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S U M M A R Y 

Fault geometry is a key factor in controlling the mechanics of faulting. Ho wever , there is 
currently limited theoretical knowledge regarding the effect of non-planar fault geometry on 

earthquake mechanics. Here, we address this gap by introducing an expansion of the relation 

between fault traction and slip, up to second order, relative to the deviation from a planar 
fault geometry. This expansion enables the separation of the effects of non-planarities from 

those of planar faults. This expansion is realized in the boundary integral equation, assuming 

a small fault slope. It provides an interpretation for the effect of complex fault geometry on 

fault traction, for any fault geometry and any slip distribution. Hence, the results are also 

independent of the friction that applies on the fault. The findings confirm that fault geometry 

has a strong influence on in-plane faulting (mode II) by altering the normal traction on the 
fault and making it more resistant to slipping for any fault geometry. On the contrary, for 
out-of-plane faulting (mode III), fault geometry has a much smaller influence. Additionally, 
we analyse some singularities that arise for specific fault geometries often used in earthquake 
simulations and provide guidelines for their elimination. To conclude this study, we discuss 
the limits of the infinitesimal strain theory when non-planar faults are considered. 

Ke y words: Earthquak e dynamics; Mechanics, theory, and modelling; Dynamics and me- 
chanics of faulting. 

1  I N T RO D U C T I O N  

Understanding the mechanical effect of fault geometry is an important question for seismology, as it can influence various aspects of earthquake
mechanics, such as the areas of the fault that will nucleate, the size of the rupture, or the slip distribution (Aki 1979 ; King & Nabelek 1985 ;
Schwartz & Sibson 1989 ; Klinger et al. 2006 ; Wesnousky 2006 , 2008 ; Milliner et al. 2015 ). Previous theoretical efforts to understand the
effect of fault non-planarities have been primarily focusing on particular fault geometries such as sinusoidale geometry (Saucier et al. 1992 ;
Chester & Chester 2000 ), or rough faults (Dieterich & Smith 2009 ; Dunham et al. 2011 ; Fang & Dunham 2013 ; Sagy & Lyakhovsky 2019 ;
Morad et al. 2022 ; Maurer 2024 ), limiting the generalizability of the results. 

In this paper, we extract the effect of non-planarities from the effect of planar fault by performing an expansion of the boundary integral
equation. It makes the results presented in this paper very general as they do not depend on one specific geometry, or one specific slip
distribution. It also makes the results presented here independent of the friction law that applies on the fault. 

Our emphasis will be on the two modes of shearing fault: in-plane faulting and out-of-plane faulting. Ho wever , the results presented
in this paper can also be applied to opening faults, and the associated findings can be found in Appendix G . We will use a slight abuse of
language by sometimes calling mode I, mode II and mode III what should respecti vel y be called in-plane opening, in-plane shearing and
out-of-plane shearing. Mode I corresponds to pure opening, Mode II corresponds to a pure shear fault, where the direction of rupture is
parallel to the direction of slip. Mode III corresponds to a pure shear fault where the direction of rupture is perpendicular to the direction
of slip (see Fig. 1 ). The primary objective of this paper is to provide a comprehensiv e e xplanation of the main effects of non-planar fault
geometry on the traction that applies on the fault. 
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In-plane opening
(mode I) 

The opening direction is 
changing along the fault

The slip direction is changing 
along the fault

The slip direction is constant

In-plane shear
(mode II) 

Out-of-plane shear
(mode III) 

Figure 1. Description of the different modes of slip for a non-planar fault. Please note that we are using a slight abuse of language by calling them mode I, 
mode II and mode III. 

Figure 2. Definition of the parameters used in this study. The flat fault approximation is when the slope between any two points of the fault is considered 
small. This figure is modified from Romanet et al. ( 2020 ). 
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 T R A C T I O N S  O N  A  N O N - P L A NA R  FAU LT  

his paper derives exact semi-analytical solutions for the elastic strains and stresses within a homogeneous, infinite, isotropic, linear, static,
D medium caused by slip on a finite, non-planar fault (see Appendix G , H and I ). It can be viewed as the static, 2D extension of the previous
ork by Romanet et al. ( 2020 ), where the semi-analytical solution was derived for a fully dynamic, 3D medium using the Einstein notation.
he 0 th order solutions for in-plane (mode II), in space domain, were pre viousl y deri ved in Romanet et al. ( 2020 ). Here, we performed
 comprehensi ve deri v ation for all mode of slip, in both space and spectral domain, and up to the 1 st order, and we provide a physical
nterpretation of each term. 

A complete mechanical model would need to solve the equilibrium for shear traction on the fault τf = τel + τload , where τf is the frictional
esistance of the fault, τload is the shear loading on the fault, and τel is the elastic shear traction response due to slip on the fault. Unless
tated otherwise, we are not solving the equilibrium of shear traction on the fault in this paper, but only assuming the slip distribution, and
xamining how the elastic shear τel and normal σel traction respond to slip on a non-planar fault. 

The geometry of the fault is described by a function h ( y 1 ) representing the height of the fault at given position y = ( y 1 , y 2 ) = ( y 1 , h ( y 1 ))
Fig. 2 ). The deri v ati ve of the height with respect to the coordinate y 1 (the fault slope) is denoted as m ( y 1 ) = 

d 
dy 1 

h ( y 1 ) . When the fault slope
s small ( m ( y 1 ) << 1 ), the second order deri v ati ve of height with respect to the coordinate y 1 can be linked to the curvature along the fault
t by: 

κ t ( y 1 ) = 

d 
dy 1 

m ( y 1 ) 

(1 + m 

2 ( y 1 )) 
3 
2 

� 

d 

dy 1 
m ( y 1 ) = 

d 2 

dy 2 1 

h ( y 1 ) , if m ( y 1 ) << 1 . 

(1) 

he absolute value of the fault curvature | κ t | can be interpreted geometrically as the inverse radius of the tangential circle to the fault (see
ig. 2 ). When the fault is locally flat, the curvature is zero ( κ t ( y 1 ) = 0 ). 
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Non-planar fault Planar fault

+
Correcting terms for 

non-planar fault

Mechanically 
equivalent 

on-fault stresses

Figure 3. A non-planar fault can be made equi v alent to a planar fault with additional on-fault stresses correction. This is not working for off-fault stresses. 
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This paper demonstrates that the semi-analytical solution for the on-fault stresses can be significantly simplified when assuming a small
fault slope. For the on-fault stresses , it is possible to identify the exact mechanical corrections that renders a planar fault mechanically
equi v alent to a non-planar fault by including additional terms that account for the non-planar geometry (see Fig. 3 ). In order not to distract
the reader from the main points of this paper, most of the deri v ation is provided in Appendix B (see also Romanet et al. ( 2020 ) for a more
general deri v ation). In the follo wing, we just provide a summary of the principal steps in volved in the deri v ation: 

(i) We start from the representation theorem (Aki & Richards 2002 , chapter 2.5) which allows to calculate the displacement u k anywhere
in the medium b y e v aluating an integral over the fault involving the Green’s function G kp (Tada & Yamashita 1997 ) and the displacement
discontinuity �u i = u 

+ 
i − u 

−
i across the fault. u 

+ 
i and u 

−
i represent the displacement on each side of the fault, as shown in Fig. 2 . The

subscripts refer to specific component of the v ector, for e xample u k is the k th component of the slip vector u . c i j pq is the Hooke tensor, and n
is the normal vector to the fault. Finally, x is the location at which the slip is e v aluated and y is the variable over which the integration along
the fault is performed: 

u k ( x ) = −
∫ 

fault 
c i j pq �u i ( y ) n j ( y ) 

∂ 

∂x q 
G kp ( x , y )dξ ( y ) . (2) 

(ii) By using the strain definition εcd = 

1 
2 

(
∂ 

∂x c 
u d + 

∂ 

∂x d 
u c 

)
and the Hooke’s law ( σab = c ab c d εcd ), we can obtain the stresses σab at any

point within the medium: 

σab ( x ) = −c ab c d 

∫ 
fault 

c i j pq �u i ( y ) n j ( y ) 
∂ 

∂x q 

∂ 

∂x d 
G cp ( x , y )dξ ( y ) . (3) 

It leads to an integral linking the stresses to the Green’s function and the displacement discontinuity along the fault. Unfortunately the
resulting integral is hypersingular for the on-fault stresses. This hypersingularity arises because of the second-order deri v ati ve of the Green’s
functions. As a result, conventional numerical integration technics cannot be used (Koller et al. 1992 ; Tada & Yamashita 1997 ). 

(iii) We regularize this integral using the tangential differential operator (Bonnet 1999 ; Sato et al. 2020 ) and project the slip vector onto
the fault (Romanet et al. 2020 ). This introduces the curvature term and the gradient term into the equation: 

σab ( x ) = 

∫ 
fault 

c ab c d c i j pq 
∂ 

∂x q 
G cp ( x , y )[ n d ( y ) t j ( y ) − n j ( y ) t d ( y )] t i ( y ) ︸ ︷︷ ︸ 

Kernel 

∂ 

∂y t 
�u ( y ) ︸ ︷︷ ︸ 

Gradient of slip 

dξ ( y ) 

︸ ︷︷ ︸ 
Gradient term 

+ 

∫ 
fault 

c ab c d c i j pq 
∂ 

∂x q 
G cp ( x , y )[ n d ( y ) t j ( y ) − n j ( y ) t d ( y )] n i ( y ) ︸ ︷︷ ︸ 

Kernel 

κ t ( y ) �u ( y ) ︸ ︷︷ ︸ 
Curvature × Slip 

dξ ( y ) 

︸ ︷︷ ︸ 
Cur vature ter m 

. 

(4) 

This equation is now Cauchy integrable, and no longer hypersingular. In the g radient ter m, ∂ 

∂y t �u ( y ) represents the deri v ati ve along the fault
direction (see Appendix B1 ). In the curvature term, the local curvature of the fault κ t can be seen. The t upper-script emphasizes that the
curvature is the one in the direction of the tangential vector to the fault t . 

(iv) For on-fault shear ( τel = t i σi j n j ) and normal ( σel = n i σi j n j ) tractions only , we can develop the integrand that consists of Green’s
function and Hooke’s tensor while making the approximation that fault geometry slope is small (see Fig. 2 , Romanet et al. 2020 ; Romanet &
Ozawa 2022 ). This approach allows to derive a simplified expansion for the elastic tractions on the fault due to a slip distribution: 

τel ( x ) ︸ ︷︷ ︸ 
Full solution 

Elastic shear traction 

= τ 0 
el ( x 1 ) ︸ ︷︷ ︸ 

0 th order 

+ τ 1 
el ( x 1 ) ︸ ︷︷ ︸ 

1 st order 

+ ... ︸︷︷︸ 
higher orders 

σel ( x ) ︸ ︷︷ ︸ 
Full solution 

Elastic normal traction 

= σ 0 
el ( x 1 ) ︸ ︷︷ ︸ 

0 th order 

+ σ 1 
el ( x 1 ) ︸ ︷︷ ︸ 

1 st order 

+ ... ︸︷︷︸ 
higher orders 

(5) 
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he zeroth-order terms in the previous equation represent terms that are independent of the slope between any two points of the fault.
he first-order terms are terms whose integrands are proportional to the fault slope ∝ 

x 2 −y 2 
x 1 −y 1 

, and the second-order terms are terms whose

ntegrands are proportional to the square of the fault slope ∝ 

(
x 2 −y 2 
x 1 −y 1 

)2 
and so on. Note that assuming that the slope is small between any two

oints of the fault is equi v alent to assume that the local slope m ( x 1 ) = 

d 
dy 1 

h ( y 1 ) is small, hence m ( x 1 ) is also a first-order term, and m 

2 ( x 1 ) a
econd-order term. Finally, please also note that assuming the fault slope to be small does not mean that the curvature of the fault is small. In
his process, we do not make any assumption about the slip distribution, or the curvature along the fault. This is different from the previous
tudies using boundary perturbation theory (Chester & Chester 2000 ; Dunham et al. 2011 ; Fang & Dunham 2013 ), that were assuming the
lope as well as the curvature to be small, and that required an expansion of the slip. This decomposition process may appear complex, but it
ffers two significant advantages when it comes to decomposing shear and normal traction: 

(a) Inter preta bility: Breaking down the tractions into terms based on fault slope provides a clearer understanding of the physical processes
t play. Each order of terms corresponds to a specific level of importance regarding the effect of fault geometry, allowing for easier interpretation
nd analysis. 

(b) Approximation: The small slope approximation in the decomposition process enables us to simplify the mathematical expressions and
alculations involved. This approximation is often valid in many practical scenarios, because faults are more or less linear structures. As a
esult, more computationall y ef ficient numerical methods can be employ ed w hile still capturing essential aspects of fault behaviour (Romanet
 Ozawa 2022 ). 

