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Kahler-Einstein metrics with positive curvature near
an isolated log terminal singularity

Vincent Guedj, Antonio Trusiani and Sébastien Boucksom

ABSTRACT

We analyze the existence of Kéhler-Einstein metrics of positive curvature in the neigh-
borhood of a germ of a log terminal singularity (X,p). This boils down to solve a
Dirichlet problem for certain complex Monge-Ampere equations. We establish a Moser-
Trudinger inequality (MT'), in subcritical regimes v < ¢t (X, p) and show the exis-
tence of smooth solutions in that cases. We show that the expected critical exponent
Yerit(X,p) = “lvol(X, p)'/™ can be expressed in terms of the normalized volume, an

important algebraic invariant of the singularity.
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VINCENT GUEDJ, ANTONIO TRUSIANI AND SEBASTIEN BOUCKSOM

Introduction

Let (X, p) be a germ of an isolated singularity. We analyze the existence of local Kéahler-Einstein
metrics of positive curvature in a neighborhood of p. It follows from [BBEGZ19, Proposition
3.8] that the singularity has to be log terminal, a relatively mild type of singularity that plays a
central role in birational geometry. We refer the reader to Definition 1.8 for a precise formulation
and simply indicate here that a prototypical example is the vertex of the affine cone over a Fano
manifold. Consider indeed

X ={zeC"" P(z) =0},
P a homogeneous polynomial of degree d € N* so that H = {[z] € CP", P(z) = 0} is a smooth
hypersurface of the complex projective space. Then (X, 0) is log terminal if and only if H is Fano

(which is equivalent here to d < n + 1). Thus log terminal singularities can be seen as a local
analogue of Fano varieties.

Given a local embedding (X, p) <+ (CV,0), constructing such a local Kihler-Einstein metric
boils down to solve a complex Monge-Ampere equation
e %du
(dd°p)™ = M

(MA)y, {
e 90‘8Q:¢7

where (2 is a smooth neighborhood of p, ¢ is a smooth boundary data, p, is an adapted volume
form (see Definition 1.9), and v > 0 is a parameter. We seek for a solution ¢ € C*(Q\{p})NC°(Q)
which is strictly plurisubharmonic in 2\ {p}, so that wxg := ddp is a Kéhler form in Q \ {p}
satisfying the Einstein equation

Ric(wgp) = YwikE-

An important motivation comes from the global study of positively curved Kéhler-Einstein
metrics wiggp on Q-Fano varieties. Such canonical singular metrics have been constructed in
[BBEGZ19] and further studied in [BBJ21, LTW21, Li22], extending the resolution of the Yau-
Tian-Donaldson conjecture [CDS15] to this singular context. Despite recent important progress
[HS17, Dr18, HP19, BGL22], the geometry of these singular metrics remains mysterious and one
needs to better understand the asymptotic behaviour of wx g near the singularities.

We restrict the metric wx g to a neighborhood of p and wish to analyze the behavior of its
local potentials wix g = dd°pk  near p. The latter solve a Monge-Ampere equation (M A), 4 q, as
can be seen by locally trivializing a representative of the first Chern class (after an appropriate
rescaling). The boundary data is thus given by the solution pxg = ¢ itself.

Studying the family of equations (M A), 4o we will give evidence that:

— the possibility of solving (M A), 4« should be independent of Q2 and ¢;
— the largest exponent 7¢;+(X,p) for which we can solve (M A), 4o should only depend on
the algebraic nature of the log-terminal singularity;

Following earlier works dealing with the case of compact Kéhler varieties or the local smooth
setting [BBGZ13, GKY13, BB22, BBEGZ19], we develop a variational approach to solve these
equations. A crucial role is played by

Ey(p) = : > / (¢ = do)(dd°p)? A (dd°co)" 7,
j=0"9

n+1 —
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the Monge-Ampere energy of ¢ relative to a plurisubharmonic extension ¢y of ¢. This energy
is a primitive of the Monge-Ampere operator and a building block of the functional F, whose
Euler-Lagrange equation is (M A), ¢.q,

1
¢ € TH) = Fy¢) = Bol) +~log | ¢ d, € R,
Q

Here 75(€2) denotes the set of all plurisubharmonic functions ¢ in € which are continuous on Q
and such that ¢j9q = ¢.

In order to solve (MA), 40 one can try and extremize F, by showing that it is a proper
functional. Our first main result in this direction (Theorem 4.1) is the following Moser-Trudinger
type inequality.

THEOREM A. For any 0 < v < "T‘Ha(X, L), there exists C,, > 0 such that
1
S
(/Q e_wdup> < Cyexp (—Ey(yp)). (MT)
for all ¢ € T4(£2).

The alpha invariant of the singularity (X, p) is defined by

a(X, pp) == sup {a >0, sup / e “du, < +oo} .
peF1(Q) JQ
where F7(€2) denotes the set of plurisubharmonic functions ¢ with ¢-boundary values, whose
Monge-Ampeére mass is bounded by [,(dd®p)" < 1.
When (X, p) is smooth, Theorem A has been obtained independently in [BB22, GKY13] with
a(X, pp) = n (the normalizations and methods are quite different in these two works, but they
eventually produce the same critical exponent).

We introduce
Yerit (X, p) := sup{y > 0 such that (MT,) holds}.

While Theorem A provides a lower bound for 7.+ (X, p), we provide an upper bound in Theorem
3.5, which yields
n+1

n+1-—
a(X, 1tp) < Yerit(X,p) < vol(X, p)/™,

where ;o\l(X ,p) denotes the normalized volume of the singularity (X,p). This is an algebraic
invariant of the singularity at p introduced by Chi Li in [Lil8|, which has recently played a
key role in the algebraic understanding of the moduli space of K-stable Fano varieties (see
[Blum18, Liul8, LWX21, LXZ22] and the references therein); we refer to Definition 1.15 for a
precise definition.

When p is smooth then o(X, p,) = ;(;l(X,p)l/” = n by [ACKPZ09, Dem09]. It is tempting
to conjecture that the equality a(X, y,) = vol(X, p)t/m

the following partial bounds on a(X, 1p).

always holds. We establish in Section 4

THEOREM B. The following inequalities hold

n let (X, p)

< a(X, 1) < vol(X,p)/™,
mult(X, p)1=1/7 1+ lct(X, p) (X, p) < vol(X, p)

Moreover o(X, p1p) = \70\1(X ,p)'/™ if (X,p) is an admissible singularity.
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Here mult(X, p) denotes the algebraic multiplicity of (X, p), while lct(X, p) is its log canonical
threshold (see Definition 1.12). Bounded «(X, p,) from below is quite involved; we show that
a(X, pp) = \70\1()(, p)'/™ when n = 2, but our lower-bound is not sharp when n > 3 unless (X, p)
is an admissible singularity, a notion introduced in [LTW21]. The vertex of the affine cone over
a smooth Fano manifold is an example of admissible singularity (see Section 4).

Using analytic Green functions and Demailly’s comparison theorem, we provide in Propo-
sitions 4.6, 4.8 evidence for the equality o(X,py) = vol(X, p)'/". The Appendix, written by
S.Boucksom, uses an algebraic approach based on [BAFF12], to establish a stronger result than
Proposition 4.8.

We note in Lemma 2.13 that if (MT’,) holds, then F, is coercive (a strong quantitative version
of properness). When v < ~¢rit(X, p), we then further show the existence of smooth solutions to

(MA)y 40

THEOREM C. If v < 7.4t (X, p) then there exists a plurisubharmonic function ¢ € C*(Q\ {p})
which is continuous in € with $l90 = ¢, and such that

6_’790de

= Ty Q.
Jo e edpy .

(dd°p)"

We expect the solution to be unique, at least when €) is a generic Stein neighborhood of p.
We refer the reader to [GKY13, BB22| for partial results in this direction when p is a smooth
point.

ACKNOWLEDGEMENTS. The authors are supported by the project Hermetic (ANR-11-LABX-
0040) and the ANR project Paraplui. The second author is supported by a grant from the Knut
and Alice Wallenberg foundation. We thank Sébastien Boucksom for writing the Appendix, which
enhances Proposition 4.8. We are grateful to the referee for suggesting many improvements.

1. Preliminaries

1.1 Analysis on singular spaces

Let X be a reduced complex analytic space of pure dimension n > 1. We let X,., denote the
complex manifold of regular points of X and Xing := X \ Xyeg be the set of singular points; this
is an analytic subset of X of complex codimension > 1. We always assume in this article that:

— Xsing = {p} consists of a single isolated point;

— Xyeg is locally irreducible at p;

— U is a fixed neighborhood of p and j : U < C is a local embedding onto an analytic subset
of CV for some N > 1.

As we are interested in the asymptotic behavior of Kahler-Einstein potentials near the singular
point p, we shall identify X with j(U) in the sequel.

1.1.1 Plurisubharmonic functions Using the local embedding j, it is possible to define the
spaces of smooth forms on X as restriction of smooth forms of C¥. The notion of currents on X
is defined by duality; the operators d and 9, d, d° and dd° are also well defined by duality (see
[Dem85] for more details).
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Here d = 0+0 and d° = - (9—0) are real operators and dd® = 5=99. With this normalization
the function z € C" — ppg(z) = log[l + |z|?] € R is smooth and plurisubharmonic in C", with

/ (ddpps)™ = 1.

DEFINITION 1.1. We say that a function u : X — RU{—o00} is plurisubharmonic (psh for short)
on X if it is the restriction of a plurisubharmonic function of CV.

We let PSH(X) denote the set of all plurisubharmonic functions on X that are not identically
—00.

5l
Si=

Recall that u is called weakly plurisubharmonic on X if it is locally bounded from above
on X and its restriction to X,e is plurisubharmonic. One can extend it to X by u*(p) :=
limsupy, ., 5y—p w(y). Since X is locally irreducible, it follows from the work of Forneess-Narasimhan
[FN80] that w is weakly plurisubharmonic if and only if «* is plurisubharmonic (see [Dem85,
Corollary 1.11})).

If w e PSH(X), then u is upper semi-continuous on X and locally integrable with respect
to the volume form

dVy == wl 4 N [X].
Here [X] denotes the current of integration along X and weye := Z;VZI idz; Ndzj is the euclidean
Kéhler form. In particular ddu is a well defined current of bidegree (1, 1) which is positive.

1.1.2 Pseudoconver domains and boundary data Following [FN80] we say that X is Stein if
it admits a C2-smooth strongly plurisubharmonic exhaustion.

DEFINITION 1.2. A domain € X is strongly pseudoconvex if it admits a negative C?-smooth
strongly plurisubharmonic exhaustion, i.e. a function p strongly plurisubharmonic in a neighbor-
hood Q' of Q such that Q := {x € Q' ; p(x) < 0}, dp # 0 on IR, and for any ¢ < 0,

Qe={reQ;plx)<cte

is relatively compact.

We are interested in solving a Dirichlet problem for some complex Monge-Ampeére equations in
a bounded strongly pseudoconvex domain 2 = {p < 0}, with given boundary data ¢ € C*(09).

DEFINITION 1.3. Given ¢ € C>®(992), we fix ¢y a plurisubharmonic function in € which is C*°-
smooth near Q and such that ¢g|0Q = ¢.

Such an extension can be obtained as follows: we pick (5 an arbitrary C2-smooth extension to
Q, and then consider ¢g := ¢ + Ap, for A so large that ¢g is C2-smooth and plurisubharmonic
in Q. All quantities introduced in the remainder of the paper are essentially independent of the
particular choice of the extension.

1.1.3 Monge-Ampére operators The complex Monge-Ampere operator (dd®-)" acts on a
smooth psh functions ¢. When X = C", it boils down to

2
(dd°p)"™ = ¢, det ( af > Weels

8zj8,zk

where ¢, > 0 is a normalizing constant.
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Bounded functions Following [BT82] this operator can be extended to the class PSH(X)N
L7 by using approximation by smooth psh functions: given ¢ € PSH(X) N L7, there exists a

loc?
unique positive Radon measure ji, on X such that for any sequence (¢;) of smooth psh functions

decreasing to ¢, one has
py = lim(ddp;)",
where the limit holds in the weak sense. One then sets (dd“p)" := pu,.

DEFINITION 1.4. We set
T5(Q) = {p € SPSHQ) N C®@) : 9o = 6},

where SPSH(S?) is the set of strictly plurisubharmonic functions, and
To(2) == {(,0 € PSH(Q) OCO(Q) L Plan = @, /Q(ddcgo)" < —|—oo},

This latter class has been introduced by Cegrell in [Ceg98]; it can be used as a psh version of
test functions (in the sense of distributions), as well as a building block for finite energy classes
of mildly unbounded functions.

