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Abstract

We construct a mean-�eld model that describes the nonlinear dynamics of a spin-
polarized electron gas interacting with �xed, positively-charged ions possessing a magnetic
moment that evolves in time. The mobile electrons are modeled by a four-component dis-
tribution function in the two-dimensional phase space (x, v), obeying a Vlasov-Poisson set
of equations. The ions are modeled by a Landau-Lifshitz equation for their spin density,
which contains ion-ion and electron-ion magnetic exchange terms. We perform a linear re-
sponse study of the coupled Vlasov-Poisson-Landau-Lifshitz (VPLL) equations for the case
of a Maxwell-Boltzmann equilibrium, focussing in particular on the spin dispersion rela-
tion. Condition of stability or instability for the spin modes are identi�ed, which depend
essentially on the electron spin polarization rate η and the electron-ion magnetic coupling
constant K. We also develop an Eulerian grid-based computational code for the fully non-
linear VPLL equations, based on the geometric Hamiltonian method �rst developed in [15].
This technique allows us to achieve great accuracy for the conserved quantities, such as the
modulus of the ion spin vector and the total energy. Numerical tests in the linear regime are
in accordance with the estimations of the linear response theory. For two-stream equilibria,
we study the interplay of instabilities occurring in both the charge and the spin sectors. The
set of parameters used in the simulations, with densities close to those of solids (≈ 1029m−3)
and temperatures of the order of 10 eV, may be relevant to the warm dense matter regime
appearing in some inertial fusion experiments.
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1 Introduction

The interaction of coherent electromagnetic radiation (laser light) with matter is a well-established
�eld within various branches of physics, particularly condensed-matter and nanophysics, where
laser pulses are often employed to study how electrons behave on extremely short time scales
(femto- or atto-seconds). Indeed, the most common electronic resonance found in metals �
the plasmon resonance � occurs within the femtosecond time scale. This makes ultrafast laser
pulses an essential tool for experimental investigations into the collective behavior of electrons
in metals.

In plasma physics, laser-plasma interactions are essential for the development of inertial
fusion (triggered by powerful laser pulses) and laser-plasma accelerators (which rely on the
acceleration of charged particles by plasma waves). They are also crucial in the study of warm
dense matter (WDM), a state of matter that is at the frontier between solids and dense plasmas,
where ultrafast nonequilibrium dynamics have been recently accessed thanks to subpicosecond
laser pulses [19].

However, in addition to their electric charge, electrons also possess an intrinsic magnetic
moment, i.e., a spin. Utilizing the electron spin as a vector to code and transfer information is
at the core of the emerging �eld of spintronics. In nanophysics, spin e�ects are at the core of
the ultrafast demagnetization observed in ferromagnetic thin �lms irradiated with femtosecond
laser pulses [3, 5, 4]. Despite intense investigations, such ultrafast demagnetization is not yet
fully understood, although the spin-orbit interaction [27, 28, 22], spin currents [39, 11, 25] and
superdi�usive electron transport [2] appear to play a signi�cant role.

The exploration of spin-dependent e�ects in plasma physics is a relatively new area of study.
Nonetheless, it is now possible to generate and precisely control polarized electron beams with
high spin polarization in laboratory settings [42, 41, 38]. Theoretical studies on polarized plas-
mas have been revitalized in recent years [25, 23, 45, 46, 37], although some early developments
date back to the 1980s [12]. Notably, Brodin et al. [7] have formulated a particle-in-cell (PIC)
code that incorporates the magnetic dipole force and magnetization currents related to the elec-
tron spin. PIC methods for particles with spin have also been developed for applications in the
�eld of laser-plasma interactions [30].

Within the condensed matter and nanophysics communities, most research on ultrafast
spin dynamics has relied on wavefunction based methods, particularly time-dependent density
functional theory, augmented in order to incorporate spin e�ects (spin-TDDFT) [27, 40, 43, 35].
Spin-TDDFT models have also been utilized to study spin e�ects in dense plasmas in the WDM
regime [6].

In a recent series of papers [16, 15, 33], we have proposed an alternative approach based
on Wigner functions, which represent electronic quantum states through a pseudo-probability
distribution in the classical phase space. The corresponding Wigner evolution equation reduces
to the standard Vlasov equation of classical plasma physics. For spin-1/2 particles, such as
electrons, one can construct a semi-classical model, where the orbital motion (i.e., the trajec-
tories in the phase space) is treated classically while the spin is kept as a quantum-mechanical
variable. For a review of methods based on Wigner functions, see [34].

2



Among these phase space models, two families can be distinguished: on the one side, Vlasov
models that use a scalar distribution function on an extended phase-space (x, v, s) where x and v
are the position and velocity of the electron, while s denotes the spin variable [45, 36, 9, 8, 36, 8];
on the other side, models using a multi-component distribution function fℓ, (ℓ = 0, 3) with
values in the standard phase space (x, v). These two approaches are almost, although not
exactly, equivalent (see our detailed discussion in [15] for further clari�cations). Hereafter, we
will name these approaches respectively as "scalar" and "vectorial". Note that, for both of
them, the orbital motion is classical while the spin is a fully quantum variable. The numerical
approximation of these models requires di�erent techniques. Indeed, the scalar version involves
an extended phase space of dimension 8, which naturally leads to consider PIC techniques as
the method of choice [16, 31]; in contrast, the vectorial approach is more easily amenable to
grid-based methods [15].

In previous works [16, 15, 33], we had only considered the dynamics of the mobile (itinerant)
electrons, whereas the ions only acted as an immobile neutralizing background. However, in
ferromagnets most of the magnetic properties are due to the �xed ions, which account for
approximately 95% of the magnetization of the material, whereas only the remaining ≈ 5% can
be attributed to the mobile electrons. In the present work, the ions are still �xed (because their
orbital response occurs on much longer timescales), but their spin is allowed to evolve in time
according to the Landau-Lifshitz (LL) equation. The latter describes the precession motion
of a magnetic moment in an e�ective magnetic �eld, which can be either an external one or
the �eld created by the spin of the itinerant electrons. In turns, the ions generate a magnetic
�eld which acts on the spin of the electrons. The ions also interact among each other through a
Heisenberg-type magnetic-exchange interaction, while the electrons feel the usual self-consistent
electric �eld.

Overall, the nonlinear Vlasov-Poisson-Landau-Lifshitz (VPLL) equations describe the cou-
pling between the itinerant magnetism generated by the mobile electrons, represented by a
vector distribution function (f0, f)(t, x, v) ∈ R4, and the �xed magnetism carried by the mo-
tionless ions, represented by their local spin S(t, x) ∈ S2. It can be viewed as a spin-extended
version of the usual Vlasov-Poisson model with �xed ions. An earlier version of this model �
employing a more rudimentary numerical technique � was used in [24] to study spin current
generation in thin nickel �lms. Here, we will mainly consider a parameter range relevant to
WDM [6], with densities close to those of solids (≈ 1029m−3) and temperatures of the order of
10 eV. For these conditions, the electron plasma is weakly degenerate (Te ≈ TF , where TF is the
Fermi temperature), so that its equilibrium can be characterized with relatively good accuracy
by a Maxwell-Boltzmann distribution. The ions are �xed and non-degenerate.

The model is described mathematically by a set of coupled nonlinear partial di�erential
equations (PDEs). The design of e�cient scheme for a system of PDEs is not easy and one
possible strategy is to make use of a splitting algorithm. When the system under consideration
enjoys a Hamiltonian structure, a systematic way to proceed relies on the Hamiltonian splitting
[14, 10, 32, 13]. It turns out that the VPLL equations enjoy a Poisson structure which motivates
the use of Hamiltonian time splitting. Following previous development of geometric numerical
method for Vlasov-type equations [14, 32, 13], the Hamiltonian splitting applied to the VPLL
leads to �ve subsystems that can be solved exactly in time, and for which e�cient and high-
order methods in space and velocity can be used. As a consequence, the time accuracy of the
resulting scheme only depends on the splitting error (which can be made arbitrarily small using
high-order composition splittings [21, 44]) and since the method is symplectic (as composition
of symplectic �ows), it maintains long term accuracy on invariants such as the total energy
[21]. Another interesting property that can be proven for the proposed scheme is the exact
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preservation of the norm of the ion spin ∥S∥.
To validate the numerical results, we investigate the linearized VPLL system by deriving

the pertinent dispersion relation, following [34]. When the ion-electron coupling is turned o�,
the dispersion relation degenerates into the standard Bohm-Gross relation for plasmons and the
magnon dispersion relation for the ion spins [18]. It is noteworthy that the typical plasmon
timescale is about two orders of magnitude faster than that of magnons, which constitutes a
considerable challenge for the numerical scheme. In the case of Maxwell-Boltzmann equilibria,
the dispersion relations can be solved numerically using dedicated libraries, e.g. Zeal [26].
Moreover, analytical calculations are performed in the weak coupling regime. Cross-validations
between the roots of the dispersion relation and the results of the nonlinear code are performed
and discussed.

The rest of the paper is organized as follows. Section 2 lays the basis of the VPLL model
equations and their nondimensional form. Section 3 discusses the linear response theory and
the corresponding dispersion relation. The numerical method is presented in section 4. Re-
sults of numerical simulations are presented in section 5, both for a stable Maxwell-Boltzmann
equilibrium and an unstable two-stream distribution function, and compared to linear-response
results obtained from the dispersion relation, particularly for damping and growth rates. Con-
clusions are drawn in section 6. Three Appendices provide some further details on the Maxwell-
Boltzmann equilibrium with spin (Appendix A), the dispersion relation (Appendix B), and the
numerical splitting technique (Appendix C).