The numerical calculation of the stress integrals (eq. 4 ) and the on-fault shear and normal tractions (eq. 5 ) is either done using a piecewise
inear discretization of the fault geometry, together with a piecewise constant discretization of the slip (see Appendix C ), or the spectral
epresentation of the integrals (see Appendix G , H and I ). 

.1 In-plane shear (mode II) 

y employing the small slope approximation, the elastic shear and normal tractions due to slip on a non-planar fault can be expanded as: 

τel ︸︷︷︸ 
Elastic shear traction 
of a non-planar fault 

= τ 0 
el ︸︷︷︸ 

Planar fault response 

+ τ 1 
el ︸︷︷︸ 

Shear traction drag 

+ ... ︸︷︷︸ 
Higher order terms 

, (6) 

σel ︸︷︷︸ 
Elastic normal traction 

Only if the fault is non-planar 

= σ 0 
el ︸︷︷︸ 

Normal traction perturbation 
∝ κt �u t 

+ σ 1 
el ︸︷︷︸ 

1 st order 
Normal traction perturbations 

+ ... ︸︷︷︸ 
Higher order terms 

, (7) 

with the expressions: 

τ 0 
el ( x 1 ) = − μ

2 π (1 − ν) 

∫ +∞ 

−∞ 

[
1 

x 1 − y 1 

d 

dy 1 
�u 

t ( y 1 ) 

]
dy 1 , 

σ 0 
el ( x 1 ) = − μ

2 π (1 − ν) 

∫ +∞ 

−∞ 

[
1 

x 1 − y 1 
κ t ( y 1 ) �u 

t ( y 1 ) 

]
dy 1 , 

(8) 

τ 1 
el ( x 1 ) = 

μ

2 π (1 − ν) 

∫ +∞ 

−∞ 

[
m ( y 1 ) 

x 1 − y 1 
− x 2 − y 2 

( x 1 − y 1 ) 2 

]
κ t ( y 1 ) �u 

t ( y 1 )dy 1 , 

σ 1 
el ( x 1 ) = 

μ

2 π (1 − ν) 

∫ +∞ 

−∞ 

[
2 m ( x 1 ) 

x 1 − y 1 
− m ( y 1 ) 

x 1 − y 1 
− x 2 − y 2 

( x 1 − y 1 ) 2 

]
d 

dy 1 
�u 

t ( y 1 )dy 1 , 

(9) 

here μ is the shear modulus and ν is the Poisson’s ratio. Contrary to the general expression given in eq. ( 4 ), the integrals in this decomposition
re over the line ( dy 1 ) and not over the fault ( dξ ( y ) ). An example of this decomposition of shear and normal traction into zeroth-order term
nd first-order term is illustrated in Fig. 4 for a rough fault and in Fig. 5 for a seamount fault geometry. The examples consider a given

ault geometry with an assumed slip distribution �u ( y 1 ) = (1 − 4 
y 2 1 
L 2 

) 3 / 2 , where L is the length of the fault. We chose this slip distribution
ecause it leads to an analytical expression for the shear traction, and it does not create any singularity at tips of the fault (see Appendix E ).
t can be observed that the zeroth- and first-order terms are already capturing a significant portion of the physics of the shear and normal
raction for both geometries. The full solution, calculated without any approximation on the geometry, can al wa ys be decomposed as the sum
f the gradient term, and the curvature term (Romanet et al. ( 2020 ), see also Appendix G2 , H1 and I1 ). In the subsequent section, a physical
nterpretation of the zeroth- and first-order terms for both shear and normal traction is provided. Additionall y, anal ytical results and possible
ther approximations will be presented. 

.1.1 The zeroth-order contribution to shear traction τ 0 
el : the planar fault response 

he zeroth-order response of the shear traction, denoted as τ 0 
el , is exactly the same as if the fault was flat (Segall 2010 , section 4.7). In other

ords, It means that the main contribution for the shear traction of a non-planar fault is the flat fault response. In Fig. 6 , the shear traction
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Figure 4. Assuming a rough fault geometry (as shown by the x -axis) and the slip distribution �u ( y 1 ) = (1 − 4 
y 2 1 
L 2 

) 3 / 2 (red curve), L being the length of the 

fault, the shear traction (upper panels) and the normal traction (lower panels) term can be decomposed into zeroth-order term and first-order term. The 0 th 

order and the 1 st order (thick blue lines), are respecti vel y calculated using the expressions ( 8 ) and ( 9 ) (more precisely the spectral version of these equations as 
gi ven b y H3 and H5 in appendix H ). The full solution (without any approximation on the fault geometr y) and associated g radient and cur vature ter ms (thin 
black lines) are calculated using eq. ( H1 ). 

Figure 5. Assuming a seamount fault geometry (as shown by the x -axis) and the slip distribution �u ( y 1 ) = (1 − 4 
y 2 1 
L 2 

) 3 / 2 (red curve), L being the length of 

the fault, the shear traction (upper panels) and the normal traction (lower panels) term can be decomposed into zeroth-order term and first-order term. The 0 th 

order and the 1 st order (thick blue lines), are respecti vel y calculated using the expressions ( 8 ) and ( 9 ) (more precisely the spectral version of these equations as 
gi ven b y H3 and H5 in appendix H ). The full solution (without any approximation on the fault geometry) and associated gradient and cur vature ter ms, in thin 
black lines, are calculated using eq. ( H1 ). 
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Figure 6. Assuming a fault geometry (a. a rough fault, and b. a seamount fault geometry) and the slip distribution �u ( y 1 ) = (1 − 4 
y 2 1 
L 2 

) 3 / 2 , L being the length 
of the fault, the shear traction can be calculated with the full solution as gi ven b y eq. ( H1 ), and the zeroth-order solution as calculated by eq. ( H3 ) in the spectral 
domain. The zeroth-order solution for the shear traction is exactly the one for a planar fault. It is compared with the analytical solution for the equi v alent 
flat fault (black dash line, see Appendix E ).The slight difference between the analytical solution and the zeroth-order solution are coming from the fact that 
the calculation was performed in spectral domain, hence there is a periodic replication of the fault that slightly increase the shear traction of the zeroth-order 
solution. 
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esponse for a rough fault (Fig. 6 a.) and for a seamount fault geometry (Fig. 6 b.) that is subject to a slip distribution �u ( y 1 ) = (1 − 4 
y 2 1 
L 2 

) 3 / 2 in
eter, L being the length of the fault, can be seen. This represents the shear traction for a right lateral fault. Inside the fault, the shear traction

xhibits a globall y negati ve v alue, resulting in decreasing the shear traction on the fault. This overall shear traction reduction is usually called
he shear stress drop in seismology. On the other hand, outside the fault, the presence of the fault increases the shear traction. 

.1.2 The zeroth-order contribution to normal traction σ 0 
el : the main source of normal traction variations 

ne of the main effect of non-planar geometry on an in-plane shear fault is the introduction of normal traction v ariations. This ef fect is
ell-documented in the literature (Nielsen & Knopoff 1998 ; Dunham et al. 2011 ; Romanet et al. 2020 ; Cattania & Segall 2021 ). Fig. 7
rovides a closer look at the normal traction depicted in Fig. 4 for a rough fault and in Fig. 5 for a seamount fault geometry. It can be seen that
he local maximums and minimums of normal traction correspond to the areas where the fault is locally flat ( κ t = 0 ). This relationship can
e anal yticall y demonstrated with the zeroth-order elastic nor mal traction (which is the main contribution to the nor mal traction) gi ven b y: 

0 
el ( x 1 ) = − μ

2 π (1 − ν) 

∫ +∞ 

−∞ 

1 

x 1 − y 1 
κ t ( y 1 ) �u 

t ( y 1 )dy 1 . (10) 

o identify the areas of minimums and maximums of normal traction, we can differentiate the previous expression and find where the
eri v ati ve equals zero: 

d 

dx 1 
σ 0 

el ( x 1 ) = 

μ

2 π (1 − ν) ︸ ︷︷ ︸ 
> 0 

∫ +∞ 

−∞ 

1 

( x 1 − y 1 ) 2 ︸ ︷︷ ︸ 
> 0 

κ t ( y 1 ) �u 

t ( y 1 ) ︸ ︷︷ ︸ 
> 0 

dy 1 . (11) 

ince the slip is al wa ys positive, the only way that the previous integral to be 0 is if the curv ature re verses sign, or if the fault is only planar.
oreover, due to the weight 1 / ( x 1 − y 1 ) 2 , the maximums and minimums of normal traction occur very close to the areas where the curvature

hanges sign. Although it may not precisely coincide with the location of the curv ature re versing sign, it generally occurs very close. Similar
easoning can be applied for the extremas of the shear traction for pure opening faults (see Appendix G ). 

Lastly, it is worth noting an interesting approximation for a rough fault that is not applicable to general fault geometries. If the slip
istribution in Fourier domain has mainly low wavelength, so that it exists k c such that �u 

t ( k > k c ) = 0 , and that the curvature along the
ault in Fourier domain has mainly high wavelength such that κ t ( k < k c ) = 0 , then the Hilbert transform of the curvature that multiplies the
lip can be simplified using Bedrosian’s theorem (Bedrosian 1963 ): 

0 
el ( x 1 ) � − μ

2 π (1 − ν) 
�u 

t ( x 1 ) 
∫ +∞ 

−∞ 

κ t ( y 1 ) 

x 1 − y 1 
dy 1 . (12) 

lthough this approximation is not entirely accurate as the slip and curvature do have overlapping bandwidth, it can be considered a reasonable
ssumption for rough faults, as shown in Fig. 8 . This approximation allows easy interpretation for the elastic normal traction change, because
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Figure 7. (a) Zoom on the normal traction for a rough fault in Fig. 4 . (b) Zoom on the normal traction for a seamount fault geometry in Fig. 5 . It can be seen 
that minimums and maximums of the normal traction correspond to area where the fault is locally flat ( where the curvature is zero κ t = 0 ). The calculation 
was performed using the full elastic normal traction (eq. H1 ). 
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Figure 8. Assuming the fault geometry and the slip distribution �u ( y 1 ) = (1 − 4 
y 2 1 
L 2 

) 3 / 2 , the full solution for normal traction (black curved) can be calculated 
using eq. ( H1 ). The solution using the Bedrosian’s approximation eq. ( 12 ) (blue dash curve) is very close to the full solution and allows to give some 
interpretations. 
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(a)

(c) (d)

(b)

Figure 9. Calculation of the first-order effect of the shear traction as expressed by eq. ( 13 ) (continuous red line), and comparison with the theoretical shear 
traction drag as calculated by eq. ( 16 ) (black crosses) for different fault geometries. The fault geometry is shown as the x -axis. (a) A finite rough fault, (b) a 
finite fault with a seamount geometry, (c) a finite fault with arctan geometry, and (d) a finite fault whose geometry is the sum of two sinusoidal functions. For 
the sum of two sinusoidal functions, the shear traction drag is not shown because the equation is too lengthly. The calculation is done for the prescribed slip 

distribution �u ( y 1 ) = (1 − 4 
y 2 1 
L 2 

) 3 / 2 in meter, where L is the length of the fault. The constant slip required for the calculation of the shear traction drag is taken 
as the average slip. 
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t means that the normal traction depends only on the local slip ( �u 

t ( x 1 ) ) and not on the global slip inside an integral. 

.1.3 The first-order contribution to shear traction τ 1 
el : the shear traction drag 

ig. 9 illustrates the first-order term for shear traction: 

τ 1 
el ( x 1 ) = 

μ

2 π (1 − ν) 

∫ +∞ 

−∞ 

[
m ( y 1 ) 

x 1 − y 1 
− x 2 − y 2 

( x 1 − y 1 ) 2 

]
κ t ( y 1 ) �u 

t ( y 1 )dy 1 , (13) 

or different fault geometries when assuming the slip distribution �u ( y 1 ) = (1 − 4 
y 2 1 
L 2 

) 3 / 2 . This figure shows that additional shear resistance
s coming from the first-order effect of the shear traction for any fault geometry (Fig. 9 ). It can be seen that as long as the fault is non-planar,
his term is resisting to movement. It leads to the very intuitive result that it is harder to slide a fault if it is non-planar. 