LEMMA 1.5. Any ¢ € Ty(9) is a quasi-decreasing limit of functions in T5°(€2).

Proof. Fix a local embedding X < CV. A function ¢ € T5(9) is the restriction of an ambient
continuous psh function 1. We use standard convolution in CV to find a sequence of smooth
strictly psh functions 1; decreasing to 1. Consider ¢; = 1/)]-| x — &j, where 0 < g; goes to
zero so that ¢; < ¢ near 02 (the functions 1/1]-‘  uniformly converge to ¢ by continuity). Set
;= max(p;, Ajp + ¢o), where max is a regularized maximum, then ¢; € 7;;”(9) converges to
pas Aj — +oo. O

Midly unbounded functions The complex Monge-Ampere operator can be defined for mildly
unbounded psh functions. We refer the reader to [Ceg04, Blo06] for the case of smooth domains
in C™; their analysis easily extends to our context.

DEFINITION 1.6. We let F(£2) denote the set of all functions ¢ € PSH(£2) which are decreasing
limit of a sequence of functions ¢; € T4(€2) such that

sup/(ddccpj)" < +o0.
Jj JQ

The operator (dd®)™ is well defined on F(£2), continuous along monotonic sequences, and
yields Radon measures (dd°p)™ which have finite mass in Q. We endow F () with the L!-
topology. Let us stress that the operator ¢ — (dd°p)™ is not continuous for the L!-topology, but
the class F(€) enjoys the following useful compactness property.

PROPOSITION 1.7. The set F1(Q) = {¢ € F(Q); [,(dd°¢)™ < 1} is compact.

This is shown in [Zer09, Observation A.3] for smooth domains, and the same proof applies in
our midly singular context. Let us stress that the Monge-Ampeére operator cannot be defined for
all psh functions: there is e.g. no reasonable way to make sense of (dd°log|z1|)". A consequence
of Proposition 1.7 is that one can not approximate such a function by a decreasing sequence of
psh functions with prescribed boundary values and uniformly bounded Monge-Ampere masses.
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1.2 Adapted volume form

1.2.1 Log terminal singularities Let Y be a connected normal complex variety such that Ky
is Q-Cartier near p € Y. One can consider the dd®-cohomology class of —Ky, denoted by ¢;(Y).

Given a log-resolution 7 : Y =Y of (Y,p), there exists a unique Q-divisor ), a;F5; whose
push-forward to Y is 0 and with

K{/ =71"(Ky) + ZaiEi.
%

DEFINITION 1.8. The coefficient a; € Q is the discrepancy of Y along Ej;. One says that p is a
log terminal singularity if a; > —1 for all j.

It is classical that this condition is independent of the choice of resolution. In the remainder
of this article we assume that
— the singularity (X, 0) is log terminal.
— Y = Q is a strongly pseudoconvex neighborhood of 0 = p € X;
— the canonical bundle K¢ is Q-Cartier and rKq = 0 for some r € N.
DEFINITION 1.9. [EGZ09, Definition 6.5] Fix o a nowhere vanishing holomorphic section of r Kg,
and h a smooth hermitian metric of Kq, then
(cno A &)

:U’p = 2
i

is an adapted measure, where A > 0 is a positive normalizing constant.
Observe that p, is independent of the choice of o, and
dd®1og 1, = —Oh(Kq)

is the curvature of h, as follows from the Poincaré-Lelong formula.

The measure j, has finite mass by [EGZ09, Lemma 6.4]: let 7 : © — Q be a resolution of
(©,0), then

M
= A [Isz, [ dVg,
j=1
where dVg is a smooth volume form on Q, Ey, ..., En are exceptional divisors, the sg;’s are
holomorphic sections such that E; = (sg, = 0), and

M M
rKg =" (rKq) + rz ajEj = TZCL]’EJ'.
j=1 j=1

Thus f = Hj]\il\sEj 2% belongs to L*(dVg) for some s > 1, as p is log terminal.
DEFINITION 1.10. We choose A = A\ so that p, is a probability measure in (2.

The results to follow are independent of this (convenient) normalization.

1.2.2 Ricci curvature Let w be a positive closed current of bidegree (1,1) in  with bounded
local potentials. Its top power w™ is well-defined as explained in Section 1.1.3. If w” is absolutely
continuous with respect to dVx, then we set

Ric(w) := —dd‘logw™.
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DEFINITION 1.11. We say that w is a Kéhler-Einstein metric if it satisfies
Ric(w) = yw
for some v € R.

In this article we are mainly interested in the case when v > 0. We choose the hermitian
metric h = 1 for Kq, so that ©, = 0. Since

Ric(w) = Ric(up) — dd®log(w"™/pp),
the above Kéhler-Einstein equation is equivalent, writing w = dd°p, to
(dd*o)" = e %€

where w is a pluriharmonic function in Q. Changing ¢ in ¢ — w/7v and then ¢ in tp (observe
that Ric(tw) = Ric(w) for any ¢ > 0), we can normalize w by [,w™ = 1 and reduce to

_ e—’YSOMp
fQ e 1Py

Seeking for a Kéhler-Einstein metric thus leads one to solve (M A), 4 .

(ddp)"

Conversely solving (M A), 4o will produce a Kahler-Einstein metric w = dd°p, if we can
establish enough regularity of the solution .

1.2.3 Log canonical threshold We consider the density f = pp/dVx. It is related to the
density f in a resolution by
Ty = fom-mtdVy = fdV.
An analytic expression for f is obtained as follows. Recall that dVx = w, , A [X], where wey
denotes the euclidean Kéhler form on CV. Set dz; = dzi, \---Ndz;,, where 1 < i; < --- <ip < N.
There exists germs of holomorphic functions f; € Oq o such that (dz;)r = fro since o is a local
generator of r K x. In particular the volume form dVx := w2, ,A[Q] is comparable to< o lfil %> Lp,

i.e.

by = fdvx, with £~ (SI5lF)
I

The germs of holomorphic functions f; generate an ideal Z;, where Z" is an ideal sheaf
associated to the singularities of (X, p). In particular

M
7T_1.'Zr . OQ = OQ( — T’ijEj)
7j=1

for coefficients b; € N such that fom ~ Hj]\iﬂsEj =20

DEFINITION 1.12. The log canonical threshold of (X, p) is given by

a; +1
let(X,p) := inf —L—.
tXop)= il
We let the reader check that the definition is independent of the choice of resolution, and
that lct(X,Z) € (0,n]. One can equivalently use the following point of view: if Z is a general
ideal sheaf,
Ax(E)
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where Ax(FE) := 1+ ordg(Ky/x) is the log-discrepancy of F, and the infimum is over all prime
divisors F on resolutions Y of X. When Z is supported at p we can restrict in (1.1) to consider
prime divisors centered at p.

J=0"%3
isolated log terminal singularity which is not a quotient singularity when n > 3 (when n = 2,
log-terminal singularities are precisely the singularities of the form X = C?/G, G € GL(2,C) a
finite subgroup).

EXAMPLE 1.13. The ordinary double point (ODP) X = {z eCntl ST 22 = 0} is the simplest

In this case Z2 = (22,...,22). Indeed the n-forms

(dzo A Adzp Ao Adz)” __(dzUA-~-Ad/z\j/\-~-Adzn)2

o = = ,
% Ykti %

defined on U; := {z; # 0}, glue together to give a local generator o of 2Kx (note that

> j—o #jdz; = 0). In particular |f112/7 = |2;|? where j = [0,n] \ I, r = 2 and

1
SN YANET
If 7 : BlpC**! — C*! denotes the blow-up at 0, E the exceptional divisor, and F the
restriction of E to Y, the strict transform of X, we obtain
71T Oy = Oy(=2F) and n*p, = |sp 2" 2DdVy
for a smooth volume form dVy-. Thus let(X, p) = 1ct(X,Z) =n — 1.

dVx

We will need the following result which connects lct(X, p) and the integrability properties of
the density f = p,/dVx.

LEMMA 1.14. The density f = p,/dVx belongs to L"(dVx) for r < 1+ lct(X, p).
Proof. Let 7 : © — Q be a resolution of the singularity. Recall that
M M M
f OT ~~ H|8Ej|72bj and f = H|8Ej|2aj, hence TI'*CZVX ~ H’SEj|2(aj+bj)dVQ.
j=1 j=1 j=1
It follows that [o, f"dVx ~ [5 [T} |sm, 2@ 72 dVg < 400 if and only if r < % for all

Jj, which yields the statement since lct(X, p) = inf § 1:;" . O

1.3 Normalized volume
The (Hilbert-Samuel) multiplicity of an ideal Z supported at p is defined as
(Ox.,/T™
e(X,Z):= lim HOx,p/1™)
m—+oo  m"/n!
where [ denotes the length of an Artinian module.
Given a divisor E over X centered at p, the volume of E over p € X is
i UOxp/am(E))
VOlX’p(E) = m1—1>r—ir-loo m”—/n'

where a,,(E) := {f € Ox, : ordg(f) = m} (see [ELS03]).
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DEFINITION 1.15. [Lil8] The normalized volume of p € X is
vol(X,p) := inf volx,,(E
vol(X, p) = inf volx,(E)

where the infimum runs over all prime divisors E over X centered at p, and
volx p(E) := Ax(E)" - volx »(E).
is the normalized volume of E over (z € X).

We shall need the following important result.

THEOREM 1.16. [Liul8, Theorem 27] Let (X, p) be a log terminal singularity of complex dimen-
sion dimc X = n. Then
vol(X,p) = inf  let(X,I)" - e(X,T).
T supported at p

Observe that the quantity let(X,Z)™-e(X,Z) is invariant under rescaling Z — Z", r € N. One
can actually only consider coherent ideal sheaves supported at p. Indeed any ideal Z supported
at p is associated to a closed subscheme Z such that Supp Z = {p} [Hart77, Corollary 11.5.10],
while any ideal associated to a closed subscheme is coherent [Hart77, Proposition I1.5.9].

ExAMPLE 1.17. Consider again X = {z e Cntl > =0 z? = 0} . Recall that 72 = (2%,...,22)
is the ideal sheaf associated to the adapted measure, and that the ideal Z? corresponds to 2F

where F' is the exceptional divisor in the blow up at p. In particular Ax (F) =n — 1.
We observe here that e(X,Z?) = 2"+ and @XW(F) = 2(n — 1)" since

HOx,/T*™) = 1(Ox p/asm(F)) = 2"+1% +O(m™ Y.

In [Lil8, Example 5.3] it is further shown that F' is a minimizer for the normalized volume of
p € X, i.e. that vol(X,p) =2(n —1)".

2. A variational approach

A variational approach for solving degenerate complex Monge-Ampere equations has been de-
veloped in [BBGZ13] in the context of compact Kahler manifolds. It notably applies to the
construction of singular Kéhler-Einstein metrics of non-positive curvature. This has been par-
tially adapted to smooth pseudoconvex domains of C" in [ACCI12].

The case of positive curvature is notoriously more difficult, as illustrated by the resolution of
the Yau-Tian-Donaldson conjecture by Chen-Donaldson-Sun [CDS15]. It has been treated exten-
sively in [BBEGZ19], and eventually lead to an alternative solution of the Yau-Tian-Donaldson
conjecture for Fano varieties [BBJ21, LTW21, Li22]. Adapting [BBEGZ19] to our local singular
context, we develop in this section a variational approach for solving the equation

c \n _ _€ Pdup
(MA), 60 {(dd o) = Jo e 7#duy (2.1)
Plon = ¢-
2.1 Monge-Ampeére energy
2.1.1 Smooth tests Fix = {p < 0} and ¢ as described previously, and

T () = {g@ € SPSH(Q)NC™®(Q) : Plo0 = gb}

10
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Recall that ¢ € C®(Q) N PSH(Q) denotes a smooth psh extension of ¢ to Q. We set
w = dd°pq. This is a semi-positive form, which can be assumed to be Kéhler. However if ¢ = 0,
we can equally well take ¢g = 0 and get w = 0.

DEFINITION 2.1. We call Ey(p) = 531 [o(o — ¢o)(dd°p)T A (dd¢o)™ ™ the ¢-relative
Monge-Ampere energy of ¢ € 7;500(9)

While the formula depends on the choice of ¢g, it follows from Lemma 2.2 that the difference
of two such relative energies is constant,

E¢>1 (4,0) - E¢>0 (90) = E¢>1 (¢0)
For ¢p = 0, the formula reduces to E(p) := Ep(¢) = n%rl fQ o(ddp)™.

This definition is motivated by the fact the Ey is a primitive of the Monge-Ampere operator
for smooth psh functions with ¢-boundary values.