2 Vlasov-Poisson-Landau-Lifshitz model

We consider a generic scenario where a magnetic material (e.g., nickel) is irradiated with a
strong femtosecond laser pulse, so that some or most of the electrons are extracted from the
bulk and can move freely, thus constituting a mobile electron plasma. The pulse heats up the
electrons to a temperature equivalent to their Fermi energy, which for nickel is EF ≈ 10 eV,
while their density remains similar to that of the solid ne ≈ 1029m−3. These parameters are
close to those of the weakly degenerate plasmas typical of WDM [6, 19]. During these initial
instants, up to about 100 fs, the ions do not have time to move, and can thus be assimilated to
an immobile, but magnetized, background.

Within this broad context, our purpose here is to validate our numerical code, in the linear
and nonlinear regimes, for parameters that are similar to those mentioned above. Hence, we will
consider a one-dimensional (1D) model with periodic boundary conditions, and will investigate
how a perturbed Maxwell-Boltzmann equilibrium evolves in time, for both the charge (plasmons)
and spin (magnons) sectors. We will also analyze potentially unstable two-stream equilibria.

2.1 Model equations

The electrons are described by a four-component distribution function (f0, f)(t, x, v) with f =
(f1, f2, f3) ∈ R3, which is coupled to the continuous ion spin distribution S(t, x) = (S1, S2, S3)(t, x).
The overall system of equations, for the space variable x ∈ [0, L] ⊂ R and velocity variable v ∈ R,
is composed of set of kinetic equations for the electron distribution functions [34, 15]

∂f0
∂t

+ v
∂f0
∂x

+
e

m

∂VH

∂x

∂f0
∂v

− µB

m

∂B

∂x
· ∂f
∂v

= 0, (1)

∂fℓ
∂t

+ v
∂fℓ
∂x

+
e

m

∂VH

∂x

∂fℓ
∂v

− µB

m

∂Bℓ

∂x

∂f0
∂v

− e

m
(B× f)ℓ = 0, ℓ = 1, 2, 3, (2)
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and Landau-Lifshitz equation [29] for the ion spins

∂S

∂t
=

a2J

ℏ

(
S × ∂2S

∂x2

)
+

K

2ℏ
S ×

�
fdv, (3)

where the �rst term on the right-hand side is the Heisenberg ion-ion magnetic exchange, whereas
the second term represents the ion-electron magnetic exchange.

The scalar distribution function f0(t, x, v) represents, as usual, the probability to �nd an
electron in the phase space volume located around (x, v), at time t. Its moments yield the usual
macroscopic quantities, such as the density ne(t, x) =

�
f0(t, x, v)dv. In contrast, the vector

distribution function fℓ(t, x, v) represents the mean spin polarization density of the electrons
in the phase space volume located around (x, v) at time t, along the ℓ direction. Its �rst
moment M(t, x) =

�
f(t, x, v)dv represents the electron spin density. For more details, see the

recent review [34]. The relationship between this (f0, f) representation and the more standard
representation as a 2 × 2 matrix with spin-up and spin-down components is also illustrated in
the Appendix A.

The self-consistent electric potential (Hartree potential) VH(t, x) obeys the Poisson equation

ϵ0 ∂
2
xVH = e

�
f0dv − Zenion, (4)

and the magnetic �eld appearing in (1)-(2) is primarily the one created by the ions

B(t, x) = −KnionS(t, x)

2µB
, (5)

although external �elds could also be considered. Here, e > 0 denotes the electron charge, ℏ the
Planck constant, m the electron mass, ϵ0 the permittivity of vacuum, µB = eℏ/2m the Bohr
magneton, a the interatomic distance, Z is the atomic number, J and K are respectively the
ion-ion and electron-ion magnetic exchange constants, and nion is the �xed, homogeneous ion
density. The full initial condition may be denoted as (f0, f , VH ,S)(t = 0) = (f

(0)
0 , f (0), V

(0)
H ,S(0)),

where ε0∂
2
xV

0
H = e

�
f0
0dv − Zenion.

Note how the K-terms couple the ion and electron spin dynamics: the magnetic �eld B
given by (5) created by the ions acts on the spin part of the electron distribution functions f in
(1)-(2), while the electron spin density

�
fdv acts on the LL equation (3) for the ion spins. A

schematic view of the physical system under consideration is shown in Fig. 1.
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Figure 1: Schematic view of the physical system under consideration. The immobile ions (red
circles) provide the main source of localized magnetism. They interact through magnetic ex-
change both with themselves (coupling constant J) and with the itinerant electrons, represented
by green dots (coupling constant K).

Form a mathematical viewpoint, the model (1)-(4) enjoys a Poisson structure with the
following Hamiltonian functional

H =
m

2

�
v2f0dxdv + µB

�
f ·Bdxdv +

ϵ0
2

�
(∂xVH)2dx+

a2J

2

�
nion

3∑
ℓ=1

(∂Sℓ

∂x

)2
dx. (6)

Moreover, it is possible to construct a Poisson bracket for two functionals F and G

{F ,G} =
3∑

i=0

�
f0
m

[
δF
δfi

,
δG
δfi

]
xv

dxdv +
3∑

i=1

(�
fi
m

[
δF
δf0

,
δG
δfi

]
xv

dxdv +

�
fi
m

[
δF
δfi

,
δG
δf0

]
xv

dxdv

)
+

e

µBm

�
f ·
(
δF
δf

× δG
δf

)
dxdv +

1

ℏ

�
S

nion
·
(
δF
δS

× δG
δS

)
dx.

(7)

Remark 1. It is easy to check that the bracket (7) is bilinear, skew-symmetric, and satis�es
Leibniz's rule, but it is not clear whether Jacobi's identity is satis�ed. Hence, this bracket is not
strictly speaking a Poisson bracket; nevertheless we will still refer to it as a Poisson bracket for
the sake of simplicity.

With these notations in hand, the system (1)-(4) can be reformulated, after introducing the
vector of unknowns Z = (f0, f ,S) ∈ R7, as

∂Z
∂t

= {Z,H}. (8)

2.2 Normalized dimensionless equations

We rewrite the above equations (1)-(4) using dimensionless units that correspond to normalizing
time to the inverse of the plasmon frequency ωp =

√
e2ne/ϵ0m, velocities to the thermal speed

vth =
√

kBTe/m, and space to the Debye length λD = vth/ωp, where kB is the Boltzmann
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constant. Hence the electric potential is normalized to mv2th/e, the electric �eld to mvthωp/e,
and the magnetic �eld to mωp/e.

Using these normalized units and de�ning the self-consistent electric �eld as Ex = −∂xVH ,
the dimensionless kinetic equations read as (for simplicity of notation, we do not change the
names of the dimensionless variables):

∂f0
∂t

+ v
∂f0
∂x

− Ex
∂f0
∂v

−H
∂B

∂x
· ∂f
∂v

= 0, (9)

∂fℓ
∂t

+ v
∂fℓ
∂x

− Ex
∂fℓ
∂v

−H
∂Bℓ

∂x

∂f0
∂v

− (B× f)ℓ = 0, ℓ = 1, 2, 3, (10)

where

B = −K̃S

2
(11)

is the magnetic �eld created by the ions.
The dimensionless Planck constant

H =
ℏωp

2mv2th
(12)

quanti�es the relative importance of quantum e�ects with respect to thermal e�ects. We also
note that H can be written in terms of the quantum coupling parameter Γq = ℏωp/EF and the
degeneracy parameter Θ = Te/TF as: H = Γq/(2Θ). In turn, the quantum coupling parameter
is related to the Wigner-Seitz radius rs through the relationship [6]:

Γ2
q =

rs
a0

16

9π

(
12

π

)1/3

≈ 0.88
rs
a0

, (13)

where a0 = 4πε0ℏ2/(me2) is the Bohr radius.
The normalized LL equation becomes

∂S

∂t
= A

(
S × ∂2S

∂x2

)
+ Z

K̃

4
S ×

�
fdv, (14)

with the dimensionless magnetic exchange constants written as A =
a2

λ2
D

J

ℏωp
and K̃ =

2Knion

ℏωp
.

Finally, the dimensionless Poisson equation is

− ∂xEx =

�
f0dv − 1. (15)

The total energy in dimensionless units is given by the Hamiltonian H = Hv+HE+

3∑
i=1

(
HZ,i+

Hspin,i

)
, with

Hv =
1

2

�
v2f0dxdv, HE =

1

2

� (∂VH

∂x

)2
dx,

HZ,i = H

�
fiBidxdv, Hspin,i = AH

� (∂Si

∂x

)2
dx,

(16)

where the various terms correspond to the kinetic energy (Hv), the Hartree electric energy (HE),
the magnetic Zeeman energy (HZ), and the spin energy (Hspin).

7



We consider an electron plasma in the WDM regime, with density ne = nion = 9.17 ×
1028m−3 (Z = 1) and temperature kBTe = 16.58 eV. This choice yields for the time, velocity,
and length scales: ωp = 1.71 × 1016 s−1, vth = 1.71 × 106m s−1, and λD = 10−10m. As
to the dimensionless parameters, we �nd: normalized Planck constant H = 0.339, quantum
coupling parameter Γq = 1.516, Wigner-Seitz radius rs/a0 = 2.60 (corresponding to nickel),
and degeneracy parameter Θ = 2.24.

