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Spectrally accurate fully discrete schemes for some nonlocal and
nonlinear integrable PDEs via explicit formulas

Yvonne Alama Bronsard∗, Xi Chen†, Matthieu Dolbeault‡

Abstract

We construct fully-discrete schemes for the Benjamin–Ono, Calogero–Sutherland DNLS, and
cubic Szegő equations on the torus, which are exact in time with spectral accuracy in space. We
prove spectral convergence for the first two equations, of order K−s+1 for initial data in Hs(T),
with an error constant depending linearly on the final time instead of exponentially. These
schemes are based on explicit formulas, which have recently emerged in the theory of nonlinear
integrable equations. Numerical simulations show the strength of the newly designed methods
both at short and long time scales. These schemes open doors for the understanding of the
long-time dynamics of integrable equations.

Keywords— Integrable systems, Benjamin–Ono equation, explicit formulas, Lax pairs, spectral accuracy, fully

discrete error analysis, long-time dynamics

1 Introduction

We consider fully discrete approximations to three nonlinear and nonlocal integrable equations.
Important progress has recently been made on the theoretical level for these equations, opening the
way to new numerical approaches that we present here.

The first equation, central in the theory of integrable systems, is the Benjamin–Ono equation

∂tu(t, x) = ∂x
(
|D|u− u2

)
(t, x), u|t=0(x) = u0(x), (t, x) ∈ R× T, (BO)

where u(t, x) ∈ R is a real-valued solution, D = 1
i

d
dx and |D| is defined in Fourier space as

|̂D|f(k) = |k|f̂(k), f ∈ L2(T).

This nonlocal quasilinear dispersive equation models long, unidirectional internal gravity waves in
two-layered fluids [7, 41], as rigorously justified in the recent work [44]. Although the (BO) equation
resembles the well-known Korteweg–de Vries equation (KdV), with Airy’s dispersive flow ∂t + ∂xxx
replaced by a Schrödinger-type flow ∂t−∂x|D|, the dispersion present in the equation is significantly
reduced, thus rendering the control of the derivative in the nonlinearity a harder problem. Using
techniques from the theory of integrable systems, and notably a Birkhoff normal form transforma-
tion, Gérard–Kappeler–Topalov [27] show global well-posedness of (BO) in Hs(T) spaces if s > −1
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and ill-posedness otherwise, see also Killip–Laurens–Vişan [34]. For a recent survey of known results
and open challenges we refer to the book of Klein–Saut [37, Chapter 3], and the references therein.

The second equation considered is the focusing (+ sign) or defocusing (− sign) Calogero–
Sutherland derivative nonlinear Schrödinger (DNLS) equation

i∂tu+ ∂2
xu± 2

i
u∂xΠ(|u|2) = 0, u|t=0(x) = u0(x), (t, x) ∈ R× T, (CS)

where the Riesz–Szegő projector Π is defined in Fourier space as

Π̂f(k) = 1k≥0 f̂(k), f ∈ L2(T). (Π)

This is a nonlocal nonlinear Schrödinger equation and is derived from the Calogero–Sutherland–
Moser system in [12, 48, 49]. This physical model represents a system of N identical particles
interacting pairwise. Abanov, Bettelheim and Wiegmann [1] formally show that taking the thermo-
dynamic limit of such a model and applying a change of variables leads to the (CS) equation. One
can also recover (CS) formally as a limit of the intermediate nonlinear Schrödinger equation intro-
duced by Pelinovsky [43]. Badreddine [4] achieves global well-posedness in the Hardy–Sobolev space
Hs

+(T) = Π(Hs) for s ≥ 0, by additionally requiring small initial data ∥u0∥2L2 = 1
2π

∫ π
−π |u0|

2 < 1

in the focusing case. Remarkably, even though (CS) is a completely integrable equation, one can
expect the existence of finite time blow-ups in the focusing case. Indeed, on the real line, Gérard–
Lenzmann [28] prove global well-posedness in H1

+(R) if ∥u0∥2L2(R) =
∫
R |u0|2 ≤ 2π, whereas Kim–

Kim–Kwon [35] very recently show the existence of smooth solutions with mass arbitrarily close to
2π, whose H1 norm blows up in finite time. In the periodic setting, the dynamics of the focusing
(CS) equation for initial data with mass greater or equal to one remains a compelling open problem.

Finally, the third equation is the cubic Szegő equation

i∂tu = Π(|u|2u), u|t=0(x) = u0(x), (t, x) ∈ R× T, (S)

where Π is once again the Riesz–Szegő projector. This equation is introduced in [23] by Gérard and
Grellier who show global well-posedness in Hs

+(T) for s ≥ 1/2, using the fact that the norm H
1/2
+ is

conserved. As opposed to the last two equations, (S) is non-dispersive, and is used as a toy model
for studying the NLS equation when there is a lack of dispersive smoothing due to the confining
geometry of the domain. Another motivation comes from the study of wave turbulence, since the
equation admits energy cascades from low to high frequencies, as well as energy transfers from high
to low frequencies due to the almost time-periodicity of the solution [25].

A key feature of these integrable equations is the existence of Lax pairs [20, 38], from which
an infinite number of conservation laws can be derived. Recently, ground-breaking results were
obtained for the (BO), (CS) and (S) equations, proving the existence of an explicit formula for the
solution u, based upon their Lax pair structure. On the torus, the first result is due to Gérard and
Grellier [24] for the (S) equation, followed by Gérard [22] for the (BO) equation, and Badreddine
[4] for the (CS) equation. The goal of this paper is to make a bridge between these new analytical
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results and the field of computational mathematics, by obtaining efficient approximations to the
above equations via these explicit formulas and proving their convergence on the discrete level.

