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ABSTRACT
Evaluating Human-Robot Interaction (HRI) is crucial for under-
standing the value that robots would bring to daily life. This paper
investigates the robustness of machine learning classification tech-
niques in interpreting physiological signals during HRI, considering
potential artifacts induced by robot behavior. This phenomenon
was explored with a 30 participants user study involving three cog-
nitive efforts levels. This study used various physiological sensors,
including Electroencephalography (EEG), Photoplethysmography
(PPG), and Electrodermal Activity (EDA). Results reveal that EEG
and PPG signal were impacted by robot-induced noise while EDA
was not. By changing preprocessing parameters, EEG was also
cleaned from robot noise and revealed better performances than
EDA. The study highlights the importance of careful signal selec-
tion, balancing robustness and informativeness, and underscores
the significance of preprocessing to ensure accurate classification
aligned with users’ mental states.

CCS CONCEPTS
• Human-centered computing → User models; User studies;
Laboratory experiments; Interaction techniques; • Computer
systems organization → Robotics.
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1 INTRODUCTION
Evaluating Human-Robot Interaction (HRI) is essential to deter-
mine the real value that robots can add to our daily life. Extensive
research in HRI over the years has resulted in a diverse range of
methods, metrics, and levels of observation. Among these metrics,

https://doi.org/10.1145/3610978.3640708

physiological signals are increasingly popular due to their ability to
offer real-time and objective data derived from human mental state
[6, 11]. These data can be decoded automatically with the adjunc-
tion of machine learning techniques, a field known as physiological
computing [4], or brain-computer interface (BCI) when specifically
used to deal with brain signal [8]. Such automatic decoding can
lead to online adaptation of robot behavior during the interaction
based on the collected physiological measures [1].

In this context, it becomes crucial to ensure that machine learn-
ing techniques used to interpret physiological signals are robust
to potential artifacts induced by robots’ behavior. Indeed, robot
actions and movements can generate electrical or mechanical in-
terferences that may introduce noise or distortions in the recorded
physiological signals. By testing the robustness of machine learn-
ing techniques to such artifacts, this paper aims to ensure that the
interpretation of physiological data aligns more accurately with
the user’s actual mental state. To the best of our knowledge, this
important phenomenon has never been reported in the literature.
Hence, we hypothesize that temporal windows containing artifacts
induced by the robot will result in lower classification accuracy
than temporal windows clear of robot noise.

2 METHODS

Figure 1: A typical HRI experimental setup, with a partici-
pant equipped with electrophysiological measurement de-
vices sat in front of a PR2 robot.

2.1 Materials

Robot
The PR2 (Personal Robot 2) was chosen for its compatibility

with ROS along with its ability to grasp objects and play sounds.
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Figure 2: Task overview with markers and the duration of each step.

Sentences allowed to sequence the trial, both verbally and by raising
a marker in the recording as presented in Figure 2 (1: "New trial", 3:
"My turn", 6: "Your turn", 10: "The trial is over").

Physiological Sensors
Electroencephalography (EEG), chosen for its resolution at mil-

lisecond level, recorded brain electrical activity using a 20-channel
Enobio system byNeuroelectrics. Dry electrodes were positioned on
a cap following the 10/20 international system, and data were sam-
pled at 500 Hz. Electrocardiography (ECG), photoplethysmography
(PPG), electrodermal activity measurement (EDA), and eye-tracking
respectively measured cardiac activity, blood volume changes, elec-
trodermal activity, and ocular behavior. A Faros 360° collected the
ECG data at 125 Hz, while EDA and PPG data were obtained using
a Shimmer3 GSR+ Unit and sampled at 50 Hz. Eye-tracking was
achieved using a Pupil Core at 200 Hz.

To ensure the sensitivity of these sensors, all data were collected
in a quiet, stimulus-isolated room. The various collected streams
were unified using the open-source ecosystem lab streaming layer
(LSL) [5] to address synchronization issues.

