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Abstract

What remote sensing products can be used to better quantify the water stored in hundreds

of thousands Indian Small Reservoirs (SR)? This ungauged hydrological component of the

water cycle is intermittently filled with rainwater runoff, constantly reshaped by farmers since

last two decades, crucial for upstream irrigated agriculture. Given the small size and shallow

depth of those reservoirs, usual remote sensing techniques (Altimeters and LIDAR) used in

spatial hydrology to monitor their water level are not adapted. We evaluated the uncertainty

of SR volume retrieval methods based on surface water estimates from Sentinel-2 and

associated volumes from global available DEM at a medium to coarse resolution. Four pair

of stereoscopic images at Very High Resolution (VHR) from Pléiades satellites were

acquired during the last two dry hydrological years (2016 and 2019), when SR were totally

empty. The Pléiades DEMs produced were cross validated with LIDAR IceSAT-2 products,

and used to extract 504 SR bathymetries within an area covering 1,813 km2 located in the

Telangana state (114,789 km2). We compared Pléiades based retrievals to freely available

regional to global DEM to explore the regional volume retrieval Bias: ALOS World 3D-30 m,

WorldDEM GLO-30 at 30 m TanDEM-X DEM at 90 m and one Indian DEM (CartoDEM at 30

m). The Mean Absolute Percentage Error (MAPE) of reservoir volumes from global DEMs

range from 47% to 78%. MAPE are 17%, 29% and 46% for Pléiades DEM resampled at 12,

30 and 90 m, respectively. In a near future, upcoming stereoscopy satellite missions at

lower costs and with larger coverage and shorter revisit such as CO3D will provide 12m or

higher resolution DEMs that, if acquired in dry years, will lead to acceptable MAPE (< 20%),

to monitor empty SR geometries throughout India and other semi-arid areas in the world.

1 Introduction

Many semi-arid regions were foreseen to and are nowadays facing increasing water stressors,

both linked to irrigation water and domestic demand increase, to sustain food production and
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urban area growth [1]. Among those regions, India, the nation with the largest population, is

the “world most water-stressed country” according to the World Bank. To cope with these

increasing stressors, many hydrological infrastructures were, are and will be built to manage

surface and groundwater availability: big dams and canals to store stream water along rivers

for irrigation command area and electrical power production; Small Reservoirs (SR) to catch

runoff upstream; more recently mega-basins to store pumped water for irrigation and domes-

tic water (Kaleshwaram project). Contrary to big surface reservoirs, resulting from river dam

installations, small reservoirs (SR), or tanks, are less inventoried and not monitored. Yet, they

are known to have a strong impact on hydrology [2]. Increasing the number of SR, especially

in upstream regions, is a common adaptation to water stress [3, 4]. In South India, SR are used

to catch monsoon rainfall runoff in upstream areas, to sustain crop irrigation and maintain

open water for cattle during the following dry season. SR have also been promoted to enhance

aquifer recharge [5], which has been questioned in terms of efficiency as the loss associated

with direct evaporation could be high [6–8].

This Indian traditional Rainwater Harvesting System (RHS) is composed of hundreds of

thousands of SR, spread along a non perennial drainage network. In the Telangana State, a typ-

ical SR consists in a flat depression of around one kilometer wide, dammed with an earthen

dike of 3 to 10 meters high and about 20 meters wide, that often completely dries up during

the dry season. In this Indian state, a costly 5-year program named Mission Kakatiya started in

2015 to rejuvenate more than 46,000 SR, i.e. excavating for a few meters to desilt the bottom

part and thus enhance the aquifer recharge and create new ones. A similar water body rejuve-

nation scheme called Mission Amrit Sarovar has been launched in 2022 (https://rural.nic.in/

en/press-release/mission-amrit-sarovar). These programs show the socio-political importance

of the RHS related to food security, but also its fast structural changes following a growing

water demand.

Quantifying the storage capacity and monitoring the seasonal fluctuations of the volume

stored in this RHS is hence crucial to estimate water stocks and forecast spatial stressors in

upstream areas, disconnected from main surface water resources (large dams and rivers). This

hydrological network is too scattered to be monitored with altimeters such as Envisat, ICE-

SAT, Topex/Poseidon measurements [9–12], or the more recent altimeter onboard on Senti-

nel-3, used on West African lakes [13]. We used Icesat-2 to illustrate this limitation. The

volume retrieval is challenging due to the large number and small size, together with a lack of

in-situ monitoring systems. However, current space-borne missions and products open new

possibilities. Surface water fluctuation retrieval from either radar or optical data are available.

Landsat data covering 40 years have been processed to produce monthly water maps [14, 15].

Recent studies have explored the capacities and accuracies of Sentinel missions to retrieve

regional surface water dynamics [16, 17] with a focus on radar and optical related bias to this

retrieval [18].

The multiplication of satellite missions for Earth topography mapping led to the release of

free access global Digital Elevation Model (DEM) such as Advanced Space-borne Thermal

Emission and Reflection Radiometer (ASTER) [19], TanDEM-X DEM [20], Advanced Land

Observing Satellite “DAICHI” (ALOS) World 3D-30m [21] and Copernicus’s WorldDEM

GLO-30, with a resolution up to 30 m. This encouraged the development of methods for sur-

face water volume retrieval using the bathymetry derived from DEM combined with either

altimeter data [22], satellite Lidar transects [23] or time series of surface water extent derived

from Landsat [22, 24, 25] or Sentinel-1 specifically used for high cloud cover context [26].

In most cases, the acquisition date of the DEMs cannot be chosen by the user which results

in impossible retrieval of the bottom geometry of reservoirs due to the presence of vegetation

or water. To cope with these imperfections, the reservoir geometry is often simplified with a
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manuscript. If needed for the review, you can

access to these data-sets by using these links: -

2m resolution DEM based stereoscopy Pleiades

acquisitions in Telangana, South-India https://

zenodo.org/records/10403040?token=eyJhbGci

OiJIUzUxMiJ9.eyJpZCI6Ijg4NGVkZTNlLTJjY2Mt

NGFlZC1iZjk4LWNhZTdhYTEzNWQyZSIsImRhd

GEiOnt9LCJyYW5kb20iOiIwYmRlMTA3N2MxMz

hlNWY0NDk4NmQ4MjczNTE1OTRiMSJ9.ywFHW

n3JF8k_8SfLHkwgiO2KSJofIGEqFesy0t2ZfmOy

V8uFL_YON4jI-VawFjp2IpJEhrhppv6er_G7QpsA0g

- Subsample of the maximum Water Area Extent of

Telangana Rainwater Harvesting System from

Sentinel-2 https://zenodo.org/records/10402199?

token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6IjQ3ZDE2

NzQ4LTg2MTctNGE2Mi1iMGUxLWJmNzc0ODNk

NzEzZCIsImRhdGEiOnt9LCJyYW5kb20iOiI3NjU2Z

GFjNTEwZjcxOTE4OWZjMjRkNGFmNWM4Y2I0O

SJ9.wUuO5pdst0HdDIicGNQ88jdzjVmsy-kyDbx

gJubXPs9smX7dJn8_Ou9NFfjYNMWU

w2IlJ7bVAGpmACezvLAV2A - Subsample of the

maximum Water Area Extent of Telangana

Rainwater Harvesting System from Pléiades DEM

https://zenodo.org/records/10402355?token=

eyJhbGciOiJIUzUxMiJ9.eyJpZCI6IjU3ZjI5NzNj

LWJjMGMtNDJmOC1hOTkyLWVhOGYzNmZ

jYWRlYiIsImRhdGEiOnt9LCJyYW5kb20iOiI3NDB

mYWQ2Y2QyMmE4OTFkN2VkNWQzNjU1MzNi

ZDgxMiJ9.sIxHJKCbRNGOLHIOZ3m2sAOFA1es

6q5aFZY6Te8AxmTUTAvCWBQTkqh0sFYFeqA

E0H03p2kLIZC9ld9uBCH_0Q - Maximum Water

Area Extent of the Rainwater Harvesting System in

Telangana from GSW https://zenodo.org/records/

10402096?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI

6ImZlMjM2M2E2LWU3ZmMtNDY2NC05MGVl

LWQ0ZDM5NmEzNjJkNSIsImRhdGEiOnt9LCJy

YW5kb20iOiIyYWU5MTdhNTBkOWVmM2M1Y

2FkMTVjNTE3MmQwMTMzZSJ9.PpbZt-vr_

yYsyXP58GLzQr63pgPNt5Yg6dfO_Mef2f-EnVgm
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pre-definite trapezoidal shape [9, 22, 27], by topographic continuity along channels [28] or by

modeling the volume-area relationship [9, 24–26].