Before presenting our methodology, we discuss previous numerical discretizations to the above
equations. While (CS) and (S) are relatively recent, there exists a vast literature on the numerical
approximation of (BO). We detail some of these works here, with an emphasis on results providing
explicit convergence rates. Given the nonlocal nature of the linear operator ∂x|D| and its diago-
nal expression ik|k| in the Fourier variables, pseudo-spectral methods are usually adopted due to
their computational efficiency. This leads to spatial semi-discretizations, which are then coupled
with suitable time approximations, such as finite differences. For a comparison of different efficient
spectral numerical methods we refer to Boyd–Xu [11], and to Deng–Ma [16] for a semi-discrete
pseudo-spectral error analysis result. In the fully discrete case, Pelloni–Dougalis [45] prove conver-
gence of a scheme combining leap-frog in time and spectral Galerkin method in space, whose error
analysis is refined in Deng–Ma [15], while Galtung [19] studies a Crank–Nicolson Galerkin scheme.
On the full line R, fully discrete approximations are also analyzed, where the authors consider
a large torus in numerical implementations. We refer to Thomee [50] and Dutta–Holden–Koley–
Risebro [17] for a finite difference approximation, and Dwivedi–Sarkar [18] for a local discontinuous
Galerkin method.

Unlike previous methods, which rely on discretizing the underlying PDE, we introduce novel
schemes based on the explicit formulas of [22, 4, 24]. While these formulas give an explicit rep-
resentation of the solution u(t) in terms of the initial data u0 and the time t, they involve taking
the inverse of a product of nonlocal operators, whose manipulation and computation are far from
obvious, see equations (5), (7) and (9). We hence propose a different path and derive from these non-
trivial formulas a simpler representation of the solution which is suitable to implement in Fourier
space, see equations (6), (8) and (10). Remarkably, while the (BO), (CS), and (S) equations are
nonlinear, these explicit formulas only involve linear operators in the unknown (for a fixed ini-
tial data u0), which we then compute in the same way one would solve a linear PDE via Fourier
transforms.

From these formulas we construct schemes which are exact in time with spectral accuracy in
space, allowing for an extremely accurate and efficient approximation, surpassing the methods in
the literature. Namely, for smooth solutions our proposed fully-discrete schemes converge to the
solution at arbitrary polynomial rates. In contrast, classical schemes would at best converge in τm,
where τ is the time step, and m ∈ N is the fixed order of the time approximation. Moreover, our
proposed method excels both at short times t = O(1) and long times t ≫ 1, as illustrated in our
numerical simulations.

The proof of convergence introduces a completely different approach for proving global error
bounds, and greatly improves on prior error analysis results. Indeed, by playing closely with the
Lax-pair formulation and explicit formula we show that the new scheme converges in Hr with
spectral accuracy K−s+1+r when u ∈ Hs, with an error constant which grows linearly in the final
time t. This is to be compared with previous error analysis results, which combine stability and
local error bounds with a Gronwall-type argument to obtain convergence of the method with an
error constant which grows exponentially in t. To the best of our knowledge, this is the first time
a nonlinear error analysis result is obtained with a sharp error constant depending linearly on the
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final time instead of exponentially, when no linear smoothing effects are present, and no smallness
assumptions on the initial condition are imposed. We refer to Remark 1.1 for a discussion on the
subject.

Combined with their high accuracy, the proposed schemes are hence perfectly fit for simulating
the long-time behavior of these PDEs, which open doors for the understanding of the global well-
posedness [4], soliton resolution [32, 36], small dispersion limits [6, 21, 10], and norm inflation or
blow-up phenomena [25, 8, 31, 35].

Remark 1.1 (Long-time error analysis). An important step towards long time estimates was made
by Carles–Su [13]. Using scattering theory in order to obtain quantitative time decay estimates,
they show uniform in time error estimates for the nonlinear Schrödinger equation on the full space
Rd, for a Lie splitting discretization. Their convergence analysis is, however, limited to Rd as it
heavily relies on dispersive smoothing effects, which do not hold on the torus Td or more generally
on compact domains.

Our work adresses this limitation, by presenting a convergence result on the torus T, with an
error constant depending linearly on the final time t. We make this possible by heavily exploiting
the integrable nature of the equation, which allows us to go from a nonlinear problem, to a linear
representation of the solution. Unlike in the case of the full space R, we expect the error to accumulate
linearly over time, and in this sense the result presented here is sharp.

Remark 1.2 (Extension to other PDEs). Much progress is currently being made in the theory of
nonlinear integrable equations thanks to the explicit formulas, see for instance [6, 5, 9, 10]. This
motivates the search of such formulas for different PDEs. We refer for example to the very recent
advances on the half-wave maps equation [29]. The methods provided in this work should be adaptable
to other PDEs once their explicit formula has been established.

1.1 Results

Let K be the number of Fourier frequencies used in the discretization. Using symmetry arguments,
we only need to work with non-negative frequencies k = 0, . . . ,K − 1. By analogy with (Π), we
define the truncated projector ΠK in Fourier space as

Π̂Kf(k) = 10≤k<K f̂(k), f ∈ L2(T).

The new fully discrete spectral schemes uK for (BO), (CS) and (S) are essentially obtained by
substituting every occurence of Π by ΠK in the explicit formulas (6), (8) and (10). Written in
Fourier variables, the schemes are of the form

ûK(t, k) = e0 ·
(
e−itMeitAS∗)k e−itM u0, k = 0, . . . ,K − 1, (1)

with matrices M,A,S∗ ∈ CK×K defined in equations (11), (12) and (13), and vectors

e0 = (1, 0, . . . , 0) and u0 = (û0(k))0≤k<K .

For negative frequencies k = −(K − 1), . . . ,−1, we take ûK(t, k) = ûK(t,−k) in the case of (BO),
and ûK(t, k) = 0 for the other two equations.

Our main convergence result, given below, focuses on the case of (BO). An analogous result
holds for (CS) as well, as explained in Remark 5.10.
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Theorem 1.3. Let s > 1, and u0 ∈ Hs(T). For K ∈ N, let uK be the solution to the numerical
scheme (1) in the case of the (BO) equation. Then for any t > 0 and r ∈ [0, s], there exists a
constant C > 0 depending only on s, ∥u0∥Hs(T) and ∥u(t)∥Hs(T) such that

∥u(t)− uK(t)∥Hr ≤ C(1 + t)K−s+1+r. (2)

Figure 1: Convergence plot for the (BO) equation in L2 against the computational cost at time T = 1 for
the exact solution (14) (with c = 15

4π ). Each point corresponds to a different value of K, ranging between 23

and 29. The new scheme in red is given in equation (1), the scheme in blue is the Fourier pseudo-spectral
method coupled with a standard Runge-Kutta method (RK4).