LEMMA 2.2. Fix ¢ € 72°(Q),v € D(Q). Then ¢ + tv € T3°(Q) for t small, and

d
—  Euylp+tv) = / v(ddp)".
di g ole Htv) = | v(dd'e)
In particular ¢ — Ey(yp) is increasing.

Here D(Q2) denotes the space of smooth functions with compact support in .

Proof. Fix ¢ € T2°(Q2) and v € D(Q). Since v is smooth with compact support, the function
+v + Cp is psh for C' > 0 large enough, while ¢ — gp is psh for £ > 0 small enough. It follows
that ¢ + tv is psh for ¢ small enough.

Set w = dd®¢g. The function ¥y = ¢ — ¢g + tv has zero boundary values, and
1 & . .
E tv) = —— dd)? AW,
ol + ) Hl;/gwt(w Y Aw

It follows from Stokes theorem, as all functions involved in the integration by parts are identically
zero on 0f2, that

d
(n+ 1)£E¢(<P + tv)

— }n: ' dde )7 AW En: by ddCo ddyy)? AW
jo/52¢t(w+ V) ANw +j1/9]1/1t Py N (w +ddyP)) ™" ANw

— En: ' dde)? AW En: by dde ddyy)? AW
j—o/ﬂwt(w—i_ V) Nw +j_1/9]1/1t Yy N (w +ddYP)) ™" Aw

— . . 1 i ddc 7 n—j - .7 ddc 7j—1 n—j+1
;:0 /Q (G + Dol + dd4he A j§:1 /Q e+ ey A w

= (n+1)/ Ui (w + dd)"

Q

writing dd®i; = (w + ddY;) — w in the third line, and then distributing and relabelling so as to
obtain a telescopic series. The formula follows for ¢t = 0.

In short the derivative of Ej is the complex Monge-Ampere operator (dd°p)™ which is a
positive measure. It follows that ¢ = E4(y) is increasing. O

11



VINCENT GUEDJ, ANTONIO TRUSIANI AND SEBASTIEN BOUCKSOM

2.1.2 Continuous setting The previous result extends to the case of continuous plurisubhar-
monic functions that are not necessarily strictly psh. Recall that

%(Q) = {(,0 € PSH(Q) N CO(Q), Yo = ¢ and /

(dd°p)" < —i—oo} :
Q

We would like to extend Lemma 2.2 to this less regular setting. As ¢ + tv is not necessarily
plurisubharmonic, we need to project it onto the cone of all plurisubharmonic functions. The
following result will thus be useful.

LEMMA 2.3. Fix ¢ € T4(R?) and f € D(Q). Then P(¢ + f) € Ty(2) where

P(o+ f) :==sup {1/1 € PSH(Q), v <o+ f}.
Moreover (dd°P(p + f))" is supported on the contact set {P(¢ + f) = ¢ + f}.
Proof. Since ¢+ f is bounded and continuous, it is classical to check that the envelope P(¢ + f)

is a well-defined psh function. As f has compact support, one moreover checks that P(¢ + f) is
continuous on 99 with P(¢ + f)jaa = ¢jaa = ¢-

Solving Dirichlet problems in small ”balls” not containing the singular point, it follows from a
balayage argument that the Monge-Ampere measure of the envelope (ddCP (p+f ))n is supported
on the contact set {P(p+ f) = ¢+ f}. O

We extend Ey(-) to T4(2) by monotonicity, setting
Ey(p) :=inf {Es(¥), ¢ € T5°(Q) and o < 9} .

It has been observed by Berman and Boucksom (in the setting of compact Kahler manifolds
[BB10]) that Ey o P is still differentiable, with (Ey o P)" = Ej o P. This result extends to our
local singular setting.

PROPOSITION 2.4. Fix ¢ € T4(Q) and f € D(Q). Then t — E,(P(¢ + tf)) is differentiable and

d
— F t (ddp
dt |t=0 ¢( (p+ f /f

Proof. The proof is very similar to the one in the compact case, we provide it as a courtesy to
the reader. Set ¢; := P(¢ +tf). By Lemma 2.5 below we have

/Q(wt — P)(ddpr)" < Eg(r) — Eg(p) < /(901: p)(dd°p)". (2.2)
Since ¢ — ¢ < tf, the second inequality yields
E
lim sup d)(% / fddp)
t—0t
. . Ed,(got c
and liminf, ,o- —F5—22 > [ f(ddp

It follows from Lemma 2.3 that (ddcapt)” is supported on {p; = ¢ + tf}, hence the first

inequality in (2.2) yields
/ Pt — ddc(pt n / f ddc n
Q t

Now (dd®p;)™ — (dd°p)™ weakly since Lpt — ¢ uniformly, therefore

E Byl
lim inf 2P0 = Bo(@) o i / F(dde o)™ = / F(ddep)"
Q

t—0+ t t—)0+

12
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and

E — Ey(
lim sup s(#r) G < lim sup / f(dd“pr)" / f(ddp

t—0~ t t—0~

LEMMA 2.5. For any @1, 2 € Ty(Q),

/Q (01 — @2)(dd°1)" < Eoln) — Esla) < /Q (1 — p2)(dd°a)", (2.3)
while if 1 < @2 then

Eolon) = Bolo2) € — [ (01— wa)(ddp)" (2.4)
n X

The energy is continuous along decreasing sequence in Ty(£2).

Proof. 1t follows from Stokes theorem that

Ey(p1) — Eg(p2) = ni - /Q(cpl — @o)(dd°pr1) A (dd°p2)"
=0

and
/(901 — o) (dd®p1 )7t A (ddp2)" 7 < /(901 — @2)(dd®p1)? A (ddp2)™ 7,
Q 0

for any j =0,...,n — 1. The desired inequalities follow.
Let ; € T4(€2) be a decreasing sequence converging to ¢ € 74(2). We obtain

0< Eylipy) — Eolp) < /Q (5 — 9)(dd°9)" = 0

as j — +o0o by Monotone Convergence Theorem. O

2.1.3 Finite energy class Let PSHy(€)) denote the set of decreasing limits of functions in
T5(£2). We extend Ey4 to PSHy(€2) by monotonicity, setting

Eg(p) :=inf {E4(¥), ¢ € Ty() and o <9} .
DEFINITION 2.6. We set £1(Q) := {¢ € PSH4(Q); Es(p) > —oc}.
This ”finite energy class” has been introduced and intensively studied by Cegrell for smooth

domains of C™. His analysis extends to our mildly singular context. We summarize here the key
facts that we shall need.

THEOREM 2.7 Cegrell. The complex Monge-Ampére operator (dd®)" and the energy E, are
well-defined on the class £*(£)). Moreover

— functions in £Y(Q) have zero Lelong numbers;

— the sets Gp(2) = {p € EX(Y), —b < Ey(yp)} are compact for all b € R;

— Lemma 2.5 holds if @1, ps € EY(Q);

— if pi is a non pluripolar probability measure such that £'(Q) C L'(u), then there exists a
unique function v € EY(Q) N F1(Q) such that p = (ddv)".

We refer the reader to [Ceg98, Theorems 3.8, 7.2 and 8.2] for the proof of these results when
Q is smooth.

13
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2.2 Ding functional
2.2.1 Euler-Lagrange equation The Ding functional is

1 _
Py (¢)i= Eol) + ~log [ %,
Y Q
PROPOSITION 2.8. If ¢ maximizes F, over T4(§2) then ¢ solves the complex Monge-Ampére
equation (2.1).

Proof. Assume that ¢ maximizes F over T4(12), fix f € D(2), and set ¢; := P(¢ +tf). Then
1
Bylon) + - 1og | 0y, < F 1) < (),

i.e. the function t — Ey(¢¢) + %log fQ 6_7(‘p+tf)d,up reaches its maximum at t = 0. Combining
Proposition 2.4 and Lemma 2.9 below, we obtain

d 1 _ e ¥du
- (E 21 Y(e+tf) g — / dd¢o) — —— PP
0 dt( olon) + - og/Qe Mp) o\ = = )

i.e. ¢ solves (2.1). O
LEMMA 2.9. Fix ¢ € T5(Q), f € D(?), and set ¢, := p +tf. Then

d e~ d
(log/ e—vibtdup) _ _,},u.
dt Q |t=0 Jo e ?dpy
Proof. By chain rule, it is enough to observe that

Joe "dpy — [ e Pdpy R Y et i d
m 0 e ’ Hp

and to apply Lebesgue Dominated Convergence Theorem to conclude. O

2.2.2 Coercivity In order to solve (2.1), one is lead to try and maximize F,. We will show in
Section 5 that when F, is coercive, the complex Monge-Ampere equation (2.1) admits a solution
¢ € T4(92) which is smooth away from p.

DEFINITION 2.10. The functional F is coercive if there exists A, B > 0 such that
Fy(p) < ABy(p) + B
for all ¢ € T4(£2).
We observe in Lemma 2.13 that E4(¢p) < C(¢o) is bounded from above, uniformly in ¢ €
T5(2). In particular if F), is coercive with slope A > 0 then it is coercive for any A’ € (0, AJ.

We can thus assume, without loss of generality, that A € (0,1). The coercivity property is then
equivalent to

1
g / e %dp, < (1— A)(—Ey(¢)) + B,
Q

or, equivalently, to the following Moser-Trudinger inequality
1

< / e—wdﬂp> " < Ce-A-Ey(9)).
X

We summarize these observations in the following.

14
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ProrosiTION 2.11. Fix v > 0. The following properties are equivalent:
i) F, is coercive;
ii) there exists C-y > 0 and a € (0,1) such that for all ¢ € T4(£2),

1
Q

It follows from Holder inequality (and the normalization p,(€2) = 1) that if

1/
([ o) < ceso 25)
Q

holds for v > 0, then it also holds for 7/ < . We thus introduce the following critical exponent.
DEFINITION 2.12. We set
Yerit (X, p) 1= sup {7 > 0, (2.5) holds for all ¢ € %(Q)}
LEMMA 2.13. The functional Ey is bounded from above on Ty(2). Moreover
— if F is coercive then v < Yerit(X, p);
— conversely if v < 7.4 (X, p) then F, is coercive.

Proof. Consider b0 = P(¢) := sup{,v € T5()}. This is the largest psh function in Q such
that ¢ = ¢ on 0€2. The reader can check that it is continuous on Q and satisfies (dd¢)™ = 0
in Q. If ¢ € T(2) then ¢ < ¢o hence E; (¢) < 0. Thus

By () = E¢~0 (¢) + Ey, (Qgﬂ) < By, (ng)»

hence Ey,(¢) is uniformly bounded from above independently of the choice of ¢y.

Similarly the coercivity of F, or the inequality (2.5) do not depend on the choice of ¢¢. In
the remainder of this proof we thus assume that ¢y = P(¢). Since Ey(¢) < 0 in this case, it
follows from Proposition 2.11 that if F, is coercive then (2.5) holds, hence v < verit (X, p).

Conversely assume v < Vet (X, p). Fix v < 7 < verit (X, p) and A = /4" < 1. We can assume
that A is close to 1. We assume first that ¢ = 0. For ¢ € T5(€2) we observe that Ay € To(£2), with
Eo(Ap) = A" Ey(¢). The Moser-Trudinger (2.5) applied to (7', Ap) thus yields

1
(/ e’wdup> M < Cvfe*AnEO(“’),
Q

so that I, is coercive.
We now treat the general case, replacing the condition ¢ = 0 by (dd°¢g)" = 0. For ¢ € T4(12)
we observe that ¢y = Ap + (1 — X)¢go € T(Q2), with ¢y — ¢o = A — ¢o) < 0 and

n—1
(n+ D)y (p2) = A / (¢ — do)(ddpr) A (ddo)™™
j=0"¢
_ —~ ] k1 _ j—k . c, \k c n—k
—A%Z%(QA (1= 27+ [ (o= w)a o)t n (d)

Now Z?:k < ‘]Z: > /\k(l —AN7F <a<1lforall l <k < n,since A\ < 1 can be chosen

arbitrarily close to 1. Thus Eg (o) = aAEg, (@) and the result follows as previously by applying
the Moser-Trudinger inequality (2.5) to ¢j. O
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2.3 Invariance

We give here some evidence that that the critical exponent 7.+ (X, p) should be independent of
the domain ) and the boundary values ¢.

2.3.1 Enlarging the domain We first reduce to the case of zero boundary values.

PROPOSITION 2.14. Let 3 be a smooth strongly pseudoconvex domain containing €. If the
Moser-Trudinger inequality holds for (y,$s,0) then it holds for (v, $, ¢).