This additional shear resistance is very similar to the key theoretical result on rough fault obtained by Dieterich & Smith ( 2009 ) and
ang & Dunham ( 2013 ). It states that a rough fault is harder to slip than a flat fault. In other words, it says that a rough fault has an additional
hear resistance when compared to a flat fault. A quantification of this term was obtained in Fang & Dunham ( 2013 ) and referred as the
roughness drag”. It is possible to derive a similar expression from the 1 st order solution for shear traction. Assuming constant slip over the
ault and that the fault slope is small ( m << 1 ), the previous exact equation for the shear traction at 1 st order (eq. 13 ) simplifies to (by writing
 ( y 1 ) = y 2 and h ( x 1 ) = x 2 ): 

τ 1 
el ( x 1 ) = 

μ�u 

t 

2 π (1 − ν) 

∫ +∞ 

−∞ 

[
m ( y 1 ) 

x 1 − y 1 
− x 2 − y 2 

( x 1 − y 1 ) 2 

]
d 2 

dy 2 
m ( y 1 )dy 1 . (14) 
1 
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To obtain the average 〈 τ 1 
el 〉 of the previous equation, it is possible to Fourier transform it, and then apply it at the null wavelength ( k = 0 ): 

〈 τ 1 
el 〉 = lim 

T →+∞ 

[
1 

T 

∫ + T/ 2 

−T/ 2 
τ 1 

el ( y 1 )dy 1 

]
= lim 

T →+∞ 

[
1 

T 

∫ +∞ 

−∞ 

τ 1 
el ( y 1 ) χT ( y 1 ) e 

0 dy 1 

]

= lim 

T →+∞ 

[
1 

T 
F [ τ 1 

el χT ]( k = 0) 

]

= − μ�u 

t 

4 π (1 − ν) 
lim 

T →+∞ 

[
1 

T 

∫ +∞ 

−∞ 

H T ( −τ ) H T ( τ ) | τ | 3 dτ

]

= − μ�u 

t 

4 π (1 − ν) 
lim 

T →+∞ 

[
1 

T 

∫ +∞ 

−∞ 

H 

∗
T ( τ ) H T ( τ ) | τ | 3 dτ

]

= − μ�u 

t 

2 π (1 − ν) 

∫ +∞ 

0 
P h ( τ ) | τ | 3 dτ, 

(15) 

where 〈 τ 1 
el 〉 denotes the average of τ 1 

el , H T is the Fourier transform of the height of the fault on the interval [ −T / 2 T / 2] , and 0 elsewhere
( F [ h T ] = H T ), ∗ denotes the complex conjugate. Finally, χT ( y 1 ) = [ H ( y 1 + T / 2) − H ( y 1 − T / 2)] is the rectangular function and P h =
lim 

T →∞ 

1 
T H 

∗
T H T is the power spectra density of the height of the fault. The above expression allows to calculate a theoretical estimate of the

shear traction drag ( τ 1 
drag ) for any fault geometry: 

τ 1 
drag = − μ�u 

t 

2 π (1 − ν) 

∫ +∞ 

0 
P h ( τ ) | τ | 3 dτ. (16) 

In this paper, we choose to name τ 1 
drag the “shear traction drag”, which is the average of the first-order response of the elastic shear traction ( τ 1 

el )
when the slip is constant and the fault is “suf ficientl y” long. The “shear traction drag” ( τ 1 

drag ) shares a lot of similarities with the “roughness
drag” of Fang & Dunham ( 2013 ), but contrary to the latter expression, it is really a traction along the fault (the expression in Fang & Dunham
( 2013 ) was integrated along the x -axis), and it is independent of the friction that applies on the fault. 

For a rough self-similar fault, the power spectra density is given by P h ( k) = (2 π ) 3 α2 | k| −3 , which leads to the same expression as the
roughness drag calculated in Fang & Dunham ( 2013 ): 

τ 1 
drag = −8 π 3 α2 μ

1 − ν

�u 

t 

λmin 
, (17) 

where α represents the amplitude to wavelength ratio, and λmin is the minimum roughness wavelength. 
Here are some properties of the first-order term for shear traction: 

(i) The first-order term for shear traction is valid for any geometry and any slip distribution. There is more resistance to slip for a non-planar
fault compared to a planar fault (for in-plane shear -mode II-). 

(ii) It is only associated with in-plane faulting (mode II), there is no additional shear resistance for out-of-plane shearing (mode III). 
(iii) Since the stresses in the Fourier domain in three dimensional can be understood as a combination of of mode II and mode III (Geubelle

& Rice 1995 ), the analytical result mentioned above can be used to calculate the first-order term for shear traction in three dimensions. 
(iv) Since the curvature term for shear traction as given by eq. ( 4 ), and the first-order term (eq. 9 ) are the same at order 1, the two terms

can both be used to calculate the shear traction resistance. 
(v) An interpretation is that for equi v alent slip distribution, the shear stress drop will be higher for a non-planar fault than for a planar fault.

This interpretation may seem to contradict the fact that the fault is more difficult to slip, but this is not the case. To get an equi v alent slip, the
loading traction on a non-planar fault will be required to be higher than on a planar fault, hence it is more difficult to slip on a non-planar
fault. 

(vi) The shear traction drag can be used to obtain the same result as the roughness drag expression obtained by Fang & Dunham ( 2013 ) on
a rough fault: τ 1 

drag = −8 π 3 α2 μ

1 −ν

�u t 

λmin 
. The previous result was derived for a constant slip on an infinite frictionless fault, 

To further validate our derivations, we conducted numerical tests comparing the elastic shear traction at first-order τ 1 
el and the shear

traction drag τ 1 
drag for an infinite non-planar fault with constant slip. To achieve the infinite fault, we calculated the shear traction drag in the

spectral domain (eq. H5 ), hence it is infinite with periodic replication. The results can be seen in Fig. 10 (a), for a rough fault and in Fig. 10 (b)
for a sinusoidal fault. The mean value of the first-order term for shear traction ( 〈 τ 1 

el 〉 , in dashed red line) aligns perfectly with the shear traction
drag ( τ 1 

drag , black crosses) for both fault geometries. This numerical comparison further supports the validity and accuracy of our derived
expressions. 

2.1.4 The first-order contribution to normal traction σ 1 
el : slightly reduce maximum and minimums of normal traction 

The main effect of the first order on normal traction σ 1 
el is to slightly oppose the effect of the 0 th order, so that the full normal traction at

maximum and minimums are slightly reduced compare to the zeroth-order effect. This effect can be seen on Fig. 11 , where the maximums and
minimums of normal traction at zeroth-order σ 0 

el are slighly reduced by the first order of normal traction σ 1 
el for both a rough fault (Fig. 11 a.)

and a seamount fault geometry (Fig. 11 b.). 
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(a) (b)

Figure 10. (a) The first-order solution for shear traction τ 1 
el -red line- (from eq. 13 ) and the shear traction drag from Fang & Dunham ( 2013 ) -black crosses- 

(from eq. 17 ) for an infinite rough fault with constant slip. (b) The first-order solution for shear traction τ 1 
el -red line- (from eq. 13 ) and the shear traction drag 

-black crosses- (eq. 16 ) for an infinite sinoisoidale fault with constant slip. The first-order solution for shear traction τ 1 
el for both fault geometries was calculated 

in the Fourier domain (eq. H5 , in appendix H ) to make it infinite with periodic replication. It can be seen that the average of shear traction at first-order 〈 τ 1 
el 〉 

and the shear traction drag τ 1 
drag are perfectly overlapping. 
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Figure 11. The first-order effect on normal traction for (a) a rough fault and (b) a seamount fault geometry. If can seen that the main effect is to reduce 
the minimums and maximums of the normal traction. The full solution was calculated with the eq. ( H1 ) in Appendix H , and the zeroth and first order were 
respecti vel y calculated by eqs. ( H3 ) and ( H5 ), in Appendix H . 

2

F  

o
b  

s

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/239/3/1664/7756889 by guest on 20 D

ecem
ber 2024
.1.5 Scaling of slip versus geometry 

irst and foremost, please note that in this section, we are introducing a new approach by solving the mechanical problem using the equilibrium
f shear traction on the fault, without assuming a specific slip distribution along the fault. If the fault follows the Coulomb friction law ( f 
eing the friction coefficient) and that the loading can be considered constant at 0 th order along the fault, we can write the equilibrium of
hear traction on the fault at 0 th order as: 

− f ( σ 0 
el + σ 0 

load ) ︸ ︷︷ ︸ 
Friction 

= τ 0 
el ︸︷︷︸ 

Shear traction 
due to elasticity 

+ τ 0 
load ︸︷︷︸ 

Loading 

. (18) 
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Figure 12. Scaling of geometry and slip distribution for a static, in-plane shear (mode II) fault subject to a constant loading and that follows Coulomb friction. 
The black dash line is the planar fault solution. The solution for a non-planar fault geometry is shown as a blue line: (a) a rough fault, (b) a seamount fault 
geometry, (c) an arctan fault geometry and (d) a sum of two sinusoidal functions geometry. The slip distribution is inverted using the equilibrium of shear 
traction on the fault. The full elastic traction was used to obtained the slip (eq. H1 ). 
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By utilizing the equilibrium equation mentioned above, it becomes possible to solve for the distribution of slip along the fault. 
This approach was applied for the different non-planar fault geometries in Fig. 12 . The figure illustrates a clear scaling relationship

between the geometry of the fault and the slip distribution: locally flat areas e xhibit e xtrema of slip while highly curved areas show a strong
slip gradient. It can be seen that this scaling is not working near the edges of the fault. Remarkably, the scaling appears to be linear and
preserv es the wav elength of the fault geometry. Indeed, in Fig. 12 (d), the fault geometry is a sum of two sinusoids with different amplitude
and wavelength. The amplitude and wavelength of the fault geometry can be retrieved in the resulting slip distribution. 

This scaling has been anal yticall y deri ved in Romanet et al. ( 2020 ), and is presented again in this paper for consistency. This scaling
arises from the relationship between the shear traction and the normal traction through the friction law. For an in-plane shear fault, as shown
in the previous section, the shear traction at 0 th , τ 0 

el , is controlled by the gradient term along the fault while the normal traction at 0 th order,
σ 0 

el , is controlled by the curvature term: 

τ 0 
el ( x 1 ) = − μ

2 π (1 − ν) 

∫ +∞ 

−∞ 

[
1 

x 1 − y 1 

d 

dy 1 
�u 

t ( y 1 ) 

]
dy 1 , 

σ 0 
el ( x 1 ) = − μ

2 π (1 − ν) 

∫ +∞ 

−∞ 

[
1 

x 1 − y 1 
κ t ( y 1 ) �u 

t ( y 1 ) 

]
dy 1 . 

(19) 

In a global stress state as defined as: 

# „# „σ = 

[ 

σ11 σ12 

σ12 σ22 

] 

, (20) 

the shear and normal traction loadings projected onto the non-planar fault are respecti vel y τload = t · # „# „σ · n and σload = n · # „# „σ · n . At 0 th order,
it can be shown that the shear and normal traction loads simply reduce to τ 0 

load = σ12 and σ 0 
load = σ22 , which are constant and independent

of the fault geometry. The Coulomb friction on the fault links the curvature term (the fault geometry) that controls normal traction and the
g radient ter m (the slip distribution g radient) that controls shear traction, and because at 0 th order, the loading can be considered constant, it
makes possible to invert anal yticall y the two Hilber t’s transfor ms, by using Chebyshev polynomials (Segall 2010 , section 4.1), to obtain a
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inear ordinary differential equation: 

d 

dx 1 
�u 

t ( x 1 ) ︸ ︷︷ ︸ 
Gradient of slip 

+ f κ t ( x 1 ) �u 

t ( x 1 ) ︸ ︷︷ ︸ 
Effect of geometry 

= − 2(1 − ν) 

μ

x 1 − L/ 2 

L 

√ (
1 − 4( x 1 −L/ 2) 2 

L 2 

)
( f σ load + τ load ) ︸ ︷︷ ︸ 

Effect of loading 

. (21) 

n the centre of fault, the effect of loading cancels so that we obtained the scaling: 

d�u 

t 

�u 

t 
= − f dm, (22) 

here the property κ t d x = d m has been used. This scaling states that the relative variation of slip d�u t 

�u t is equal to minus the friction coefficient
f that multiplies the variation of the slope of the fault dm . 

This scaling, eq. ( 22 ), exists only for in-plane shear fault (mode II) as shown in Fig. 12 , but not for out-of-plane shear fault (mode III)
s depicted in Fig. 14 . Although his scaling has not been yet confirmed in observations (Bruhat et al. 2020 ), it was verified for fully dynamic
imulations using rate and state friction (Romanet & Ozawa 2022 ). 

This scaling is an important theoretical finding as it provides a link between three crucial parameters of the f ault, i.e. the f ault geometry,
he slip distribution and the friction coefficient. 