We start by making a few remarks on Theorem 1.3. Our spectral rate coincides with those
obtained in the literature when analyzing semi-discrete Fourier pseudo-spectral methods, see Deng–
Ma [16] in the case of (BO) (with r = 1/2, s ≥ 2 1) and Maday–Quarteroni [39] in the case of the
KdV equation (with r = 1, s > 4).

While the (BO) equation is globally well-posed for initial data u0 ∈ Hs with s > −1/2, the
above theorem only yields decay rates when s > 1. It is the aim of a future project to consider low-
regularity data with s ≤ 1, by either considering different techniques for the proof or by employing
a different method of approximation. For example [15] obtains sharper rates K−s+r for a spatial
semi-discretization with a spectral Galerkin method (with r = 1/2 and smooth enough solutions).

Lastly, note that the error constant C in (2) depends only on ∥u0∥Hs and ∥u(t)∥Hs , instead
of ∥u∥L∞([0,t],Hs), because we do not compute the solution at intermediate times, unlike any time-
stepping method. In the case of (BO), we can bound ∥u∥L∞(R,Hs) as a function of ∥u0∥Hs , inde-
pendently of the final time t [27, 34]. Hence, one could remove ∥u(t)∥Hs from the statement of the
theorem, up to a change in the constant C. The same also holds for (CS), by compactness of the or-
bit of the solution [4], except in the focusing case with critical and supercritical mass (∥u∥L2(T) ≥ 1),
which is why we choose to formulate the theorem in this manner, see Remark 5.10.

1The authors additionally require ∂tu ∈ C([0, T ], Hs) and ∂2
t u ∈ C([0, T ]×T). Using the PDE to convert temporal

derivatives into spatial ones, this boils down to looking at the case s > 4.
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1.2 Outline

The rest of the article proceeds as follows. In Section 2 we set the scene and introduce the spaces
and norms we work with throughout the article, together with bilinear estimates which are used
in the proof of the main theorem. Section 3 contains the explicit formulas based on the Lax pair
formulation. We derive our numerical schemes based on these formulas in Section 4 and discuss
their computational cost and accuracy, comparing them with existing schemes in the literature.
We give numerical experiments in Section 4.2, in the case of the Benjamin–Ono equation. After
defining and establishing several tools crucial for the analysis in Section 5.1, we prove in Section 5.2
the spectral convergence result announced in Theorem 1.3.

Acknowledgements

The authors would like to deeply thank Patrick Gérard for stimulating discussions and constructive
feedback. We also thank Rana Badreddine for helpful remarks, and for her PhD defence where this
project was started. Y.A.B also thanks Louise Gassot for fruitful discussions on the Benjamin–Ono
equation. The work of Y.A.B. is funded by the National Science Foundation through the award
DMS-2401858 and M.D. acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) - Project number 442047500 through the Collaborative Research
Center “Sparsity and Singular Structures” (SFB 1481).

2 Norms, spaces and Fourier transforms

Crucial for the analysis, and a common point of our three equations, is the space in which we study
them. We define the Hardy space of functions whose Fourier transform is supported in N0 by

L2
+ = {f ∈ L2(T) : f̂(k) = 0 for k < 0}, (3)

where the L2 inner product and the Fourier coefficients are respectively defined as

⟨f, g⟩2L2 =
1

2π

∫ π

−π
f(x)g(x)dx and f̂(k) =

1

2π

∫ π

−π
f(x)e−ikxdx.

For concision, we use the shorthand notation ∥f∥ = ∥f∥L2 and ⟨f, g⟩ = ⟨f, g⟩L2 . With these
definitions, Fourier inversion, Parseval identity and the product-convolution identity read as follows:

f(x) =
∑
k∈Z

f̂(k)eikx, ∥f∥2L2 =
∑
k∈Z

|f̂(k)|2 and f̂g = f̂ ∗ ĝ.

By identifying T with the unit circle in C, the space L2
+ can equivalently be characterized as the

traces of holomorphic functions f on the unit disk

D = {z ∈ C : |z| < 1},

satisfying

sup
r<1

1

2π

∫ π

−π
|f(reix)|2 dx < +∞.
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The explicit formulas in the literature use this characterization, see equations (5), (7) and (9). We
point out that the previously mentioned Riesz–Szegő operator (Π) is the orthogonal projector from
L2 to L2

+.
For r > 0, we also introduce the Sobolev space Hr = {f ∈ L2 : ∥f∥Hr < ∞} with

∥f∥2Hr = ∥(I +D2)r/2f
∥∥2 = ∑

k∈Z
(1 + k2)r|f̂(k)|2,

and the Hardy–Sobolev space
Hr

+ = Hr ∩ L2
+. (4)

We immediately see that, for r′ < r and f ∈ Hr, ∥f∥Hr′ ≤ ∥f∥Hr . Moreover, the following
bilinear estimate holds:

Lemma 2.1. Let s > 1/2 and 0 ≤ σ ≤ s. Then, for all f ∈ Hs and g ∈ Hσ,

∥fg∥Hσ ≤ C1∥f∥Hs∥g∥Hσ .

The proof of the above lemma is quite standard, nevertheless we recall it in Section 6 for
completeness and traceability of the constants.

3 Explicit formulas

We now present the explicit formulas from [22, 4, 24], written as inversion dynamical formulas
defined inside the open unit disk, see equations (5), (7) and (9). We derive from these formulas a
characterization of the Fourier coefficients û(t, k) of the solution in terms of the initial data u0 and
the time t, see equations (6), (8), (10), and Remark 3.1. This later formulation is perfectly suited
for approximating numerically, via a spectral discretization, as will be seen in Section 4.

Recalling the definition of the Riesz-Szegő projector Π : L2 → L2
+ from (Π) and (3), we introduce

another crucial operator, S∗ : L2
+ → L2

+, which removes the zero-th Fourier coefficient and shifts all
positive frequencies by one

S∗f = Π(e−ixf), i.e. Ŝ∗f(k) = 1k≥0 f̂(k + 1), f ∈ L2
+.