Proof. Consider indeed ¢ € T4(€2) and set
w9 :=sup {u € To(Q2), such that u < ¢ in Q}.

The family F of such functions is non-empty, as it contains Apy for some large A > 1, where
po is a psh defining function for . Moreover F is uniformly bounded from above by 0, so the
upper-envelope 9 is well-defined and psh, as F is compact. Finally o > Aps, hence s has zero
boundary values, and ¢ is lower semi-continuous, as an envelope of continuous functions, thus
©2 € To(S22).

Since @2 < ¢ in ), we observe that

/e_wdupé/ e 92y,
Q Qo

Our claim will follow if we can show that on the other hand Ey(p2) > Ey(¢).

If ¢ is smooth one can show, by adapting standard techniques, that
— g is ChI-smooth in Qy \ {p};
— (ddp2)" = 0in Qp \ Q and (dd°p2)" = 1y, (ddp)"™ in Q.
Assuming ¢ > 0 and ¢g = sup{e), ¥ € Ty(2)}, we infer

1 1
Eo(pa) = —— | wa(ddps)" = Lipa=pyp(dd )"

1
> ddco)" > —— [ (p — $)(dd°0)" = Ey(p).
— | etaaer > — [ (o - oare) > Bule)

To get rid of the assumption ¢ > 0, we observe that the Moser-Trudinger inequality holds for
given boundary data ¢ if and only if does so for ¢ + ¢, for any ¢ € R (by changing ¢ in ¢ + ¢).

Using Lemma 1.5, one can uniformly approximate ¢ by a sequence of smooth ¢; € T5(£2).
The corresponding sequence o ; uniformly converges to 2, and we obtain the desired inequality
by passing to the limit in Eo(p2;) = Es(p;). O

2.3.2 Rescaling We now assume that ¢ = 0 and reformulate the coercivity property after an
appropriate rescaling. Observe that for any A > 0, the map

v € To() = Ao € To(Q)
is a homeomorphism. This allows to reformulate the Moser-Trudinger inequality:
ProposITION 2.15. The following statements are equivalent:
a) F, is coercive;

b) 3C > 0,B € (0,1) such that for all ¢ € To(Q), [, e Pdp, < Ce 7 Eol#),
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In particular we can define the following critical exponent.

DEFINITION 2.16. We set

Berit := inf {5 >0; sup (/ e_SDde/e—ﬁEO(@)) < —l—oo}.
Q

v€T0(2)

Note that 7., = 1/Berit, hence it follows from the previous analysis that F, is coercive if
and only if v < Bc_rit/ ", When p € X is smooth, it has been shown in [GKY13, Theorem 9] and
independently [BB22, Theorem 1.5] that
1
/Bcrit(Q) =

(n+ 1)’
or equivalently that v.+(2) = n + 1. In particular it does not depend on €.

We extend this independence to the case when p is the vertex of a cone over a Fano manifold.

PROPOSITION 2.17. Assume that (X, p) is the affine cone over a Fano manifold Z embedded in

a projective space by the linear system | —rKz| for r € N such that L = r K3, is very ample, and
fix A € C*. The Moser-Trudinger inequality holds for (v,$2,0) iff it does so for (v, 2, 0).

Proof. Let L = rK7, let Dy denote the dilatation z — Az and set 2y = D»(€2). We blow up p
to obtain a resolution f :Y — X, where Y is the total space of L* and the exceptional divisor
FE is the zero section of L*.

Recall that Ky = f*Kx + aFE, where a is the discrepancy of Y along E. The adjunction
formula yields (Ky +E) g = Kg hence K, = (a+1)L. In particular a = —1+1/r and (X, p) is log
terminal. The fibration 7 : Y = L* — Z yields Ky = n*(Kz+L) hence f*Kx = n*(Kz+L)—akFE.

Since 7*(Kz + L) is C*-invariant, we can cook up an adapted volume form p, = p11 - pg with
D py = py while Dipg = |[A*ug. For ¢ € To(Q2) we set ¢y = o Dy € To(£2) and observe that

)\’211/96’Y@>\dup:/ﬂ e*%@dup’
A

while Eqo(px) = Eq, 0(¢). The conclusion follows. O

We conjecture in Section 4 that 7epit(X, p) L "TH;(;I(X, p)l/” and give partial results to-

wards this equality, which again suggest that 7..;+(X, p) should be independent of (€2, ¢). In the
whole article we therefore use the notation 7..;+(X,p) instead of the more precise -and heavy-

'VCrit(Xa P, ¢)
3. Upper bound for the coercivity

The purpose of this section is to establish the following upper bound
1

n+1—
'Ycrit(Xu p) < VOI(X7p)1/n'

Adapting the proof of [BB17, Theorem 1.6], we will construct approximate Green’s functions to
test the thresholds in the Moser-Trudinger inequality.
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3.1 Functions with algebraic singularities

Let Z be a coherent ideal sheaf, and fi,..., fv € Ox, be local generators of Z,. The plurisub-
harmonic function

N
7 = log (Z|fi|2)
i=1

is well defined near p, with algebraic singularities encoded in 7.

PROPOSITION 3.1. Let Z be a coherent ideal sheaf supported at p. Then
e(X,7) = / (ddccpz)n
{r}
and
let(X,Z) = sup {a >0: / e Tdu, < —i—oo}
Q
where Q is any (small) neighborhood of p € X.
These algebraic quantities are thus independent of the choice of generators.

Proof. The equality e(X,Z) = || ) (ddccpz)n is classical when  is smooth (see e.g. [Deml2,
Lemma 2.1]), and the proof can be adapted to the singular context (see [Dem85, Chapter 4]).

Let 7 : Q — Q be a local log resolution of the ideal (X,7), i.e. a composition of blow-ups
such that 7, = Hj-V:l]sE]. 243 dVe, and

M
71T 04 = OQ( -3 bjEj)
j=1

where b; € N, a; € Q-_1, and FE1, ..., Fy have simple normal crossings. Observe that

‘ E ‘Qa]
_aapzd / d / s, 2(a;—ab; )dV ’
/ e QH| | ;

is finite if and only if a; — ab; > —1 for any j = 1,..., M, i.e. if and only if

. a; +1
a< inf
j=1,....M '

as recalled in Definition 1.12. O

=let(X,7),

3.2 Approximate Green functions

The functions Az play the role of Green functions adapted to the singularity (X, p). We show
here how to approximate them from above by smooth functions with prescribed boundary values.

LEMMA 3.2. Let Z be a coherent ideal sheaf supported at p, and let fi,..., f,, denote local
generators of . Fix an open set ) € (). There exists a family {7 ) € PSH(2)NC>=(9)

})\>0,e>0
such that

i) @1 eon = ¢ for any X > 0,€ € [0, 1];
i) orae = Alog (X7 fil> + €%) + do in &,
i) oz xe N\ Pz A0 =: Pz as € \ 0 for any X\ > 0 fixed.
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Proof. Without loss of generality we can assume that that 7| fil* <1/e —1in Q. Let p be
a smooth psh exhaustion for Q and ix 0 <r <« 1,0 <9 < 1 small enough. There exists A>0
big enough and relatively compact open sets B,.(0) € Q' € Q2 € Q such that

log (D_Ifil* +1) + 6 < Ap over 2\ 0,
j=1

while log (Z£1|fj|2) — 0 = Ap over '\ B,(0). We infer that
Ap on Q\Q
UT e 1= { Maxs <log ( Z;”:l]ij + 62),Ap> on Q\ ¢
log (272, |f* +€%) on

is a decreasing family (in € € [0, 1]) of plurisubharmonic functions which are smooth in O\ {p}
(smooth in Q for € > 0) and which are identically 0 on 0. Here maxs(-, -) denotes the regularized
maximum. The lemma follows by setting ¢z := Auz,e + ¢o. O

We now compute the asymptotic behavior, as € decreases to 0, of the quantities involved in
the expected Moser-Trudinger inequality.

LEMMA 3.3. Let T and {¢7c}ec0,1] C Tp(§2) be as in Lemma 3.2. Then for any v > 0,A > 0
fixed there exists a constant C) , € R (independent of €) such that
Coy + (YA = 1et(X, 7)) log e?2g log/ e ¥ edp, (3.1)
Q

for all 0 < € < €p.

Proof. Taking a log resolution 7 : Y — X we obtain
1

/eWIAvfdup > // iy
o (Salfil? +e2)

M )
Hj:l sk, |2

201 /1(9/) M 2b.; 2 i
) (T Jsg 1 + €2)

5\ dvﬂ.—l(Q/),

where C} is a uniform constant (independent on €). We set
Hj]\/i1|3Ej |23
<Hj1\/il‘sEj‘2bj + 62)7)\.
We can assume without loss of generality that let(X,Z) = “%—J{l. Pick z € Ey,z ¢ Ej;,j =
2,...,M. We can find 0 < r < 1 so small that B,(z) N E; = () for any j =2,..., M. We choose

holomorphic coordinates (z1,...,z,) centered at x such that Ey = {z3 = 0}. Thus, setting
a:=ay,b:=b; and ¢ := Y\ we get

/ fav; >C / 21> dA(z) = C / Tt
() = 1 19h . _o\C = 7 on . o\C
() @) 2 () (\21|2b i 62) 3 0 (u2b + E2)

where Cy, C3 are uniform constants. If ¢ < %} (i.e. YA < let(X,Z)) then
T u2a+1 /1 u2a+1
————cdu > — = C
/o (u? + 2)° o (wr+1)" "
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and (3.1) trivially follows. If ¢ > %} then the substitution v := u/e!/? yields

T 20+ _2( _LH) r/el/b p2a+1
— _du= c -
/0 (u?t + €2)° e b /o (v +1)°

T 2a+1
—2(yA—1ct(X,T) v
> € (’Y ¢ )/0v Wd’l}

The lemma follows. OJ

LEMMA 3.4. Let T and ¢1)¢ € Tp(2) be as in Lemma 3.2. There exist positive constants
{Cir}een a0 and a family of functions Fy : (0,1] — Rsq such that

An+1

—E¢(QOI’,\,€) g C&)\ + Fg(e) log 672,

n+1
for any € € (0,1], where

— {Crr}een x>0 Is independent of € € (0, 1];

— Fy(e) = Fp(0) =1 e, > 0 as e \ 0;

— e \e(X,7) as £ — +o0.

Proof. We take a sequence {€}scn of open sets such that Q1 € Q for any ¢ € N and such that
Meen e = {p}. Since Q; C Q' (same notation of Lemma 3.2) for £ € N big enough, we obtain

1 n . i
— Eg(pzae) = " Z/Q (o — oz 0 ) (ddpz 0 e)” A (ddpo)" ™
=0

1

= —@zne) (ddpzp )’ A (ddopo)" ™
T 2 /Q\Qz (0 — Pz ae) (dd°pzae)” A (ddp)

! : Z/ N log (1l + €) (ddclog(2|fk\2+e2)>j/\ <ddc¢0)n7j. (3.2)
n+ j=0 " k=1 k=1

The first term on the right hand side of (3.2) is uniformly bounded in € € [0, 1], for A > 0,/ € N
fixed, since {1, )\76}66[071} is a continuous family of smooth functions on ©\ §,. We let Cy » denote
a uniform upper bound for this quantity.

The second term on the right hand side of (3.2) is bounded from above by

_ ni 1 Z/ N og (Y1l +€) (ddclog (D Ifiul*+ 62))j A (ddc¢°)n_j
~ Jo, — k=1

pan e . “ j o\
< S loge Qj;/m (dd 1og(;yfky2+e2)) A (dd ¢0> .

We set

n

Fi(e) := Z/

(ddc log (S 1ul” + 62))3 A (ddcgs())"*].
j=0 "% k=1
Observe that for j =0,...,n—1

. . c = J c n—j_
Jm [ (@rios (IR )’ (1) =0
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since the ideal sheaf 7 generated by fi,..., fm is supported at one point, while

dd®log Y | ful?® + € " er
IRCEEHS ))
¢ k=1

as € \, 0, where ey > e(X,Z) and ey \ f{p} (dd°pr1)" as € 7 +oc.
Proposition 3.1 yields f{p} (ddcgoz,l)n = e(X,Z), ending the proof. ]

3.3 The upper bound
We are now ready for the proof of the following result.
THEOREM 3.5. Let (X, p) be a an isolated log terminal singularity. Then

1~
nt Vol(X,p)l/”.