Tasks
In order to induce different cognitive effort levels, digit sequences

of various sizes were sequentially displayed on a wall-mounted
screen near the robot (see Figure 2, Step 1). Participants were later
asked to recall them on the same screen using a mouse and a virtual
keyboard (see Figure 2, Step 4). Such a digit span task was chosen
to replicate results from the HRI literature [7]. Hence, sequences of
1, 3, and 7 digits were designed to induce respectively low, medium,
and high cognitive effort levels.

The joint manipulation task involved piling cubes with a robot
(PR2) and started with participants seated at a table, the robot
standing on the opposite side. A scripted dialogue signaled the start
of PR2’s turn (see Figure 2, Step 2), duringwhich it picked and placed
a cube at the center of the table. This scripted sequence ensured
consistency in duration (approximately 25 seconds). Subsequently,
another dialogue indicated the beginning of participants’ turn (see

Figure 2, Step 3), instructing them to place a cube on the one placed
by the robot.

In addition, a resting state was performed before and after the
main task. This paradigm of growing interest in neuroscience [10]
can be easily introduced in most neurophysiological experiments
thanks to its simplicity and straightforward standardization. It lasts
5 min during which participants alternate 30-second periods with
eyes opened and 30-second periods with eyes closed. Such recording
of physiological activity at rest provides a useful baseline for data
analysis.

Several markers were generated during these tasks, allowing to
process physiological signals over various time-windows.

2.2 Window segmentation
The protocol was run once in the absence of participants to gather
a baseline signal containing artifact produced by robot pick and
place actions but no brain activity (Fig. 3).

Figure 3: Mean EEG signal collected by an empty cap during
an experimental session that includes several robot actions
(average across trials).
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Figure 4: Classification accuracies for each signal type and pipeline (3-class estimation, adjusted chance level at 43.3% [3]).

Based on this recording, the 24 seconds between step 2 and step
3 (see Figure 2) were split into four windows of 6 seconds each. The
first and last window contained no robot noise while the second
window contained two artifacts and the third window contained
one artifact.

2.3 Preprocessing
Each signal underwent a minimal preprocessing step :

• The EEG signal was filtered using a FIR bandpass filter from
1 to 40 Hz and re-referenced by Common Average Reference
(CAR).

• The PPG signal was preprocessed with a FIR bandpass filter-
ing process within the range of 1 to 20 Hz.

• The EDA signal underwent a lowpass filter with a cutoff
frequency at 3 Hz.

2.4 Classification
A classification analysis was performed on physiological signals to
explore the robustness of classification under several conditions of
robot noise. Various classifiers, including Random Forest (RF), Lin-
ear Discriminant Analysis (LDA), Support Vector Machine (SVM),
and Minimum Distance to Mean (MDM), were trained on the pre-
viously defined windows to predict the associated digit condition,
representing the cognitive effort level. In addition, spatial infor-
mation was considered, with spatial filtering methods to reduce
the dimensionality and enhance the signal to noise ratio (CSP [2]
for EEG, and PCA for PPG and EDA), and EEG covariance ma-
trices used in a Riemannian framework [9] as classically done in
state-of-the-art EEG pipelines.

3 USER STUDY
3.1 Participants
Thirty volunteers took part in the experiment. Technical issues led
to the exclusion of data from four participants, while four others
were excluded due to poor signal quality. The remaining 22 partici-
pants (11 females, 11 males) had an average age of 28 ± 5.8 years.
Their prior knowledge with robots scored 2.2 ± 1.1 on a scale of 1
“not at all” to 5 “very much". On the same scale, prior knowledge
with physiological sensors scored 2.1 ± 1.5. Participants received in-
structions about the experimental protocol and provided informed

consent. The study received approval from the institutional ethics
review board of the University of Toulouse (project n°2022_525).

3.2 Protocol validation
Subjective and behavioral data were used to test whether the es-
tablished protocol successfully induced the targeted mental state,
namely cognitive effort.