We are now ready to state the explicit formulas.
Benjamin–Ono. For (BO), it was discovered by Gérard [22, Theorem 4] that

Πu(t, z) =

〈(
I − zeite2itL

BO
u0 S∗

)−1
Πu0, 1

〉
, ∀z ∈ D, (5)

where the Lax operator LBO
u0

is the semi-bounded self-adjoint operator defined on H1
+ by

LBO
u0

f = Df −Π(u0f).

By expanding formula (5) into a Neumann series in z = reix and letting r tend to 1, we identify
the Fourier coefficients of the solution

û(t, k) =
〈
(eite2itL

BO
u0 S∗)kΠu0, 1

〉
, k ≥ 0. (6)
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We note that in the case k < 0 we simply have û(t, k) = û(t,−k) since u is real-valued.
We now comment on other explicit formulas existing in the literature. A precursor to the

inversion formula (5) is the work of Gérard–Kappeler [26, Lemma 4.1] which considers finite gap
initial conditions. An explicit formula on the real line R is obtained by Gérard [22, Theorem 6],
and extended by the second author [14] to less regular initial data u0 ∈ L2(R). In the case of
rational initial data, an explicit formula on the real line is given in [9], expressed as a ratio of
determinants. A generalization of Gérard’s explicit formula (5) to the full hierarchy of (BO) is
presented in Killip–Laurens–Vişan [34].

Calogero–Sutherland DNLS. Badreddine’s explicit formula for (CS) in the focusing [4, Propo-
sition 2.6] and defocusing [4, Theorem 1.7] case is given by

u(t, z) =

〈(
I − ze−ite−2itLCS

u0 S∗
)−1

u0, 1

〉
, ∀z ∈ D, (7)

where the Lax operator LCS
u0

is the semi-bounded self-adjoint operator of domain H1
+ given by

LCS
u0

f = Df ∓ u0Π(u0f),

where the signs − and + correspond to the focusing case and the defocusing case, respectively. By
the same procedure as above, we infer from formula (7) the following characterization

û(t, k) =
〈
(e−ite−2itLCS

u0 S∗)ku0, 1
〉
, k ≥ 0. (8)

We recall that the initial data belongs to a space Hs
+, defined by (4), hence û(t, k) = 0 for k < 0.

We refer to Killip–Laurens–Vişan [33] for an explicit formula on the real line R, and to Sun [46] for
a matrix valued-extension.

Cubic Szegő. The explicit formula found by Gérard and Grellier [24, Theorem 1] reads

u(t, z) =

〈(
I − ze−itH2

u0eitK
2
u0S∗

)−1
e−itH2

u0u0, 1

〉
, ∀z ∈ D, (9)

where the self-adjoint operators Hu0 and Ku0 defined on L2
+ are given by

Hu0(f) = Π(u0f̄) and K2
u0
f = H2

u0
f − ⟨f, u0⟩u0, f ∈ L2

+.

Once again, we infer from the above the characterization in Fourier

û(t, k) =
〈
(e−itH2

u0eitK
2
u0S∗)ke−itH2

u0u0, 1
〉
, k ≥ 0. (10)

As for the (CS) equation, we have û(t, k) = 0 for k < 0.
An explicit formula was also derived for matrix valued extensions of (S) in Sun [47]. On R,

explicit formulas were found by Pocovnicu [42] and Gérard–Pushnitski [30].

Remark 3.1. The characterization in Fourier (6) already appeared in [22, Remark 5] for (BO),
and allowed to extend the explicit formula down to more singular initial data u0 ∈ Hs, with s > −1

2 .
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4 New schemes based on the explicit formulas

4.1 Construction of the schemes

In this section we present the three numerical schemes for the (BO), (CS) and (S) equations,
derived from the explicit formulas (6), (8) and (10) respectively. We construct schemes of the
general form (1), by restricting all operators to the K frequencies (0, . . . ,K − 1).

We discretize in CK×K the shift operator, the derivative and the convolution with u0 as

S∗ = (1k+1=ℓ)0≤k,ℓ<K D = (k1k=ℓ)0≤k,ℓ<K and Tu0 = (û0(k − ℓ))0≤k,ℓ<K .

Observe that for (BO), Tu0 is hermitian because u0 is real-valued, while for (CS) it is lower triangular
since u0 ∈ L2

+.
Introducing the discretization D−Tu0 of the Lax operator LBO

u0
, the scheme for (BO) is obtained

by taking
A = I+ 2D− 2Tu0 and M = 0 (11)

in equation (1).
For (CS), we let T∗

u0
denote the conjugate transpose of Tu0 , which corresponds to a convolution

with u0. We similarly recover the scheme by taking

A = −I− 2D± 2Tu0T
∗
u0

and M = 0, (12)

where the signs + and − correspond to the focusing case and the defocusing case, respectively.
Finally, for (S), to take into account the conjugation of the argument of Hu0 , we modify the

convolution matrix as follows
Hu0 = (û0(k + ℓ))0≤k,ℓ<K .

We then define the scheme through the choices

A = Hu0H
∗
u0

− u0u
∗
0 and M = Hu0H

∗
u0
, (13)

which are truncations of the operators K2
u0

and H2
u0

, respectively.

The above schemes are computed entirely in Fourier space. To understand why this yields
efficient algorithms, we need to consider their computational cost together with their precision.
Namely, for our schemes (1) the accuracy ϵ = ∥u(t)−uK(t)∥ and computational cost C are of order

ϵ ∼ TK−s+1 and C ∼ K3,

where T = t is the final time and K the number of frequencies in the discretization. We note that
the leading cost comes from computing the matrix exponentials in equation (1). Thereby, the cost
required to reach an accuracy ϵ is of order

C ∼
(
T

ϵ

) 3
s−1

,

which for large s beats fully-discrete schemes in the literature.
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We make the important observation that the main reason why these new schemes are efficient
is the fact that they are exact in time, hence the high precision compensates for the computational
cost. On the other hand, any fully discrete method which involves coupling a time discretization
with a fully spectral method, yields costly schemes with computational complexity in O(K2) per
time step. Hence, for practical purposes one resorts to pseudo-spectral methods in space, which rely
on the Fast Fourier Transform (FFT) and its inverse to compute efficiently the nonlinearity. This
yields algorithms whose cost per time step is O(K logK) instead of O(K2). The resulting schemes
unK have accuracy ϵ = ∥u(nτ)− unK∥ and computational effort C of order

ϵ ∼ eT
(
τm +K−s+1

)
and C ∼ T

τ
K log(K),

with τ the time step, m ∈ N the fixed order of the time approximation and n the time iteration. We
easily see that given the order m, and for smooth enough solutions, the error ϵ will be dominated
by the time-approximation error τm. Hence, the computational cost to obtain ϵ accuracy is much
higher than that of our new schemes. The case of rougher solutions needs to be adressed separately,
and will depend on the rate m as a function of the regularity s, as well as on the CFL condition
required by the low-regularity scheme. This analysis goes beyond the scope of this paper and will
be given elsewhere.