Several approaches of volume estimates methods at regional scale have been tested for large

reservoirs [11, 22, 25] and more recently for SR [26, 29]. In particular, a previous study has

reported the interest of high resolution remote sensing data to retrieve the volume-area rela-

tionships for SR of the RHS in South India, Tamil Nadu state, using the TanDEM-X DEM

commercial product at 12-m resolution [26]. This study has estimated a fluctuation of 8.2 mil-

lion cubic meter (MCM) of surface water in 559 SR over a region of 5,647 km2 using dynamic

surface water mapping. According to the authors, the limitations of this study are (i) the sur-

face water area detection accuracy based on Sentinel-1 radar data and (ii) the simplification of

reservoirs’ geometry with power volume-area relationships due to the low DEM precision.

However, to this date, the freely available global DEMs have a resolution coarser than that

of TanDEM-X DEM commercial product. For instance, it is 30 m for ALOS World 3D-30m,

WorldDEM GLO-30 and CartoDEM or 90 m for TanDEM-X non-commercial DEM.

Recent high-resolution on-demand DEMs like the ones produced from Pléiades very-high

(70 cm) resolution (VHR) stereoscopic images allow controlling the acquisition date and

therefore allow the accurate retrieval of reservoir bathymetry. A previous study estimated the

total capacity of whole SR of the RHS of the Telangana State to about 30 mm (3.4 km3) using

Global Surface Water database [14], Pléiades DEM and Sentinel-2-derived Maximum Water

Area Extent (MWAE) [30]. Here, we will compare the surface-volume relationship derived

from this high resolution DEM with other available global DEM. Yet they are commercial

products only available locally, as Pléiades scenes typically only cover a 20 × 20 km2 area [31].

On the other hand, upcoming very high resolution stereoscopy satellite missions such as

CO3D [32] will provide VHR DEM cheaper than Pléiades with a high temporal frequency.

These DEMs will be crucial to monitor a high number of these SR, as it has been done only for

individual SR so far [6–8]. In addition, regional studies on SR have not been attempted with

freely available DEMs because of their coarse (�30m) resolution, although there has been two

attempts with a commercial 12-m DEM [26, 29]. The objective of this study is to quantify the

efficiency of VHR DEM acquired during dry periods (such as Pléiades or those from CO3D

available in the near future), compared to currently available global coarse DEM, for the

retrieval of surface water volumes of SR composing the Indian RHS.

We produced VHR DEM from Pléiades stereoscopy, acquired during dry years while SR

are empty. We evaluated the accuracy of the geometry retrieval with available IceSAT-2 space

borne Lidar elevation transects. We were able to extract 505 SR bathymetries over an area cov-

ering 1,813 km2 in the Telangana state. Hypsometry (i.e. volume as a function of the surface)

relationship are derived from each SR at 2m resolution and are considered as a reference, i.e.

not a ground truth but the most realistic bathymetry with both the best spatial resolution and

an total absence of water. We explored the drifts in volume estimates induced by coarser reso-

lution DEMs: 1- upscaled by resampling Pléiades DEM or 2- extracted from global to national

available DEMs CartoDEM (30-m Indian DEM), Copernicus WorldDEM GLO-30, ALOS

World 3D-30 m (30-m global DEMs) and TanDEM-X DEM (90-m global DEM).

2 Materials and methods

2.1 Study area

The Telangana State (114,789 km2) is a highly irrigated region in South India with a high pop-

ulation density (about 335 inhabitants per km2 in 2020 according to the Unique Identification

Authority of India (UIDAI)), dominated by a semi-arid climate. The monsoon precipitation

occurs between July and October and ranges from 540 to 1,300 mm with a mean of 879 mm
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(Indian Meteorological Department). In this area, groundwater is complementing the surface

water resource to sustain one or two growing seasons of irrigated crops in a year. The irrigated

water demand strongly varies with the available water resource, from 51 to 310 mm per grow-

ing season in upstream areas [33, 34].

The majority of the State (57%) is composed of a shallow fractured granitic aquifer charac-

terized by high fluctuations due to water pumping [35]. Monsoon rainfall is stored on the sur-

face by large dam reservoirs built along rivers. The Indian National Register of Large Dams

(NRLD) reports 126 dam lakes with a cumulative capacity of 113 mm. The 25 largest reser-

voirs, referenced in the global GRanD inventory [36], are shown in magenta in Fig 1. In

upstream areas, surface water is available only in the RHS (< 3% of the area), a network of

non-perennial SR filled during the monsoon season, drained quickly during the dry season.

These structures are also promoted for aquifer recharge enhancement [7].

2.2 DEM

In the following, we present the characteristics of available global DEMs that we have selected

to explore the possibility to estimate volumes stored in the Telangana ungauged RHS. The

Fig 1. Location of the study area. The four Pléiades scenes (a), (b), (c) and (d) (green rectangles) are located in the western part of the Telangana State. The

25 main dam lakes identified in the GRanD inventory (Lehner et al., 2011) are represented in magenta. The image on the right shows a zoom on the DEM

on scene (d) with Pléiades elevations in gradient of browns. The location of the small reservoirs (SR) of the Rainwater Harvesting System (RHS) is indicated

by the Global Surface Water database in blue, and the location of the whole IceSAT-2 ATL08 dataset are illustrated with red dots along IceSAT-2 tracks.

The background and state border can be downloaded here: http://www.naturalearthdata.com.

https://doi.org/10.1371/journal.pwat.0000260.g001
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main information on the DEMs used in this study are summarized in Table 1. Each DEM have

a surface water mask corresponding to the surface water at the period of acquisition, except for

the four Pléiades DEM that were acquired during dry periods. The main information on the

DEMs used in this study are summarized in Table 1. The filling ratio—the ratio of surface

water at the moment of DEM based satellite acquisition with the maximum surface water

(MWAE)—are presented in Table 3 for each global DEM.

2.2.1 Pléiades 2-m DEM. The Pléiades stereoscopic images used in this study include 3

stereo-pairs that were acquired in June 2016 (available in Airbus Defense and Space catalogue

before this study, images (a), (b), (c) in Fig 1) and one stereo-pair acquired in June 2019 (spe-

cifically tasked for the purpose of this study, image (d) in Fig 1), and cover respectively 444,

322, 463 and 584 km2. The images (available online, 10.5281/zenodo.10403040) were selected

or acquired at the end of the dry season, while SR were empty. In those four areas, a 2-m reso-

lution DEM was generated using the panchromatic stereoscopic images and the NASA Ames

Stereo Pipeline (ASP) software V2.6.2 [37]. The photogrammetric process was done using the

rational polynomial coefficient provided by the satellite operator. First, we generated point

cloud from the panchromatic images with the block matching algorithm of the stereo utility of

ASP [38]. Then, we rasterized the point cloud on a 2-m resolution UTM grid using the point2-

dem tool of ASP [39]. In the 3 archives scenes, some areas covered by water (river bed essen-

tially) or bright soils for which the reflectances were saturated have no valid elevation values,

explaining No-Data values. In the acquisition of June 2019, cloud presence also led to no data

values in the DEM.