Yerit <

Proof. Fix v < v¢rie and C7 > 0 such that
1
“log [ ¢ Pdy < €y - Byl (3.3)
Y Q

for any ¢ € T5(9).
Fix Z coherent ideal sheaf supported at p, and let {¢7xc}r>0.ec(0,1] € To(2) as defined in
Lemma 3.2. Evaluating (3.3) at {@I,A,e}ee(&l] yields

let(X,7Z 1
Con+ (/\_ ct(X, )) loge2 < log/ e VP Nedy,
Y Y Q
< C1— Ep(ozae)
n+1
<Oy + CN)\ + - 1FN(6) loge_2

for any N € N e € (0, 1] thanks to Lemmas 3.3 and 3.4. We infer
( \ let(X,Z) Anf!
¥ n+1

FN(G)) 10g672 <Cr+COny— C%)”

hence

At let(X, Z)
EN S ——

n+1 vy

for any N € N, A > 0 since Fy(€) = ey as € \, 0 (Lemma 3.4).
)\n+1
n+1

(3.4)

The function gy : A € (0,400) — A — %"
It follows therefore from (3.4) that
let(X,Z) n+1
= gn(An) n
Now ey N\, e(X,Z) as N — +oo by Lemma 3.4, hence
1
nt lct
n

en € R reaches its maximum at Ay := 1/e

let(X, )ey™.

v < (X,Z)e(X,T)"/™.

Since this holds for any coherent ideal sheaf Z supported at p , we obtain

7<n+1

1 —~
inflet (X, De(X,T)/" = %VOI(X p)t/"

where the equality follows from Theorem 1.16. ]
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4. Moser-Trudinger inequality

4.1 Uniform integrability vs Moser-Trudinger inequality
Recall that
a(X, pp) == sup {a >0, sup / e *du, < -f—oo}
pEF1(Q) JQ
This uniform integrability index is a local counterpart to Tian’s celebrated a-invariant, intro-
duced in [Tian87] in the quest for Kahler-Einstein metrics on Fano manifolds. We refer to

[DKO01, Dem09, Zer09, ACKPZ09, DP14, GZh15, Pham18] for some contributions to the local
study of analogous invariants.

In this section we prove Theorem A, which can be seen as a local analog of [BBEGZ19,
Proposition 4.13].

THEOREM 4.1. One has verit(X,p) > ”T‘Ha(X, Lp)-

When (X, p) is smooth then a(X, p,) = n and this statement is equivalent (after an appro-
priate rescaling) to [BB22, Theorem 1.5], [GKY 13, Theorem 9.

Together with Theorem 3.5, we would obtain the precise value

1~
e nt vol(X, p)'/™

Yerit (X p)

if we knew that o(X,p,) = ;(;I(X, p)Y/™. We establish in Section 4.2 the bound a(X,u,) <
vol(X, p)'/™ and analyze the reverse inequality in Section 4.3.

4.1.1 Entropy We let P(Q2) denote the set of probability measures on 2. Given two measures
wu,v € P(Q), the relative entropy of v with respect to p is

dv
/ —log —du / log d—du

if v is absolutely continuous with respect to p, and as H,(v) := 400 otherwise.

Given p € P(X), the relative entropy H,,(-) is the Legendre transform of the convex functional
g €CU)NL®(Q) — log [, e9dp € R, ie.

H,(v)= sup (/gdu—log/ egdu).
geCO(Q)NL>(Q) Q Q

We shall need the following duality result.
LEMMA 4.2. [BBEGZ19, Lemma 2.11] Fix p € P(2). Then

log/ eddu = sup (/gdu—H,AV))
Q veP(Q) Q

for each lower semicontinuous function g : £ — R U {+o0}.

Recall that we have normalized the adapted volume form so that pu, € P(£2).
COROLLARY 4.3. Fix 0 < a < o(X, p1p). Then there exists C, > 0 such that

H,,(v)> a/ pdv —C,
Q

for all p € F1(Q) and for all v € P(2) such that H,, (v) < +oo.
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Proof. This follows from Lemma 4.2 applied to ¢ = —ay and p = pp. By definition of a(X, )
we obtain —log [, e=*Pdp, > —C,. O

This corollary shows in particular that F;(Q2) C L!(v) for any probability measure v € P(X)
with finite pp-entropy. Since the measure v is moreover non pluripolar, the following result is a
consequence of Theorem 2.7.

PROPOSITION 4.4. Fix v € P(Q) such that H, (v) < +oo. Then there exists a unique v €
F1() N EX(Q) such that
v = (ddv)".
4.1.2 Proof of Theorem 4.1 The proof is similar to the derivation of the Moser-Trudinger
inequality from Brezis-Merle inequality by Berman-Berndtsson, see [BB22, Section 4.2]. Fix

© € T3(Q) and 0 < o < (X, p1p). By Lemma 4.2 for any € > 0 there exists v. € P(2) such that
H, (ve) < +oc and

n+1 n+1

log/ e Pdu, < e — a/ dve — Hy, (ve). (4.1)
Q n Q

Proposition 4.4 ensures the existence of v. € F1(2) N EY(Q) such that v, = (dd°v )™ It follows
moreover from Corollary 4.3 that

H,, (ve) > —a/ Ve dve — Cy. (4.2)
Q

Combining (4.1) and (4.2) we obtain

n 1
log/ e_%l‘wdlup <e+Cy— nt a/ cpdye—i—a/ Ve dVe. (4.3)
Q n Q Q

We observe that

1 1
_nt a/ pdve + a/ Ve dve = nt a/ (ve — @) (ddve)" — a/ Ve(ddve)™
Q Q Q Q

n n n

n-+1

<

aBuli) + & {(n+ Do), [ welaeur

by using Lemma 2.5 (the latter has been stated for functions in 74(£2), it easily extends to the
class F1(2) NEL(2) by approximation). Since v. < ¢ and Ey(¢o) = 0, the same Lemma ensures

(n+1)Eg(ve) — /

Ve(ddve)"™ < —/ ¢o(ddv:)" < —inf ¢y,
Q Q 2

using that v = (ddve)" is a probability measure. Altogether this yields
n+1

log/ e_nTHa‘pd,up <e+Cy— % inf ¢o — aly(p).
Q n Q

Letting € ™\, 0 we conclude that
,L‘Ha@d (nfl)a < C/ 7E¢(<P)
0 (& n ,le X ae

for any function ¢ € T4(£2). Thus verit (X, p) > ”THQ(X, ).
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4.2 Upper bound on the a-invariant
DEFINITION 4.5. We set

&(X, i) = inf {c(9), ¢ € Fi(D)},
where ¢(p) := sup {c > 0; [qe “dp, < —|—oo}.

4.2.1 Bounding the a-invariant by the normalized volume
PROPOSITION 4.6. One has a(X, y1) < &(X, pp) < vol(X, p)Y/™.

Proof. Tt follows from the definition that a(X, ) < &(X, pp).
For any € > 0 and Z coherent ideal sheaf supported at 0, the function

1—¢ 1/n
= ith A= ———
VT =PI re, Wi (e(X, I)>

given by Lemma 4.7 below, belongs to F1(Q2) and yields

~ 1

(X, pp) < c(pze) = mlCt(X7I)€(X7I)1/n~
The latter equality is a consequence of Proposition 3.1. We conclude the proof by taking the
infimum over all Z’s and letting € \, 0. O

LEMMA 4.7. Let T be a coherent ideal sheaf supported at p. Then, for any A, e > 0 there exists
a function ¢ € F(Q) s.t.

i) Yz = Alog (Z;”zllfJP) near 0 for local generators fi, ..., fm of Z;
i) A"e(X,T) < [q (ddrre)” < A"e(X,I) +e.
Proof. Assume that ¢g is the maximal psh extension of ¢ to 2, i.e. the largest psh function in

Q which lies below ¢ on 09. It satisfies (dd“¢p)™ = 0 in .

Fix fi1,..., fm local generators of the ideal Z and set ¥y := Alog (Zﬁ1|fj|2). We can assume
without loss of generality that the f;’s are well-defined in 2 and normalized so that 1y < ¢p — 1
in 2. For » > 0 we consider

or :=sup{u € PSH(Q), u <) in B(r) and u < ¢g in Q}.

The corresponding family of psh functions is non empty as it contains ). For A > 1 large
enough, the function

w. — { (N in B(r)
"=\ max(y, Ap+g0) in 2\ B(r)
is psh and coincides with Ap 4+ ¢g near 9€). It follows that
— ¢ € PSH(Q) with ¢, = ¢ on 0%;
— @r =9y in B(r) hence A"e(X,T) < [,(dd°p,)";
— (dd°p,)™ = 0in Q\ B(r) (balayage argument).

The family r — ¢, increases -as r > 0 decreases to 0- to some psh limit ¢ whose Monge-
Ampere measure (dd“p)™ is concentrated at the origin. It follows from Bedford-Taylor continuity
theorem that (ddp)™ is the weak limit of (dd®p, )™ > A\"e(X,Z)d, hence (dd“p)"™ > A\"e(X,Z)dp.
Conversely 1) < ¢ near 0, hence Demailly’s comparison theorem ensures that

(dd®p)™(0) < (dd®4x)"(0) < A"e(X, I),
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whence equality. Thus ¢z ) := ¢, satisfies the required properties. ]

4.2.2 Normalized volume vs uniform integrability

PROPOSITION 4.8. One has a(X, j1,) = vol(X, p)!/™.

We refer the reader to the Appendix for a more algebraic approach based on [BAFF12], which
moreover provides a slightly stronger result.

When (X, p) is smooth, it follows from [DKO1] that &(X, up) = a(X, ip). The situation is
however more subtle in the singular context (see Section 4.3.2).

Proof. By Proposition 4.6 it suffices to show that & (X, p1,) > ;(;I(X, P/ e Jo e *dp, < 400
for all ¢ € F1(2) and o < @(X,p)l/” = inf7 lct(X,Z)"e, (7).

In a log resolution 7 : Q@ — €, this boils down to Joemaeem Y, |si 2dV < 4oo, where
s; are holomorphic sections defining simple normal crossing exceptional divisors Ei,..., Eyf,
K¢ 0= Z]]Vil a; F; and where dV is a smooth volume form. The log terminal condition ensures
that a; > =1 forallt=1,..., M.

As a < \7(;1()( , p)l/ " < n, the integrability condition is equivalent to show that for any point
x € UM, E; there exists a small ball B(x,r) such that

M
/ e T [ [Isil37dV < +oc. (4.4)
B(z,r) i—1
Set U = > ;. 4.50 log]sﬂii, Vi=oapomand W = -3 _a loglsi]ii. By [BBJ21,
Theorem B.5] the condition (4.4) holds iff there exists € > 0 such that
v(Uog, F)+As(F) > (1+€eu(Vog, F)+ (1+ev(Wog,F) (4.5)

for any F prime divisor over Q with center in a small ball B(z,r') C B(z,r), i.e. F C € for
g : Q' — Q modification. Observe that

v(Uog,F)+ Ag(F) —v(Wog, F) = ordF(g*KQ/Q) +1+ ordF(KQ,/Q)
Thus (4.5) becomes
Aq(F) —ev(Wog, F)
vipomog, F)
As a; > —1 for all 4, [BBJ21, Theorem B.5] ensures the existence of a > 0 such that Ag(F) >
(1+ a)v(W o g, F) for any prime divisor F over { as above. Thus

a(l+e) < (4.6)

A5(F) < Aa(F) + v(W 0 g, F) < —— Ag(F) + Aa(F),

1+a
and ¥(Wog, F) < ﬁAQ(F) < 1 Aq(F). Therefore (4.6) holds if
a—e  Aq(F)

a(l+€) < (4.7)

o vipomag F)

Since ¢ € F1(Q), it follows from the comparison theorem of Demailly [Dem85, Theorem 4.2]
that for a coherent ideal sheaf Z supported at p € 2,

1> / (dd°o)" > vr(p, p)" / (dd° f)" A [X] = v2(i,p) ey (D) (48)
Q CcN
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where f7 =log(}_;|fi|?) for generators {f;}; of Z and
v(pomoy,G)
,D) = >0 : o(1 _—_—,
vr(p,p) := sup {s w < sfr+ } InGm ordeT

where mog: Q' — Q is a log resolution for Z and the minimum is over all exceptional divisors of
Q' — Q. Lemma 4.9 below ensures that for any prime divisor F' and § > 0 there exists an ideal
7 such that

Aq(F) Aa(F) -1 Aa(F) 1
——— 2> (1 - > (1— 7)\/m
v(ipomonp, F) ( 9) ordpZ (UI(%p)) ( 9) ordpZ ep(Z)
> (1 — 6)let(X, T)ep(T)/™ = (1 — 8)vol(X, p)/™.
Thus (4.7) holds if a(1 +¢€) < wVol(X p)'/™, concluding the proof. O

LEMMA 4.9. Fix ¢ € F1(Q) and F C Q' prime divisor such that 7 o g(F) = p. For any € > 0
there exists a coherent ideal sheaf I supported at p such that

vz(p,p) = (1 —e)w_

Proof. Let ¢c:=v(pomog, F) and for ¢ € Q,d < ¢, set
Ao (F):={f € Ox, : ordp(fomrog)>md}
for m € N divisible enough. Then A,,. (F') is an ideal sheaf and
d (F
lim sup R Ame\ ")) P (Ame (F)) =c.

m—+o00 m

(4.9)

In particular if ¢,,~ € PSH( ( )) has algebraic singularities along A,,~(F'), then for any

€ >0, @ is less singular than 7* np around p if m > mq(e) > 1. For any G exceptional divisor
on " and m > m;(e) we infer

vipomog,G)  v(pomog,G) c—¢ (4.10)
ordg(Ame (F))/m — v(ppe omog,G)/m =~ ¢ ’
On the other hand, (4.9) implies that there exists mq(€) = my(e) > 1 with
vipomog, F) < (4.11)

ord g (Amee (F))/mo ~ ¢ — €
Combining (4.10) and (4.11) we obtain

i /
vipomog,G) >c 62(1_60—{—6) c
G ordg(Amge (F))/m =~ ¢ cc Jc —e€

><1 c—I—cl) vipomog, F)
- cc ) ordp(Apye (F))/m’
__ ctx

Since ¢ and € are arbitrary, and = — f(x) = <-F is decreasing, we deduce that for any € > 0
there exists ¢ € Q and my = mg(c, ¢, €) such that

0 v(ipomog, F)
ordp (Amee (F))

Setting A := A, ¢ (F') concludes the proof. O

va_ r)p,p) = (1 -

mgc
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4.3 Lower bounds on the a-invariant

We provide in this section two effective (but not sharp) lower bounds on (X, ).