For the magnetic exchange coupling constants, we use values close to those of nickel [24]:
J = 0.022 eV and K = 0.01 eV nm3. Taking the lattice spacing a = 2rs = 0.275 nm, this yields
for the dimensionless parameters: A = 0.0148 and K̃ = 0.161.

3 Linear analysis and dispersion relations

3.1 Linear analysis for a generic equilibrium

In order to validate the model (9)-(15) in the linear response regime, we perform a linear analysis
to derive the pertinent dispersion relation. First, we start with the following homogeneous
stationary state:

f
(0)
0 = f

(0)
0 (v), f

(0)
3 = f

(0)
3 (v),

f
(0)
1 = f

(0)
2 = 0, S

(0)
1 = S

(0)
2 = E(0)

x = 0, and S
(0)
3 = 1,

where the superscript "(0)" stands for equilibrium. This corresponds to an ion system that is
fully polarized in the S3 direction, and an electron system that is partially polarized in the same
direction. The degree of electron spin polarization depends on the choice of f (0)

3 (v), and can be
characterized by a single number η =

�∞
−∞ f

(0)
3 (v)dv, with η ∈ [−1, 1]

We then derive the linearized system and study the propagation of a perturbation around
the stationary state. We thus consider solutions in the form

f0 = f
(0)
0 + f

(1)
0 , fℓ = f

(0)
ℓ + f

(1)
ℓ , Ex = E(0)

x + E(1)
x , and Sℓ = S

(0)
ℓ + S

(1)
ℓ .

Inserting these solutions into the system (9)-(15) and neglecting quadratic terms leads to the
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following linear system

∂f
(1)
0

∂t
+ v

∂f
(1)
0

∂x
− E(1)

x

∂f
(0)
0

∂v
+

HK̃

2

∂S
(1)
3

∂x

∂f
(0)
3

∂v
= 0, (17)

∂f
(1)
1

∂t
+ v

∂f
(1)
1

∂x
+

HK̃

2

∂S
(1)
1

∂x

∂f
(0)
0

∂v
− K̃

2
(f

(1)
2 − f

(0)
3 S

(1)
2 ) = 0, (18)

∂f
(1)
2

∂t
+ v

∂f
(1)
2

∂x
+

HK̃

2

∂S
(1)
2

∂x

∂f
(0)
0

∂v
+

K̃

2
(f

(1)
1 − f

(0)
3 S

(1)
1 ) = 0, (19)

∂f
(1)
3

∂t
+ v

∂f
(1)
3

∂x
− E(1)

x

∂f
(0)
3

∂v
+

HK̃

2

∂S
(1)
3

∂x

∂f
(0)
0

∂v
= 0, (20)

∂S
(1)
1

∂t
= −A

∂2S
(1)
2

∂x2
+

K̃

4

(
S
(1)
2

�
f
(0)
3 dv −

�
f
(1)
2 dv

)
, (21)

∂S
(1)
2

∂t
= A

∂2S
(1)
1

∂x2
− K̃

4

(
S
(1)
1

�
f
(0)
3 dv −

�
f
(1)
1 dv

)
, (22)

∂S
(1)
3

∂t
= 0, (23)

− ∂xE
(1)
x =

�
f
(1)
0 dv. (24)

By performing Fourier (in space) and Laplace (in time) transforms of the above linear system of
equations, we can derive an equation relating the frequency ω and the wave number k (we shall
further refer to ωe for the charge branch of the dispersion relation and ωs for the spin branch).
Since S3 does not depend on time, the dispersion relation for f (1)

0 and E
(1)
x is the same as the

standard Bohm-Gross relation for unpolarized electrons, that is

De(ωe, k) ≡ 1− 1

k

�
∂vf

(0)
0

kv − ωe
dv = 0 (25)

(here and in the following, velocity integrals are understood as being from −∞ to +∞). Hence,
at the level of the linear response, the spin and charge motions are completely separated. This
is an important fact, as it means that an excitation (e.g., a laser pulse) acting only on the
charge density will not trigger any response in the spin dynamics. In order to generate a spin
dynamics, one needs either a strong pulse that generates nonlinear e�ects, or an excitation that
acts directly on the spins (e.g., via the magnetic part of the laser pulse).

Next, we consider the equations for f
(1)
1 , f (1)

2 , S(1)
1 and S

(1)
2 , which lead to the dispersion

relation for the ion spin motion:

DS(ωs, k) ≡ −
[
ωs −

K̃2

8

(K̃Hk

2
I0 + I1

)]2
+
[
Ak2 +

K̃η

4
− K̃2

8

(
HkI3 +

K̃

2
I2

)]2
= 0, (26)

where we have de�ned the integrals

I0 =

�
∂vf

(0)
0

(K̃/2)2 − (vk − ωs)2
dv, I1 =

�
(vk − ωs)f

(0)
3

(K̃/2)2 − (vk − ωs)2
dv,

I2 =

�
f
(0)
3

(K̃/2)2 − (vk − ωs)2
dv, I3 =

�
(vk − ωs)∂vf

(0)
0

(K̃/2)2 − (vk − ωs)2
dv.

Note that, when one neglects the electron-ion coupling, i.e. K̃ = 0, the spin branch of the
dispersion relation reduces to: ωs = ±Ak2, which is the standard magnon dispersion relation
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[1]. In contrast, the dispersion relation for the electrons yields, from (25), ωe ≈ ωp. Taking the
ratio of the magnon and plasmon frequencies yields:

ωs

ωe
=

Ak2

ωp
≈ 8.6× 10−3, (27)

where we used the parameters given in section 2.2, i.e., ωp = 1.71 × 1016 s−1 and A = 0.0148,
and considered a typical length k−1 = 10nm. This indicates that the timescale of magnons is
about two order of magnitudes slower than that of plasmons. This fact has an obvious impact
on the numerical simulations, as many hundreds of plasmon cycles have to be resolved before
one can observe a sizeable response in the ion spins.

3.2 Maxwell-Boltzmann equilibrium

Now we assume the stationary states f (0)
0 , f

(0)
ℓ to be Gaussian functions, so that I0, I1, I2, I3 can

be expressed using the Fried-Comte function [20] Z(z) = 1√
π

�
R

e−t2

t−z dt, z ∈ C, which can itself

be expressed using the er� function er�(z) = 2√
π

� z
0 et

2
dt, z ∈ C and is tabulated in several

scienti�c libraries.
Let consider that the following homogeneous equilibrium

f
(0)
0 (v) =

1√
π
e−v2 , f

(0)
3 (v) = η

1√
π
e−v2 , (28)

where η =
�
f
(0)
3 dv is the spin polarization rate of the electrons (see Appendix A for further

details). The dispersion function De for the charge dynamics becomes

De(ωe, k) = 1 +
2

k2

[
1 +

ωe

k
Z
(ωe

k

)]
.

while the spin dispersion function DS is

DS(ωs, k) = −
{
ωs +

c0
k

[
Z
(ωs + K̃/2

k

)
+ Z

(ωs − K̃/2

k

)]
− c1

[
Z ′
(ωs − K̃/2

k

)
− Z ′

(ωs + K̃/2

k

)]}2

+
{
Ak2 + d+

c0
k

[
Z
(ωs + K̃/2

k

)
− Z

(ωs − K̃/2

k

)]
+ c1

[
Z ′
(ωs − K̃/2

k

)
+ Z ′

(ωs + K̃/2

k

)]}2
(29)

with c0 = K̃2η/16, c1 = K̃2H/16, and d = K̃η/4. Moreover, the complex-valued function Z
and its derivative are given by

Z(z) =
√
π exp(−z2)(i− er�(z)), Z ′(z) = −2(zZ(z) + 1).

3.3 Analysis and computation of the spin dispersion relation

In this section, we will use another form of the dispersion function which is strictly equivalent to
DS given by (29) . DS can be written as the product of two di�erent functions DS = D−D+ (see
Appendix B.1 for further details), each of which generates the same solutions, but with di�erent
signs. In the following, we consider the function that gives rise to positive real frequencies in
the limiting case K̃ = 0, i.e.

D−(ωs, k) = ωs −Ak2 − K̃

4

�
f
(0)
3 dv +

K̃2

8k

�
f
(0)
3

v −
(
ωs−K̃/2

k

)dv − HK̃2

8

�
∂vf

(0)
0

v −
(
ωs−K̃/2

k

)dv,
(30)
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or, in terms of the plasma dispersion function Z,

D−(ωs, k) = ωs −Ak2 − K̃η

4
+

K̃2η

8k
Z

(
ωs − K̃/2

k

)
− HK̃2

8
Z ′

(
ωs − K̃/2

k

)
. (31)

This formulation highlights the di�erent contributions to the magnon frequency. Let us spell
out each term of the right-hand side of (30):

� The �rst two terms yield the standard dispersion relation for magnons, ωs = Ak2;

� The next term shifts the magnon frequency due to ion precession around the magnetic
�eld generated by electronic spins at steady state;

� The last two terms introduce corrections that are brought over by electrons that possess
speci�c (resonant) velocities, either in their spin distribution f

(0)
3 or their charge distribu-

tion f
(0)
0 at equilibrium. This is similar to the resonant electrons that are responsible for

Landau damping in spin-less plasmas.