.2 Out-of-plane shear (mode III) 

imilarly as for the in-plane (mode II) case, the out-of-plane (mode III) shear and normal traction can be decomposed into zeroth- and
rst-order responses: 

τel ︸︷︷︸ 
Elastic shear traction 
of non-planar fault 

= τ 0 
el ︸︷︷︸ 

Planar fault response 

+ τ 1 
el ︸︷︷︸ 

= 0 

+ ... ︸︷︷︸ 
Higher order terms 

, (23) 

σel ︸︷︷︸ 
Elastic normal traction 

=0 

= σ 0 
el ︸︷︷︸ 

= 0 

+ σ 1 
el ︸︷︷︸ 

= 0 

+ ... ︸︷︷︸ 
Higher order terms 

= 0 

. (24) 

Ho wever , in this case, only the shear traction at 0 th order is non-zeros: 

τ 0 
el ( x 1 ) = 

μ

2 π

∫ +∞ 

−∞ 

1 

x 1 − y 1 

d 

dy 1 
�u 

s ( y 1 )dy 1 , 

σ 0 
el ( x 1 ) = 0 , 

(25) 

τ 1 
el ( x 1 ) = 0 , 

σ 1 
el ( x 1 ) = 0 . 

(26) 

or an out-of-plane shear fault, the contribution of non-planar fault geometry to the stresses is only a second-order effect. This means that
ault geometry has a small effect for an out-of-plane shear fault (mode III), only on the shear traction (see Fig. 13 ). There is no normal traction
ariation for an out-of-plane shear fault (mode III). Fig. 14 illustrates the slip distribution for non-planar fault geometries with Coulomb
riction and constant loading, using the same parameters as in the in-plane shear case (mode II) shown in Fig. 12 . In the case of out-of-plane
hear (mode III), there is no scaling of the slip distribution with respect to fault geometry. The slip distribution for the planar fault (dashed
lack line) perfectly overlaps with the slip distributions for the non-planar faults (continuous blue lines). 

 D I S C U S S I O N  

.1 Physical singularities that appear on non-planar fault 

.1.1 Non-zeros slip at kinks of the fault 

any literature sources make the mistake of modelling kinks while assuming infinitesimal strain theory and no opening (Tada & Yamashita
996 ; Aochi et al. 2000a ; Duan & Oglesby 2005 ; Ely et al. 2009 ; Lozos et al. 2011 ; Fukuyama & Hok 2015 ; Sathiakumar & Barbot 2021 ).
 kink on a fault with non-zeros slip and no opening create a 1 /r singularity, where r is the distance from the kink. This is a non-physical

ingularity that results to infinite strain energy near the kink. We can demonstrate this result in the small slope approximation, for the 0 th order
n normal traction: 

0 
el ( x 1 ) = − μ

2 π (1 − ν) 

∫ +∞ 

−∞ 

[
1 

x 1 − y 1 
�u 

t ( y 1 ) 
d 

dy 1 
m ( y 1 ) 

]
dy 1 . (27) 
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Figure 13. Total elastic traction for an out-of-plane fault (mode III). Assuming the fault geometry (as shown by the x -axis) and the slip distribution 

�u ( y 1 ) = (1 − 4 
y 2 1 
L 2 

) 3 / 2 in meter (red curve), the full solution, the gradient term and the curvature term (black lines) can be calculated using eq. ( I1 ) (more 

precisely using the spectral expressions eqs. I3 and I5 ). The 0 th order and the 1 st order (blue lines), are respecti vel y calculated using the expressions ( 25 ) and 
( 26 ). 
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Figure 14. Scaling of geometry and slip distribution for a static, out-of-plane shear (mode III) fault subject to a constant loading and that follows Coulomb 
friction. The black dash line is the planar fault solution. The slip distribution does not show any scaling with fault geometry. Fault geometry: (a) a rough fault, 
(b) a seamount fault geometry, (c) an arctan fault geometry and (d) a sum of two sinusoidal functions geometry. 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/239/3/1664/7756889 by guest on 20 D

ecem
ber 2024
If we assume that the curvature is κ t ( y 1 ) = 

d 
dy 1 

m ( y 1 ) . For a kink at the position y 1 = 0 , the slope is discontinuous so that we can assume that
m ( y 1 ) = AH ( y 1 ) , where H is the Heaviside function and A the fault slope after the kink. In this case, the previous equation becomes: 

σ 0 
el ( x 1 ) = − μ

2 π (1 − ν) 

∫ +∞ 

−∞ 

[
A�u ( y 1 ) 

x 1 − y 1 
δ( y 1 ) 

]
dy 1 

= − μ

2 π (1 − ν) 

A�u 

t (0) 

x 1 
. 

(28) 
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Figure 15. Figure showing the grid dependence of a kinked faults. (a) The geometry of the fault and the momentum equation. (b) The slip distribution versus 
position along the fault. The slip distribution is changing with gridsize. Please note the only physically acceptable slip at the kink is zero. (c) The shear traction 
distribution versus the position along the fault. The shear traction is closely following the normal traction because they are linked by the friction law. It is 
also diverging with the refinement of the mesh. (d) The normal traction distribution versus position along the fault. The normal traction is diverging with the 
refinement of the mesh. 
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his reveals a 1 /x 1 singularity of normal traction on the fault. One straightforward way to eliminate this singularity is by imposing the slip to
e null at the kink �u 

t (0) = 0 , which is evident from the previous equation. Another approach would be to allow for fault opening or adding
 third fault and imposing the closure of slip at the kink (Andrews 1989 ). In the boundary element method, the maximum normal traction
oncentration due to the discretization is typically proportional to the gridsize �s. Thus, the maximum normal traction on the fault is: 

σ 0 
el ( x 1 = 0) ∝ − μ

2 π (1 − ν) 

A�u 

t (0) 

�s 
. (29) 

he problem is that the usual gridsize for the modelling of fault is of the order �s ∼ 1000 m , as a result, the stress concentration at the
ink, which is normally infinite, is of the order of σ 0 

el ( x 1 ) � 1 MPa for typical shear modulus μ (30 GP a), P -wav e v elocity (5000 m s −1 )
nd S -wave velocity (3000 m s −1 ) and a slip at the kink of �u 

t (0) = 1 m. This is why the issue of diverging traction at kinks has remained
ostly unknown in numerical work so far. An example of this effect is shown in F ig. 15 , w here the slip, normal traction and shear traction
as calculated for a fault following Coulomb friction with constant loading. The maximum values of normal traction and shear traction

re largely underestimate ( ∼ 1 MPa) for the gridsize �s = 500 m. It is worth noting that adding plasticity or viscosity is not an entirely
atisfying solution, because in most of seismological research, the infinitesimal strain theory is used together with plasticity/viscosity and
he plastic/viscous effects are driven by the linear elastic interaction. If the elastic interactions are underestimated, the plastic/viscous effect
ill also be significantly underestimated. It means all the quantitative work done using kinks in linear elasticity (infinitesimal strain theory)

s grid-dependent and does not converge numerically. 
Finally, it is still possible to observe that modelling a kink is still possible in out-of-plane faulting (mode III), because there is no

ur vature ter m. 

.1.2 Discontinuous curvature along the fault 

 discontinuity in the curvature of the fault also creates a singularity in stresses. Ho wever , this singularity can be compensated by a singularity
n the slip deri v ati ve (hence the slip will still be continuous). Using the scaling of slip versus curvature—that is valid only when the fault
ollows Coulomb friction—(eq. 22 ): 

d 

dx 
�u 

t ( x 1 ) = − f κ t ( x 1 ) �u 

t ( x 1 ) . (30) 

1 
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Figure 16. Figure showing the grid dependence of a bended fault with discontinuous curvature. (a) The geometry of the fault and the momentum equation. 
(b) The slip distribution versus position along the fault. The slip distribution is changing with gridsize. (c) The shear traction distribution versus the position 
along the fault. The shear traction is closely following the normal traction because they are linked by the friction law. It is also diverging with the refinement 
of the mesh. (d) The normal traction distribution versus position along the fault. The normal traction is diverging with the refinement of the mesh. 
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So that if the curvature has a discontinuity of Amplitude B at x 1 = 0 , κ t ( x 1 ) = B H ( x 1 ) , the discontinuity in slip gradient will be: d 
dx 1 

�u 

t ( x 1 ) =
− f B H ( x 1 ) �u 

t ( x 1 ) . This effect is well observed on Fig. 16 (b), where there is a discontinuity in slip gradient due to the discontinuity of the
curvature along the fault. The discontinuity in curvature creates a singularity of the stresses that is ∝ log ( x 1 ) when x 1 → 0 . Because this
singularity is less strong than 1 / 

√ 

( x 1 ) , this discontinuity in curvature does not lead to infinite strain energy, hence it is a physically acceptable
singularity. Let’s show the previous result using the small slope approximation and assuming constant slip distribution. For a bended fault
like in Fig. 16 (a), the curvature can be written κ t ( y 1 ) = B( H ( y 1 − a) − H ( y 1 + b)) , where B is the curvature in the bended portion of the
fault. It leads to the normal traction distribution (Hilbert transform of a characteristic function): 

σ 0 
el ( x 1 ) = − μ

2 π (1 − ν) 
�u 

t 

∫ +∞ 

−∞ 

[
1 

x 1 − y 1 
B( H ( y 1 − a) − H ( y 1 + b) 

]
dy 1 

= − μ

2 π (1 − ν) 
B�u 

t log 

∣∣∣∣ x 1 − a 

x 1 − b 

∣∣∣∣ . 
(31) 

Where we found a log singularity when x 1 → a or x 1 → b. The last comment is that, again, there is no such a problem in out-of-plane
shear (mode III), because the stresses and strains are independent of the curvature term (see eq. I1 in appendix I ). 

3.2 Limits of infinitesimal strain theory 

The infinitesimal strain theory is commonly used in seismology and is necessary to linearize the strain tensor with the displacement field. This
theory assumes that both displacement and strains are small. Ho wever , when considering non-planar fault geometry, the strains and stresses
will keep increasing with on-going slip breaking the small strain approximation. At a certain point, the small strain approximation becomes
invalid as depicted in Fig. 17 . In such cases, finite elasticity should be considered to prevent the strains and stresses from growing without
bounds (Romanet et al. 2020 ; Tal 2023 ). Various approaches have been proposed in the literature to address the issue of unbounded increase
or decrease in normal traction with ongoing slip (Duan & Oglesby 2005 ; Dunham et al. 2011 ; Heimisson 2020 ; Cattania & Segall 2021 ),
for example the inclusion of viscosity or plasticity while retaining the small strain approximation of infinitesimal strain theory. Ho wever , this
approach may lead to a significant overestimation of the effect of plasticity and viscosity in fault mechanics. 

While we acknowledge the likelihood of nonlinear anelastic phenomena occurring (such as damage, plasticity or viscosity), we disagree 
with the interpretation that they are a necessary condition for preventing the stresses and strains from growing indefinitely with on-going slip
on non-planar faults (Dieterich & Smith 2009 ; Shi & Day 2013 ), as this does not consider the effect of finite elasticity (Wise & Tal 2024 ). 
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Figure 17. Figure showing the limits of infinitesimal strain theory (linear elasticity) in the modelling of non-planar fault geometries. 

Table 1. Summary of the results. Please note that there is an effect of geometry for out-of-plane shear, but this effect only appears at 2 nd order. 

Opening fault (mode I) In-plane shear fault (mode II) Out-of-plane shear fault (mode III) 

Shear traction τ 0 
el ( 0 

th order) Mainly controlled by the fault 
geometry ∝ κ t �u n 

Same as the planar fault response Same as the planar fault response 

Shear traction τ 1 
el ( 1 

st order) Nearly no effect (depends on the 
gradient of slip) 

Shear traction drag, the fault is 
resisting slip 

= 0 No effect of fault geometry 

Normal traction σ 0 
el ( 0 

th order) Same as the planar fault response Mainly controlled by the fault 
geometry ∝ κ t �u t 

= 0 No effect of fault geometry 

Normal traction σ 1 
el ( 1 

st order) Normal traction drag, the fault is 
resisting opening 

Reduce the minimums and 
maximums of normal traction 

changes 

= 0 No effect of fault geometry 
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It is important to recognize that small strain elasticity is violated when dealing with very small asperities, and even regularization
echniques may not provide accurate results. One possible direction is to move towards finite elasticity and thoroughly test the limits of linear
lasticity in current earthquake simulations on non-planar faults. 

 C O N C LU S I O N  

his work advances the limited theoretical knowledge regarding the effect of non-planar fault geometries on earthquake mechanics. By
xpanding the relation of fault traction and slip, up to first order relative to the deviation from a planar fault, this study allows for the
nterpretation of complex fault geometry and its impact on fault traction (see Table 1 ). 