4.3.1 Using projections on n-planes A result of Skoda ensures that e~% is integrable if the
Lelong numbers of ¢ are small enough (see [GZ, Theorem 2.50]). This has been largely extended
by Demailly and Zeriahi who provided uniform integrability results for functions ¢ € F1(Q2)
[Dem09, ACKPZ09]. In this section we extend these results to our singular setting.

Ict(X,p)
THEOREM 4.10. One has a(X, p1p) > mult(XZ))lfl/n 1+Clct()?,p)'

Proof. Recall that u, = fdVx with f € L"(dVx). The exponent r > 1 has been estimated in
Lemma 1.14. Using Holder inequality, we thus obtain
let(X, p)
1+ 1ct(X,p)

The remainder of the proof consists in establishing the lower bound a(Q2,dVy) >

(X, 1) > a(Q, V).

T )

Recall that dVx = w(, , A [X], where wey denotes the euclidean Kéhler form. Thus dVx =
S (mr)*(dVr), where I = (iy,...,i,) is a n-tuple, 77 : C¥ — C? denotes the linear projection
on C%, and dV7 is the euclidean volume form on C}. We choose coordinates in C" so that each
projection map 7y : Q — Q; C C" is proper. For ¢ € F1(Q2) we obtain

/ gV = Z/ #)dV < mult(X, p Z/ —alm=2qy;.

We assume here -without loss of generality- that ¢ < 0, and use the (sub-optimal) inequality
(77)x(e7%%) < mult(X,p)e T)=¢ The function ¢y := (7). is psh in Q; = 77(R), with
boundary values (77).(¢). We claim that

/ (ddpp)™ < mult(X,p)" L. (4.12)
Qr

Once this is established, it follows from the main result of [ACKPZ09] that for all 0 < € small
enough, there exists C; > 0 independent of ¢ such that

_n—e o,
| ey <.,
Qr

which yields the desired lower bound a(,dVy) > W.

It remains to check (4.12). We decompose ¢r(z) = > it ¢(x;), where m = mult(X,p) and
x1,..., T, denote the preimages of z counted with multiplicities. The assumption on the Monge-
Ampere mass of ¢ reads

(dd°p)"(25) < 1.
). [

We set al' := [(dd®p)"(z;) and use [Ceg04, Corollary 5.6] to estimate

/(ddc<p1)" = Z /ddccp(mil) A ANddCp(z,) < Z Qj, - - G, = <Z ai> .

015eyin=1 i150in =1

The latter sum is maximized when a; = - - - = a,, = m~ /", yielding (4.12). O
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EXAMPLE 4.11. Let X = {z € C""', F(z) = 0} be the A-singularity, where F(z) = 25 +

224+ 22, Arguing as we have done for the ODP (k = 1), one can check that s, ~ % so that

mult(X,p) =2 and let(X,p) =n — 2+ Til Now

R gl/n (n=2yl-1/my, if k> n-l
l/n B 1 2 = n—2

as computed by C.Li in [Lil8, Example 5.3]. For n >> 1, the lower bound provided by Theorem
4.10 is thus short of a factor 2 = mult(X,p) by comparison with the expected lower bound
vol(Ag, p)t/™.

4.3.2 Using resolutions

PROPOSITION 4.12. Let 7 : Q — Q be a resolution of singularities with simple normal crossing,
and let {a;}i—1,.. v be the discrepancies. Then

vol(X, p) /"
1+ (maxl- ai)

CK(X, /'LP) 2 .
+
In particular if the singularity is "admissible” then o(X, pp,) = @(X,p)l/”.

Following [LTW21, Definition 1.1] we say here that (X, p) is an admissible singularity if there
exists a resolution 7 : X — X (with snc exceptional divisor E = Zj E; and 7- ample divisor
— > bjEj, bj € Q1) such that the discrepancies a; € (—1,0] are all non-positive. Recall that

— any 2-dimensional log terminal singularity is admissible;

— the vertex of the affine cone over a Fano manifold embedded in a projective space by the
linear system associated to a multiple of the anticanonical bundle is admissible (cf. the proof
of Proposition 2.17);

— (X,p) is admissible if it is Q-factorial and admits a crepant resolution.

Theorem B from the introduction follows from the combination of Proposition 4.6, Theorem
4.10 and Proposition 4.12.

Proof. We seek a > 0 such that

M
sup /eawoﬂn\si\%ﬁidv<+oo. (4.13)
PEF1(Q) JQ -

If all the a;’s are non-positive we can use [DK01, Main Theorem] to show that a(X, ) =

a(X, pp), hence a(X, pp) = \EI(X, p)'/™ by Proposition 4.8. Indeed assume that there exists
v > 0 such that o(X,p,) < v < &(X, pp). By definition we can find ¢; € F1(Q) such that
Jo e "idu, — +oo. Extracting and relabelling, we can assume that 1; — v in L' with (1) > 7.

The psh functions ¢; = ¢;+7"* S22 (—a;) log|si|,2” converge to o = +y 1M (—q)) log\si\ii
in L'(Q) and ¢(p) > 7. It follows therefore from [DK01, Theorem 0.2.2] that

/eW’jd,up:/eWﬂ'dV—>/ede<+oo,
Q Q Q

contradicting the assumption fQ e Wi dpy — +00.
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In general we set U := 3. @ log|si\%i and W= 3", qa log]siﬁi. Using [DKO01, Main
Theorem| we obtain

alX, > inf ¢ o). 4.14
() > _inf cwloon) (414)

where
cw (@ om) :=sup {a >0 : / em T Wiy < +oo}.
Q

is the twisted complex singularity exponent. It then remains to estimate cy (¢ o ) for a fixed
¢ € F1(Q). As m*dp, = eV"WdV, Holder inequality yields

/~6_wm_w av < ( / S dup)l/fa’( /Q e(l—q')U-wdv>1/q'_ (4.15)

Q Q
Set A := (max;a;)+ > 0. The second factor on the right-hand side of (4.15) is finite for any
q < %, while the first factor on the right-hand side gives the condition p'a < & = vol(X, p)l/ ",
We infer cyy(pom) > V()l(l)ii’i)M, which concludes the proof. O

As the proof shows, the main obstruction to proving the equality a(X,p,) = (X, pnp) =
\Tc;l(X , p)l/ ™ is the lack of a Demailly-Kollar result on complex spaces. Resolving the singularities,
one ends up with a twisted version of Demailly-Kollar’s problem on a smooth manifold. It is
known that the general form of such a problem has a negative answer [Pham14, Remark 1.3].

5. Ricci inverse iteration

In this section we prove Theorem C from the introduction. The strategy is similar to that of
[GKY13, Theorem 1], with a singular twist.

We fix v < verit (X, p) and consider, for j € N, the sequence of functions ¢; € PSH () defined
by induction as follows: pick o € 7°(£2) a smooth initial data, and let ;11 € PSH(Q)NC’(Q)N

C>®(Q\ {p}) be the unique solution to
Jo e ipp

with boundary values Pitljoq = ¢. The existence and regularity of ¢; off the singular locus

(ddpj1)"

follows from [Fu23, Theorem 1.4], while the continuity of ¢; near p is a consequence of [GGZ23,
Theorem A].

We are going to establish uniform a priori estimates on arbitrary derivatives of the ¢;’s in
O\ {p}, thus (p;) admits "smooth” cluster values. We will show that the functional F’, is constant
on the set K of these cluster points, so that any such %) is a solution of the Monge-Ampeére equation

e Wy
ddy)" = ——LP
( ) Joe

with boundary values |50 = ¢.

5.1 Uniform estimates
PROPOSITION 5.1. There exists Co > 0 such that |[¢;||1(q) < Cp for all j € N.

This uniform estimate relies crucially on a technique introduced by Kolodziej in [Kol98§],
which has been extended to this singular setting in [GGZ23].
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Proof. We assume without loss of generality that ¢g is the maximal psh extension of ¢ in €. In
particular ¢; < ¢ for all j € N, and E4(p;) < Eg(¢po) = 0. Our task is to establish a uniform
lower bound ¢; > —Cj.

The assumption v < it (X, p) ensures, by Lemma 2.13, that the functional F, is coercive,
in particular there exist 0 < a < 1 and 0 < b such that

Fy(pj) < aBy(pj) +b

for all j € N. It follows from [GKY13, Proposition 12] (exactly the same proof applies here) that
J + Fy(pj) is increasing, hence

Fy(po) < Fy () < aBy(pj) +b <D,
showing that the energies (E4(p;)) are uniformly bounded, —b" < Ey(¢;) < 0.

The corresponding family Gy of psh functions with ¢-boundary values and energy bounded
by b’ is compact, and all its members have zero Lelong number at all points in  (see Theorem
2.7). Passing through a resolution, one can thus invoke Skoda’s uniform integrability theorem
[GZ, Theorem 2.50] to conclude that the densities e~7%7 are uniformly in L"(dVx) for any r > 1.

Now j, = fdVx with f € L'*¢ for some € > 0 since (X, p) is log-terminal. Hélder inequality

o _ e %y
thus ensures that the densities g; := T i,
Q P

It therefore follows from [GGZ23, Proposition 1.8] (an extension of the main result of [Kol98]
to the setting of pseudoconvex subsets of a singular complex space) that the ¢;’s are uniformly
bounded. O

are uniformly in L'*¢'(dVy) for some 0 < ¢’ < ¢.

5.2 (C2-estimates

In this section we establish the following a priori estimates.

PROPOSITION 5.2. For all compact subset K of Q\ {p}, there exists a constant Co(K) > 0 such
that for all j € N,

0 <sup Ay, < Co(K).
K

dd®hnwy™?

Here Ay hi=n—7_7 denotes the Laplace operator with respect to the Kéhler form wx.

X
Such an estimate goes back to the regularity theory developed in [CKNS85]. The strategy of the
proof is similar to that of [GKY13, Theorem 15], with a twist due to the presence of the singular
point p.

Proof. To obtain these estimates, one considers a resolution of the singularity = : Q — Q. We let
E = UJ | Ey denote the exceptional divisor and let

— 3¢ denote a holomorphic section of O(Ey) such that E; = (s, = 0);

— by be positive rational numbers such that — ), by Ey is m-ample;

— hy denote a smooth hermitian metric of O(Ey) and K >> 1 such that

m
8= Kdd°pom — Z b¢©p, is a Kéhler form on Q.
/=1

Observe that the function p' := Kpom+ > -, bylog |Sg‘i£ is strictly psh in Q, with dd®p’ > §
and p'(z) - —o0 as z — FE.
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Recall that m*p, = 17", |s¢|?*dVg with a; > —1, and set |s|? = I |s,|?¢. We are going to
show that there exist unlform constants Co > 0, m € N such that

0 < [s]™[Agpsl(2) < C (5.1)

for all j € N, z € Q, from which Proposition 5.2 follows. Slightly abusing notation, we still denote
here by ¢; the function ¢; o .