Equation (31) possesses complex solutions in ωs, due to the complex-valued function Z.
Physically, this means that some resonances occur in the electron population when the velocity
is equal to (restoring physical dimensions for clarity) v = ωs

k − ωL
k , where ωL = eB/m = 2µBB/ℏ

is the Larmor frequency of an electron spin in the magnetic �eld created by the (fully polarized)
ions, B = Knion/(2µB). Thus, ωs/k ≡ vs is the phase velocity of the ion spin wave (the
magnon), whereas ωL/k ≡ vL is the phase velocity of the electronic spin wave propagating in
the magnetized environment created by the polarized ions. The resonance occurs when the
electron spin precesses at the same frequency as the magnon, shifted by Doppler e�ect due to
the electron velocity with respect to the �xed ions. In terms of the phase velocities, this can be
written as: vs − v = vL.

This resonance behaves similarly to the Electron Cyclotron Resonance Heating (ECRH)
e�ect in fusion plasmas, with two major di�erences. First, the ion spin wave (magnon) plays
the role of the external electromagnetic wave in ECRH; second, the magnetic moment of the
electrons is not orbital as in ECRH, but instead is due to the electron's intrinsic spin.

It is useful to compute the dispersion function D−(ωs, K̃) in terms of the coupling constant
K̃ and the frequency ωs, for a �xed value of the wave number k. Then, the solutions of the
dispersion relation can be computed along a path in the (ωs, K̃) plane, by solving the equation

∂
K̃
D−dK̃ + ∂ωsD−dωs = 0, (32)

starting from known solutions, for instance the one at zero coupling ωs(K̃ = 0) ≡ ω0 = Ak2.
Solving for ωs(K̃) yields

ωs(K̃) = ω0 −
� K̃

0

∂
K̃
D−

∂ωsD−

∣∣∣∣
ωs(K̃),K̃

dK̃. (33)

Numerically, the solution is found by starting at K̃ = 0 and then increasing K̃ of small steps dK̃
until the desired value is reached. The derivatives of D− used in (33) are given in the Appendix
B.2.

In the �gures 2 and 3, we show the results obtained from equation (33) for three cases
with same wave number k = 0.5, but di�erent electron spin polarization η. The results of the
dispersion relation are compared to numerical results obtained with the fully nonlinear code
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with a small perturbation around the equilibrium, as detailed in section 5. For all cases, the
agreement is excellent, which constitutes a cross-validation for both the numerical code and the
above analytical developments.

In �gure 2, we use the value of η that is consistent with electrons at thermal equilibrium
that are polarized by the magnetic �eld B created by the magnetized ions, see equation (5) (we
shall refer to this case as the "self-consistent" case). In this case, the spin polarization is given
by η = tanh(2µBB/kBTe) = tanh(HK̃) and obviously depends on the electron-ion magnetic
coupling � more details are given in Appendix A.

In contrast, in �gure 3, we use two arbitrary values of the electron spin polarization, η = 0.5
and η = −0.5. The negative value means that the electrons are polarized in the opposite direc-
tion with respect to that of the self-consistent case. These values might be obtained through an
external magnetic �eld that pre-polarizes the electrons prior to the application of a small per-
turbation. Nevertheless, one should keep in mind that, to achieve such large spin polarizations,
a very strong magnetic �eld would be needed, of the order of several hundred teslas.

For these values of η, the imaginary part of ωs is signi�cantly di�erent from zero. In
particular, for η = 0.5 there is a damping of the perturbation (Imω < 0), whereas for η = −0.5
we observe an instability (Imω > 0) . This behaviour can be interpreted as follows. When
η > HK̃ > 0, the electron polarization has the same direction as in the self-consistent case,
hence the perturbation is damped, as the system tries to return to a state that has the "natural"
direction of polarization. In contrast, when η < HK̃ (and, in particular, when η is negative) the
system becomes unstable in an attempt to restore the "correct" direction of polarization. When
the value of η corresponds to the self-consistent case, as in �gure 2, the system is marginally
stable (Imω ≈ 0). Interestingly, in the self-consistent case the �rst-order correction in the
electron-magnon coupling K̃ disappears, see equation (36). Hence, �gure 2 shows almost no
variation of the real and imaginary parts of the magnon frequency for low values of K̃.

Figure 2: Magnon frequency ωs for di�erent normalized magnetic coupling constants K̃, ob-
tained from equation (33) (continuous lines, red for the real part of the frequency, blue for the
imaginary part), for k = 0.5 and η = tanh(HK̃). Note that the electron spin polarization η is
di�erent for di�erent values of K̃. The dots represent numerical results obtained with the full
numerical code described in the forthcoming sections. Note that, for this self-consistent case,
the imaginary part remains very small with respect to the real part of the frequency.
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(a) (b)

Figure 3: Magnon frequency ωs for di�erent normalized magnetic coupling constants K̃, ob-
tained from equation (33) (continuous lines, red for the real part of the frequency, blue for the
imaginary part), for wave number k = 0.5, and electron polarizations η = 0.5 (a) and η = −0.5
(b). The dots represent numerical results obtained with the full numerical code described in the
forthcoming sections. According to the value of η, the system is either stable (a) or unstable
(b).

3.4 Weak coupling regime

From equation (31), the ion spin dispersion relation can be written as

ωs = Ak2 +
K̃

4

(
η −HK̃

)
− Z

(
ωs − ωL

k

)[
K̃2η

8k
+

K̃2H

4

(
ωs − ωL

k

)]
≡ G(ωs). (34)

This is a transcendental equation for ωs, which cannot be solved exactly, except numerically
as was done in the preceding subsection. An approximate solution to (34) can be obtained
iteratively, by starting with the solution for zero coupling, ω0 = Ak2, then inserting this solution
into the right-hand side of (34), which yields

ωs ≈ ω0 +
K̃

4

(
η −HK̃

)
− Z

(
ω0 − ωL

k

)[
K̃2η

8k
+

K̃2H

4

(
ω0 − ωL

k

)]
(35)

which is valid for weak coupling K̃ ≪ 1. This procedure can be recast as a �xed-point prob-
lem: ω

(ℓ+1)
s = G(ω

(ℓ)
s ), ℓ ∈ N, with ω

(0)
s = ω0 = Ak2, to obtain second- and higher-order

approximations.
As the value of the dimensionless coupling constant is indeed small, K̃ ≈ 0.16, this weak-

coupling approximation should hold for most cases of interest. Since K̃/2 ≡ ωL/ωp, physically
this approximation means that the electron Larmor frequency is much smaller than the plasmon
frequency, speci�cally here: ωL ≈ 0.08ωp. If we add the fact that the magnon frequency is about
ω0 ≈ 0.008ωp, see equation (27), we obtain the following scaling between the three timescales
that are present in this problem: ω0 ≪ ωL ≪ ωp.

Under such weak-coupling approximation, (35) simpli�es to (restoring physical dimensions):

ωs = ω0 +
ωL

2

(
η −HK̃

)[
1 +

2ωL

vthk
D
(
−ωL

k

)
− i

√
π

ωL

vthk
exp

(
−

ω2
L

v2thk
2

)]
, (36)

where we used the fact that ImZ(x) =
√
πe−x2

(x ∈ R) when evaluated on the real axis (i.e.,
x ∈ R) [20] and where D is the Dawson function. By looking at the imaginary part of ωs,
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two regimes clearly appear. If η < HK̃, the imaginary part is positive, so that the magnetic
perturbation is unstable and grows exponentially until the nonlinear regime is reached. If
η > HK̃, then the perturbation is damped and disappears after a few oscillations. Interestingly,
the value of η that discriminates between these two regimes, i.e., η = HK̃, is precisely the value
that corresponds to the self-consistent case, η = tanh(HK̃), in the approximation where K̃ ≪ 1.

The form of the spin dispersion relation (36) reveals that all the magnetic terms in the
Vlasov model (9)-(10) are important and cannot be neglected: the Zeeman terms proportional
to H, the electron precession term proportional to B and hence to K̃, as well as the initial
electron spin polarization η. The subtle interplay between these terms determines the stable or
unstable nature of the linear response. In contrast, as we have seen, the electric charge response
is completely decoupled from the spin response, at least in the linear regime. Hence, one could
neglect the electric �eld terms in (9)-(10) (or set the initial electric perturbation to zero) and
the spin response would remain unchanged. However, the plasmon oscillations would be lost.

The results for both the exact dispersion relation (33) and the approximate formula (36) are
shown in �gure 4 for a self-consistent case. As expected, the agreement is good for values up to
K̃ ≈ 1, which cover most realistic values of the coupling constant. Finally, from (36), one can
compute the maximum imaginary part with the parameters used in �gure 4. Since tanh(HK̃) =

HK̃ − (HK̃)3/3 + O((HK̃)5), the imaginary part of ωs is proportional to K̃5e−(K̃/2k)2 . The
maximum is then reached for K̃ =

√
10 k ≈ 1.58, which is also in agreement with the exact

dispersion relation.
Finally, in �gure 5 we show the dependence of the magnon frequency on the wavenumber k,

comparing the full dispersion relation with its �rst order (35) and second order approximations.

Figure 4: Magnon frequency ωs as a function of the magnetic coupling constant K̃, for the
self-consistent case η = tanh(HK̃), and wavenumber k = 0.5. The solid lines represent the full
dispersion relation computed numerically using (33), while the dashed lines are obtained with
the simpli�ed relation (35). Red lines refer to the real part of ωs, whereas blue lines refer to the
imaginary part.
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Figure 5: Magnon frequency ωs as a function of the magnon wavenumber k, for electron polar-
ization η = 0.5, and magnetic coupling constant K̃ = 0.16. The solid lines represent the full
dispersion relation computed numerically using (33) where the integral and the derivative are
not with respect to K̃ but k. The other lines refer to the approximate linear theory obtained
from (34) at �rst order (dashed lines, given explicitely by equation (35)) and second order (dot-
ted lines). Red lines refer to the real part of ωs, whereas blue lines refer to its imaginary part.