The results of this study confirm that fault geometry plays a significant role in in-plane faulting (mode II) by modifying the normal
raction on the fault and increasing its resistance to slipping. We provide a general expression independent of fault geometry and fault slip for
he shear traction drag (Fang & Dunham 2013 ), making it a general result. We also provide some useful simplification for the effect of rough
ault on normal traction, which can be simplified as an Hilbert transform of the curvature by using Bedrosian’s theorem. 

Conversely, for out-of-plane faulting (mode III), the influence of fault geometry is negligible. There is no effect of fault geometry up to
he second order. We also showed that, in this case, there is no scaling between the slip distribution and the geometry. 

The paper also examines singularities that arise in specific fault geometries commonly used in earthquake simulations and provides
uidelines for their elimination. 

Ultimately, this study highlights the limitations of the small strain approximation when considering non-planar faults, emphasizing the
eed to consider finite elasticity for more accurate modelling of non-planar faults. 
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P P E N D I X  A :  TA B L E  O F  PA R A M E T E R S  

able A1 is listing the parameters used in this article. 

Tab le A1. Tab le of parameters. 

Symbol Description 

τf Frictional shear traction resistance on the fault 
τel Total elastic shear traction along the fault 
τload Shear traction loading on the fault 
h Height of the fault 
m Slope of the fault 
x Point of e v aluation 
x d d th component of the point x 
y Point of e v aluation, usuall y ov er which an inte g ral is perfor med 
y d d th component of the point y 
κ t Curvature of the fault 
u k k th component of the displacement vector 
c i j pq i j pq component of the Hooke tensor 
�u i i th component of displacement discontinuity across the fault 
u + i i th displacement on the positive side of the fault 
u −i i th displacement on the ne gativ e side of the fault 
�u n i i th component of the slip vector for opening (mode I) 
�u t i i th component of the slip vector for in-plane shear (mode II) 
�u s i i th component of the slip vector for out-of-plane shear (mode III) 
n j j th of the vector normal to the fault 
G kp kp component of the Green’s functions 
ξ Arc length along the fault 
εcd cd component of the strain tensor 
σab ab component of the stress tensor 
t j j th component of the tangential vector to the fault 
∂ 

∂y t Deri v ati ve along the fault ( ∂ 
∂y t = t 1 

∂ 
∂x 1 

+ t 2 
∂ 

∂x 2 
) 

τ 0 
el Elastic shear traction at 0 th order along the fault 

τ 1 
el Elastic shear traction at 1 th order along the fault 

σel Total elastic normal traction along the fault 
σ 0 

el Elastic normal traction at 0 th order along the fault 
σ 1 

el Elastic normal traction at 1 th order along the fault 
L Length of the fault, used for the prescribed slip definition 
μ Shear modulus 
ν Poisson’s ratio 
τ 1 

drag Shear traction drag 

l Lengthscale for the definition of some fault geometries 
H Fourier transform of the height of the fault ( H = F [ h ] ) 
α Amplitude to wavelength ratio for a self-similar fault 
λmin Minimum roughness wavelength 
H Heaviside function 
χT Rectangular function 
P h P o wer spectra density of the height of the fault 
σ 0 

load Constant normal traction loading 
τ 0 

load Constant shear traction loading 
f Coulomb friction parameter 
# „# „σ Constant stress state tensor 
σ11 , σ22 , and σ12 Components of the constant stress state tensor 
δ Dirac function 
λ Lam é’s first parameter 
θ Angle between the axis 1 and the fault (see Fig. A2 ) 
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Figure A1. Figure showing the discretization of the fault. 

Figure A2. Figure showing the simplification that happens in the small slope approximation for the normal and tangential vectors. 

Figure A3. Assuming the fault geometry and the opening distribution �u ( y 1 ) = (1 − 4 
y 2 1 
L 2 

) 3 / 2 in meter (red curve), the full solution, the g radient ter m and 

the curvature term can be calculated using eq. ( G6 ). The 0 th order and the 1 st order, are respecti vel y calculated using the expressions ( G3 ) and ( G4 ). 
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(a)

(c) (d)

(b)

Figure A4. Example of solving a free boundary condition on non-planar crack. (a) Geometry and boundary condition. (b) Slip and opening on the crack. Please 
notice that shear and opening are components of a slip-opening vector and that the modulus of this vector seems to give the planar crack opening response. (c) 
Shear traction on the crack. Please notice that the sum of each contribution is null (free boundary condition). (d) Normal traction on the crack. Please notice 
that the sum of each contribution is null (free boundary condition). 
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P P E N D I X  B :  D E R I VAT I O N  

n the following, the convention for stress is chosen as tension positive and compression negative. 

1 Formulas 

ere, we just recall some formulas that will be used in the following section for the deri v ation. The momentum balance equation: 

 i j pq 
∂ 

∂x j 

∂ 

∂x q 
G pn ( x , y ) = 0 . (B1) 

ymmetry of the Green’s function: 

∂ 

∂x q 
G i j ( x , y ) = − ∂ 

∂y q 
G i j ( x , y ) . (B2) 

efinition of the tangential differential operator on a function f (Bonnet 1999 ): 

D i j [ f ( y )] = n i ( y ) 
∂ 

∂y j 
f ( y ) − n j ( y ) 

∂ 

∂y i 
f ( y ) . (B3) 

efinition of the deri v ati ve along the fault, if t is the tangential vector to the fault: 

∂ 

∂y t 
f = t 1 

∂ 

∂y 1 
f + t 2 

∂ 

∂y 2 
f. (B4) 

The expression for the Green’s function can be found in Tada and Yamashita ( 1997 ): 

G i j ( x , y ) = 

1 

4 πμ

[
γi γ j 

2(1 − ν) 
− 3 − 4 ν

2(1 − ν) 
δi j log ( r ) 

]
, for i, j ∈ { 1 , 2 } , 

G 33 ( x , y ) = 

−1 

2 πμ
log ( r ) . 

(B5) 

here γ1 = 

x 1 −y 1 , γ2 = 

x 2 −y 2 , and r = 

√ 

( x 1 − y 1 ) 2 + ( x 2 − y 2 ) 2 is the distance between the points x and y . 
r r 

art/ggae337_f21.eps
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B2 Deri v ation 

We start from the representation theorem (Tada and Yamashita 1997 ): 

u k ( x ) = −
∫ 

fault 
c i j pq n j ( y ) �u i ( y ) 

∂ 

∂x q 
G kp ( x , y )dξ ( y ) . (B6) 

From the previous equation, by deriving under the integral it can be obtained: 

∂ 

∂x l 
u k ( x ) = −

∫ 
fault 

c i j pq n j ( y ) �u i ( y ) 
∂ 

∂x q 

[
∂ 

∂x l 
G kp ( x , y ) 

]
dξ ( y ) . (B7) 

The reason to do so is that both the strains ( εkl = 

1 
2 

(
∂ 

∂x k 
u l + 

∂ 

∂x l 
u k 

)
) and the stresses ( σab = c abkl εkl ) can be obtained by linear combination

of the previous equation. To regularize this integral we need to work on the integrand of the previous integral. Using the symmetry of second
deri v ati ves, we can replace the deri v ati ves with respect to x with deri v ati ves with respect to y: 

∂ 

∂x l 
u k ( x ) = −

∫ 
fault 

c i j pq n j ( y ) �u i ( y ) 
∂ 

∂y q 

[
∂ 

∂y l 
G kp ( x , y ) 

]
dξ ( y ) . (B8) 

Then, we used the definition of the tangential differential operator together with the momentum balance equation (eq. B1 ): 

c i j pq n j ( y ) 
∂ 

∂y l 

∂ 

∂y q 
G kp = c i j pq 

[
D jl 

∂ 

∂y q 
G kp + n l ( y ) 

∂ 

∂y j 

∂ 

∂y q 
G kp 

]

= c i j pq D jl 
∂ 

∂y q 
G kp . 

(B9) 

Please note that this deri v ation is due to Daisuke Sato (Sato et al. 2020 ) for the 2D case. The equi v alent 3D case deri v ation w as done b y
Marc Bonnet (Bonnet 1999 ), and can also be found in Romanet et al. ( 2020 ). 

We then developed the differential tangential operator in the local coordinate system of the fault, and used the fact that the deri v ati ve
perpendicular to the fault direction are null: 

D jk [ f ( y )] = 

[
n j ( y ) 

∂ 

∂y k 
− n k ( y ) 

∂ 

∂y j 

]
f ( y ) 

= 

[
n j ( y ) 

(
t k ( y ) 

∂ 

∂y t 
+ n k ( y ) 

∂ 

∂y n 

)
− n k ( y ) 

(
t j ( y ) 

∂ 

∂y t 
+ n j ( y ) 

∂ 

∂y n 

)]
f ( y ) 

= 

[
n j ( y ) t k ( y ) − n k ( y ) t j ( y ) 

] ∂ 

∂y t 
f ( y ) . 

(B10) 

It can be checked that the previous equation is 0 for any pair in (1,2), because t 1 = n 2 and t 2 = −n 1 . 
Then, we replace the integrand in eq. ( B8 ), using eq. ( B9 ) and eq. ( B10 ): 

∂ 

∂x l 
u k ( x ) = −

∫ 
fault 

c i j pq �u i [ n j ( y ) t l ( y ) − n l ( y ) t j ( y )] 
∂ 

∂y t 
∂ 

∂y q 
G kp ( x , y )dξ ( y ) . (B11) 

Finally, it is possible to perform an integration by parts to regularize the hypersingular integral given pre viousl y (eq. B11 ): 

∂ 

∂x l 
u k ( x ) = 

∫ 
fault 

c i j pq [ n j ( y ) t l ( y ) − n l ( y ) t j ( y )] 
∂ 

∂y t 
�u i 

∂ 

∂y q 
G kp ( x , y )dξ ( y ) . (B12) 

For numerical calculation and the discretization of the fault slip, it is best to use eq. ( B11 ). However for facilitate interpretation, the slip vector
can be projected on the local basis as: 

�u i = �u 

n n i , for mode I, 

�u i = �u 

t t i , for mode II, 

�u i = �u 

s s i , for mode III, 

(B13) 

where �u 

n , �u 

t , and �u 

s are respecti vel y the opening, the in-plane slip and the out-of-plane slip. The deri v ati ve of slip with respect to the
direction of the fault ∂ 

∂y t �u i can then be replaced by: 

∂ 

∂y t 
[ �u 

n n i ] = n i 
∂ 

∂y t 
�u 

n − t i �u 

n κ t , for mode I, 

∂ 

∂y t 
[ �u 

t t i ] = t i 
∂ 

∂y t 
�u 

t + n i �u 

t κ t , for mode II, 

∂ 

∂y t 
[ �u 

s s i ] = s i 
∂ 

∂y t 
�u 

s = δ3 i 
∂ 

∂y t 
�u 

s , for mode III, 

(B14) 

where δ3 i is the Kronecker delta. 
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P P E N D I X  C :  D I S C R E T I Z AT I O N  

he discretization is using the same strategy as in Romanet et al. ( 2020 ) (see Fig. A1 ). It consists of discretizing the slip and tangential vector
o be constant over a straight line. It is convenient for this part to use the curvilinear abcisse ξ instead of the position along the fault y ( ξ ) .
lso, to simplify the demonstration, we will just keep the scalar t instead of one component of the tangential vector t i . Discretized tangential
ector and slip can be written: 

t( ξ ) = 

∑ 

j 

t j [ H ( ξ − ξ j ) − H ( ξ − ξ j+ 1 )] , 

�u ( ξ ) = 

∑ 

j 

�u j [ H ( ξ − ξ j ) − H ( ξ − ξ j+ 1 )] . 
(C1) 

hen the integration with any kernel K ( x , y ) , will give: ∫ 
fault 

K ( x , y ) 
∂ 

∂y t 
[ t�u ] dξ ( y ) = ∫ 

fault 
K ( x , y ) t 

∂ 

∂y t 
[ �u ] dξ ( y ) + ∫ 

fault 
K ( x , y ) �u 

∂ 

∂y t 
[ t ] dξ ( y ) = 

∫ 
fault 

K ( x , y ) t 
∂ 

∂y t 

⎡ 

⎣ 

∑ 

j 

�u j [ H ( ξ − ξ j ) − H ( ξ − ξ j+ 1 )] 

⎤ 

⎦ dξ ( y ) + 

∫ 
fault 

K ( x , y ) �u 

∂ 

∂y t 

⎡ 

⎣ 

∑ 

j 

t j [ H ( ξ − ξ j ) − H ( ξ − ξ j+ 1 )] 

⎤ 

⎦ dξ ( y ) = 

∑ 

j 

[ K [ x , y ( ξ j )] t( ξ j ) − K [ x , y ( ξ j+ 1 )] t( ξ j+ 1 )] �u j + 

∑ 

j 

[ K [ x , y ( ξ j )] �u ( ξ j ) − K [ x , y ( ξ j+ 1 )] �u ( ξ j+ 1 )] t j . 