A One Way Repeated Measures ANOVA revealed that both per-
ceived effort (𝐹 (2, 42) = 97.23, 𝑝 < .001, 𝜂2𝑝 = .82) and answer
accuracy (𝐹 (2, 42) = 22.08, 𝑝 < .001, 𝜂2𝑝 = .51) varied significantly
across digit sequences. On the other hand, response time did not
vary significantly (𝐹 (2, 42) = 2.78, 𝑝 = 0.07, 𝜂2𝑝 = .12).

While only reflected by variations in perceived effort and accu-
racy, cognitive effort seemed indeed induced by this protocol.

3.3 Classification results
Pipeline performances can be found in Figure 4. A Two Way Re-
peated Measures ANOVAwas used to test both the effect of pipeline
and the effect of the window on classification accuracy.

Concerning the pipeline, a significant effect was revealed for
EEG classification accuracy (𝐹 (7, 147) = 14.26, 𝑝 < 0.001, 𝜂2𝑝 = .09),
with the pipeline Cov + RF achieving 43.2% mean accuracy over
the four windows, PPG classification accuracy (𝐹 (7, 147) = 2.79,
𝑝 < 0.05, 𝜂2𝑝 = .02) with the pipeline RF achieving 37.6% mean
accuracy over the four windows, and EDA classification accuracy
(𝐹 (7, 147) = 12.62, 𝑝 < 0.001, 𝜂2𝑝 = .16) with the pipeline RF
achieving 42.6% mean accuracy over the four windows.

Concerning the window, a significant effect was found for EEG
classification accuracy (𝐹 (3, 63) = 3.41, 𝑝 < 0.05, 𝜂2𝑝 = .04) and PPG
classification (𝐹 (3, 63) = 3.12, 𝑝 < 0.05, 𝜂2𝑝 = .04) with the window
12-18 giving the worst results in both cases. EDA classification
accuracy revealed no significant effect of the window.

3.4 Pipeline improvement
Preprocessing is a crucial step for EEG classification and manipulat-
ing some parameters can have a huge impact on performances. We
addressed robot noise in EEG by narrowing the frequency band of
the data. Hence EEG signal went through the same preprocessing
step with a bandpass filter from 4 to 20Hz instead of 1 to 40 Hz.
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Figure 5: Classification accuracies depending on EEG pipelines with different preprocessing steps (3-class estimation, adjusted
chance level at 43.3%).

This preprocessing improvement allowed EEG classification to
be more stable across windows and to reach 45.2% accuracy for Cov
+ RF pipeline.

4 DISCUSSION & CONCLUSION
We hypothesized that temporal windows containing artifacts in-
duced by the robot would yield a lower classification accuracy com-
pared to artifact-free windows. Examining this hypothesis across a
range of sensors highlighted variations in their sensitivity to robot
noise. Both EEG and PPG signals appeared susceptible to these
artifacts initially. However, a modification in the preprocessing
pipeline effectively mitigated artifacts from the EEG signal. On the
contrary, despite efforts, the PPG signal classification remained
significantly impacted, underscoring the need for caution in its
application in similar studies.

In addition, the EDA signal proved to be robust against robot
noise, yet it led to less accurate classification compared to the EEG
signal filtered between 4 and 20 Hz. This finding suggests that,
despite its resilience to artifacts, the EDA signal is less informative
than the EEG signal when it comes to mental state monitoring, at
least in the case of cognitive effort.

It is noteworthy that, regardless of the signal type, the random
forest classifier consistently demonstrated superior performance
compared to other classifiers. This emphasizes the effectiveness of
the random forest approach in handling the challenges posed by
robot artifacts across different physiological signals.

In conclusion, our research highlighted the need to consider
physiological signals carefully for studies involving humans and
robots. A balance needs to be found between robustness to noise
generated during the interaction and informativeness about the
mental state of interest. Great attention should also be given to
preprocessing, to ensure that classified data mainly contain physio-
logical information.
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