Finally, our schemes are remarkably more efficient for simulating over long times, thanks to the
fact that our error constant depends linearly on the final time T , instead of exponentially.

The above mentioned facts are witnessed in the numerical experiments of the next section.

Remark 4.1 (Different formulations of the scheme). The above schemes are written in the form
to be implemented. We can write the schemes – as is done in Section 5.1.2 for (BO) – in a more
theoretical fashion using only the operator ΠK , which is better suited for analyzing their convergence.

4.2 Numerical results in the case of the Benjamin–Ono equation

We illustrate our numerical results using the 2π-periodic travelling wave solutions

u∗(t, x) =
1

c−
√
c2 − 1 cos(x− ct)

, c > 1. (14)

These travelling waves, obtained by Benjamin [7], were proved by Amick-Toland [3] to be unique.
We note that when c > 1, the solution u∗ is real and forms a single solitary wave. In the following
we take either c = 15

4π , in agreement with the example of [50], or c = 15
π which corresponds to a

tighter peak.
While there is a vast literature on different numerical schemes for the (BO) equation, we choose

to compare ours with the scheme consisting of coupling a Fourier pseudo-spectral method with a
standard explicit 4-stage Runge-Kutta (RK4) time-stepping method. Although, up to our knowl-
edge, no convergence results exists for this scheme, it remains a very popular method to obtain
a high order approximation of smooth solutions, see for example [11]. To ensure stability of the
method we impose a CFL condition of the form τ ≤ Ch2, where h = 2π

K is the spatial mesh size. In
the following numerical simulations we take C = 1

4 .
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As previously mentioned, this pseudo-spectral method has a computational cost in T
τ K log(K)

when computing up until the final time T . Given the quadratic CFL condition the cost of the
pseudo-spectral RK4 method is of order TK3 logK. This is to be compared with the cost of the
new scheme (1) which is of order K3.

Figure 2: Convergence plot for the (BO) equation in L2 against the computational cost up to time T = 100
for the exact solution (14) (with c = 15

π ). We choose the number of Fourier modes K to be powers of two
ranging from 32 to 512.

We show in numerical simulations how the new scheme (1) clearly outperforms previous schemes
in the literature, both in the case of short (Figure 1) and long (Figures 2, 3) times, and compare
it with the pseudo-spectral RK4 scheme. In Figure 1 and 2 we chose as final times T = 1 and
T = 100 respectively, and compute the CPU-time versus L2-error of the scheme for varying time
and space step sizes. We see that the new scheme is far more precise. This is thanks to the fact
that it is exact in time, with spectral accuracy in space, hence the error decreases faster than any
polynomial. In contrast, for smooth solutions, the error of any fully discrete pseudo-spectral scheme
existing in the literature is dominated by the time discretization error of order τm, for some fixed
m ∈ N, which hence induces a larger error. Our schemes also perform well for large times since
the error constant only grows linearly in time, see Theorem 1.3. This is not the case of classical
methods in the literature whose error constant grows exponentially in the final time T , and hence
can yield poor results over long times. We refer to Figure 3 where the exact periodic solution and
numerical approximations are plotted at time t = 500, we see that only the new scheme gives a
reliable approximation. The CPU times needed to compute these schemes is 215 s for the RK4
method versus 6.28× 10−3 s for the new scheme.

Having motivated in numerical simulations the advantages of the new scheme (1), we now prepare
the ground for proving its convergence and introduce in the following section some notations and
definition of operators used in the proof.
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Figure 3: Plot of the solution (14) in purple (with c = 15
π ), the new scheme (1) in red, and the pseudo-spectral

RK4 method in blue. We choose t = 500 and K = 128. The initial profile is translated at constant speed c,
thus it has periodically returned near the origin ct/2π ≈ 380 times between 0 and t.

5 Proving convergence

We recall that in this section we consider the (BO) equation, whose solution and initial data are
real-valued functions.

5.1 Prerequisites for the proof

5.1.1 The Lax Pair

Given u ∈ H2, we can define the following Toeplitz operator on L2
+,

∀f ∈ L2
+, Tuf = Π(uf).

With the above notation, we recall the Lax operator Lu for (BO) already introduced in Section 3,

Lu = D − Tu.

In the proof, we will use the second Lax operator Bu, which is a bounded skew-adjoint operator
defined by

Bu = i
(
T|D|u − T 2

u

)
, (15)

as well as the following two propositions whose proofs are given in [22].

Proposition 5.1. [22, Corollary 3] Let u(t) be the solution of (BO) with initial data u0 ∈ H2.
Denote by U(t) the operator-valued solution of the linear ODE

U ′(t) = Bu(t)U(t), U(0) = I.

Then for every t ∈ R, U(t) is unitary on L2
+, and

Lu(t) = U(t)Lu0U(t)∗.



13

During the derivation of the explicit formula in [22, Section 2], at the bottom of page 597, Gérard
discovered the following identity.

Proposition 5.2. Under the condition of Lemma 5.1, we have

U(t)∗S∗U(t) = eit(Lu0+I)
2

S∗e−itL2
u0 .

Remark 5.3. The operator U(t) can be shown to be unitary on L2
+ for u(t) ∈ Hs, s > 3/2. Indeed,

the regularity requirement stems from equation (15) where a standard bilinear estimate requires
|D|u ∈ L∞. Hence, the above two lemmas can be stated for u(t) in these weaker spaces. Nevertheless,
to be consistent with prior works we keep the stronger hypothesis u(t) ∈ H2, as this does not change
the steps in our proof which follow by density for s < 2.