2.2.2 IceSAT-2 ATL08 and ATL03 elevation transects. We downloaded the whole

archive—intersecting the four study sites—of the Advanced Topographic Laser Altimeter Sys-

tem (ATLAS) instrument on board the Ice, Cloud and land Elevation Satellite-2 (IceSAT-2)

observatory (since 2018). IceSAT-2 ATL08 product [40] is built per granule (100m along track

elevation estimates) based on the ATL03 product [41] containing geolocated ellipsoidal heights

for each time tagged photon event corrected for several geophysical phenomena (e.g. atmo-

spheric refraction, tides). We used ATL08 data to assess the Pléiades DEM accucracy over the

whole study area (Fig 1 and Table 2). Uncertainties of the elevation estimates (provided by

NASA) are high in this area, as presented in Table 2. ATL03 product—Geolocated ellipsoidal

heights for each time tagged photon event, is useful to compare Pléiades DEM on the bund/

dam geometries, not caught at 100m with ATL08. It is used to build Figs 4 and 5. ATL03 prod-

uct—Geolocated ellipsoidal heights for each time tagged photon event. ATL03 provides a

denser point cloud than ATM08. It is useful to characterize the bund/dam geometry when Ice-

SAT-2 track cross one of them (used to build Figs 4 and 5). However it contains more noise

Table 1. DEM used, their resolution, sensors and acquisition date.

DEM Horizontal

resolution

Data

type

Acquisition date Sensor (resolution)

Pléiades (Airbus) 2 m float (a): 01-06-2016; (b): 14-06-2016; (c): 16-06-

2016; (d): 16-06-2019

Pléiades optical stereoscopy (50 cm)

CartoDEM (ISRO) 30 m integer 2006-2016 (Composite DEM from multiple

acquisitions)

Stereo panchromatic images Cartosat-1 (2.5 m)

TanDEM-X DEM (EOC) 90 m float 2010-2015 (Composite DEM from multiple

acquisitions)

X-Band interferometric SAR TanDEM-X (2.4 m—4 m)

WorldDEM GLO-30

(Copernicus)

30 m float 2010-2015 (Composite DEM from multiple

acquisitions)

X-Band interferometric SAR TanDEM-X (2.4 m—4 m)

ALOS World 3D-30m

(JAXA)

30 m integer 2006-2011 (Composite DEM from multiple

acquisitions)

Composite DEM from multiple acquisitions PRISM

panchromatic optical sensor ALOS (2.5 m)

https://doi.org/10.1371/journal.pwat.0000260.t001
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due to atmospheric and vegetation scattering and needs to be filtered to retrieve a ground ele-

vation profile. The filtering method used for ATL03 is described in section 3.1.2 and the results

are shown in Figs 4 and 5. Both are used to quantitatively and qualitatively discuss the accuracy

of Pleiades DEM for this hydrological application. The main difficulty we encountered is that

the spatial LIDAR data are highly affected by Indian atmospheric optical thickness that alters

photon time travel. The dispersion of the photon cloud is high in Fig 4, and very small in Fig 5,

a clear sky day. In addition, we selected some ATL03 tracks to investigate the accuracy of topo-

graphic profiles derived from Pléiades accross a few SR.

2.2.3 CartoDEM. The Cartosat-1 Digital Elevation Model (CartoDEM) is provided by the

Indian Space Research Organization (ISRO). It is produced from stereo panchromatic images

from Cartosat-1 at a 2.5-m resolution and the water surfaces were flattened. It is provided with

a horizontal resolution of 30 m and elevation values are rounded to the meter. The accuracy of

CartoDEM was estimated on three test areas against control points, with a RMSE ranging from

3.4 to 4.72 m and a linear error at a 90% confidence level ranging from 4.7 and 7.3 m [42].

2.2.4 TanDEM-X DEM. TanDEM-X DEM is a global DEM generated from bistatic

X-Band interferometric SAR acquisitions of TerraSAR-X and TanDEM-X satellites. The Tan-

DEM-X mission was financed by a Public-Private Partnership between DLR (German Aero-

space Centre) and Airbus Defence & Space. The DEM is produced with acquisitions ranging

from December 12, 2010 to January 16, 2015. It has a native resolution of 0.4 arcseconds (<10

m) and is provided with a horizontal resolution of 3 arcseconds (90 m) and a vertical accuracy

<2 m for slopes <20%, and <4 m for slopes <40% [43]. Water body heights are not edited in

the DEM.

2.2.5 Copernicus WorldDEM GLO-30. The Copernicus DEM is a Digital Surface Model

(DSM) produced with the data from the TanDEM-X mission. The instance used for this study

is GLO-30, a global DEM with a resolution of 30 m and the same vertical accuracy as Tan-

DEM-X DEM. Water bodies are flattened and consistent flow of rivers are included.

2.2.6 ALOS World 3D-30m. ALOS World 3D-30m (AW3D30) Version 3.2. is a global

DSM processed by the Japan Aerospace Exploration Agency (JAXA). It is produced from ste-

reoscopic panchromatic optical images from the Panchromatic Remote-sensing Instrument

for Stereo Mapping (PRISM) sensor of the Advanced Land Observing Satellite “DAICHI”

(ALOS) which operated from 2006 to 2011. It is provided with a spatial resolution of 30 m and

elevation values are rounded to the meter. The accuracy of AW3D30 is expressed as a RMSE

of 5 m in both vertical and horizontal directions [44]. Water bodies are not edited.

2.2.7 Pléiades at coarser resolution. The 2-m Pléiades DEMs were aggregated at 12 m

(resolution of TanDEM-X DEM commercial product), 30 m and 90 m using bilinear resam-

pling. This interpolation method is the most robust and appropriate for DEM, rather than

nearest neighbor or cubic. This allows us to isolate the effect of DEM resolution on SR

geometries.

Table 2. IceSAT-2 ATL08 versus Pléiades elevation Bias, STD, NMAD and average uncertainties in meters for each IceSAT-2 ground tracks found since 2018 over

Pléiades scenes. IceSAT-2 elevation uncertainty< 4 meters are excluded.

Pléiades Scene Bias STD NMAD Selection ratio * ATL08 Average uncertainty

Scene a 3.5 0.8 0.6 595 / 2374 2.5

Scene b 4.4 1.0 0.5 888 / 2763 2.6

Scene c 4.6 3.8 0.6 408 / 1829 2.7

Scene d 2.8 0.8 0.5 465 / 2437 2.8

* IceSAT-2 elevation uncertainty < 4 meters are excluded.

https://doi.org/10.1371/journal.pwat.0000260.t002
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2.3 Sentinel-2 images

Sentinel-2 is a constellation of two satellites launched in June 2015 and March 2017 that deliver

multispectral images at 10- and 20-m resolution and a revisit time of five days. We used Senti-

nel-2 multispectral images to track the surface water area evolution in the SR, taking advantage

of its 5-day revisit time. We used Sentinel-2 images processed by the MAJA processing chain

[45] which detects clouds, cloud shadows and topographic shadows, and corrects reflectance

levels from atmospheric phenomena (absorption by atmospheric gases and scattering by air

molecules and aerosols). These S2-L2A images were downloaded from Theia data platform

(https://www.theia-land.fr/, accessed on August 5th, 2021). A total of 42, 33, 76 and 76 cloud-

free Sentinel-2 images over a period of 2 years close to the Pléiades acquisition date were

downloaded for scenes (a), (b), (c) and (d) respectively. A random forest classification was

used for each S2 acquisition to map surface water area extent in SR. Learning samples were

automatically extracted from auxiliary data: HAND((Height above nearest drainage) [46]

derived from MERIT DEM [47] for selecting pixel never flooded. Water pixels were extracted

from permanent water pixels as observed with Landsat in the Global Surface Water data base

[14]. This method is fully described in [18].

3 Methodology

In the following, we describe the method presented in the flowchart of Fig 2.

3.1 Step 1: DEM preprocessing

3.1.1 Preprocessing. CartoDEM, TanDEM-X DEM, GLO-30 and AW3D30 products are

provided with water masks, indicating the presence of water at the time of their acquisition.

We used them to mask invalid DEM elevations over surface water, replacing by the theoretical

water elevation [29]. All DEMs were then resampled at 2 m with bilinear interpolation for (i)

comparable results with Pléiades 2-m DEM and (ii) enough raster values within SR extents to

sample their geometries. A bilinear interpolation is also used to aggregate Pléiades DEMS at

12, 30 and 90 meters.