We approximate ¢; by the smooth solutions ¢;. of the Dirichlet problem

e e Ty (il +2)
(6 + dd°pji1e)" = = ——dVg

Pit1eloQ = ¢

(5.2)

with po. = o and ¢; = fQ e 7%idu,. We are going to establish a priori estimates on these
smooth approximants, whose existence is guaranteed by [GL10, Theorem 1.1]. We then show
that ¢;. converges to ¢; as € decreases to zero.

Step 1. We first claim that for all j, e,

sup ’v@ﬁ-l el < Aljes (5.3)
0

where A; ;. > 0 only depends on an upper-bound on H‘Pj,aHLoo(Q)-

Let @~ be a smooth psh extension of —¢ to a neighborhood of Q. Observe that pj11.+® om
is B:psh in 2, with zero boundary values. Thus @11 .+®~ om < u, where u is the smooth solution
in Q to the Laplace equation Agu = —n with zero boundary values. We infer ¢; 1. < 91 :=
u—® omin Q.

We now construct a psh function ¥ < @41, with ¢-boundary values and such that sup,g 12|
is controlled from above by ||p; || Loo(e)- The upper bound on sup,q |V@jt1,] thus follows from
the inequalities Yo < . < 1.

Recall that m*p, = IIJ" | |s¢|***dV;. We let P C [1,m] denote the subset of indices such that
—1 < ag < 0. For § > 0 small enough, we observe that v := p' +8 >, p |s¢|? is strictly psh in ©

and satisfies, in \ E,
idsp N\ dsy
ddv > c
o3 i)

lepP
for some ¢ > 0, hence (dd°v)™ > ¢'7* . Replacing v by \;-v, we obtain

_ e I (il + <)
=

(eB + dd°Njcv)™ = Ni (ddv)" -
J

AV,

for some A;j. > 0 which only depends on an upper-bound on [[¢; ||« ). In other words A;cv
is a subsolution to the Monge-Ampeére equation in Q \ E.

We modify A;.v near 99 to produce a subsolution with the right boundary values. Let y
be a cut-off function which is 1 near E and has compact support in Q. The function 1y =
XAjev + (1 — x)po + Ap o 7 satisfies all our requirements for A > 0 large enough. Note however
that it is only locally bounded in Q\ E.

Consider finally max (12, ;). This is a subsolution of the Dirichlet problem which is globally
bounded in . It follows from the maximum principle that max (12, ¢;:) < @je, hence ¥y <

max (a2, 9je) < Qje.
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Step 2. We next claim that there exist constants Ag, A3 ;1. > 0 such that

A
sup||s[> 2 [V i1e[3] < Asji1e (5.4)
Q

where Az ;1. only depends on an upper-bound on H‘Pk,sHLoo(Q) for k<j+1.

Proof. The proof is a variant of [DFS23, Proposition 2.2|, which itself relies on previous estimates
due to Blocki and Phong-Sturm.

As we work in Q\ Supp(E), we identify 8 with dd° (Kpom+log|s|?). Replacing ¢j41,c by
Pjt1e = pjt1,e — (Kpom+log|s|2) the equation (5.2) becomes
{((1 + &)+ dd°Gjire)" = e e P [T ([siff, + €)M dVg,

N (5.5)
90j+17€|a§z =¢— 10g|8|l21'

N V|s|?
‘IV%s!ﬁ - \V%,eIB’ < ||‘S||:‘B +C,

to get the estimate (5.4) for ¢; it is enough to prove by induction that there exists positive
constants B, B3 j11, such that

supl o V.21 [3) < mave { supllsf Ve 3] Boone (5.6)
where By is uniform in j, ¢ while Bg j 11  only depends on upper bounds on [|@;41.¢[| oo (a)- 5. ”Loo(fzy
and where ¢g . := — (K poT—+ log\s\%). To lighten notations we rewrite the equation

{(ﬁe +ddw)" = e TIL (s, + @) 57 51)
Uog = ¢
where (5. := (1+¢€)0 is a non-degenerate smooth family of Kahler forms. Note that (5.6) becomes
2B B

suplJsf}% V3] < mas {suplls} V(o)1 ~ loglsly ~ OB Bojinc} (59

Q
where { f}c>0 is a non-degenerate smooth family. In the estimates that follows we indicate with C;
all the constants under control, i.c. that depend on a upper bounds on [|@j11.ell oo (a)s [€j.ell Lo (2)-

Observe that ||u+log|s|? HLOO (@)’ HUHLOO(Q) and supyg |Vu| are under control. The constant B3 i1
in (5.8) will clearly depend on the C;’s. We indicate with D; all the constants uniform in j, e,
which will be used to determine the uniform constant By in (5.8).

We denote by A, Al respectively the Laplacian operators with respect to 8. and to 7. :=
B¢ + dd“u. Consider

H :=log|Vul3 + log|s|?* — G(u)

where G(z) = Az — +Jg +7 for € chosen so that u > —C, while A > 0, B > 0 to be determined
later. The constants A, k are chosen to be uniform in j,¢ while B is under control. If H reaches
its maximum at xjs, then

k A k: A
IVl [s[2* Y < o (1l s ) (ear) (5.9)

for a constant Cy under control.

As u + log|s|? is smooth on Q, we ensure that H(z) ~ (k+A- 1)log|s|? — —oc0 as z —
Supp(£;) by imposing k > 1. If H reaches its maximum on 02 then we are done since supyq|Vu|
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is under control. From now on we thus suppose that H reaches its maximum in Q\ {s = 0}. A
direct computation [PSS12, eq. (5.11), (5.20)] yields

2Re(Vv + > %, @,V log (\sl\il + €%), Vu)g
|Vu|%€

V\Vu%é YVu V|VU\%E Vu
v P) ,v P) >775_2Re< v D) 7V D)
[Vuls, ~ [Vuls, [Vl [Vuls,

Al log|Vu|%E >

< — Atry, B

+ 2Re(

)g. (5.10)

where A denotes a (uniform in €) lower bound on the holomorphic bisectional curvature of fS.
At the point where H reaches its maximum we obtain

V|Vul2 kV sl
’72‘& = Vlog|Vul3, = =V (log|s[s" — G(u)) = - ‘;‘h +G'(u)Vu,
’V“‘ﬁe € |S’h
hence
V|Vu|% Vu V|V“|% Vu
2Re< e’ > e 2Re< €7 > €
Va2, VB, [Vl "Vl
V|s|Z  Vu Vis|z  Vu [Vl /
— 2%Re( , )5, — 2kRe( : Ve "(u) 5 — 2G" (u)
E |2 Vu ’B ]s]% ]Vu\%é K |Vu |5
V| |h Yu V]s\% Vu /
> 2kR , — 2kR; : —2G (u),
W e T g e

using the monotonicity of G(z) in the last inequality. By (5.9) and asking k > 2, we can assume
that |s|2|Vulg, = 1 at xp. Thus,

Vis|z  Vu 5 Vu
2R , < 2Re(Vs2, —% Vs | < D
| e< |5’i |VU‘%€ >,Be’ ’ e( ‘S‘h ’vu|65 >Be‘ 1
and
Vlsl;  Vu 2 Vu 2 IslAIVuly
2R ,—— < 2|Re(V|sly, = O\ —_—
| e< |S ]21 |VU|%€ >775‘ ‘ e< |S|h ‘VU|55 >7]e| | |S|h|776 |S|;ll|vu|%6

< |VIslil3, tra Be + |sl| Vulz, .
We infer that at x = xjy,

VIVulg,  vu VIVulz  vu
Vg, Vel R, Vel
U, Ulg. ige Uise
> —kDq — k’v|s|}2l|%5tr7]e/8€ - k:|5|%|Vu|%€ —2G'(u)
> —kDy — kDatry, Be — k|s[3|Vul?, — 2G' (u),

2Re(

which is the first estimate of the right-hand side in (5.10).

Next, as we want to prove (5.8), as a consequence of (5.9) and of \Vu|ﬁ D3|Vu]5 in the
estimate that follows we can assume that

D301|Vu|5 max{|V v/y — log|s|}2l — f€)|%,1}
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at the point x,;. We deduce
2Re(Vu + 3% Vaglog(|sily, + €2), Vu) s,

\Vu%e
V(v —ylog|s|z —vf)[3 Ds
< Dy + <+ sl + |1l < Co + Cals|,*M
[Vul?, Vulg " !v \%6 ,Z; g "
for M := iy b so that Mb; > 1 for any I. The previous inequalities yield
Allog|Vulj, > —kDy — Cy — Cs]s[;,* — (kD2 + A)tr,, B — ks[}|Vul2, — 2G' (u). (5.11)
Moreover

—ALG(u) = -G (u)ALu — G"(u)]Vuﬁ76 = G'(u)try Be — nG'(u) — G"(u)|Vu|3]6
and Al log|s|?* > —kDrtr,, . Together with (5.11) we obtain
ALH > (G’ = kDy — A — kD7)tr, Be — (n+2)G' — (G + kls[}) [Vul — kD1 — Cy — Cs]s[;,*
Taking k = M (n 4 1) + 1, this can be rewritten

ALH > (G' — Dg)try, Be — (n+ 2)G' — (G" + Dy|s|3)|Vul2. — Cu|s|; M. (5.12)
We now define G(z) := (Dsg + 1)z — x—i—C’—i—l where B > 0 is so large that
2B
= D 4 > 2
(U+C—|— 1)3 9|8’h ‘S‘h

at x7. Note that B can be chosen such that it only depends on C, Dg and on ||u—|—log|s|%||Loo(Q)
i.e. it is under control. From (5.12) we deduce at x s

0> ALH > tr, B + |s]%]Vu\$k — Csls),2M.

This yields tr,, 8. < Cs|s[;* and [Vulz < Cs|s],; 72 hence

n—1 g — n—1 —
IValg, < |Vulj trg. e < |Vauly_(tr, 5e) (%) < Colsly, M| Vul2_ (try 8)" " < Orlsl,
where we also used [GZ, Lemma 14.4], the Monge-Ampere equation (5. 7) and the fact that
I, (]sl],%l +e3)" < Diols|; M as a; > —1. From (5.9) we deduce \Vulﬂ El 2k+Ds+D) < oo As
{Be}e>0 is a non-degenerate continuous family of Kéahler forms converging to 5 as € — 0, we get

2(k+Ds+1 2(k+Ds+1)
E ’h +Ds+ )\Vu|5 max { sup]|s |(Jr s+1) IV (v/y —log|s|* = f)[3], Co},
Q

i.e. (5.8), which concludes the proof by setting By := k 4+ Dg + 1, B3 j+1, := Co. O

Step 3. Fix V a small neighborhood of 99 (intersected with 5) We claim that
Sup| Ayl < Cv[L+sup IVejiel?], (5.13)
o0

for some uniform constant Cy independent of j,e. This follows from a long series of esti-
mates established in [GKY13, Lemma 18] (which itself was adapting the technique developed
by [CKNS85]) when p, and Q are smooth. The statement of [GKY13, Lemma 18] mentions
supg [V;j]?, however the arguments only involve

— local reasonings in a small fixed neighborhood of the boundary;
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— smoothness of 11, in this neighborhood and pseudoconvexity of o

Step 4. We now show that there exist constants m, B3 j. > 0 such that

SuP|3| m|A690j E| B3,J€

1+ sup |Asepj, e!] (5.14)

where Bs ;. only depends on an upper-bound on ||<pk5||Loo( Q) for k£ < j. This is a variant of
[GKY13, Lemma 17], for which we provide a detailed proof.
We set w; := 8 + dd°p; . and observe that

) )
w;l — ews_@]—l,e j716n7

where 9. is a difference of quasi-psh functions in Q such that e¥s < c1|s|72® and dd. >
—c1]s| 728 in , for some uniform constants a,c; > 0. We consider

Hj :=log Trg(w;) + vj—1,. — Apj + Ap/,
where A > 0 is chosen below. We use here the classical notations

w A dd°h A"t
Tr,(w) := n+ and Ay(h) = 7177;7
n n
Either Hj reaches its maximum on 99 and we are done, or it reaches its maximum at some
point z; € Q\ E since p — —oo along E. We are going to estimate A, H; from below and use

the fact that 0 > Ay, H;(x;).
It follows from [Slu87] that
TI“B(RiC(wj))

A, log Tra(w:) > —
s logTrs () Trg(w;)

— BTr,(B),
where —B is a lower bound on the holomorphic bisectional curvature of 8. Now

. . c A
~Ric(wy) = ~Rie(8) +dd" (Ve = pj1) > —wj1 = 158
in Q\ E. Moreover Trg(w;—1) < Trg(w;)Tre, (wj—1) hence

Ay, log Trg(wj) = —Try, (wj-1) —

Using that dd°p’ > 3, we obtain

TLAl

A, Hi >—A A—B)Tr,. (B) — —5o——.
i} n+( ) T J(B) ‘S|2TI'/3((UJ‘)
Using the classical inequality n[Tr,, (8)]" " > (8" Jw)Trp(w;), we infer

1 nA1

—e
. > —_ n— N|n-1 — ——— .
Ay Hj =2 —An + c(A — B)en—1 [Trg(w;)]»—T 5P Trs(;) (5.15)

Let us stress that the constant ¢ depends here on an upper bound on |[¢;_1 .||, « @)

We fix A so large that A > B and 1. + Ap’ < ¢} —alog|s|* + Ap' is bounded from above. At
the point z; we obtain 0 > A, Hj, therefore

— either |s|°Trg(w;) < 1 hence H;(x;) < (¢j-1. — Apje + Ap')(z5) < C;
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— or |s|?Tra(w;) = 1 and (5.15) yields Trg(w;) < C’e¥=(#3) hence
Hj(z;) < Ye(x)) + Ap' (z;) + C" < C".