4 Numerical method

In this section, we present the numerical method used to solve the system of equations (1)-(4).
The method is based on a Hamiltonian splitting technique, together with a phase space dis-
cretization that uses Fourier spectral approximation for the space variable x and �nite volumes
(PSM) for the velocity direction v, as in [15, 32].

The Hamiltonian can be split into �ve parts:

H = Hv +HE +HS1 +HS2 +HS3 , (37)

where

Hv =
1

2

�
v2f0dxdv, HE =

1

2

� (∂VH

∂x

)2
dx,

HSi = H

�
fiBidxdv +AH

� (∂Si

∂x

)2
dx, i = 1, 2, 3.

(38)

Let us remark that in this decomposition, HSi = HZ,i +Hspin,i where the Zeeman energy HZ,i

and the spin energy Hspin,i are given by (16). According to the Hamiltonian splitting, we get
from (8):

∂Z
∂t

= {Z,Hv}+ {Z,HE}+ {Z,HS1}+ {Z,HS2}+ {Z,HS3}, (39)

which induces the �ve subsystems

∂Z
∂t

= {Z,Hv},
∂Z
∂t

= {Z,HE},
∂Z
∂t

= {Z,HS1},
∂Z
∂t

= {Z,HS2},
∂Z
∂t

= {Z,HS3}. (40)
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As detailed in the Appendix C, each subsystem can be solved exactly, which means that the
error in time only originates from the time splitting and then can be controlled by using high
order splittings.

Denoting φH⋆
t (Z(0)), the exact solution at time t of ∂tZ = {Z,H⋆} (where ⋆ = v,E, S1, S2, S3,)

with the initial condition Z(t = 0), the solution of the full model (39) is thus approximated by

Z(t) =
(
Π⋆=v,E,S1,S2,S3 φH⋆

t

)
Z(0). (41)

This is a �rst-order splitting, but higher order splittings could also be derived. Since the splitting
involves here 5 steps, we will restrict ourselves to the Strang scheme

Z(t) =
(
φHv

t/2 ◦ φ
HE

t/2 ◦ φHS1

t/2 ◦ φHS2

t/2 ◦ φHS3
t ◦ φHS2

t/2 ◦ φHS1

t/2 ◦ φHE

t/2 ◦ φHv

t/2

)
Z(0). (42)

Such Hamiltonian splitting are known to maintain long term accuracy of the total energy.
Moreover, in our case, one can also prove the scheme preserves exactly the norm of S.

Proposition 1. The update (59), (66) and (70) of the spin S through the hamiltonian splitting
discretization preserves the norm of the spin: ||S(·, t)|| = 1 if ||S0(·)|| = 1.

Proof. By (59), (66) and (70), the vector spin S is updated through the multiplication of a
matrix exp(αJt) (J being the symplectic matrix) which is a rotation matrix of angle (−α) in
R2. Let introduce the 3× 3 matrix A corresponding to (70)

A =

(
exp(αHS3

Jt) 0T

0 1

)
(43)

with 0 = (0, 0) and αHS3
= K̃

4

�
f0
3dv + A∂2

xS
0
3 . We then reformulate (70) as S(x, t) = AS0(x)

from which we easily deduce the norm is preserved. The same is true for (59) and (66). We
�nally deduce ||S(·, t)|| = 1 as long as ||S0(·)|| = 1.

5 Numerical results

In this section, we present some numerical results obtained with the nonlinear code described
in section 4. The results will also be compared to the analytical linear response, as detailed
in section 3. In the results presented below, the numerical parameters are chosen as follows
(nondimensional units are used everywhere): Number of points in space and velocity Nx =
119, Nv = 1024, time-step ∆t = 0.1, variable ranges in the phase space: v ∈ [−5, 5], x ∈
[0, 2π/k], perturbation wavenumber k = 0.5.

The initial condition is a periodic perturbation of the equilibrium f
(0)
0 = F , f

(0)
3 = ηF , f

(0)
1 =

f
(0)
2 = S

(0)
1 = S

(0)
2 = 0, S

(0)
3 = 1, where F is a spatially homogeneous equilibrium (either a

Maxwell-Boltzmann or a two-stream distribution). This equilibrium represents ions that are
fully polarized in the ℓ = 3 direction, while the electrons are partially polarized along the same
direction, with a polarization rate equal to η.

16



MB1 η = tanh(K̃H) ≈ 0.0547 ωs = 0.003680− 2.739× 10−5i ε = 10−3

MB2 η = 0.5 ωs = 0.02088− 0.005253i ε = 10−3

MB3 η = −0.5 ωs = 0.01725 + 0.006162i ε = 10−6

Table 1: Main numerical and physical parameters of the three runs that utilize a Maxwell-
Boltzmann (MB) equilibrium: initial electron spin polarization η, ion spin frequency ωs, and
initial perturbation ε. The values of ωs are those of the linear response calculation using the
ZEAL code. Other values are: k = 0.5, Nx = 119, Nv = 1024, and vmax = 5.

After the perturbation, the initial condition is as follows

f0(t = 0+, x, v) = F(v)(1 + ε cos(kx)),

f1(t = 0+, x, v) = ηF(v)ε cos(kx),

f2(t = 0+, x, v) = ηF(v)ε sin(kx),

f3(t = 0+, x, v) = ηF(v)(1 + ε cos(kx)),

S1(t = 0+, x) =
ε√

1 + ε2
sin(kx),

S2(t = 0+, x) =
ε√

1 + ε2
cos(kx),

S3(t = 0+, x) =
1√

1 + ε2
,

(44)

where the amplitude of the perturbation is ε = 10−3. Note that the perturbation is chosen such
that: ∥S(t = 0, x)∥2 = S2

1(0, x)+S2
2(0, x)+S2

3(0, x) = 1. The nondimensional physical constants
are those de�ned in section 2.2, i.e., A = 0.0148 (ion-ion magnetic coupling), K̃ = 0.161 (ion-
electron magnetic coupling), and H = 0.339 (scaled Planck constant). The numerical results
will be expressed in terms of the units de�ned in section 2.2. All logarithms are Neperian (base
e).

5.1 Maxwell-Boltzmann (MB) equilibrium

Here, we consider the Maxwell-Boltzmann equilibrium (28) that was used for the linear analysis.
We will analyze three case, for di�erent electron polarizations η. In the �rst case (MB1), the
polarization is taken to be self-consistent with the ions, i.e., the electron polarization is due
solely to the magnetic �eld generated by the ions, so that η = tanh(K̃H) (see Appendix A). In
the remaining two cases (MB2 and MB3), the polarization will be chosen arbitrarily as η = ±0.5.
This polarization may be achieved through the application of an external magnetic �eld. The
parameters of these Maxwell-Boltzmann simulations are summarized in Table 1.

MB1. The roots of the dispersion relation for charges (ωe) and spins (ωs), calculated using
the ZEAL code, are the following

ωe = 1.225− i 0.03626 (45)

ωs = 0.003680− i 2.739× 10−5. (46)

We remark that: (i) the real part of ωe is close to the plasma frequency (equal to unity here),
while its imaginary part is much smaller, in accordance with the Bohm-Gross dispersion relation;
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(a) (b)

(c) (d)

Figure 6: MB1 simulation. Time history of the square root of the electric energy H1/2
E (given

by (38)), in semi-log scale (a) and corresponding frequency spectrum (b). The red straight line
represents the linear damping rate given in (45). Time history of the absolute value of the real
part of the �rst Fourier mode of the ion spin Ŝ1(k, t) in semi-log scale (c) and corresponding
frequency spectrum (d). The red straight line corresponds to zero damping, see (46). The
arrows in the spectral plots correspond to the results of linear response theory.
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(ii) the real part of ωs is much smaller than the plasma frequency, in accordance with (27), while
its imaginary part is even smaller, signifying the almost absence of spin damping.

In �gures 6, we plot the time evolution of some physical quantities associated to the electron
charge [panels (a) and (b)] and to the ion spin [panels (c) and (d)]. The Coulomb electric energy
decays exponentially with a rate Imωe very close to the one predicted by the linear response
analysis (Landau damping). The real part of the frequency is also very close to the analytical
prediction of (45), with an additional factor of 2 due to the modulus.

In �gure 6 (c),(d), we show the evolution of the absolute value of the real part of the �rst
Fourier mode of the ion spin S1(x, t), i.e. Ŝ1(k, t), with k = 0.5 in this case. In agreement with
(46), this mode is virtually undamped (the red line is horizontal and corresponds to zero damp-
ing). The corresponding frequency spectrum peaks in the vicinity of the theoretical magnon
frequency Reωs. Note that, due to the great disparity between the magnon and the plasmon
frequencies, only a few (≈ 6) magnon frequencies could be observed, resulting in a limited
accuracy for the magnon spectrum.

In addition to the good agreement with the linear theory for ωe and ωs, we also emphasize
that the modulus of the ion spin vector ∥S(t, x)∥ is preserved up to machine accuracy and that
the (relative) total energy is preserved up to 10−7.

MB2. For this second test, we consider an initial condition with an electron spin polarization
rate η = 0.5. This can be achieved through an external magnetic �eld Bext

3 directed along the
same direction as the ion polarization. The positive value of η correspond to the "natural"
polarization direction for the electrons, parallel to that of the ions and oriented in the same
way, as in the self-consistent case. Hence, we expect this equilibrium to be magnetically stable.