5.1.2 Truncated Lax operator

Recalling the definition oh ΠK from Section 1.1, we define the operator Lu0,K by

Lu0,Kf = Df −ΠK(u0ΠKf), f ∈ L2
+,

and let
A = I + 2Lu0 and AK = I + 2Lu0,K .

According to equations (6) and (1), it follows that for k ∈ {0, . . . ,K − 1},

û(t, k) = ⟨(eitAS∗)kΠu0, 1⟩ and ûK(t, k) = ⟨(eitAKS∗)kΠKu0, 1⟩.

Remark 5.4. In the computation of uK , we only apply eitAK to functions f in

L2
K =

{
f ∈ L2, supp(f̂) ⊂ {0, . . . ,K − 1}

}
,

for which Lu0,Kf = Df − ΠK(u0f). However, we need a second ΠK in the definition in order to
make Lu0,K self-adjoint on L2

+.

With the above definitions, the operators eitA and eitAK preserve the L2 norm.

Lemma 5.5. For any f ∈ L2
+, ∥eitAKf∥L2 = ∥f∥L2 and ∥eitAf∥L2 = ∥f∥L2.

Proof. For f, g ∈ L2
+, as u0 is real-valued,

⟨ΠK(u0ΠKf), g⟩ = ⟨u0ΠKf,ΠKg⟩ = ⟨ΠKf, u0ΠKg⟩ = ⟨f,ΠK(u0ΠKg)⟩

and
⟨Df, g⟩ =

∑
k≥0

kf̂(k)ĝ(k) = ⟨f,Dg⟩.

Therefore Lu0,K is self-adjoint, and so is AK . As a consequence,

d

dt
∥eitAKf∥2L2 = ⟨(iAK − iA∗

K)eitAKf, eitAKf⟩ = 0,

and the first equality follows by integrating the last equation between 0 and t. The second one is
obtained in a similar fashion, by replacing ΠK , Lu0,K and AK by Π, Lu0 and A, respectively.
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5.1.3 Equivalent norms

In the next lemmas, we assume that t, s and u0 are fixed. The constants Ci are allowed to depend
on s, ∥u0∥Hs , ∥u(t)∥Hs , and Cj for j < i. Let C2 = C1max(∥u0∥Hs , ∥u(t)∥Hs) + 1 and C3 = 2C2.
The following equivalence of norms holds for m = ⌈s⌉.

Lemma 5.6. For u ∈ {u0, u(t)} and f ∈ Hm
+ with m = ⌈s⌉, it holds

C−m
3 ∥f∥Hm ≤ ∥(Lu + C2I)

mf∥ ≤ Cm
3 ∥f∥Hm .

Proof. For any n ∈ {0, . . . ,m}, denote

fn = (Lu + C2I)
m−nf.

For n < m and g ∈ Hn+1, Lemma 2.1 shows that ∥ug∥Hn ≤ (C2 − 1)∥g∥Hn , and hence

∥(Lu + C2I)g∥Hn ≤ ∥Dg∥Hn + ∥ug∥Hn + C2∥g∥Hn ≤ 2C2∥g∥Hn+1 .

In particular,
∥fn∥Hn ≤ C3∥fn+1∥Hn+1 ,

which proves the upper bound ∥f0∥ ≤ Cm
3 ∥fm∥Hm by induction.

For the lower bound, we first note that for any g ∈ Hn+1
+ ,

⟨(Lu + (C2 − 1)I)g, g⟩Hn = ⟨Dg, g⟩Hn − ⟨ug, g⟩Hn + (C2 − 1)∥g∥2Hn ≥ 0,

hence

∥(Lu + C2I)g∥2Hn = ∥(Lu + (C2 − 1)I)g∥2Hn + 2⟨(Lu + (C2 − 1)I)g, g⟩Hn + ∥g∥2Hn ≥ ∥g∥2Hn .

From this, we obtain

∥g∥Hn+1 ≤ ∥(D + I)g∥Hn ≤ ∥(Lu + C2I)g∥Hn + ∥ug∥Hn + (C2 − 1)∥g∥Hn ≤ 2C2∥(Lu + C2I)g∥Hn ,

and we conclude again by induction on ∥fn∥Hn .

5.2 The proof of convergence

In this section we prove Theorem 1.3. We summarize in the following sentences the sequence of steps
needed to complete the proof, which differs very much from classical techniques to show convergence
of schemes (by coupling a local error and stability bound). It requires a deep understanding of the
Lax pairs, their commutation properties with the shift operator S∗ on the Hardy space L2

+, and of
the explicit form of the solution (5). Indeed, while the error committed by the projection Π− ΠK

is trivially of order O(K−s), the error made my discretizing the Lax operator Lu0 , and hence the
term (eitAS∗)k− (eitAKS∗)k, is much harder to control. In order to buckle the proof we first bound,
in Lemma 5.7, the error of approximation of the linear flow eitA. The bound involves the Hs

norm of a function uk related to the solution u, which needs to be controlled. This is done in
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Lemma 5.8, which is the most technical part of the proof and calls upon the second Lax operator
Bu, the identities introduced in Section 5.1.1, and the equivalence of norms in Section 5.1.3. The
proof of the theorem is then shown by proceeding by induction on the Fourier coefficients, without
Gronwall-type argument, and thereby allows to obtain a global bound with a linear dependence on
the final time t.

Lemma 5.7. For f ∈ L2
+ and s > 1/2,

∥eitAf − eitAKf∥ ≤ 4C1∥u0∥Hs tK−s sup
t′∈[0,t]

∥eit′Af∥Hs .