Thus H; is uniformly bounded from above in both cases, and (5.14) follows (we use here an
upper bound on Hgoj_l,EHLoo(Q) and ||p;.¢

LOO(Q))-
Step 5. We finally show by induction on j that ¢; . uniformly converges towards ¢; as € decreases
to 0. There is nothing to prove for j = 0 since ¢g . = @o.
For j = 1, it follows from (a slight generalization of ) [GGZ23, Proposition 1.8] that HQOLEHLOO(Q) <
(' is bounded uniformly in € > 0. Proceeding by induction we similarly obtain that for all j € N,
1jell Lo @) < Cj
is bounded uniformly in & > 0. By previous steps, the family (¢;.). is relatively compact in 1@

for all 0 < o < 1. Any cluster point v, as ¢ — 0, is a solution of

e~ VY;
(dd“ty)" = ——H2
)
with boundary values ¢j+1‘ aq = @, hence 1; = ¢; by uniqueness. Thus ¢; . converges to p; as €

decreases to zero, and the convergence is moreover uniform on by [GGZ23, Proposition 1.8].

We can thus let € tend to zero in previous inequalities. Now ||¢; . \Loo(g) = |l¢jllLe(q), and
the latter is uniformly bounded in j by Proposition 5.1. For e = 0, (5.3), (5.4), (5.13) and (5.14)
thus provide uniform bounds in j, and conclude the proof of (5.1). The proof of Proposition 5.2
is thus complete. O

5.3 Higher order estimates and convergence

Once the uniform C%-estimate is established (Proposition 5.2), one can then linearize the complex
Monge-Ampere equation and apply standard elliptic theory (Evans-Krylov method and Schauder
bootstrapping) to derive higher order estimates:

PROPOSITION 5.3. Given K a compact subset of Q \ {p} and a > 0,/ € N, there exists
C(K,t,a) > 0 such that for all j € N, |[[p;]|ce.ax) < C(K, L, ).

It follows that the sequence (yp;) is relatively compact in C*°(2\ {p}) We let K denote the
set of cluster values of the sequence (¢;). Any function ¢ € K is
— psh in © and smooth in Q\ {p}, with Y90 = ¢;
— uniformly bounded in € (Proposition 5.1);
— continuous on §, as the uniform limit of (p;,) [GGZ23, Proposition 1.8];

The set K is invariant under the action of T : ¢ € T4(2) — ¥ € T(§2), which associates, to
a given ¢ € Ty(£2), the unique solution ¢ € T4(€2) to the complex Monge-Ampere equation

6_7¢ILL
dd“y) = ———— P
(dd") Jo e ?duy

It follows from [GKY13, Proposition 12] that the functional F, is constant on K and that
K is pointwise invariant under the action of 7. Thus a cluster value of (¢;) provides a desired
solution to Theorem C.
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Appendix A. Appendix by S.Boucksom

The purpose of this appendix is to provide an alternative approach to Proposition 4.8, empha-
sizing the role of b-divisors. We use [BAFF12] as a main reference for what follows.

A.1 Nef b-divisors over a point
Consider for the moment any normal singularity (X, p), and set n := dim X.

In what follows, a birational model means a projective birational morphism 7: X, — X with
X normal. A b-divisor over p is defined as a collection B = (B ), of R-divisors B, on X, for
all birational models 7, compatible under push-forward, and such that each B, has support in
771 (p). The R-vector space of b-divisors over p can thus be written as the projective limit

Divy(X,p) := lim Div,(X5),
™

where Div, (X5 ) denotes the (finite dimensional) R-vector space of divisors on X, with support
in 7=!(p), and we endow Divy,(X,p) with the projective limit topology.

A b-divisor B € Divy (X, p) is said to be Cartier if it is determined by some birational model
m, in the sense that B,/ is the pullback of B, for any higher birational model #«’. There is a
symmetric, multilinear intersection pairing

for Cartier b-divisors B;, defined as the intersection number (By - ... By ) computed on X,
for any choice of common determination 7 of the B; (the result being independent of the choice
of 7, by the projection formula).

A wvaluation centered at p is a valuation v: Ox , — R such that v(m;,) > 0 on the maximal
ideal m, C Ox . It is further divisorial if it can be written as v = cordg for a prime divisor
E C 7 !(p) on some birational model X, and ¢ € Qs¢. Given a b-divisor B over p € X, we
then set v(B) := cordg(B;). The function v — v(B) so defined on the space DivVal(X,p) of
divisorial valuations centered at p is homogeneous with respect to the scaling of Q~, and this
yields a topological vector space isomorphism between Divy, (X, p) and the space of homogeneous
functions on DivVal(X, p), endowed with the topology of pointwise convergence.

Pick a b-divisor B over p. If B is Cartier, we say that B is (relatively) nef if B, is m-nef for
some (hence any) determination 7. In the general case, we say that B is nef if it can be written
as a limit of nef Cartier b-divisors. By the Negativity Lemma, any nef b-divisor B € Divy, (X, p)
is automatically antieffective, i.e. v(B) < 0 for all v € DivVal(X, p). By [BdFF12, Lemma 2.10],
we further have:

LEMMA A.1. A b-divisor B over p is nef iff, for each birational model w, the numerical class of
B, in N*(X,/X) is nef in codimension 1 (aka movable).

ExAMPLE A.2. Consider an ideal a C Ox,, and assume that a is primary, i.e. containing
some power of the maximal ideal. Then a determines a nef Cartier b-divisor Z(a), defined by
v(Z(a)) = —v(a) for each v € DivVal(X, p), and determined on the normalized blowup of a. For
any tuple of primary ideals ay, ..., a,,

e(ar,...,an) =—(Z(a1) -...- Z(ay))

further coincides with the mixed multiplicity of the a;.
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ExAMPLE A.3. For any valuation v centered at p, the valuation ideals

am(v) :={f € Oxp | v(f) = m}

define a graded sequence of primary ideals ae(v), and hence a nef b-divisor over p
Z(v) = Z(ae(v)) = linrlnmle(am(v)),

(see [BAFF12, Lemma 2.11]), which is not Cartier in general.

LEMMA A.4. If B € Divy,(X,p) is nef, then B < —v(B)Z(v) for all v € DivVal(X,p),

Proof. Write v = cordg for a prime divisor F on X, and ¢ € Qsg. Then Z(v) coincides with
Env,(—c'E) (see [BAFF12, Definition 2.3]), and the result thus follows from [BAFF12, Propo-
sition 2.12]. O

A.2 Normalized volume and b-divisors
From now on, we assume that the normal singularity p € X is further isolated.

By [BAFF12, Theorem 4.14], the intersection pairing (A.1) then extends to arbitrary tuples of
nef b-divisors over p. This extended pairing takes values in RU{—oc}, and is symmetric, additive
and non-decreasing in each variable, and continuous along decreasing nets.

DEFINITION A.5. For any nef b-divisor B over p, we define the Hilbert—Samuel multiplicity of B
as
e(B) :== —B" € [0, +00].
When (X, p) is further klt, we define the log canonical threshold of B as
Ax(v)

let(B) :=
¢ ( ) vEDivl\r/'lal(X,p) —U(B)

€ [0, 4+00),

where Ax(v) > 0 denotes the log discrepancy of v.

EXAMPLE A.6. For any primary ideal a C Ox,, the associated nef Cartier b-divisor B := Z(a)
(see Example A.2) satisfies e(B) = e(a), and lct(B) = lct(a) when (X, p) is klt.

EXAMPLE A.7. Pick any valuation v centered at p, with associated nef b-divisor Z(v) (see Exam-
ple A.3). Then it follows from [BAFF12, Remark 4.17] that the volume Vol(v) := lim,, 0 m"—ll dim Ox p/an, (v)
satisfies

Vol(v) = e(Z(v)). (A.2)

LEMMA A.8. For each nef b-divisor B over p, we have e(B) = supgs g €(C), where C ranges over
all nef Cartier b-divisors of the form C' = m~'Z(a) for a primary ideal a C Ox, and m € Z=o,
and such that C > B.

Proof. Since B is the limit of the decreasing net (Env,(B;)) (see [BAFF12, Remark 2.17)), it is
enough to prove the result when B = Env,(B;), by continuity of the intersection pairing along
decreasing nets. By [BAFF12, Theorem 4.11], we can then write B as the limit of a decreasing
sequence (C;) of nef Cartier b-divisors of the desired form, and we are done since e(C;) —

e(B). O

Consider now a psh function ¢ on X. The collection of its Lelong numbers on all birational
models defines a homogeneous function v — v(y) on DivVal(X,p), and hence an antieffective
b-divisor Z(p) over p, such that v(Z(p)) = —v(p).

38



KAHLER-EINSTEIN METRICS NEAR A LOG-TERMINAL SINGULARITY

PROPOSITION A.9. The b-divisor Z(yp) is nef. Further:
(i) if ¢ is locally bounded outside p, then

e(Z(p)) < ep) = (dd°p)" ({p});
(ii) if (X, p) is klt, then lct(Z(p)) = lct(y).

Proof. Consider the closed positive (1,1)-current 7" := dd“p, and pick a log resolution 7: X, —
X of (X,p). The Siu decomposition of 7*T = dd°m*¢ shows that 7*T + [Z(¢)r] is a positive
current with zero generic Lelong numbers along each component of 71 (p). By Demailly regular-
ization, it follows that the class of Z (), in N'(X,/X) is nef in codimension 1, and hence that
Z(p) is nef (see Lemma A.1).

Assume next that ¢ is locally bounded outside p, and pick a primary ideal a C Ox ) and
m € Z~o such that C :=m~'Z(a) > Z(¢). Choose a finite set of local generators (f;) of a, and
consider the psh function v := m~1log Y, | fi|. Then Z(p) < C = Z(v)), and hence ¢ < ¢+ O(1)
(to see this, pull back ¢ and ¢ to a log resolution of a, and use the Siu decomposition). By
Demailly’s comparison theorem, it follows that e(C) = e(¢) < e(y), and taking the supremum
over C yields (i), by Lemma A.8.

Finally, (ii) is a rather simple consequence of [BBJ21, Theorem B.5] applied to the pullback
of ¢ to a log resolution of (X, p). O

We can now state the following variant of Proposition 4.8.
THEOREM A.10. Let (X,p) be an isolated klt singularity. Then
vol(X, p) = inf ¢(B) let(B)" = inf e(i0) let()",
)

where B runs over all nef b-divisors over p, and ¢ runs over all psh functions on X that are
locally bounded outside p.

Proof. By Theorem 1.16 we have \751()(, p) = infge(a)lct(a)”, where a C Ox, runs over all
primary divisors, and hence \751(X ,p) = infpe(B)lct(B)", by Example A.6. Conversely, pick
a nef b-divisor B over p. For any v € DivVal(X,p), Lemma A.4 yields B < —v(B)Z(v). By
monotonicity and homogeneity of the intersection pairing, this yields B™ < (—v(B))"Z(v)", i.e.
e(B) = (—v(B))"Vol(v), by (A.2). Thus

A " —~
e(B) (_;g) > Ax(v)"Vol(v) = vol(X, p).
Taking the infimum over v yields e(B)lct(B)™ > \751(X ,p) for any nef b-divisor B over p, and
hence also e(p) let(p)™ > vol(X, p) for any psh function ¢ locally bounded outside p, by Propo-
sition A.9. 0
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