As was mentioned earlier, the charge dynamics is decoupled from the spin dynamics in the
linear regime, hence the electric response (not shown here) is the same as that of �gure 6,
displaying plasmonic oscillations and Landau damping.

The spin response is depicted in �gure 7, where we show the �rst Fourier moments of
the ion and electron spins and their frequency spectra. In this case, a clear damping of the
magnon mode is observed, which is in good agreement with the roots of the dispersion relation:
ωs = 0.02088 − i 0.005253, which is to be compared to the damping rate obtained from the
simulation, γ = −0.005186. The real part of the frequency, see �gure 7(b), shows a peak near
Reωs ≈ 0.02, also in good accordance with the linear response result.

The electron spin density M, shown in �gure 7(c)-(d), follows the same evolution as the
ions, with very similar frequency and damping rate.

MB3. Here, we consider an electron gas which is initially polarized in the opposite direction
to the one corresponding to the self-consistent case. In this case, the polarization rate is neg-
ative, and we take η = −0.5. Since the electron polarization is opposite to the self-consistent
scenario, we expect the system to be unstable, as it attempts to restore the "natural" direction
of polarization.

In �gures 8(a)-(b), we plot the evolution of the �rst Fourier mode of the ion spin and its
frequency spectrum. The real part of the frequency and the instability rate are very close to the
linear response result ωs = 0.01725+ i 0.006162. After about 2000ω−1

p , the instability saturates
nonlinearly. The electric �eld evolution is the same as in �gure 6 (a).

The electron spin density M, shown in �gure 8(c)-(d) follows the same evolution as the ions,
with very similar frequency and instability rate.
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(a) (b)

(c) (d)

Figure 7: MB2 simulation (η = 0.5). Time history of the absolute value of the real part of
the �rst Fourier mode of the ion spin Ŝ1(k, t) in semi-log scale (a) and corresponding frequency
spectrum (b). The slope of the red straight line is −0.005186, very close to the linear response
result given in Table 1. The peak of the frequency spectrum also matches the linear result
Reωs = 0.02088 (indicated by an arrow on the plot) with good accuracy. Panels (c) and (d)
show the same quantities for the electronic spin mode M̂1(k, t). The real and imaginary parts
of the frequency are the same as for the ion spins.
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(a) (b)

(c) (d)

Figure 8: MB3 simulation (η = −0.5). Time history of the absolute value of the real part of
the �rst Fourier mode of the ion spin Ŝ1(k, t) in semi-log scale (a) and corresponding frequency
spectrum (b). The slope of the red straight line is 0.00607, very close to the linear response
result given in Table 1. The peak of the frequency spectrum also matches the linear result
Reωs = 0.01725 (indicated by an arrow on the plot) with good accuracy. Panels (c) and (d)
show the same quantities for the electronic spin mode M̂1(k, t). The real and imaginary parts
of the frequency are the same as for the ion spin.
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TS1 η = tanh(K̃H) ≈ 0.0547 u = 1.4 Nv = 1024, vmax = 8, ε = 10−3

TS2 η = tanh(K̃H) ≈ 0.0547 u = 3 Nv = 1536, vmax = 12, ε = 10−6

TS3 η = −0.5 u = 3 Nv = 512, vmax = 14, ε = 10−6

TS4 η = −0.5 u = 1.4 Nv = 512, vmax = 14, ε = 10−6

Table 2: Main numerical and physical parameters of the runs that utilize a two-stream equilib-
rium. Other values are: k = 0.2 and Nx = 129.

5.2 Two-stream (TS) equilibrium

In this subsection, we consider a two-stream equilibrium for the initial electron distribution

F(v) =
1

2
√
π
(e−(v−u)2 + e−(v+u)2).

This equilibrium can be either stable or unstable for the charge dynamics, depending on the
value of the stream velocity u. In the numerical runs reported below, we have chosen u = 1.4,
which corresponds to a stable case (run TS1), and u = 3 which corresponds to an unstable
case (run TS2 and TS3). In TS1 and TS2, we use the self-consistent value for the electron spin
polarization, η = tanh(K̃H) ≈ 0.0547, while in TS3 and TS4 we force a spin instability by
setting η = −0.5.

The parameters of these runs are summarized in Table 2.

TS1. In this case, the stream velocity is weak (u = 1.4) so that the charge sector of the
dynamics is basically undamped, as seen on �gure 9(a) for the electric �eld. The spin sector
is more interesting, both for the ions and the electrons, which are rather strongly damped at a
rate ≈ 6.3 × 10−4. This is in contrast with the corresponding Maxwell-Boltzmann simulation
(MB1, �gure 6) where the spin mode was very weakly damped. Although the wavenumber is
not the same (k = 0.5 for MB1 and k = 0.2 for TS1), it appears that the equilibrium pro�le
has a strong impact on the stability properties of the ion magnon mode.

TS2. This run uses the same parameters as TS1, except that the stream velocity is larger,
u = 3. We also changed the magnitude of the initial perturbation, now set to ε = 10−6, in
order to get a longer-lasting linear phase. Linear theory predicts an instability in the charge
sector, with growth rate equal to 0.2845, which is con�rmed by the numerical data shown in
�gure 10(a). The ion spin sector displays a very weak instability, with an observed growth rate
≈ 4× 10−5. The electron spin remains at very low amplitude all along the simulation time.

TS3. Here, we wish to consider a case where an instability is expected both in the charge and
in the spin sectors. Therefore, we take the same value u = 3 for the stream velocity as in TS2,
and an electron spin polarization η = −0.5, which led to the instability of the magnon mode
in MB3. The results are plotted in �gure 11 and show that the evolution of the electric �eld is
almost the same as in the case TS2. This is natural, as the linear response of the charge sector
is independent of η (nonetheless, one may have expected some di�erences after the nonlinear
regime is attained, around ωpt = 50, but in practice the two curves are very similar, although not
identical). Interestingly, the electron M̂1 and ion Ŝ1 spins are initially stable until ωpt ≈ 2500,
i.e., well into the nonlinear regime, and only become unstable later. Their growth rate is much
smaller than the one associated with the charges.
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(a) (b)

(c)

Figure 9: TS1 simulation. (a): time evolution of the square root of the electric energy H1/2
E

(given by (38)) for short times t ∈ [0, 50]. (b): time evolution of the absolute value of the real
part of the fundamental mode of the electron spin M̂1. (c): time evolution of the absolute value
of the real part of the fundamental mode of the ion spin Ŝ1. The red straight lines have slopes
equal to zero for the electric energy and −6.3× 10−4 for M̂1 and Ŝ1.
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(a) (b)

(c)

Figure 10: TS2 simulation. (a): time evolution of the square root of the electric energy H1/2
E

(given by (38)) for short times t ∈ [0, 100]. (b): time evolution of the absolute value of the real
part of the fundamental mode of the electron spin M̂1. (c): time evolution of the absolute value
of the real part of the fundamental mode of the ion spin Ŝ1. The red straight lines have slopes
equal to 0.2845 for the electric energy and 4× 10−5 for Ŝ1.
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(a) (b)

(c)

Figure 11: TS3 simulation. (a): time evolution of the square root of the electric energy H1/2
E

(given by (38)) for short times t ∈ [0, 100]; the red straight line has slopes equal to 0.2845. (b):
time evolution of the absolute value of the real part of the fundamental mode of the electron
spin M̂1. (c): time evolution of the absolute value of the real part of the fundamental mode of
the ion spin Ŝ1.
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(a) (b)

(c) (d)

Figure 12: TS3 simulation. Contour plots of the distribution functions in the (x, v) phase space
at the �nal time ωpt = 104: f0 (a), f1 (b), f2 (c), and f3 (d).
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(a) (b)

(c)

Figure 13: TS4 simulation. (a): time evolution of the square root of the electric energy H1/2
E

(given by (38)) for short times t ∈ [0, 100]. (b): time evolution of the absolute value of the real
part of the fundamental mode of the electron spin M̂1. (c): time evolution of the absolute value
of the real part of the fundamental mode of the ion spin Ŝ1. The red straight lines have slope
equal to 0.004.
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The phase space portraits at the end of the simulation are displayed in �gure 12, for the
four distributions f0(t, x, v) and fℓ(t, x, v), ℓ = 1, 2, 3. Typically for this type of instability, the
two-stream structure has been destroyed in the nonlinear regime and a single vortex centered
at v = 0 can be observed. The vortex is present not only in the charge distribution f0, but also
in the spin distributions f .

TS4. Finally, we repeat the same simulation as TS3, but for a smaller stream velocity u = 1.4,
so that there is no instability in the charge sector (see �gure 13). In this case, the usual magnon
instability (η < 0) develops immediately, in contrast to the preceding TS3 case. Although it
is di�cult to draw de�nite conclusions, it is clear that the onset, or otherwise, of a charge
instability interacts strongly with the development of a magnon instability. This is further
evidence that the charge and spin sectors are closely intertwined and need to be both included
in the model for an accurate description of the magnonic dynamics.

6 Conclusion

In this work, we have built on previous developments [16, 15, 33] to construct a fully kinetic 1D
model of the interaction between the charge and the spin dynamics in a material with intrinsic
magnetization (ferromagnet). The electron dynamics is described by a four-component phase
space distribution function f0(t, x, v), fℓ(t, x, v), ℓ = 1, 2, 3, where f0 is related to the electron
charge and fℓ to the electron spin polarization in the ℓ direction. The �xed ions are modeled
by the Landau-Lifshitz equation for the magnetization S(t, x). The electron charges interact
through the self-consistent electric �eld, solution of the Poisson equation. The electron and ion
spins interact through the magnetic exchange, whose magnitude is controlled by the coupling
constant K. Finally, the ion spins interact among themselves via the ion-ion magnetic exchange,
with coupling constant J .