Proof. We let
F (t′) = ei(t−t′)AKeit

′Af,

and observe that

∥eitAf − eitAKf∥ = ∥F (t)− F (0)∥ =

∥∥∥∥∫ t

0

dF

dt′
dt′

∥∥∥∥
≤

∫ t

0
∥ei(t−t′)AK (AK −A)eit

′Af∥dt′

=

∫ t

0
∥(AK −A)eit

′Af∥dt′,

where we used Lemma 5.5 in the last equality. For g = eit
′Af , we have

1

2
(AK −A)g = Π(u0g)−ΠK(u0ΠKg) = (Π−ΠK)(u0g)−ΠK(u0(g −ΠKg)),

so we conclude with

∥(AK −A)g∥ ≤ 2∥(Π−ΠK)(u0g)∥+ 2∥ΠK(u0(g −ΠKg))∥
≤ 2∥u0g∥HsK−s + 2C1∥u0∥Hs∥g −ΠKg∥
≤ 4C1∥u0∥Hs∥g∥HsK−s,

with the constant C1 from Lemma 2.1.

Lemma 5.8. Given any integer k ≥ 0, let uk = (eitAS∗)kΠu0. Then for any t̃ ∈ [0, t],

∥e−it̃Auk∥Hs ≤ C4s
3 ∥u0∥Hs .

Proof. We first assume that u0 ∈ H2, in order to ensure that Bu(t) and U(t) are well-defined. By
definition of A and Proposition 5.2, we have

eitAS∗ = eit+2itLu0S∗ = e−itL2
u0eit(Lu0+I)

2

S∗ = e−itL2
u0U(t)∗S∗U(t)eitL

2
u0 .

By induction, we thereby obtain

(eitAS∗)k = e−itL2
u0U(t)∗(S∗)kU(t)eitL

2
u0 ,
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so e−it̃Auk = P (S∗)kQΠu0, with

P = e−it̃Ae−itL2
u0U(t)∗ and Q = U(t)eitL

2
u0 .

As A and Lu0 are self-adjoint, and U(t) is unitary, for any f ∈ L2
+,

∥Pf∥ = ∥Qf∥ = ∥f∥.

Moreover, by Lemma 5.6 and Proposition 5.1, for any f ∈ Hm
+ with m = ⌈s⌉,

∥Pf∥Hm ≤ Cm
3 ∥(Lu0+C2I)

mPf∥ = Cm
3 ∥P (Lu(t)+C2I)

mf∥ = Cm
3 ∥(Lu(t)+C2I)

mf∥ ≤ C2m
3 ∥f∥Hm .

As P is unitary, P−1 = P ∗ is also bounded in Hm. According to Lemma 6.2,

∥P∥Hs→Hs ≤ ∥P∥(m−s)/m
L2→L2 ∥P∥s/mHm→Hm ≤ C2s

3 .

Proceeding in the same way with Q, we obtain

∥e−it̃Auk∥Hs ≤ C2s
3 ∥(S∗)kQΠu0∥Hs ≤ C2s

3 ∥QΠu0∥Hs ≤ C4s
3 ∥Πu0∥Hs ≤ C4s

3 ∥u0∥Hs .

For u0 ∈ Hs with 1 < s < 2, we can take a sequence (un0 )n∈N ∈ (H2)N that approximates u0 in
Hs. By the continuity of the flow map [40, Theorem 1.1], we have un(t) −→

n→∞
u(t) in Hs. Moreover,

defining An = I + 2Lun
0

and following the proof of Lemma 5.7 we have that for every v ∈ Hs
+,

∥eitAn
v − eitAv∥Hs ≤ 2

∫ t

0
∥ei(t−t′)An

(Tun
0
− Tu0)e

it′Av∥Hsdt′

≤ 2C2s
3

∫ t

0
∥(Tun

0
− Tu0)e

it′Av∥Hsdt′

≤ 2C1C
4s
3 t ∥un0 − u0∥Hs∥v∥Hs −→

n→∞
0.

Hence, for fixed t we have eitA
n −→

n→∞
eitA in L(Hs

+) (norm topology), and by applying an
induction argument we obtain the convergence

e−it̃An
(eitA

n
S∗)kΠun0 −→

n→∞
e−it̃A(eitAS∗)kΠu0, in Hs

+.

By following the above proof with u0 replaced by un0 , we have

∥e−it̃An
(eitA

n
S∗)kΠun0∥Hs ≤ (2C1max(∥un0∥Hs , ∥un(t)∥Hs) + 2)4s∥un0∥Hs .

Therefore, by taking the limit as n → ∞ in the above, we recover the desired bound by C4s
3 ∥u0∥Hs

also in the case 1 < s < 2, which completes the proof.

Proof of Theorem 1.3. We recall that for notational convenience, we write ∥ · ∥ = ∥ · ∥L2 . For k ≥ 0,
denote

vk = (eitAS∗)kΠu0 − (eitAKS∗)kΠKu0, and wk = eitAKS∗vk.

Notice that the Fourier coefficients of the error satisfy, for k ∈ {0, . . . ,K − 1},

ek := û(t, k)− ûK(t, k) = ⟨(eitAS∗)kΠu0, 1⟩ − ⟨(eitAKS∗)kΠKu0, 1⟩ = ⟨vk, 1⟩.
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Using the property of the shift operator S∗ and Lemma 5.5 thus yields

∥vk∥2 = |⟨vk, 1⟩|2 + ∥S∗vk∥2 = |ek|2 + ∥wk∥2. (16)

Moreover, recalling that uk = (eitAS∗)kΠu0 and defining

εk = (eitA − eitAK )S∗uk,

we have
vk+1 = wk + εk. (17)

For C4 = 4C1∥u0∥2HsC4s
3 , we can bound

∥εk∥ = ∥(eitA − eitAK )e−itAuk+1∥ ≤ 4C1∥u0∥HstK−s sup
t′∈[0,t]

∥ei(t′−t)Auk+1∥Hs ≤ C4 tK
−s,

where we used Lemma 5.7 in the first inequality, and Lemma 5.8 in the second.
Applying successively (17) and (16), we see that

∥vk+1∥ ≤ ∥wk∥+ ∥εk∥ ≤ ∥vk∥+ ∥εk∥.

By induction, this implies that for all k ≥ 0,

∥vk∥ ≤ ∥v0∥+
k−1∑
ℓ=0

∥εℓ∥ ≤ (∥u0∥Hs + C4 t k)K
−s.