(C2) 

e can then replace t( ξ j ) and �u ( ξ j ) by ( H (0) = 1 / 2 ): 

t( ξ j ) = (1 − 0 . 5) t j−1 + 0 . 5 t j = 

t j−1 + t j 
2 

, 

�u ( ξ j ) = 

�u j−1 + �u j 

2 
, 

(C3) 

hich gives: ∫ 
fault 

K ( x , y ) 
∂ 

∂y t 
[ t�u ] dξ ( y ) = 

∑ 

j 

[
K [ x , y ( ξ j )] 

t j + t j−1 

2 
− K [ x , y ( ξ j+ 1 )] 

t j+ 1 + t j 
2 

) 

]
�u j 

︸ ︷︷ ︸ 
Gradient term 

+ 

∑ 

j 

[
K [ x , y ( ξ j )] 

�u j + �u j−1 

2 
− K [ x , y ( ξ j+ 1 )] 

�u j+ 1 + �u j 

2 

]
t j 

︸ ︷︷ ︸ 
Cur vature ter m 

. 

(C4) 

his way of discretizing the integral allows for the separation of the curvature and gradient terms. 

P P E N D I X  D :  T H E  S M A L L  S L O P E  A P P ROX I M AT I O N  

1 It transforms the integrals along the fault to integral along a straight line 

tarting from a regularized boundary element method, and applying the small slope approximation, it is possible to obtain the zeroth and
rst-order solution of the stress on the fault due to a slip distribution for the different mode of slip. Please notice that all the integrals that
ere along the fault become along the y 1 axis only. This is due to the fact that if y 2 = h ( y 1 ) and the slope deri v ati ve is small d 

dy 1 
h ( y 1 ) << 0 ,
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and changing the variable of the integral: ∫ 
fault 

f ( y 1 )dξ ( y 1 ) = 

∫ +∞ 

−∞ 

f ( y 1 ) 
√ 

1 + h 

′ 2 ( y 1 ) dy 1 

� 

∫ +∞ 

−∞ 

f ( y 1 )(1 + h 

′ 2 ( y 1 ) / 2)dy 1 

� 

∫ +∞ 

−∞ 

f ( y 1 )dy 1 . 

(D1) 

D2 It provides an expression for the normal and tangential vector to the fault 

The normal and tangential vectors can be simplified in the small slope approximation (see Fig. A2 ), indeed: 

m ( y 1 ) = tan [ θ ( y 1 )] � θ ( y 1 ) , (D2) 

so that in the small slope approximation: 

n ( y 1 ) = 

( 

− sin ( θ ( y 1 )) 
cos ( θ ( y 1 )) 

) 

� 

( 

−m ( y 1 ) 
1 

) 

, 

t ( y 1 ) = 

( 

cos ( θ ( y 1 )) 
sin ( θ ( y 1 )) 

) 

� 

( 

1 
m ( y 1 ) 

) 

. 

(D3) 

A P P E N D I X  E :  A  PA RT I C U L A R  S O LU T I O N  F O R  T H E  S E M I - A NA LY T I C A L  

F O R M U L AT I O N  

The slip/opening distribution for the result section is chosen as following: 

�u ( y 1 ) = (1 − y 2 1 ) 
3 / 2 . (E1) 

The reason for this particular form of slip (or opening) distribution compared to the classic distribution in linear fracture mechanics

( �u ( y 1 ) = 

√ 

1 − y 2 1 ) is because it brings finite stress concentrations outside the fault (hence the numerical result are converging) and that
there is an analytical solution for the stresses in the case of planar fault: 

1 

2 π

∫ 1 

−1 

1 

x 1 − y 1 

d 

dy 1 
�u ( y 1 )dy 1 = 

3 

4 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 − 2 x 2 1 − 2 x 1 
√ 

x 2 1 − 1 , if x 1 < −1 

1 − 2 x 2 1 , if − 1 ≤ x 1 ≤ 1 , inside the fault 

1 − 2 x 2 1 + 2 x 1 
√ 

x 2 1 − 1 , if x 1 > 1 

(E2) 

The previous solution was used to check our numerical scheme against the analytical formulation. Obtaining this solution is not straightforward. 
For the case −1 < x 1 < 1 , the solution can be obtained by using Cheb yche v pol ynomial (Mason and Handscomb 2002 , section 9.5.1). The
solution outside | x 1 | > 1 can be obtained by doing a first change of variable y 1 → sin ( θ ) and checking that sin ( θ) cos 2 ( θ) 

x 1 −sin ( θ) is symmetric at π/ 2 .
That allows us to make the integration over the whole circle and take half the value. If we start from the following integral: 

1 

2 π

∫ 1 

−1 

1 

x 1 − y 1 

d 

dy 1 
�u ( y 1 )dy 1 = − 3 

2 π

∫ 1 

−1 

y 1 
√ 

1 − y 2 1 

x 1 − y 1 
dy 1 . 

(E3) 

And then do the first change of variable: 

1 

2 π

∫ 1 

−1 

1 

x 1 − y 1 

d 

dy 1 
�u ( y 1 )dy 1 = − 3 

2 π

∫ π/ 2 

−π/ 2 

sin ( θ ) cos ( θ ) | cos ( θ ) | 
x 1 − sin ( θ ) 

dθ

= − 3 

2 π

∫ π/ 2 

−π/ 2 

sin ( θ ) cos 2 ( θ ) 

x 1 − sin ( θ ) 
dθ

= − 3 

4 π

∫ 3 π/ 2 

−π/ 2 

sin ( θ ) cos 2 ( θ ) 

x 1 − sin ( θ ) 
dθ. 

(E4) 

A second change of variable is using z = e iθ , where sin ( θ ) = 

z−1 /z 
2 i and cos ( θ ) = 

z+ 1 /z 
2 . 

− 3 

4 π

∫ 3 π/ 2 

−π/ 2 

sin ( θ ) cos 2 ( θ ) 

x 1 − sin ( θ ) 
dθ = − 3 i 

16 π

∫ 
C 

( z 2 − 1)(1 + z 2 ) 2 

z 3 [ z − ( i x + 

√ 

1 − x 2 )][ z − ( i x − √ 

1 − x 2 )] 
dz. (E5) 
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or x < −1 , there are two poles at z = 0 and z = i ( x + 

√ 

x 2 − 1 ) , so that applying the residue theorem gives: 

1 

2 π

∫ 1 

−1 

1 

x 1 − y 1 

d 

dy 1 
�u ( y 1 )dy 1 = 2 π i Res ( f, z = 0) + 2 π i Res ( f, z = i( x 1 + 

√ 

x 2 1 − 1 ) 

= 

3 

4 
(1 − 2 x 2 1 − 2 x 1 

√ 

x 2 1 − 1 ) , 

(E6) 

here Res(f,z) is the residue of f in z. 

For x > 1 , there are also two poles at z = 0 and z = i ( x 1 −
√ 

x 2 1 − 1 ) , so that the residue theorem yields: 

1 

2 π

∫ 1 

−1 

1 

x 1 − y 1 

d 

dy 1 
�u ( y 1 )dy 1 = 2 π i Res ( f, z = 0) + 2 π i Res ( f, z = i( x 1 −

√ 

x 2 1 − 1 ) 

= 

3 

4 
(1 − 2 x 2 1 + 2 x 1 

√ 

x 2 1 − 1 ) . 

(E7) 

P P E N D I X  F :  D E F I N I T I O N  O F  T H E  F O U R I E R  T R A N S F O R M  

n the following part, the zeroth and first-order solution for both normal and shear traction are provided. Their expression depends on the
hoose of the definition of the Fourier transform. We define the Fourier transform as following: 

F [ f ]( k) = 

∫ +∞ 

−∞ 

f ( x 1 ) e 
−ikx 1 dx 1 , (F1) 

F 

−1 [ f ]( x 1 ) = 

1 

2 π

∫ +∞ 

−∞ 

f ( x 1 ) e 
ikx 1 dk. (F2) 

here k is the wavenumber. In particular, we will use the Fourier transform of the two functions u ( x 1 ) = 1 /x 1 and v( x 1 ) = 1 /x 2 1 : 

U ( k) = F [1 /x 1 ]( k) = −iπsign ( k) , 

V ( k) = F [1 /x 2 1 ]( k) = −π | k| . (F3) 

P P E N D I X  G :  I N - P L A N E  O P E N I N G  ( M O D E  I )  

he mode I correspond to opening. One common assumption for an opening fault is the traction free condition at the surface. 
By making the small slope approximation, it can be shown that the main contribution for the shear and normal tractions are: 

τel ︸︷︷︸ 
Elastic shear traction 

Only if the fault is non-planar 

= τ 0 
el ︸︷︷︸ 

Shear traction perturbation 
∝ κt �u t 

+ τ 1 
el ︸︷︷︸ 

1 st order 
Shear traction pertubation 

+ ... ︸︷︷︸ 
Higher order terms 

, (G1) 

σel ︸︷︷︸ 
Elastic normal traction 

Of non-planar fault 

= σ 0 
el ︸︷︷︸ 

Planar fault response 

+ σ 1 
el ︸︷︷︸ 

Normal traction drag 

+ ... ︸︷︷︸ 
Higher order terms 

, (G2) 

with: 

τ 0 
el ( x 1 ) = 

μ

2 π (1 − ν) 

∫ +∞ 

−∞ 

1 

x 1 − y 1 
κ t ( y 1 ) �u 

n ( y 1 )dy 1 , 

σ 0 
el ( x 1 ) = − μ

2 π (1 − ν) 

∫ +∞ 

−∞ 

1 

x 1 − y 1 

d 

dy 1 
�u 

n ( y 1 )dy 1 , 

(G3) 

τ 1 
el ( x 1 ) = 

μ

2 π (1 − ν) 

∫ +∞ 

−∞ 

[
m ( y 1 ) 

x 1 − y 1 
− x 2 − y 2 

( x 1 − y 1 ) 2 

]
d 

dy 1 
�u 

n ( y 1 )dy 1 , 

σ 1 
el ( x 1 ) = 

μ

2 π (1 − ν) 

∫ +∞ 

−∞ 

[−2 m ( x 1 ) 

x 1 − y 1 
+ 

m ( y 1 ) 

x 1 − y 1 
+ 

x 2 − y 2 
( x 1 − y 1 ) 2 

]
κ t ( y 1 ) �u 

n ( y 1 )dy 1 . 

(G4) 

On Fig. A3 , an example of an in-plane opening fault is given for a rough geometry. An interesting feature is that the on-fault shear
raction mainly (0th order) depends upon the geometry, because the zeroth-order shear traction depends on the local curvature (a geometrical
arameter) that multiplies the opening. On the contrar y, the nor mal traction depends mainly on the deri v ati ve of opening along the fault. That
eans that it is more dependent on the opening distribution than the fault geometry. 

1 The special case of traction free condition on a fully opened non-planar crack 

y looking at the zeroth-order solution (eq. G3 ), it is interesting to see that the result of opening on a non-planar fault leads to the apparition
f shear traction on this fault. If we assume traction free condition, the only solution to remove the shear traction that appears is that there is



1688 P. Romanet, T. Saito and E. Fukuyama 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/239/3/1664/7756889 by guest on 20 D

ecem
ber 2024
also some in-plane slip along the fault (mode II). One result from that is that pure opening (mode I) on a non-planar fault, with the traction
free condition cannot exist without in-plane shearing (mode II). Hence, the traction free boundary condition can be written as: 

τload + τel ( �u 

n ) + τel ( �u 

t ) = 0 

σload + σel ( �u 

n ) + σel ( �u 

t ) = 0 
(G5) 

On Fig. A4 , we are showing an example of an opening non-planar crack. It can be seen that there is indeed shear slip as well as pure
opening. The sum of all contribution, the elastic traction due to shear slip, the elastic traction due to opening, and finally the traction due to
loading cancel on the fault. 

G2 Full solution 

In the following, γ1 = 

x 1 −y 1 
r , γ2 = 

x 2 −y 2 
r and ∗ represent the convolution operation. These equations are de veloped b y using the definition of

the strain εkl = 

1 
2 

(
∂ 

∂x k 
u l + 

∂ 

∂x l 
u k 

)
and the stress ( σab = c abkl εkl ) tensors, as well as eq. ( B12 ), and the according slip mode eq. ( B14 ). We also

recall that the Fourier transform of u ( x) = 1 /x and v( x) = 1 /x 2 , are respecti vel y noted U = F [ u ] and V = F [ v] . Finally, λ is the Lam é’s
first parameter. 