This model can be seen as an extension of the standard Vlasov-Poisson equations for mobile
electrons and �xed ions, taking into account the electron spin and allowing for a spin dynamics
for the ions.

We �rst focused on the linear response of this system when the equilibrium is a Maxwell-
Boltzmann function. The full dispersion relation is rather complex, but can be split into a
charge sector and a spin sector. The former is independent of the spin and leads to the standard
Bohm-Gross relation. The spin sector was analyzed more in detail, particularly the occurrence
of damping and instability when the ion-electron magnetic coupling constant and the electron
spin polarization at equilibrium are varied. Interestingly, we observe damping when the electron
spin polarization is directed along their "natural" direction of magnetization (the one dictated
by the magnetic �eld generated by the ions) and instability when it is directed opposite to it.

Next, we built a computational code based on the Hamiltonian splitting method �rst de-
veloped in Ref. [15, 32]. This is an Eulerian grid-based method that solves simultaneously the
coupled Vlasov-Poisson-Landau-Lifshitz equations. This technique allowed us to achieve great
accuracy for the conserved quantities: the modulus of the ion spin vector ∥S(t, x)∥ is preserved
up to machine accuracy and the (relative) total energy is preserved up to ≈ 10−7.

We have used the code to validate the estimations of the linear response theory, with very
good agreement between the two approaches for Maxwell-Boltzmann equilibria. We also tested
it on two-stream equilibria, which may lead to instability in the charge sector, depending on
the streams' relative velocities. Particularly interesting was the case where an instability in the
charge sector leads to a much delayed instability in the spin sector, which develops well after
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the charge dynamics has saturated nonlinearly. This is further evidence of the close interaction
between the charge and spin sectors in the coupled plasmon-magnon dynamics.

The Maxwell-Boltzmann equilibria and parameter range used in this work, with densities
close to those of solids (≈ 1029m−3) and temperatures of the order of 10 eV, are relevant
to the warm dense matter (WDM) regime [6] that appears, among others, in inertial fusion
experiments. For these conditions, the electron plasma is weakly degenerate (Te ≈ TF ), so
that it can be characterized with relatively good accuracy by a MB distribution. The ions are
�xed and non-degenerate. In this WDM regime, ultrafast nonequilibrium dynamics has been
recently observed thanks to subpicosecond laser pulses [19]. At these very short timescales, and
for magnetic materials, the electron and ion spin polarization may not yet be lost, and impact
the early instants of the dynamics.

However, MB distributions are not relevant to condensed-matter systems � for which the
Fermi temperature is well above the room temperature � and the latter should therefore be
described by a Fermi-Dirac (FD) equilibrium. Calculations of the dispersion relation for FD
distributions are notoriously more involved than for MB distributions, particularly in the �nite-
temperature case. These developments are left for future work.
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A Appendix: Spin-polarized equilibrium

To compute stationary states, it is more convenient to go back to the standard representation
of the Wigner function [34]:

F =

(
F++ F+−
F−+ F−−

)
, (47)

where + (−) stands for spin-up (spin-down) with respect to the direction ℓ = 3. The relationship
between this representation and the Pauli representation used in the main text is the following:
fℓ = tr(σℓF), f0 = tr(F), where σℓ (ℓ = 1, 2, 3) are the Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

For a spatially homogeneous equilibrium, the terms corresponding to the self-consistent
electric energy HE and the spin energy Hspin vanish from the expression of the Hamiltonian
(16). In the above basis, the Hamiltonian is a diagonal 2 × 2 matrix diag(H+,H−), where
H± = m

2 v
2±µBB3 is the signed sum of the kinetic and Zeeman energies and B3 is the magnetic

�eld generated by the (fully polarized ions), see (11). In our dimensionless units B3 = −K̃/2,
and we get for the Hamiltonian: H± = v2 ∓HK̃.

For a stationary state, the distribution function must be a function of the Hamiltonian,
i.e., in the Maxwell-Boltzmann case, F = C exp(−βH), where C is a normalization constant.
Hence, the distribution function is also diagonal, with F++ = C exp(−βH+), and similarly for
F−−, where β = 1/(kBTe) = 1 in our units.

Going back to the Pauli basis utilized in the main text, we obtain

f0(v) = F++ + F−− = 2C e−v2 cosh(HK̃),

f3(v) = F++ −F−− = 2C e−v2 sinh(HK̃).

With the normalization
�
f0(v)dv = 1, we get C = 1/(2

√
π cosh(HK̃)). As a consequence, the

equilibrium distribution function becomes:

f0(v) =
e−v2

√
π
, f3(v) = η

e−v2

√
π
,

with η = tanh(HK̃), which is identical to equation (28) in the main text.
Finally, if the magnetic �eld in the HamiltoniansH± is not the one generated self-consistently

by the ions, but instead an external one Bext
3 , then the electron spin polarization is η =

tanh(2µBB
ext
3 /kBTe) and can take any values in [−1, 1]. Note that η > 0 corresponds to a

case where the ion spin S(t, x) and electrons spin M(t, x) = ℏ
2

�
f(t, x, v)dv are aligned along

the same direction, which is a stable ferromagnetic equilibrium. In contrast, when η < 0, the
ion and electron spins point into opposite directions, leading to an unstable equilibrium. This
is con�rmed by the simulations reported in section 5.1.

B Appendix: Dispersion relation details

In this Appendix, some details are given about the analytical dispersion relation. In particular,
a new form of the dispersion function D(ω, k) is presented and its derivatives are computed
explicitly.
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B.1 Alternative form of the dispersion relation

The dispersion relation (29) writes as:

DS(ω, k) = −

[
ω +

c0
k

[
Z

(
ω + K̃/2

k

)
+ Z

(
ω − K̃/2

k

)]
− c1

[
Z ′

(
ω − K̃/2

k

)
− Z ′

(
ω + K̃/2

k

)]]2

+

[
Ak2 + d+

c0
k

[
Z

(
ω + K̃/2

k

)
− Z

(
ω − K̃/2

k

)]
+ c1

[
Z ′

(
ω − K̃/2

k

)
+ Z ′

(
ω + K̃/2

k

)]]2

with c0 = K̃2η/16, c1 = K̃2H/16, d = K̃η/4 (recall that η =
�
f
(0)
3 dv). Factorizing leads to

DS(ω, k) = −

[
ω +Ak2 + d+

2c0
k

Z

(
ω + K̃/2

k

)
+ 2c1Z

′

(
ω + K̃/2

k

)]

×

[
ω −Ak2 − d+

2c0
k

Z

(
ω − K̃/2

k

)
− 2c1Z

′

(
ω − K̃/2

k

)]
.

Naming D+ the �rst term on the right-hand side and D− the second term, D−(−ω∗, k) can be
computed, where the asterisk denotes the complex conjugate:

D−(−ω∗, k) = −ω∗ −Ak2 − d+
2c0
k

Z

(
−ω∗ − K̃/2

k

)
− 2c1Z

′

(
−ω∗ − K̃/2

k

)

= −ω∗ −Ak2 − d+
2c0
k

Z

(
−

(
ω + K̃/2

k

)∗)
− 2c1Z

′

(
−

(
ω + K̃/2

k

)∗)
.

Now, some symmetries in Z(−z∗) and Z ′(−z∗) can be used [20]: Z(−z∗) = −Z∗(z) so Z ′(−z∗) =
−2 (1− z∗Z(−z∗)) = −2 (1 + z∗Z∗(z)) = Z ′∗(z).

D−(−ω∗, k) is �nally expressed as:

D−(−ω∗, k) = −

[
ω +Ak2 + d+

2c0
k

Z

(
ω + K̃/2

k

)
+ 2c1Z

′

(
ω + K̃/2

k

)]∗
= −D∗

+(ω, k).

Then, we get: DS(ω, k) = D−(−ω∗, k)D−(ω, k). Hence, if ω satis�es DS(ω, k) = 0 then
DS(−ω∗, k) also vanishes. Therefore, we will consider

D−(ω, k) = ω −Ak2 − d+
2c0
k

Z

(
ω − K̃/2

k

)
− 2c1Z

′

(
ω − K̃/2

k

)
as the dispersion relation instead of DS . Since Z ′(z) = −2(1 + zZ(z)),

D−(ω, k) = ω −Ak2 − d+ 4c1 + Z(z)

[
2c0
k

+ 4c1z

]
,

with z = (ω − K̃/2)/k. Using the expressions of d, c0, c1 in terms of K̃ we obtain

D−(ω, k) = ω −Ak2 − K̃η

4
+

K̃2H

4
+ Z(z)

[
K̃2η

8k
+

K̃2H

4
z

]
, (48)

which can also be interpreted as a function of (ω, K̃) for a constant value of k.
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B.2 Computation of the derivatives of D−

The partial derivatives of D−(ω, K̃) given by (48) with respect to ω and K̃ can be computed

as follows (with η = tanh(HK̃) and z = ω−K̃/2
k ) :

∂D−

∂K̃
= −η

4
− K̃H(1− η2)

4
+

K̃H

2
+

K̃2η

8k2
+

K̃2Hz

4k

+ Z(z)

[
K̃2ηz

8k2
+

K̃2Hz2

4k
+

K̃η

4k
+

K̃2H(1− η2)

8k
+

K̃Hz

2
− K̃2H

8k

]
∂D−
∂ω

= 1− K̃2η

4k2
− K̃2Hz

2k
+ Z(z)

[
−K̃2ηz

4k2
− K̃2Hz2

2k
+

K̃2H

4k

]
.

