[10] S. J. Guy, J. Chhugani, S. Curtis, P. Dubey, M. C. Lin, and D. Manocha,
“Pledestrians: A least-effort approach to crowd simulation.” in Sympo-
sium on computer animation, 2010, pp. 119–128.

[11] Y. Luo, P. Cai, A. Bera, D. Hsu, W. S. Lee, and D. Manocha,
“Porca: Modeling and planning for autonomous driving among many
pedestrians,” IEEE Robotics and Automation Letters, vol. 3, no. 4, pp.
3418–3425, 2018.

[12] S. Dergachev, K. Yakovlev, and R. Prakapovich, “A combination of
Theta*, ORCA and Push and Rotate for Multi-agent Navigation,” in
Lecture Notes in Computer Science. Springer International Publishing,
2020, pp. 55–66.

[13] D. Zhou, Z. Wang, S. Bandyopadhyay, and M. Schwager, “Fast, on-line
collision avoidance for dynamic vehicles using buffered voronoi cells,”
IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 1047–1054, Apr
2017. [Online]. Available: http://ieeexplore.ieee.org/document/7828016/

[14] B. Şenbaşlar, W. Hönig, and N. Ayanian, “Robust trajectory execution
for multi-robot teams using distributed real-time replanning,” in Dis-
tributed Autonomous Robotic Systems, N. Correll, M. Schwager, and
M. Otte, Eds. Springer, 2019, pp. 167–181.

[15] S. Hosseini Semnani, A. H. J. de Ruiter, and H. H. T. Liu, “Force-based
algorithm for motion planning of large agent,” IEEE Transactions on
Cybernetics, vol. 52, no. 1, pp. 654–665, Jan 2022. [Online]. Available:
https://ieeexplore.ieee.org/document/9108576/

[16] S. H. Arul and D. Manocha, “V-RVO: Decentralized Multi-Agent
Collision Avoidance Using Voronoi Diagrams and Reciprocal Velocity
Obstacles,” in 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2021, pp. 8097–8104.

[17] M. Gérin-Lajoie, C. L. Richards, and B. J. McFadyen, “The negotiation
of stationary and moving obstructions during walking: Anticipatory
locomotor adaptations and preservation of personal space,” Motor
Control, vol. 9, no. 3, pp. 242–269, Jul 2005. [Online]. Available:
http://journals.humankinetics.com/doi/10.1123/mcj.9.3.242

[18] S. Xue, F. Claudio, X. Shi, and T. Li, “Revealing the hidden
rules of bidirectional pedestrian flow based on an improved floor
field cellular automata model,” Simulation Modelling Practice and
Theory, vol. 100, p. 102044, Apr 2020. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S1569190X19301753

[19] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” in Proceedings of the 14th annual conference on Computer
graphics and interactive techniques, 1987, pp. 25–34.

[20] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Com-
putational Geometry, Algorithms and Applications. Springer Berlin
Heidelberg, 2008.

Laura C. Echeverri received a Ph.D. degree in
Computer Science from the Université de Tours,
France, in 2020. She is currently a postdoctoral
researcher at the Laboratory “Ville, Mobilité, Trans-
port” (LVMT), Université Gustave Eiffel, ENPC,
France. Her research interests include human mo-
bility and transportation network modeling and op-
timization.

Jean-Michel Auberlet conducts his research at
the PICS-L laboratory of the Université Gustave
Eiffel. He is mainly focused on both perception
and interaction modeling of road users to develop
computational models of autonomous agents. He is
a member of the Pedestrian Committee of the Trans-
portation Research Board. He is also involved in
several international conference committees (PED,
TGF, RSS, ICAART).

Jean-Paul Hubert conducts his research at the
DEST laboratory of the Université Gustave Eiffel.
His research focuses on mobility behavior and the
dynamics of urban form, both from a quantitative
and statistical point of view and from a qualitative
analysis of the emergence of transport modes, in-
cluding walking, as objects of public policy. He also
worked at the French National Statistical Institute
(Insee) from 2005 to 2009.