ε11 ( x ) = 

1 

2 π ( λ + 2 μ) 

∫ 
fault 

[ 
n 1 

γ2 

r 

(
2 λγ 2 

1 + μ
(
3 γ 2 

1 + γ 2 
2 

)) + n 2 
γ1 

r 

(
2 λγ 2 

2 + μ
(
γ 2 

2 − γ 2 
1 

))] d 

dy t 
�u 

n ( y ) dξ ( y ) 

+ 

1 

2 π ( λ + 2 μ) 

∫ 
fault 

[ 
−n 2 

γ2 

r 

(
2 λγ 2 

1 + μ
(
3 γ 2 

1 + γ 2 
2 

)) + n 1 
γ1 

r 

(
2 λγ 2 

2 + μ
(
γ 2 

2 − γ 2 
1 

))] 
κ t ( y ) �u 

n ( y ) dξ ( y ) 

ε22 ( x ) = − 1 

2 π ( λ + 2 μ) 

∫ 
fault 

[ 
n 2 

γ1 

r 

(
2 λγ 2 

2 + μ
(
γ 2 

1 + 3 γ 2 
2 

)) + n 1 
γ2 

r 

(
2 λγ 2 

1 + μ
(
γ 2 

1 − γ 2 
2 

))] d 

dy t 
�u 

n ( y ) dξ ( y ) 

− 1 

2 π ( λ + 2 μ) 

∫ 
fault 

[ 
n 1 

γ1 

r 

(
2 λγ 2 

2 + μ
(
γ 2 

1 + 3 γ 2 
2 

)) − n 2 
γ2 

r 

(
2 λγ 2 

1 + μ
(
γ 2 

1 − γ 2 
2 

))] 
κ t ( y ) �u 

n ( y ) dξ ( y ) 

ε12 ( x ) = − λ + μ

2 π ( λ + 2 μ) 

∫ 
fault 

[ (
n 1 

γ1 

r 
+ n 2 

γ2 

r 

) (
γ 2 

1 − γ 2 
2 

)] d 

dy t 
�u 

n ( y ) dξ ( y ) 

− λ + μ

2 π ( λ + 2 μ) 

∫ 
fault 

[ (
−n 2 

γ1 

r 
+ n 1 

γ2 

r 

) (
γ 2 

1 − γ 2 
2 

)] 
κ t ( y ) �u 

n ( y ) dξ ( y ) 

σ11 ( x ) = 

μ

2 π ( 1 − ν) 

∫ 
fault 

[ 
n 1 ( y ) 

(
3 γ 2 

1 + γ 2 
2 

) γ2 

r 
− n 2 ( y ) 

(
γ 2 

1 − γ 2 
2 

) γ1 

r 

] d 

dy t 
�u 

n ( y ) dξ ( y ) 

− μ

2 π ( 1 − ν) 

∫ 
fault 

[ 
n 2 ( y ) 

(
3 γ 2 

1 + γ 2 
2 

) γ2 

r 
+ n 1 ( y ) 

(
γ 2 

1 − γ 2 
2 

) γ1 

r 

] 
κ t ( y ) �u 

n ( y ) dξ ( y ) 

σ22 ( x ) = − μ

2 π ( 1 − ν) 

∫ 
fault 

[ 
n 2 ( y ) 

(
γ 2 

1 + 3 γ 2 
2 

) γ1 

r 
+ n 1 ( y ) 

(
γ 2 

1 − γ 2 
2 

) γ2 

r 

] d 

dy t 
�u 

n ( y ) dξ ( y ) 

− μ

2 π ( 1 − ν) 

∫ 
fault 

[ 
n 1 ( y ) 

(
γ 2 

1 + 3 γ 2 
2 

) γ1 

r 
− n 2 ( y ) 

(
γ 2 

1 − γ 2 
2 

) γ2 

r 

] 
κ t ( y ) �u 

n ( y ) dξ ( y ) 

σ12 ( x ) = − μ

2 π ( 1 − ν) 

∫ 
fault 

[
( n 1 γ1 + n 2 γ2 ) 

(
γ 2 

1 

r 
− γ 2 

2 

r 

)]
d 

dy t 
�u 

n ( y ) dξ ( y ) 

− μ

2 π ( 1 − ν) 

∫ 
fault 

[
( n 1 γ2 − n 2 γ1 ) 

(
γ 2 

1 

r 
− γ 2 

2 

r 

)]
κ t ( y ) �u 

n ( y ) dξ ( y ) 

τel ( x ) = n 1 ( x ) n 2 ( x ) ( σ11 ( x ) − σ22 ( x ) ) + 

(
n 

2 
2 ( x ) − n 

2 
1 ( x ) 

)
σ12 ( x ) 

σel ( x ) = n 

2 
1 ( x ) σ11 ( x ) + 2 n 1 ( x ) n 2 ( x ) σ12 ( x ) + n 

2 
2 ( x ) σ22 ( x ) 

(G6) 

G3 Zeroth order 

The zeroth-order solutions are obtained from the full solution by making the small slope approximation and keeping only the terms that are
independent from the fault slope. 
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3.1 Space domain 

σ 0 
11 ( x 1 ) = − μ

2 π (1 − ν) 

∫ +∞ 

−∞ 

1 

x 1 − y 1 

d 

dy 1 
�u 

n ( y 1 )dy 1 

σ 0 
22 ( x 1 ) = − μ

2 π (1 − ν) 

∫ +∞ 

−∞ 

1 

x 1 − y 1 

d 

dy 1 
�u 

n ( y 1 )dy 1 

σ 0 
12 ( x 1 ) = 

μ

2 π (1 − ν) 

∫ +∞ 

−∞ 

1 

x 1 − y 1 
κ t ( y 1 ) �u 

n ( y 1 )dy 1 

τ 0 
el ( x 1 ) = σ 0 

12 

= 

μ

2 π (1 − ν) 

∫ +∞ 

−∞ 

1 

x 1 − y 1 
κ t ( y 1 ) �u 

n ( y 1 )dy 1 

σ 0 
el ( x 1 ) = σ 0 

22 

= − μ

2 π (1 − ν) 

∫ +∞ 

−∞ 

1 

x 1 − y 1 

d 

dy 1 
�u 

n ( y 1 )dy 1 

(G7) 

3.2 Spectral domain 

σ 0 
11 ( k) = − μ

2 π (1 − ν) 
π | k| F [ �u 

n ] 

σ 0 
22 ( k) = − μ

2 π (1 − ν) 
π | k| F [ �u 

n ] 

σ 0 
12 ( k) = − μ

2 π (1 − ν) 
iπsign ( k) F [ κ t ( y 1 ) �u 

n ( y 1 )] 

τ 0 
el ( k) = − μ

2 π (1 − ν) 
iπsign ( k) F [ κ t ( y 1 ) �u 

n ( y 1 )] 

σ 0 
el ( k) = − μ

2 π (1 − ν) 
π | k| F [ �u 

n ] 

(G8) 

4 First order 

he first-order solutions are obtained from the full solution by making the small slope approximation and keeping only the terms that are
roportional to the fault slope. 

4.1 Space domain 

σ 1 
11 ( x 1 ) = − μ

2 π (1 − ν) 

∫ +∞ 

−∞ 

[
3 

x 2 − y 2 
( x 1 − y 1 ) 2 

− m ( y 1 ) 

x 1 − y 1 

]
κ t ( y 1 ) �u 

n ( y 1 )dy 1 

σ 1 
22 ( x 1 ) = − μ

2 π (1 − ν) 

∫ +∞ 

−∞ 

[
− m ( y 1 ) 

x 1 − y 1 
− x 2 − y 2 

( x 1 − y 1 ) 2 

]
κ t ( y 1 ) �u 

n ( y 1 )dy 1 

σ 1 
12 ( x 1 ) = − μ

2 π (1 − ν) 

∫ +∞ 

−∞ 

[
− m ( y 1 ) 

x 1 − y 1 
+ 

x 2 − y 2 
( x 1 − y 1 ) 2 

]
d 

dy 1 
�u 

n ( y 1 )dy 1 

τ 1 
el ( x 1 ) = −m ( σ 0 

11 − σ 0 
22 ) + σ 1 

12 

= 

μ

2 π (1 − ν) 

∫ +∞ 

−∞ 

[
m ( y 1 ) 

x 1 − y 1 
− x 2 − y 2 

( x 1 − y 1 ) 2 

]
d 

dy 1 
�u 

n ( y 1 )dy 1 

σ 1 
el ( x 1 ) = −2 mσ 0 

12 + σ 1 
22 

= 

μ

2 π (1 − ν) 

∫ +∞ 

−∞ 

[−2 m ( x 1 ) 

x 1 − y 1 
+ 

m ( y 1 ) 

x 1 − y 1 
+ 

x 2 − y 2 
( x 1 − y 1 ) 2 

]
κ t ( y 1 ) �u 

n ( y 1 )dy 1 

(G9) 



1690 P. Romanet, T. Saito and E. Fukuyama 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/239/3/1664/7756889 by guest on 20 D

ecem
ber 2024
G4.2 Spectral domain 

σ 1 
11 ( k) = − μ

2 π (1 − ν) 

(
3 

2 π
F [ h ] ∗ ( V F [ κ t �u 

n ]) − 3 V F [ hκ t �u 

n ] − U F [ mκ t �u 

n ] 

)

σ 1 
22 ( k) = − μ

2 π (1 − ν) 

(
−U F [ mκ t �u 

n ] − 1 

2 π
F [ h ] ∗ ( V F [ κ t �u 

n ]) + V F [ hκ t �u 

n ] 

)

σ 1 
12 ( k) = − μ

2 π (1 − ν) 

(
−U F 

[
m 

d 

dy 1 
�u 

n 

]
+ 

1 

2 π
F [ h ] ∗

(
V F 

[
d 

dy 1 
�u 

n 

])
− V F 

[
h 

d 

dy 1 
�u 

n 

])

τ 1 
el ( k) = 

μ

2 π (1 − ν) 

(
U F 

[
m 

d 

dy 1 
�u 

n 

]
− 1 

2 π
F [ h ] ∗

(
V F 

[
d 

dy 1 
�u 

n 

])
+ V F 

[
h 

d 

dy 1 
�u 

n 

])

σ 1 
el ( k) = 

μ

2 π (1 − ν) 

(
− 1 

π
F [ m ] ∗ ( U F [ κ t �u 

n ]) + U F [ mκ t �u 

n ] 

+ 

1 

2 π
F [ h ] ∗ ( V F [ κ t �u 

n ]) − V F [ hκ t �u 

n ] 

)

(G10) 

A P P E N D I X  H :  I N - P L A N E  S H E A R  ( M O D E  I I )  

H1 Full solution 

In the following, γ1 = 

x 1 −y 1 
r , γ2 = 

x 2 −y 2 
r and ∗ represent the convolution operation. These equations are de veloped b y using the definition of

the strain εkl = 

1 
2 

(
∂ 

∂x k 
u l + 

∂ 

∂x l 
u k 

)
and the stress ( σab = c abkl εkl ) tensors, as well as eq. ( B12 ), and the according slip mode eq. ( B14 ). We also

recall that the Fourier transform of u ( x) = 1 /x and v( x) = 1 /x 2 , are respecti vel y noted U = F [ u ] and V = F [ v] . 