Applying (16) and (17) one more time yields
K−1∑
k=0

|ek|2 =
K−1∑
k=0

∥vk∥2 − ∥wk∥2

≤ ∥v0∥2 +
K−1∑
k=0

∥vk+1∥2 − ∥wk∥2

= ∥v0∥2 +
K−1∑
k=0

(∥vk+1∥+ ∥wk∥)(∥vk+1∥ − ∥wk∥)

≤ ∥v0∥2 +
K−1∑
k=0

(∥vk+1∥+ ∥vk∥)∥εk∥

≤ ∥u0∥2HsK−2s + 2
K−1∑
k=0

(∥u0∥Hs + C4 tK)C4 tK
−2s.

As the coefficients with negative indices are just complex conjugates, we conclude that for
0 ≤ r ≤ s,

∥u− uK∥2Hr ≤ 2
∑
k≥0

(1 + k2)r|û(k)− ûK(k)|2

≤ 2K2r
K−1∑
k=0

|ek|2 +
∑
k≥K

(1 + k2)r|û(k)|2

≤ C2
5 (1 + tK)2K2r−2s,

with C5 = 2∥u0∥Hs + 2C4 ≤ 28(s+1)2 max(∥u0∥Hs , ∥u(t)∥Hs , 1)4s+1∥u0∥Hs .



18

Remark 5.9. The final result is actually slightly better than stated in Theorem 1.3, since we achieve
the optimal decay rate K−s+r for small times t = O(K−1). For small initial data, it is also readily
seen that C5 tends to 0 linearly with ∥u0∥Hs.

Remark 5.10. The analogue of Proposition 5.1 and Proposition 5.2 for the (CS) equation is ob-
tained in [4, Equation 2-11 and 2-14]. By applying the same steps as in the proof of Theorem 1.3
one recovers the convergence rate of Theorem 1.3 for the scheme in equation (1) which approximates
the (CS) equation. However, this result cannot be applied globally in time to the focusing case with
critical or supercritical mass (∥u∥L2(T) ≥ 1), as the global existence of the solution in such cases is
not yet known.

6 Appendix

Proof of Lemma 2.1. A proof on more general Sobolev spaces can be found in [2, Theorem 4.39],
here we present a much simpler argument in Hs.

For k, ℓ ∈ Z, denoting ⟨k⟩ =
√
1 + k2, it holds ⟨k⟩σ ≤ 2σ(⟨ℓ⟩σ+⟨k−ℓ⟩σ). Letting D = (1+D2)σ/2,

this yields∣∣∣D̂(fg)(k)
∣∣∣ = ⟨k⟩σ

∣∣∣f̂g(k)∣∣∣ = ⟨k⟩σ
∣∣∣∑
ℓ∈Z

f̂(ℓ) ĝ(k − ℓ)
∣∣∣ ≤ 2σ

(
D̂f ∗ ĝ + f̂ ∗ D̂g

)
(k).

By Young’s convolution inequality, for p = 2s
2s−σ and q = 2s

s+σ , as 1
p + 1

q = 1 + 1
2 ,∥∥D(fg)

∥∥ =
∥∥D̂(fg)

∥∥
2
≤ 2σ

(∥∥D̂f
∥∥
p

∥∥ĝ∥∥
q
+
∥∥f̂∥∥

1

∥∥D̂g
∥∥
2

)
.

Applying Hölder’s inequality with exponents 2
2−p and 2

p ,∥∥D̂f
∥∥p
p
=

∑
k∈Z

⟨k⟩σp|f̂(k)|p ≤ C
2−p
2

0

(∑
k∈Z

⟨k⟩2s|f̂(k)|2
) p

2
= C

2−p
2

0 ∥f∥pHs ,

where C0 =
∑

k∈Z⟨k⟩−2s. By Hölder’s inequality with exponents 2
2−q and 2

q , and Cauchy-Schwarz
inequality, we also have ∥∥ĝ∥∥q

q
≤ C

2−q
2

0 ∥g∥qHσ and ∥f̂∥1 ≤ C
1
2
0 ∥g∥Hs .

Finally, as
∥∥D̂g

∥∥
2
= ∥f∥Hσ , taking C1 = 2s+1

√
C0, we conclude with

∥∥D(fg)
∥∥ ≤ 2σ

(
C

1
p
− 1

2

0 C
1
q
− 1

2

0 + C
1
2
0

)
∥f∥Hs∥g∥Hσ ≤ C1∥f∥Hs∥g∥Hσ .

Remark 6.1. In the proof of the theorem, as s > 1, we use the bound C0 ≤
∑

k∈Z
1

1+k2
≤ 4, and

thus C1 ≤ 2s+2.

Lemma 6.2. If P is invertible in Hm
+ with ∥P∥L2→L2 ≤ 1 and ∥P∥Hm→Hm ≤ C2m

3 , then

∥P∥Hs→Hs ≤ C2s
3 .
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Proof. We use a simple version of K interpolation. A general proof can be found in [2, Theorem 7.23].
For f ∈ Hs, define

K(t, f) := inf
g∈Hm

∥f − g∥2 + t∥g∥2Hm

=
∑
k≥0

min
ĝk∈C

|f̂k − ĝk|2 + t⟨k⟩2m|ĝk|2

=
∑
k≥0

|f̂k|2 min
λ∈[0,1]

(1− λ)2 + t⟨k⟩2mλ2

=
∑
k≥0

|f̂k|2
t⟨k⟩2m

1 + t⟨k⟩2m
.

Observing that ∫ ∞

0

t⟨k⟩2m

1 + t⟨k⟩2m
dt

t1+s/m
= ⟨k⟩2s

∫ ∞

0

x−s/m

1 + x
dx = Cs⟨k⟩2s,

where Cs only depends on s, we obtain

∥f∥2Hs =
1

Cs

∫ ∞

0
K(t, f)

dt

t1+s/m
.

Finally, as P is invertible in Hm
+ ,

K(t, Pf) = inf
g∈Hm

+

∥Pf − Pg∥2 + t∥Pg∥2Hm ≤ inf
g∈Hm

+

∥f − g∥2 + C4m
3 t∥g∥2Hm = K(C4m

3 t, f),

and therefore
∥Pf∥2Hs =

1

Cs

∫ ∞

0
K(t, Pf) t−

s
m

dt

t
≤ C4s

3 ∥f∥2Hs .
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