3.1.2 Validation of Pléiades DEM. We used ATL08 ground elevation product to statisti-

cally quantify the differences between Pléiades and IceSAT-2 elevations. This product is an

analysis of the raw Lidar measurements corresponding to a ground elevation estimate for a

100m along track with a canopy height. Both elevations are provided with an uncertainty

expressed in meters. In this area, this uncertainty is high, probably because of the regular pres-

ence of aerosols. We limited this ground elevation uncertainty to less than 4 meters, this limita-

tion corresponding to a fourth of the number of available ATL08 segments. Comparison

results are shown in Table 2 in term of Bias, STD and Normalized Median Absolute Deviation

(NMAD, Eq 1). This last estimator is particularly adapted for accuracy assessment of Digital

Elevation Models [48].

NMAD ¼ 1:4826 �medianjðjDhj � mDhjÞ ð1Þ

To make a more detailed evaluation at fine scale, we selected three ATL03 tracks that

cross a SR found on each scene a, b and d, to illustrate the differences at higher spatial reso-

lution between Pléiades, ATL03 and ALOS DEM on the along-track IceSAT-2 acquisition.

Several methods are used to detect outliers in altimetric data methods [49]. Most of them

rely on detecting the anomalies of data points regarding their spatial environment. In our

study, we relied on a custom method estimating the most likely altitude in the local
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environment of the measurement and used a threshold to allow for plausible local high-fre-

quency variations.

In practice, we discretized the altitudes in intervals of 30 cm, to identify the height window

containing the most observations. This operation is applied using a moving window of N con-

secutive acquisitions. This operation results in a series of height windows for which the mean

value corresponding to the original data points is recorded. The dataset is then filtered to keep

only altitudes with a deviation of less than 50cm from those mean values. This method was

used instead of a moving average technique as, in this particular dataset, we expect skewed

error distributions and high levels of noise. This skewness and noise are mainly due to the

presence of aerosols in the area which leads to a large number of strong overestimation of sur-

face altitude in the datasets. Nonetheless, it is important to stress that this method is sensitive

to the discretization interval, the number of consecutive pixels used to build the distributions

and the tolerance thresholds that were manually fine-tuned in this study. The elevation profiles

comparison is shown in Figs 4 and 5.

Fig 2. Schematic flow diagram of the proposed method for volume estimation. SR: small reservoir. RHS: Rainwater

Harvesting System. h, A, V: height, area and volume. V = f(A): volume-area relationship.

https://doi.org/10.1371/journal.pwat.0000260.g002
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3.2 Step 2: RHS surface water extent retrieval from Sentinel-2 data

3.2.1 Time series of surface water area extents. Surface water maps were produced from

the time series of Sentinel-2 images at 10-m resolution. The surface water maps were

obtained from a supervised classification at pixel level using the random forest algorithm

[50], commonly used in surface water detection [51, 52]. A training data set was selected for

each Sentinel-2 L2A product using a randomized selection of 10,000 pixels, including 2,000

water samples. The water pixels were selected from permanent water identified from the

Global Surface Water occurrence dataset [14] and the HAND (Height Above Nearest Drain-

age) data-set [46] was used to select non water pixels. We built the model on 100 trees and

used Sentinel-2 bands B3, B4, B8, B11, B12, as well as the NDWI [53] and MNDWI [54] indi-

ces for classification. This method is known to be robust and showed a good accuracy in tem-

perate areas [18].

3.2.2 Validation of surface water maps. The accuracy of Sentinel-2-derived water maps

was evaluated against very high resolution historical images from Google Earth Pro (Maxar

Technologies or CNES/Airbus images) between 2016 and 2020. We manually contoured water

extents for 16 SR at several time steps that matched Sentinel-2 acquisition date up to to five

days, for a total of 29 pairs of SR and dates.

3.2.3 SR Maximal Water Area Extent (MWAE) delineation and maximum water

height. The maximal water area extension is almost never observed as it is rarely reached.

Furthermore, the presence of vegetation within this rarely flooded areas decrease the capacity

of optical or radar data to detect accurately their exact contours. We have first extracted Land-

sat derived MWAE from the Global Surface Water repository at the Telangana scale (available

online, 10.5281/zenodo.10402096) and from Sentinel-2 water mask time series produced only

over the Pléiades scenes, by superimposing and merging them (available online, 10.5281/

zenodo.10402199). These contours were refined by removing (i) the areas corresponding to

river bed and dammed river reservoirs, (ii) SR containing more than 5% of Pléiades 2-m DEM

no-data and (iii) areas inferior than 1,000 m2, threshold below which they are considered tem-

porary puddles and not dug structures. This led to the identification of 505 SR over the 4 Pléia-

des scenes, composing the RHS: 112 on scene (a), 91 on (b), 114 on (c) and 188 on (d). Their

size varies from 1,000 m2 to 185 ha, and they cumulatively represent 4,100 ha over the 1,813

km2 study area.

We have then built manually a theoretical MWAE by selecting, for each 504 SR, the most

appropriate elevation isoline in the Pléiades DEM, using this satellite derived MWAE contour

shape (available online, 10.5281/zenodo.10402355). This selection by hand, based on our field

expertise enable to account for Sentinel-2 or Landsat surface water contour erosion. The

selected isoline corresponds to a realistic maximal altitude of the surface water, i.e. the maxi-

mum elevation from the bottom of the depression, hmax retrieved during this step for each SR

(step illustrated in Fig 3).

3.3 Step 3: Volume estimation methods

3.3.1 DEM-based volume estimation method. For each SR delimited by an isoline from

Pléiades DEM, paired volume and area estimates were extracted from each DEM at 10 cm

height increment, from 0 to the maximum water level reached within the polygon (the height

of the isoline hmax). For a given water height h, we compute the volume with the true bathyme-

try by integrating water volumes pixel-wise, as in [26, 29] (Eq (2)).

Vh ¼ Apix

X

pix2Ah

ðzmin þ h � zpixÞ ð2Þ
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with h the water level ranging from 0 to hmax, Ah the cumulative area of all the pixels within the

SR maximum extent and with an elevation below h, Apix the surface of one pixel (4 m2), hmax

the water level at maximum capacity. (zmin + h − zpix) is the water depth for a given pixel, with

zpix the altitude of the pixel and zmin the lowest altitude of the SR.

3.3.2 SR hypsometric relationships. Hypsometric relationship, i.e. the volume of each SR

as a function of surface water are built for each SR using a linear interpolation of each elevation

every 10 cm of the VHR DEM pixels inside the Pléiades derived MWAE and below its associ-

ated hmax. This method allows to take into account the high heterogeneity of the bathymetry

retrieved from satellite rather than simplifying it under the form of power [26, 55] or polyno-

mial models [8, 9, 25].

3.3.3 Temporal dynamic of surface water storage at scene scale. Time series Sentinel-2

based water area extents are used to estimate the volume stored at that moment using the hyp-

sometric relationships obtained for each SR. Volumes retrieved from SR were cumulated for

each date at scene scale to obtain a regional volume estimate time serie stored in the RHS for

each four Pléiades scenes.

Fig 3. Comparison of Sentinel-2 multispectral data derived MWAE (red line) and Pléiades very high resolution DEM derived MWAE (orange lines).

Orange lines are the elevation lines manually selected for the construction of the hypsometry (Volume as a function of surface) relationship of the 505 small

reservoirs of the study. The background is the Pléiades DEM raster viewed as a hillshade (made with QGIS software, data available 10.5281/zenodo.