ε11 ( x ) = 

1 

2 π ( λ + 2 μ) 

∫ 
fault 

[ 
n 2 

γ2 

r 

(
2 λγ 2 

1 + μ
(
3 γ 2 

1 + γ 2 
2 

)) − n 1 
γ1 

r 

(
2 λγ 2 

2 + μ
(
γ 2 

2 − γ 2 
1 

))] d 

dy t 
�u 

t ( y ) dξ ( y ) 

+ 

1 

2 π ( λ + 2 μ) 

∫ 
fault 

[ 
n 1 

γ2 

r 

(
2 λγ 2 

1 + μ
(
3 γ 2 

1 + γ 2 
2 

)) + n 2 
γ1 

r 

(
2 λγ 2 

2 + μ
(
γ 2 

2 − γ 2 
1 

))] 
κ t ( y ) �u 

t ( y ) dξ ( y ) 

ε22 ( x ) = 

1 

2 π ( λ + 2 μ) 

∫ 
fault 

[ 
n 1 

γ1 

r 

(
2 λγ 2 

2 + μ
(
γ 2 

1 + 3 γ 2 
2 

)) − n 2 
γ2 

r 

(
2 λγ 2 

1 + μ
(
γ 2 

1 − γ 2 
2 

))] d 

dy t 
�u 

t ( y ) dξ ( y ) 

− 1 

2 π ( λ + 2 μ) 

∫ 
fault 

[ 
n 2 

γ1 

r 

(
2 λγ 2 

2 + μ
(
γ 2 

1 + 3 γ 2 
2 

)) + n 1 
γ2 

r 

(
2 λγ 2 

1 + μ
(
γ 2 

1 − γ 2 
2 

))] 
κ t ( y ) �u 

t ( y ) dξ ( y ) 

ε12 ( x ) = − λ + μ

2 π ( λ + 2 μ) 

∫ 
fault 

[ (
n 2 

γ1 

r 
− n 1 

γ2 

r 

) (
γ 2 

1 − γ 2 
2 

)] d 

dy t 
�u 

t ( y ) dξ ( y ) 

− λ + μ

2 π ( λ + 2 μ) 

∫ 
fault 

[ (
n 1 

γ1 

r 
+ n 2 

γ2 

r 

) (
γ 2 

1 − γ 2 
2 

)] 
κ t ( y ) �u 

t ( y ) dξ ( y ) 

σ11 ( x ) = 

μ

2 π ( 1 − ν) 

∫ 
fault 

[ 
n 2 

(
3 γ 2 

1 + γ 2 
2 

) γ2 

r 
+ n 1 

(
γ 2 

1 − γ 2 
2 

) γ1 

r 

] d 

dy t 
�u 

t ( y ) dξ ( y ) 

+ 

μ

2 π ( 1 − ν) 

∫ 
fault 

[ 
n 1 

(
3 γ 2 

1 + γ 2 
2 

) γ2 

r 
− n 2 

(
γ 2 

1 − γ 2 
2 

) γ1 

r 

] 
κ t ( y ) �u 

t ( y ) dξ ( y ) 

σ22 ( x ) = 

μ

2 π ( 1 − ν) 

∫ 
fault 

[ 
n 1 

(
γ 2 

1 + 3 γ 2 
2 

) γ1 

r 
− n 2 

(
γ 2 

1 − γ 2 
2 

) γ2 

r 

] d 

dy t 
�u 

t ( y ) dξ ( y ) 

− μ

2 π ( 1 − ν) 

∫ 
fault 

[ 
n 2 

(
γ 2 

1 + 3 γ 2 
2 

) γ1 

r 
+ n 1 

(
γ 2 

1 − γ 2 
2 

) γ2 

r 

] 
κ t ( y ) �u 

t ( y ) dξ ( y ) 

σ12 ( x ) = 

μ

2 π ( 1 − ν) 

∫ 
fault 

[ (
n 1 

γ2 

r 
− n 2 

γ1 

r 

) (
γ 2 

1 − γ 2 
2 

)] d 

dy t 
�u 

t ( y ) dξ ( y ) 

− μ

2 π ( 1 − ν) 

∫ 
fault 

[ (
n 1 

γ1 

r 
+ n 2 

γ2 

r 

) (
γ 2 

1 − γ 2 
2 

)] 
κ t ( y ) �u 

t ( y ) dξ ( y ) 

τel ( x ) = n 1 ( x ) n 2 ( x ) ( σ11 ( x ) − σ22 ( x ) ) + 

(
n 

2 
2 ( x ) − n 

2 
1 ( x ) 

)
σ12 ( x ) 

σel ( x ) = n 

2 
1 ( x ) σ11 ( x ) + 2 n 1 ( x ) n 2 ( x ) σ12 ( x ) + n 

2 
2 ( x ) σ22 ( x ) 

(H1) 

H2 Zeroth order 

The zeroth-order solutions are obtained from the full solution by making the small slope approximation and keeping only the terms that are
independent from the fault slope. 
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2.1 Space domain 

σ 0 
11 ( x 1 ) = − μ

2 π (1 − ν) 

∫ +∞ 

−∞ 

[
1 

x 1 − y 1 
κ t ( y 1 ) �u 

t ( y 1 ) 

]
dy 1 

σ 0 
22 ( x 1 ) = − μ

2 π (1 − ν) 

∫ +∞ 

−∞ 

[
1 

x 1 − y 1 
κ t ( y 1 ) �u 

t ( y 1 ) 

]
dy 1 

σ 0 
12 ( x 1 ) = − μ

2 π (1 − ν) 

∫ +∞ 

−∞ 

[
1 

x 1 − y 1 

d 

dy 1 
�u 

t ( y 1 ) 

]
dy 1 

τ 0 
el ( x 1 ) = σ 0 

12 

= − μ

2 π (1 − ν) 

∫ +∞ 

−∞ 

[
1 

x 1 − y 1 

d 

dy 1 
�u 

t ( y 1 ) 

]
dy 1 

σ 0 
el ( x 1 ) = σ 0 

22 

= − μ

2 π (1 − ν) 

∫ +∞ 

−∞ 

[
1 

x 1 − y 1 
κ t ( y 1 ) �u 

t ( y 1 ) 

]
dy 1 

(H2) 

2.2 Spectral domain 

σ 0 
11 ( k) = 

μ

2 π (1 − ν) 
iπsign ( k) F [ κ t �u 

t ] 

σ 0 
22 ( k) = 

μ

2 π (1 − ν) 
iπsign ( k) F [ κ t �u 

t ] 

σ 0 
12 ( k) = − μ

2 π (1 − ν) 
π | k| F [ �u 

t ] 

τ 0 
el ( k) = − μ

2 π (1 − ν) 
π | k| F [ �u 

t ] 

σ 0 
el ( k) = 

μ

2 π (1 − ν) 
iπsign ( k) F [ κ t �u 

t ] 

(H3) 

3 First order 

he first-order solutions are obtained from the full solution by making the small slope approximation and keeping only the terms that are
roportional to the fault slope. 

3.1 Space domain 

σ 1 
11 ( x 1 ) = 

μ

2 π (1 − ν) 

∫ +∞ 

−∞ 

[
3 

x 2 − y 2 
( x 1 − y 1 ) 2 

− m ( y 1 ) 

x 1 − y 1 

]
d 

dy 1 
�u 

t ( y 1 )dy 1 

σ 1 
22 ( x 1 ) = 

μ

2 π (1 − ν) 

∫ +∞ 

−∞ 

[
− m ( y 1 ) 

x 1 − y 1 
− x 2 − y 2 

( x 1 − y 1 ) 2 

]
d 

dy 1 
�u 

t ( y 1 )dy 1 

σ 1 
12 ( x 1 ) = 

μ

2 π (1 − ν) 

∫ +∞ 

−∞ 

[
m ( y 1 ) 

x 1 − y 1 
− x 2 − y 2 

( x 1 − y 1 ) 2 

]
κ t ( y 1 ) �u 

t ( y 1 )dy 1 

τ 1 
el ( x 1 ) = −m ( σ 0 

11 − σ 0 
22 ) + σ 1 

12 

= 

μ

2 π (1 − ν) 

∫ +∞ 

−∞ 

[
m ( y 1 ) 

x 1 − y 1 
− x 2 − y 2 

( x 1 − y 1 ) 2 

]
κ t ( y 1 ) �u 

t ( y 1 )dy 1 

σ 1 
el ( x 1 ) = −2 mσ 0 

12 + σ 1 
22 

= 

μ

2 π (1 − ν) 

∫ +∞ 

−∞ 

[
2 m ( x 1 ) 

x 1 − y 1 
− m ( y 1 ) 

x 1 − y 1 
− x 2 − y 2 

( x 1 − y 1 ) 2 

]
d 

dy 1 
�u 

t ( y 1 )dy 1 

(H4) 
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H3.2 Spectral domain 

σ 1 
11 ( k) = 

μ

2 π (1 − ν) 

(
3 

2 π
F [ h ] ∗

(
V F 

[
d 

dy 1 
�u 

t 

])
− 3 V F 

[
h 

d 

dy 1 
�u 

t 

]
− U F 

[
m 

d 

dy 1 
�u 

t 

])

σ 1 
22 ( k) = 

μ

2 π (1 − ν) 

(
−U F 

[
m 

d 

dy 1 
�u 

t 

]
− 1 

2 π
F [ h ] ∗

(
V F 

[
d 

dy 1 
�u 

t 

])
+ V F 

[
h 

d 

dy 1 
�u 

t 

])

σ 1 
12 ( k) = 

μ

2 π (1 − ν) 

(
U F 

[
mκ t �u 

t 
] − 1 

2 π
F [ h ] ∗ ( V F 

[
κ t �u 

t 
]
) + V F 

[
hκ t �u 

t 
])

τ 1 
el ( k) = 

μ

2 π (1 − ν) 

(
U F 

[
mκ t �u 

t 
] − 1 

2 π
F [ h ] ∗ ( V F 

[
κ t �u 

t 
]
) + V F 

[
hκ t �u 

t 
])

σ 1 
el ( k) = 

μ

2 π (1 − ν) 

(
1 

π
F [ m ] ∗

(
U F 

[
d 

dy 1 
�u 

t 

])
− U F 

[
m 

d 

dy 1 
�u 

t 

]

− 1 

2 π
F [ h ] ∗

(
V F 

[
d 

dy 1 
�u 

t 

])
+ V F 

[
h 

d 

dy 1 
�u 

t 

])

(H5) 

A P P E N D I X  I :  O U T - O F - P L A N E  ( M O D E  I I I )  

I1 Full solution 

In the following, γ1 = 

x 1 −y 1 
r , γ2 = 

x 2 −y 2 
r , and ∗ represent the convolution operation. These equations are de veloped b y using the definition

of the strain εkl = 

1 
2 

(
∂ 

∂x k 
u l + 

∂ 

∂x l 
u k 

)
and the stress ( σab = c abkl εkl ) tensors, as well as eq. ( B12 ), and the according slip mode eq. ( B14 ). We

also recall that the Fourier transform of u ( x) = 1 /x and v( x) = 1 /x 2 , are respecti vel y noted U = F [ u ] and V = F [ v] . 

ε13 ( x ) = 

1 

4 π

∫ 
fault 

γ2 

r 

d 

dy t 
�u 

s ( y )dξ ( y ) 

ε23 ( x ) = − 1 

4 π

∫ 
fault 

γ1 

r 

d 

dy t 
�u 

s ( y )dξ ( y ) 

σ13 ( x ) = 

μ

2 π

∫ 
fault 

γ2 

r 

d 

dy t 
�u 

s ( y )dξ ( y ) 

σ23 ( x ) = − μ

2 π

∫ 
fault 

γ1 

r 

d 

dy t 
�u 

s ( y )dξ ( y ) 

τel ( x ) = 

μ

2 π

∫ 
fault 

γ1 

r 

d 

dy t 
�u 

s ( y )dξ ( y ) 

σel ( x ) = 0 

(I1) 

I2 Zeroth order 

The zeroth-order solutions are obtained from the full solution by making the small slope approximation and keeping only the terms that are
independent from the fault slope. 

I2.1 Space domain 

σ 0 
13 ( x 1 ) = 0 

σ 0 
23 ( x 1 ) = − μ

2 π

∫ +∞ 

−∞ 

1 

x 1 − y 1 

d 

dy 1 
�u 

s ( y 1 )dy 1 

τ 0 
el ( x 1 ) = − μ

2 π

∫ +∞ 

−∞ 

1 

x 1 − y 1 

d 

dy 1 
�u 

s ( y 1 )dy 1 

σ 0 
el ( x 1 ) = 0 

(I2) 
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2.2 Spectral domain 

σ 0 
13 ( k) = 0 

σ 0 
23 ( k) = − μ

2 π
π | k| F [ �u 

s ] 

τ 0 
el ( k) = − μ

2 π
π | k| F [ �u 

s ] 

σ 0 
el ( k) = 0 

(I3) 

3 First order 

he first-order solutions are obtained from the full solution by making the small slope approximation and keeping only the terms that are
roportional to the fault slope. 

3.1 Space domain 

σ 1 
13 ( x 1 ) = 

μ

2 π

∫ +∞ 

−∞ 

x 2 − y 2 
( x 1 − y 1 ) 2 

d 

dy 1 
�u 

s ( y 1 )dy 1 

σ 1 
23 ( x 1 ) = 0 

τ 1 
el ( x 1 ) = 0 

σ 1 
el ( x 1 ) = 0 

(I4) 

3.2 Spectral domain 

σ 1 
13 ( k) = 

μ

2 π

(
1 

2 π
F [ h ] ∗

(
V F 

[
d 

dy 1 
�u 

s 

])
− V F 

[
h 

d 

dy 1 
�u 

s 

])
σ 1 

23 ( k) = 0 

τ 1 
el ( k) = 0 

σ 1 
el ( k) = 0 

(I5) 
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