C Appendix: Time splitting

In this Appendix, we give the details of the time solution of the di�erent subsystems induced
by the Hamiltonian splitting, as detailed in section 4. Regarding the space approximation,
Fourier spectral methods are used, so that the linear transport operators (for the Vlasov part)
and the elliptic operators (for the Poisson equation) reduce to a simple multiplication in the
Fourier space. In the velocity direction, the linear transport operators in the Vlasov equations
are approximated by using a semi-Lagrangian method based on �nite volumes (see [17] for more
details). Finally, all the integrals in velocity space are approximated by standard rectangle
quadratures.

C.1 Subsystem for Hv

The subsystem ∂Z
∂t = {Z,Hv} associated to Hv = 1

2

�
v2f0dxdv is

∂f0
∂t

= {f0,Hv} = −v
∂f0
∂x

∂fℓ
∂t

= {fℓ,Hv} = −v
∂fj
∂x

, ℓ = 1, 2, 3

∂S

∂t
= {S,Hv} = 0

∂2
xVH =

�
f0dv − 1.

(49)

We denote the initial value as (f0
0 (x, v), f

0(x, v),S0(x)) at time t = 0. The solution at time t of
this subsystem can be written explicitly:

f0(t, x, v) = f0
0 (x− vt, v), f(t, x, v) = f0(x− vt, v), S(t, x) = S0(x). (50)

C.2 Subsystem for HE

The subsystem ∂Z
∂t = {Z,HE} associated to HE = 1

2

� (
∂VH
∂x

)2
dx is
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

∂f0
∂t

= {f0,HE} = −∂VH

∂x

∂f0
∂v

∂fℓ
∂t

= {fℓ,HE} = −∂VH

∂x

∂fℓ
∂v

, ℓ = 1, 2, 3

∂S

∂t
= {S,HE} = 0.

(51)

With the initial value (f0
0 (x, v), f

0(x, v),S0(x)) at time t = 0, the solution at time t is as follows

f0(t, x, v) = f0
0

(
x, v − t

∂VH

∂x
(x)

)
, f(t, x, v) = f0

(
x, v − t

∂VH

∂x
(x)

)
, S(t, x) = S0(x). (52)

C.3 Subsystem for HS1

The subsystem ∂Z
∂t = {Z,HS1} associated to HS1 = H

�
f1B1dxdv +AH

� (∂S1
∂x

)2
dx is

∂f0
∂t

= {f0,HS1} = H
∂B1

∂x

∂f1
∂v

∂f1
∂t

= {f1,HS1} = H
∂B1

∂x

∂f0
∂v

∂f2
∂t

= {f2,HS1} = −B1f3

∂f3
∂t

= {f3,HS1} = B1f2

∂S1

∂t
= {S1,HS1} = 0

∂S2

∂t
= {S2,HS1} =

K̃

4
S3

�
f1dv +AS3∂

2
xS1

∂S3

∂t
= {S3,HS1} = −K̃

4
S2

�
f1dv −AS2∂

2
xS1.

(53)

with the initial value (f0
0 (x, v), f

0(x, v),S0(x)) at time t = 0 and B0 = − K̃S0

2 . By using S1 = S0
1 ,

B1 = B0
1 and

�
f1dv =

�
f0
1dv, we reformulate the equations (53) as

∂t

(
f0
f1

)
−H

∂B0
1

∂x

(
0 1
1 0

)
∂v

(
f0
f1

)
= 0, (54)

∂t

(
f2
f3

)
+B0

1J

(
f2
f3

)
= 0, (55)

∂t

(
S2

S3

)
−

(
K̃

4

�
f0
1dv +A∂2

xS
,0
1

)
J

(
S2

S3

)
= 0, (56)

where J denotes the symplectic matrix

J =

(
0 1
−1 0

)
.

By the eigen-decomposition(
1
2

1
2

1
2 −1

2

)(
0 1
1 0

)(
1 1
1 −1

)
=

(
1 0
0 −1

)
,
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equation (54) can diagonalized to get two transport equations that can be solved exactly in time

∂t

(
1
2f0 +

1
2f1

1
2f0 −

1
2f1

)
−H

∂B0
1

∂x

(
1 0
0 −1

)
∂v

(
1
2f0 +

1
2f1

1
2f0 −

1
2f1

)
= 0. (57)

The exact solution for (55) is(
f2
f3

)
(t, x, v) = exp

(
−B0

1Jt
)(f0

2 (x, v)
f0
3 (x, v)

)
, with exp (Js) =

(
cos(s) sin(s)
− sin(s) cos(s)

)
. (58)

Similarly, we can get the exact solution for last system (56)(
S2

S3

)
(t, x) = exp

((
K̃

4

�
f0
1dv +A∂2

xS
0
1

)
Jt

)(
S0
2(x)

S0
3(x)

)
. (59)

C.4 Subsystem for HS2

The subsystem ∂Z
∂t = {Z,HS2} associated to HS2 = H

�
f2B2dxdv +AH

�
(∂S2
∂x )2dx is

∂f0
∂t

= {f0,HS2} = H
∂B2

∂x

∂f2
∂v

∂f1
∂t

= {f1,HS2} = B2f3

∂f2
∂t

= {f2,HS2} = H
∂B2

∂x

∂f0
∂v

∂f3
∂t

= {f3,HS2} = −B2f1

∂S1

∂t
= {S1,HS2} = −K̃

4
S3

�
f2dv −AS3∂

2
xS2

∂S2

∂t
= {S2,HS2} = 0

∂S3

∂t
= {S3,HS2} =

K̃

4
S1

�
f2dv +AS1∂

2
xS2.

(60)

with the initial value (f0
0 (x, v), f

0(x, v),S0(x)) at time t = 0 and B0 = − K̃S0

2 . This subsystem
is very similar to the HS1 one, hence, as was done previously, we reformulate the equations by
using S2 = S0

2 , B2 = B0
2 and

�
f2dv =

�
f0
2dv

∂t

(
f0
f2

)
−H

∂B0
2

∂x

(
0 1
1 0

)
∂v

(
f0
f2

)
= 0, (61)

∂t

(
f1
f3

)
−B0

2J

(
f1
f3

)
= 0, (62)

∂t

(
S1

S3

)
+

(
K̃

4

�
f0
2dv +A∂2

xS
0
2

)
J

(
S1

S3

)
= 0. (63)

As in the step Hs1 , we have two transport equations from (61) that can be solved exactly

∂t

(
1
2f0 +

1
2f2

1
2f0 −

1
2f2

)
−H

∂B0
2

∂x

(
1 0
0 −1

)
∂v

(
1
2f0 +

1
2f2

1
2f0 −

1
2f2

)
= 0. (64)

34



Moreover, the exact solutions for the systems (62) and (63) are respectively(
f1
f3

)
(t, x, v) = exp

(
B0

2Jt
)(f0

1 (x, v)
f0
3 (x, v)

)
, with exp (Js) =

(
cos(s) sin(s)
− sin(s) cos(s)

)
. (65)

and (
S1

S3

)
(t, x) = exp

(
−

(
K̃

4

�
f0
2dv +A∂2

xS
0
2

)
Jt

)(
S0
1(x)

S0
3(x)

)
. (66)

C.5 Subsystem for HS3

The subsystem ∂Z
∂t = {Z,HS3} associated to HS3 = H

�
f3B3dxdv +AH

�
(
∂S3
∂x )2dx is

∂f0
∂t

= {f0,HS3} = H
∂B3

∂x

∂f3
∂v

∂f1
∂t

= {f1,HS3} = −B3f2

∂f2
∂t

= {f2,HS3} = B3f1

∂f3
∂t

= {f3,HS3} = H
∂B3

∂x

∂f0
∂v

∂S1

∂t
= {S1,HS3} =

K̃

4
S2

�
f3dv +AS2∂

2
xS3

∂S2

∂t
= {S2,HS3} = −K̃

4
S1

�
f3dv −AS1∂

2
xS3

∂S3

∂t
= {S3,HS3} = 0.

(67)

with the initial value (f0
0 (x, v), f

0(x, v),S0(x)) at time t = 0. This subsystem is also very similar
to the HS1 one, hence, as was done previously, we reformulate the equations by using S3 = S0

3 ,
B3 = B0

3 and
�
f3dv =

�
f0
3dv. The update of (f0, f3) is performed by solving the following

transport equation

∂t

(
1
2f0 +

1
2f3

1
2f0 −

1
2f3

)
−H

∂B0
3

∂x

(
1 0
0 −1

)
∂v

(
1
2f0 +

1
2f3

1
2f0 −

1
2f3

)
= 0. (68)

The exact solution for (f1, f2) is(
f1
f2

)
(t, x, v) = exp

(
−B0

3Jt
)(f0

1 (x, v)
f0
2 (x, v)

)
, with exp (Js) =

(
cos(s) sin(s)
− sin(s) cos(s)

)
. (69)

and for (S1, S2) we have(
S1

S2

)
(t, x) = exp

((
K̃

4

�
f0
3dv +A∂2

xS
0
3

)
Jt

)(
S0
1(x)

S0
2(x)

)
. (70)
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