10403040). White areas corresponds to NoData elevation value due to clouds in the scene d at the time of Pléiades acquisition, 16/06/2019.

https://doi.org/10.1371/journal.pwat.0000260.g003
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3.4 Validation metrics

Three metrics were used to evaluate the fit between the series of predicted values ðbyiÞ1�i�N and

reference values (yi)1�i�N for each SR. The coefficient of determination (R2) is an indicator of

the match between observed and predicted values:

R2 ¼ 1 �

PN
i¼1
ðbyi � yiÞ

2

PN
i¼1
ðyi � �yÞ2

; ð3Þ

where �y is the average of observed values. The mean absolute percentage error (MAPE) is a

measure of the relative error:

MAPE ¼
1

N

XN

i¼1

jyi � byi j
yi

; ð4Þ

and the mean percentage error (MPE) is a measure of the relative bias:

MPE ¼
1

N

XN

i¼1

yi � byi
yi

: ð5Þ

A positive MPE (resp. negative) reflects an average underestimation (resp. overestimation) of

predicted values against true values. Note that high relative uncertainty for smaller volumes

can increase MAPE and MPE despite a low absolute error, and therefore these two metrics

must be carefully interpreted. These estimators are the most widely used for forecast accura-

cies, due to their advantages of scale-independency and interpretability.

4 Results

4.1 IceSAT-2 vs Pléiades comparison

After removing ground elevation with highest uncertainties (> 4 meters), a global estimation

of the Bias, standard deviation and Normalized Median Absolute Deviation with Pléiades

elevations is presented per Pléiades DEM in Table 2. A scene specific bias varying between

2.8 to 4.6 meters is quantified, with no influence on SR geometries on which we focus in this

study. The standard deviations of the residues (differences between both datasets) are similar

(around 1m), except for the scene c, which comes from higher elevation discrepancies in this

area. It is probably caused by a higher number of Pléiades DEM nodata value in scene c,

caused by saturation in reflectance over dry bare-ground in this Pléiades archive taken in

June 2016. NMAD is around 0.5m, i.e 50cm, which is acceptable considering the discrepan-

cies between DEM spatial resolution (100 meters vs 2m) and the size of dikes (3 to 10m

height).

The Figs 4 and 5 present the location of ATL03 selected tracks for respectively scene a, b

and d, with the corresponding Sentinel-2 image at the same acquisition date (left). Eleva-

tions along the transects for both Pléiades (red) and IceSAT-2 ATL03 in red and filtered

ATL03 (yellow). Elevation Transects are very similar, Pléiades catches better the narrow

dike in scene a and the same SR bottom than IceSAT-2 in scene c. ALOS DEM (AW3D),

built on ancient ALOS acquisitions (before 2011), is interesting because the RHS was almost

empty at that time (Table 3). Whereas the bottom of the SR elevation in scene a (up of the

Fig 4) is close to the Pléiades, it is less deep in scene c (down of the Fig 4), explained by the

rejuvenation that occurred after 2015: dig of the bottom and increase of the height of the

dike that can be seen on aerial images (google earth application). The presence of water at
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the time of IceSAT-2 acquisition in scene a is clearly visible on the ATL03 data, preventing

IceSAT-2 to catch the bathymetry of the SR at this time. The Fig 5 is another example in the

scene d of the differences of DEM data over SR. Pléiades and IceSAT-2 elevation are very

similar, the dike and SR bottom have the same geometry as both data were obtained from

the same period when the SR was empty, whereas it is a bit different from ALOS, empty as

well but corresponding to the previous decade. These illustrations are important to under-

stand the importance of DEM spatial resolution, hydrological filling rate and time of acquisi-

tion. It also provides a qualitative evalution of the strong ability of Pléiades to retrieve SR

geometries.

In the next sections, we consider Pléiades DEM at 2m as a reference to quantify the relative

volume errors induced by coarser DEM resolutions and using global DEM for the RHS of this

Indian region.

Fig 4. Panel a and b, WorldCover landuse from 2021 is used to represent two Small reservoirs located in Pléiades scene a (up) and b (down). Sentinel-2

images are available for respectively 07/12/2021 and 14/05/2019, the same days of IceSAT-2 acquisition (not shown here for license incompatibilities) and

show the presence or absence of water in the small reservoir at the time of IceSAT-2 acquisition. ATL-08 (red dot) and ATL-03 (green dots above ground

and blue dots above water at the date of acquisition) are located over the WorldCover background. The maximum water area extent extracted from Pleiades

DEM is in orange dashed lines (10.5281/zenodo.10402355). Panel c and d show elevations from Pléiades (dotted green line) along the IceSAT-2 ATL-03

transect represented with green dots in panel a and b, together with ATL03 geolocated photon elevations (red points), maximum likelyhood filtered ATL03

ground elevations (Yellow) and AW3D30 DEM elevations in blue dots. Sentinel-2 data were obtained from https://www.copernicus.eu/en/access-data but

not used in the published figure.

https://doi.org/10.1371/journal.pwat.0000260.g004

PLOS WATER Monitoring Indian ungauged small reservoirs volume from remote sensing

PLOS Water | https://doi.org/10.1371/journal.pwat.0000260 December 17, 2024 12 / 27

https://doi.org/10.5281/zenodo.10402355
https://www.copernicus.eu/en/access-data
https://doi.org/10.1371/journal.pwat.0000260.g004
https://doi.org/10.1371/journal.pwat.0000260


4.2 Comparison of SR hypsometry relationships from selected available

DEMs

We used the bathymetry from Pléiades 2-m DEM to estimate the potential capacity of the

RHS: it is estimated at 57.6 million cubic meters (32 mm) over the 1,813 km2 study area. The

majority of the RHS is composed of SR with a MWAE lower than 5 ha (as shown in the distri-

bution in Fig 6), yet these very small reservoirs represent only between 4 to 11% of the total

volume of the RHS on individual Pléiades scenes, and 7% on all four Pléiades scenes (as illus-

trated in Fig 6b).

Apart from the DEM acquisition timing, i.e. the presence or absence of water—anterior to

creation or rejuvenation—each source of DEM acquisition have diverse capacity to retrieve

the SR geometries. Fig 7 illustrates those differences for two SR that were empty during the

acquisition of all DEMs. Coarse resolution smooths the dike height and the bottom bathyme-

try (particularly small depressions at the bottom of SR). This leads to systematic volume under-

estimation. The dike of larger reservoirs (as the 114 ha reservoir in Fig 7a) is well detected by

Pléiades at 2- and 12-m. The degradation of Pléiades to a 30-m resolution decrease the dike

height by 2, which is globally the same height visible by GLO-30, AW3D30 and CartoDEM. At

Fig 5. Panel left, WorldCover landuse from 2021 is used to represent the Small reservoir, delineated by its maximum surface water area extent extracted

from Pleiades DEM is in orange dashed lines (10.5281/zenodo.10402355). ATL-08 (red dot) and ATL-03 (green dots above ground and blue dots above

water at the date of acquisition) are located over the WorldCover background. Panel right, elevations from Pléiades (dotted green line) along the IceSAT-2

ATL-03 transect geolocated photon elevations (red points), maximum likelyhood filtered ATL03 ground elevations (Yellow) and AW3D30 DEM elevations

in blue dots.

https://doi.org/10.1371/journal.pwat.0000260.g005

Table 3. Filling ratio (%) of the observed Rainwater Harvesting System (RHS) at the acquisition date(s) for CartoDEM, AW3D30, GLO-30 and TanDEM-X DEM. It

is computed from the water masks provided with the DEMs and Sentinel-2 Maximum Water Area Extent (MWAE).

Scene CartoDEM AW3D30 GLO-30 TanDEM-X DEM

a 54 8 78 68

b 33 3 64 50

c 5 0 11 8

d 9 0 14 10

https://doi.org/10.1371/journal.pwat.0000260.t003

PLOS WATER Monitoring Indian ungauged small reservoirs volume from remote sensing

PLOS Water | https://doi.org/10.1371/journal.pwat.0000260 December 17, 2024 13 / 27

https://doi.org/10.5281/zenodo.10402355
https://doi.org/10.1371/journal.pwat.0000260.g005
https://doi.org/10.1371/journal.pwat.0000260.t003
https://doi.org/10.1371/journal.pwat.0000260


a 90-m resolution (Pléiades and TanDEM-X) the dike is nearly flattened. The dike and the

bathymetry of smaller reservoirs (as the 3 ha reservoir in Fig 7c) are almost completely

smoothed at a 30-m resolution. The global slopes are coherent between each source of data,

with a absolute bias that does not affect geometries, except for CartoDEM and AW3D30 eleva-

tion, that have been rounded to the meter before data dissemination. The maximum capacities

of SR larger than 5 ha are underestimated by 5, 10 and 14% for Pléiades resampled at 12, 30

and 90 m, against 10, 26 and 39% for SR smaller than 5 ha.