Page 10 of 13

PLEASE KEEP CONFIDENTIAL

IEEE Intelligent Transportation Systems Transactions

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Captions

Fig. 1. Trace of agent A while moving from left to right using ORCA. Agents
B and C, with zero speeds, are in the middle of a sidewalk in the direction of A’s
goal. The position of A is shown in times (in seconds) (a) t = 2, (b) t = 3.3, and
(c) t = 4.5. All agents have the same size (rA = rB = rC = 0.3m), smax

A = 1m/s
and τ = 1s.

Fig. 2. Half-planes of permitted velocities using ORCA for agent A induced
by agents B and C in the example shown in Fig. 1 at times (in seconds) (a)
t = 2, (b) t = 3.3, and (c) t = 4.5.

Fig. 3. Trace of agent A while moving from left to right near an edge of
a sidewalk using ORCA. Agent B, with zero speed, is in the direction of A’s
goal. The position of A is shown in times (in seconds) (a)t = 2, (b)t = 3.2, and
(c)t = 4.3. All agents have the same size (rA = rB = rC = 0.3m), smax

A = 1m/s
and τ = 1s.

Fig. 4. Half-planes of permitted velocities using ORCA for agent A induced
by agent B and an edge of a sidewalk in the example shown in Fig. 3 at times
(in seconds) (a) t = 2, (b) t = 3.2, (c) t = 4.3.

Table I. Line types combinations related to different types of agents or ob-
stacles

Algorithm 1 computeNewVelocity

Algorithm 2 LinProgMod

Fig. 5. Example of functioning of Algorithms 1 and 2. (a) D(0, smax
A)

bounds the feasible region. (b) Rτ
A|B1

is added, changing vnew
A . (c) Rτ

A|B2
is

added. Originally, vnew
A = v−1

A|B2
would be chosen, but v−1

A|B2
is the intersection

point of two “zero-speed agent” bounding lines. Thus vnew
A = v1

A|B2
.

Fig. 6. Trace of agent A while moving from left to right using our mod-
ification of ORCA. Agents B and C, with zero speeds, are in the middle of
a sidewalk in the direction of A’s goal. The position of A is shown in times
(in seconds) t = 2, t = 3.3, and t = 4.5. All agents have the same size
(rA = rB = rC = 0.3m), smax

A = 1m/s and τ = 1s.

Fig. 7. Half-planes of permitted velocities using our modification of ORCA
for agent A induced by agents B and C in the example shown in Fig. 6 at times

1

Page 11 of 13

PLEASE KEEP CONFIDENTIAL

IEEE Intelligent Transportation Systems Transactions

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

(in seconds) (a) t = 2, (b) t = 3.3, and (c) t = 4.5.

Fig. 8. Trace of agent A while moving from left to right near an edge of a
sidewalk using our modification of ORCA. Agent B, with zero speeds, is in the
direction of A’s goal. The position of A is shown in seconds t = 2, t = 3.2, and
t = 4.3. All agents have the same size (rA = rB = rC = 0.3m), smax

A = 1m/s
and τ = 1s.

Fig. 9. Half-planes of permitted velocities using our modification of ORCA
for agent A induced by agent B and an edge of a sidewalk in the example shown
in Fig. 8 at times (in seconds) (a) t = 2, (b) t = 3.2, (c) t = 4.3.

2

Page 12 of 13

PLEASE KEEP CONFIDENTIAL

IEEE Intelligent Transportation Systems Transactions

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

AUTHOR 1:
Laura C. Echeverri
Univ Gustave Eiffel, Ecole des Ponts, LVMT, F-77454 Marne-la-Vallée, France
6-8 Avenue Blaise Pascal 77420 Champs-sur-Marne, France
laura.echeverri-guzman@enpc.fr
(Corresponding author)

AUTHOR 2:
Jean-Michel Auberlet
Univ Gustave Eiffel, COSYS-PICS-L, F-77454 Marne - la- Vallée, France
6-8 Avenue Blaise Pascal 77420 Champs-sur-Marne, France
jean-michel.auberlet@univ-eiffel.fr

AUTHOR 3:
Jean-Paul Hubert
Univ Gustave Eiffel, AME-DEST, F-77454 Marne - la- Vallée, France
6-8 Avenue Blaise Pascal 77420 Champs-sur-Marne, France
jean-paul.hubert@univ-eiffel.fr

Page 13 of 13

PLEASE KEEP CONFIDENTIAL

IEEE Intelligent Transportation Systems Transactions

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