We quantified the decrease of SR volume estimates from water area extents for large-scale

and resampled DEMs. Fig 8 shows an example for a given SR: the series of volumes of GLO-30

and AW3D30 (red and blue points), computed with a 10 cm height increment, are compared

with the corresponding water volumes given by the reference hypsometric relationship of Plé-

iades 2-m DEM (black curve, computed as explained in section 4.1) for the same area. Vol-

umes of individual SR were generally associated with high uncertainties: the median MAPE of

SR volumes (shown in Fig 9) over all SR ranges from 43 to 53% for large-scale DEMs, against

22%, 35% and 49% for Pléiades aggregated at 12, 30 and 90 m.

Apart from resolution and numerical precision, another major requirement for bathymetry

retrieval and essential for accurate volume estimation is the absence of water in the SR during

DEM acquisition. The filling ratio of the four large-scale DEMs, is reported in Table 3. Carto-

DEM, GLO-30 and TanDEM-X DEM show high (>33%) filling ratios for scenes (a) and (b).

AW3D30 is the only DEM with a low filling ratio on the four scenes (<8%).

We examined the impact of this filling ratio on the estimation of the volumes of SR. Fig 10

shows the MAPE of all SR plotted against their individual filling ratio during DEM acquisition

for CartoDEM, AW3D30, GLO-30 and TanDEM-X DEM. The estimation error seems to be

correlated to the filling ratio for GLO-30 and AW3D30, slightly less for CartoDEM and Tan-

DEM-X DEM. However, a great variability of errors is visible even for empty SR (filling

ratio = 0%), in particular for the smaller ones (little dark red dots, often smaller than 5 ha).

Fig 6. (a) Distribution (median and quartiles) of Sentinel-2 Maximum Surface Area Extent (MWAE) of the SR per Pléiades scene. (b) Cumulative

volumes of the SR of all four Pléiades scenes, in % of the RHS maximum capacity, sorted by decreasing MWAE. SR with an area below 5 ha represents

7% of the RHS maximum capacity (as indicated by the dashed lines).

https://doi.org/10.1371/journal.pwat.0000260.g006
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This confirms the inability of these four DEMs to correctly measure the volume of smaller SR

because of their coarse resolution.

4.3 Volume retrieval from Sentinel-2 time series at Pléiades scene scale

Sentinel-2 time series were used to estimate the water volume stored in each tank covered by

Pléiades DEM at different hydrological period and filling rate. These volumes, estimated with

each DEM derived hypsometric relationship, were compared to the reference, i.e volumes

from the hypsometric relationships derived from Pléiades 2-m DEM. The average MAPE and

MPE computed on the time series of the volumes of individual SR are reported in Table 4 (the

MAPE and MPE were computed on the time series for each SR, then averaged). MAPEs are

high for large-scale DEMs, ranging from 52% to 188%. Even the resampling of Pléiades DEM

at 12 m induces high error, ranging from 22 to 43%. This shows that large-scale DEMs cannot

be used to monitor the volume of individual SR. Note that these MAPEs estimated from Senti-

nel-2 time series are larger than those estimated from all V-A sample points in section 4.2.

Indeed, water area extents detected by Sentinel-2 over time are not equally distributed on the

V-A relationship as higher areas rarely occur, and small volumes estimates that have the largest

relative uncertainty.

However, aggregating individual volumes at the Pléiades scene scale improves their corre-

spondence with volumes derived from Pléiades 2 m DEM. Fig 11 shows lumped volume

Fig 7. Profiles of 2 SR for Pléiades at 2-m, 12-m, 30- and 90-m resolution, CartoDEM, AW3D30, GLO-30 and TanDEM-X DEM. Both

reservoirs were empty during all DEM acquisitions. (a) and (c): Profiles of a large (114 ha) and a small (3 ha) reservoir. y values in vertical

axis are ellipsoidal heights referenced to the WGS84-G1150 ellipsoid [56] which is the native projection of Pléiades, CartoDEM and

TanDEM-X DEM. AW3D30 and GLO-30 are altitudes referenced to the EGM96 geoid [57] and were converted to ellipsoid height for this

figure [58]. (b) and (d): Context of the profile. The map background is Pléiades 2-m DEM hillshade (publicly available 10.5281/zenodo.

10403040), the dashed blue line the manually selected Pléiades DEM isoline (publicly available here 10.5281/zenodo.10402355) and the white

arrow is the transect.

https://doi.org/10.1371/journal.pwat.0000260.g007
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estimates from the eight DEMs. Only a subset of the Sentinel-2 time series is shown for better

visibility. High values (>100%) of volume relative uncertainty were found for very small areas

(<1% of the maximum RHS area). These outliers can dramatically increase MAPE and MPE

despite representing a low absolute uncertainty, and were therefore removed from the

Fig 8. V-A pairs of a SR (2.6 ha) for three DEMs. The hypsometric relationship derived from Pléiades 2-m DEM is in

black, linearly interpolated between black dots. Red and blue dots are the V-A pairs of GLO-30 and AW3D30.

https://doi.org/10.1371/journal.pwat.0000260.g008

Fig 9. Distribution (median and quartiles), over all small reservoirs (SR), of the mean absolute percentage error (MAPE) of SR volumes extracted

from several DEMs at a 10 cm increment, relative to Pléiades 2-m DEM reference volume.

https://doi.org/10.1371/journal.pwat.0000260.g009
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calculation of the metrics presented in this section (16 points for AW3D30 in scene (c)). The

R2, MAPE and MPE of scene-scale volumes, computed over the time series, are reported in

Table 5.

The MAPEs of aggregated values at the Pléiades scene scale are lower than for individual SR

(12% against 72%), which shows that the errors on SR compensate each other and the aggrega-

tion of small volumes produces better regional volume estimates than with each individual SR.

On the four areas covered by Pléiades acquisitions, volume estimates are less accurate (R2

decreases) with the reduction of Pléiades resolution (Table 5). As expected, a lower resolution

Fig 10. MAPE of small reservoirs (SR) in relation to their filling ratio at the moment of the DEM acquisition.

Each point represents one SR. The color and size of each point correspond to the Sentinel-2 Maximum Water Area

Extent (MWAE) of the SR in ha.

https://doi.org/10.1371/journal.pwat.0000260.g010

Table 4. Average MAPE (%) and MPE (%) of volumes computed with Sentinel-2-derived water area extents time series for each SR.

Image Pléiades 12m Pléiades 30m Pléiades 90m CartoDEM AW3D30 GLO-30 TanDEM-X

MAPE MPE MAPE MPE MAPE MPE MAPE MPE MAPE MPE MAPE MPE MAPE MPE

a 22.4 19.9 34.4 27.6 44.5 38.9 108.3 -21.9 52.2 7.7 121.9 -1.6 52.5 21.2

b 30.0 23.8 41.2 32.7 53.1 39.5 123.7 -62.0 57.1 0.7 188.2 -83.4 75.1 17.5

c 43.4 30.2 50.4 47.7 67.7 50.5 72.8 -12.8 58.6 -0.2 106.4 -21.7 65.1 50.3

d 25.7 20.8 41.4 33.4 66.7 43.7 96.3 -37.2 81.2 -4.3 111.6 -25.1 64.9 45.7

all 29.8 23.3 41.9 35.5 60.2 43.8 96.5 -30.5 66.0 0.1 121.6 -25.5 63.2 37.8

https://doi.org/10.1371/journal.pwat.0000260.t004
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induces a systematic negative bias (MPE>0 and MAPE’MPE) on the four Pléiades scenes, as

the the dikes geometries are flattened. Nevertheless, these bias increase drastically above 30m.

Indeed, the relative uncertainty reaches 28% on average for a 30 m resolution.

The filling rate of the RHS, i.e. the percentage of the RHS maximum area covered by surface

water at the time of acquisition, is high for CartoDEM, GLO-30 and TanDEM-X (>33%, for

Fig 11. Lumped volume and area for all 4 Pléiades scenes. Only a subset of the time series is plotted. Reference values are black dots.

https://doi.org/10.1371/journal.pwat.0000260.g011

Table 5. R2 (%), MAPE (%) and MPE (%) of the time series of volumes lumped at scene scale with Sentinel-2 areas. The last line presents the metrics computed on the

series of V-A points of all scenes.

Image Pléiades 12m Pléiades 30m Pléiades 90m CartoDEM AW3D30 GLO-30 TanDEM-X

R2 MAPE MPE R2 MAPE MPE R2 MAPE MPE R2 MAPE MPE R2 MAPE MPE R2 MAPE MPE R2 MAPE MPE

a 99.4 4.4 4.4 98.5 7.0 7.0 97.3 10.2 10.1 8.4 57.1 57.1 95.2 11.9 11.1 -54.2 72.1 72.1 95.9 12.3 7.2

b 99.2 18.0 18.0 98.1 29.1 29.1 94.6 43.0 43.0 77.3 48.4 48.4 97.4 26.1 20.0 70.1 69.1 69.1 83.7 36.9 36.9

c 97.4 28.0 28.0 95.2 37.9 37.9 91.9 46.6 46.6 96.2 18.8 5.4 95.9 20.6 -12.5 98.8 28.5 28.2 90.5 47.9 47.9

d 99.4 10.2 10.2 97.8 29.4 29.4 91.9 44.3 44.3 93.4 15.3 -5.9 80.3 16.3 7.7 85.0 38.4 38.4 71.8 57.2 57.2

all 99.0 16.2 16.2 97.5 28.1 28.1 94.0 38.6 38.6 81.7 29.0 17.4 90.0 18.2 4.6 69.1 45.8 45.7 85.2 42.8 41.9

https://doi.org/10.1371/journal.pwat.0000260.t005
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scenes (a) and (b), Table 3), which impacts their performances compare to AW3D30 (filling

ratio<8%). GLO-30 has the largest filling ratio (78% and 64% for scenes (a) and (b)) and the

least accurate estimates (Table 5) with R2 = -54% and 70% for scenes (a) and (b). Fig 11 shows

that those DEM lead to large underestimation of volumes and thus are not suitable for RHS

volume monitoring in this region. TanDEM-X DEM performs better than CartoDEM (higher

R2) despite its lower resolution and higher filling ratio. AW3D30 volume estimates are similar

to those of the reference Pléiades DEM resampled at 30-m for scenes (a) and (b), i.e. it can be

used at the Telangana scale taking the bias presented in this study into account.

On scenes (c) and (d) the filling ratio is lower than 11% for all DEM. CartoDEM, AW3D30

and GLO-30 estimates are relatively good (R2 from 80 to 99%). The coarser TanDEM-X DEM

produces the least accurate volume estimates. GLO-30 produces the best estimates for image

(c) (R2=98.8%) among all DEMs including Pléiades resampled at 30-m, and CartoDEM per-

forms better than the three other large-scale DEMs and Pléiades 30-m for image (d)

(R2=96.5%), despite the fact that AW3D30 has the lower filling ratio for these two scenes.

For almost all scenes and DEMs, volumes are generally estimated with a negative bias,

except for CartoDEM and AW3D30 in scene (c) and (d), for which the MPE can even be

negative.

Volume estimates have different accuracies for low and high filling rates. Relative uncer-

tainties reaches their maximum (80% and -50%) for smallest water area extent (<5% of the

total RHS surface area) and decreases for higher filling rates (Fig 12). Contrary to resampled

Pléiades DEM, GLO-30 and TanDEM-X DEM, for which increasing volumes are estimated

with a decreasing negative bias, CartoDEM and AW3D30 overestimate low volumes and

underestimate large one.

5 Discussion

Could any global DEM tested in this study being used to get a proxy of water volume stored in

the RHS as a function of the surface water mask derived from satellites? In the following, we

discuss the SR volume retrieval errors from surface water detection time series from Sentinel-2

and global available DEM over the study area. The discussion is about the benefit or useless-

ness for hydrologists and water management institutions to extract water volume stored in this

ungauged hydrological system during the 8 months of dry season. The main factors impacting

the retrieval accuracy are discussed: surface water extent accuracy, DEM accuracy, DEM spa-

tial and numerical resolution, SR filling ratio and size.

Fig 12. Relative uncertainty of volume estimates at scene scale for scene (d). The V-A points of the time series of all

four scenes are gathered by their proportion of surface water area relative to the maximum area of the RHS of scene

(d).

https://doi.org/10.1371/journal.pwat.0000260.g012
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5.1 Pléiades DEM accuracy

The accuracy of Pléiades DEM at 2m was evaluated using existing Lidar elevation measure-

ment from IceSAT-2 mission. This very limited comparison confirms that the DEM produced

have a regional coherence with ICESAT-2, but is not sufficient to establish the DEM as a

“ground truth”. We rather consider this DEM as the reference to estimate the relative errors of

the other DEM generated at coarser resolutions (at 12, 30 and 90m) and global DEM products.

Absolute errors would require further in situ validation, based on total station measurements

or drone acquisitions. This study shows that relative elevation from stereoscopy at very high

(2m) and high resolution (12m) is able to monitor the storage capacity of the Indian RHS.

NMAD remains lower to 60cm between data-sets (see Table 2) and even aggregated at 12m,

dikes height are enough precise (see Fig 7 to limit the aggregated volume MAPE errors to 20%

(see Table 4). This 12m resolution produced from a higher resolution could be the resolution

of the distributed DEM product to the users for instance.

5.2 Surface water extent accuracy

Sentinel-2, as a multispectral data at 10 to 20 m resolution is well adapted to the size of the

main SR of the RHS. Nevertheless, it is also known to underestimate surface water area extent

especially for seasonal shallow temporary lakes, with a non negligible erosion of water extent

on the SR edges or caused by floating vegetation [59]. The comparison of Sentinel-2-derived

water maps with higher resolution images (as explained in section 3.2.2) showed an average

negative bias on volume estimates: the average relative error (MAPE) was estimated at 17% on

water area extents and 31% on volumes, which is in accordance with the 15% negative bias

found in [60]. This bias could be reduced by detecting water on optical images with a higher

spatial resolution than Sentinel-2, such as Venμs (5.3 m resolution, 2 days revisit time, but not

global) [61] or Planet (3m resolution, daily revisit but commercial) [62]. However, the use of

optical images only allows the retrieval of a partial time series because of missing images dur-

ing cloudy periods. Radar observations such as those from Radarsat-2, TanDEM-X, or Senti-

nel-1 can provide dense time series but underestimate surface water coverage. Previous studies

quantified that using Sentinel-1 data rather than optical data could underestimate reservoirs

water areas by 15% [18] and water volumes by 27% [26] in the RHS located in Tamil-Nadu

state (India). We chose to use water maps produced from Sentinel-2 optical images, to get a

realistic example of water volume retrieval dynamic Fig 10 rather than generating random sur-

face water area extents for each SR.

5.3 Hypsometry relationship

The construction of individual V-A relationship relies on a vertical subsampling of each DEM.

This can be challenging for (i) coarse DEMs for which the number of pixels by SR is low, (ii)

DEMs rounded to the meter, (iii) DEMs for which the depth of SR is lowered by the presence

of water at the time of acquisition. The bilinear resampling of DEMs at a finer resolution (2-m

in this study) allows a better vertical sampling by solving issues (i) and (ii). The density of V-A

points remains nonetheless inferior for large-scale DEMs than for Pléiades 2-m DEM (as illus-

trated in Fig 8), producing a “sparser” hypsometric curve and reducing the accuracy of volume

estimation from Sentinel-2 images. Previous studies of medium to large dams have used vari-

ous methods to extrapolate water volume below the water surface detected by satellite data-

based DEMs [28]. We have chosen not to apply such extrapolation to avoid mixing sources of

uncertainties in the analysis. But the presence of water behind each DEM is shown in the

Table 3, expressed as a “filling ratio”. From the Table 3, the AW3D30 is the DEM with the least

surface water at the time of its acquisition.
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5.4 Heterogeneous negative bias of volume restitution from freely available

DEMs

Surface water Volume estimates depend on (i) the spatial resolution of the DEM, (ii) the SR

filling rate during its acquisition and (iii) its numerical precision (float or integer format).

Underestimation comes with low resolution and high filling ratio at the time of acquisition: up

to 72% at scene scale with a filling ratio of 78% for GLO-30. On the contrary, DEMs distrib-

uted in Integer format induces unpredictable uncertainties. The systematic negative bias due

to coarse resolution can be compensated by upward rounding errors, which eventually and

incidentally decrease volume estimates errors at the scene level. Volume estimates from Carto-

DEM and AW3D30 are occasionally better than Pléiades 30-m DEM for this reason.

The long period between DEMs acquisition dates can also impact volume estimates. Natu-

ral sediment depositions vs SR rejunevation public policies have modeled dikes and bathyme-

try as seen in Fig 4c. Rejuvenation activities consist in desiltation to increase aquifer recharge

and dike rise to increase storage capacity (the state program Kakatiya project in 2015 and the

federal mission Amrit Sarovar in 2022). It should be relevant to monitor those changes at least

once in a decade with new VHR DEM acquisitions during dry months to update SR bathyme-

tries and monitor new ones. Note that we chose not to include in this study the DEM from the

Shuttle Radar Topography Mission (SRTM) [63] based on 2000 acquisitions, that we estimated

too ancient and obsolete regarding the RHS observed with Pléiades acquisitions (16 and 19

years after) given those recent changes that occurred in the study area.

5.5 SR delineation

As presented in section 3.2.3, the hypsometry retrieval process is highly dependent on the

agreement between SR limits and the DEM isolines. The use of optical satellite data such as

Sentinel-2-derived MWAE (Maximum Water Area Extent) for SR delineation is a fast semi-

automatic process. Nevertheless, the discrepancy discussed before between the surface water

area extents and Pléiades DEM isolines imposes to manually delineate SR with Pléiades DEM

isoline, a time-consuming task that can not be reproduced at large scales. This task was fully

automated in [29, 64] by using a Blue Spot detection algorithm, which identifies natural

depressions. In particular, [29] used this method in the Cuvelai Basin, a semi-arid area flooded

part of the year, to determine a high resolution theoretical MWAE of natural depressions that

were measured using TanDEM-X DEM commercial product at 12-m resolution and estimated

their potential water storage. A combination of the Blue Spot detection algorithm and surface

water maps derived from Sentinel-2 could be a solution for the automatic retrieval of active SR

MWAE limits.

5.6 Monitoring the RHS of Telangana: What DEM and what uncertainty?

This study shows that VHR DEM resampled at 12 or 30 m enables to estimate water volumes

from surface water area with an error (i.e. MAPE computed with the native 2 m resolution as a

reference) less than 16 and 28% at the scale of the study area, with higher errors for lowest vol-

umes and smallest water bodies. This error ranges from 18 to 45% for the large-scale DEMs.

On the other hand, the quantification of the 15 main largest and highly filled SR of the RHS

would enable to quantify 40% of this potential water resource (Fig 6b). This can be particularly

relevant as the volume of these largest reservoirs can represent a higher portion of the RHS vol-

ume during the dry season, as the largest reservoirs are generally the last ones to empty. At

regional scale, this amount of water is small compare to the groundwater and large dams
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resources, but remain important for local farmers in upstream areas disconnected from the

main large rivers and dams.

6 Conclusions and perspectives

This study draws some perspectives about the nowadays and foreseen space-borne datasets

and products that could be used by hydrologists to monitor the water storage within the Indian

RHS. The small reservoirs (SR) composing the Rainwater Harvesting System (RHS) are a cru-

cial water resource for irrigation and livestock in upstream rural areas in South India. They are

also crucial to understand the impact of the RHS on the water cycle (including groundwater

additional recharge) in these semi-arid areas, and their dimensions crucial to hydrological

modeling approaches [65]. We used the bathymetry from a 2-m Digital Elevation Model

(DEM) over a 1,800 km2 area to derive volume-area relationships for more than 500 SR. Times

series of Sentinel-2-derived surface water area over several years were used to simulate several

filling rates of the RHS and compute volume estimates at larger scales. We have been able to

cover a maximal resource capacity of 47 million cubic meters over the four Pléiades stereo-

scopic acquisitions (Fig 11). We used these 2m DEM based hypsometric relationship as a vir-

tual reference to quantify the relative errors of RHS volume retrieval at 12, 30 and 90 meters,

and from 3 large-scale DEMs at 30-m resolution (AW3D30, GLO-30, CartoDEM) and one

DEM at 90-m resolution (TanDEM-X DEM). These four areas covered by this study are repre-

sentative of the RHS in term of Small Reservoirs size diversity and spatial density found in the

Telangana state (see the dataset [66]). Nevertheless, no generalization of the SR geometries and

Volume surface relationship has been found with the 500. There is a need to extract SR geome-

tries using stereoscopy everywhere at the appropriate time.

Volume estimates at SR scale were associated with high relative uncertainties, ranging from

47% to 78% for large-scale DEMs against 17%, 29% and 46% for Pléiades DEM aggregated at

12, 30 and 90 m. Volume estimates lumped at larger scale have better accuracies because of the

compensation of the uncertainties of individual SR. We found that at scene scale, the Pléiades

DEM at 12-m resolution could estimate the RHS volume with a R2 from 97.4% to 99.4% and a

MAPE (Mean Absolute Percentage Error) from 4% to 28%, but with higher uncertainties in

dry conditions (low RHS filling rates). The Pléiades DEM aggregated at 30-m was able to esti-

mate the RHS volume at scene scale with a R2 from 95.2 to 98.5% and a MAPE from 7 to 38%.

However, volumes are estimated with a quasi-systematic negative bias when the resolution

decreases due to (i) the underestimation of the volume of very small reservoirs (<5ha) that are

hardly visible by larger DEM and (ii) the smoothing of the SR geometry. The use of a 90-m res-

olution DEM degrades volume estimates even more, and we recommend using a resolution no

coarser than 30 meters and to focus on the largest SR composing the major part of the RHS

volume in this region.

Results indicate that the acquisition period of DEM is crucial, i.e. the filling ratio of the

RHS at the time of acquisition. AW3D30 had the lowest RHS filling ratio of all DEM (<6% on

all 4 scenes) and hence showed the best results on average over the 4 scenes (R2 from 80.3 to

97.4% and MAPE from 8 to 26%). On the other hand, CartoDEM and GLO-30 were able to

produce better results at scene scale for a low filling ratio (<10%). In absence of VHR DEMs,

the best strategy is to use a 30-m global DEM acquired recently, or a combination of several

DEM with a low filling ratio (<10%) covering the study area, to approximate the volume of

the RHS at regional scale from time series of surface water maps. Yet an average relative error

of about 26% can be expected following our results shown in Table 5 for AW3D30. These

results should be taken with caution as we have had the opportunity to sample less than 2% of

the Telangana area. However, at very local or SR scale, or for low water stocks, high-resolution
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DEMs are essential to estimate and monitor surface water storage with precision in near-real

time in combination with high resolution optical observations. IceSAT-2 ATL03 dataset has

also proved its ability to retrieve some information about the size (height and width) of dykes.

Nevertheless, its spatial sampling and revisit is not adequat to monitor the RHS. The need for

large scale inland water bodies monitoring has motivated the forthcoming SWOT (Surface

Water and Ocean Topography) mission [67], yet its sensitivity to small water bodies need to

be verified, in particular those with an area below 5 ha. Will SWOT detect accurately this

hydrological system in term of surface and elevation? The question is still open.
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