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Compliant walls are widespread in biological and engineering systems. Because of their singular nature, adapted tools
are required to accurately study their rheological properties as well as the consequences of the latter within a given
mechanical setting. Because of their slender nature, membranes can be considered as prototypical examples of highly
compliant boundaries. In this study, we describe a modified Surface Forces Apparatus (SFA) developed to measure the
forces acting on a compliant membrane by measuring its deformation field. We discuss how such a device can be used
to characterize the rheology of suspended membranes and accurately measure the electrostatic interactions between a
polarized membrane and a spherical electrode, without the need of an external measurement spring.

I. INTRODUCTION

Surface forces determine the properties of numerous phys-
ical systems. They play an essential role in colloidal stabil-
ity, adhesion, wettability, friction, and many biological pro-
cesses. Surface-force studies date back to 1928 when Tom-
linson investigated the interactions between crossed filaments
of different metals.1 Later, research groups in the Nether-
lands and Russia, led by Overbeek2 and Derjaguin,3 devel-
oped techniques for measuring the forces between two sur-
faces of quartz or glass for distance separations above ca.
10 nm. These studies preceded the work of Tabor, Winter-
ton, and Israelachvili, which led to the development of the
Surface Forces Apparatus (SFA).4,5 In the interferometric ver-
sion of this technique, the separation between back-silvered
molecularly smooth mica surfaces is measured (at nanomet-
ric distances, down to the contact between the surfaces), and
the interaction force is determined from the deflection of a
double-cantilever spring attached to one of them.

A more recent and now widespread related technique is the
Atomic Force Microscopy (AFM), which measures the inter-
action between a tip of sub-micrometric size attached to a
compliant cantilever and a substrate. In a typical AFM force-
distance measurement, the tip-substrate separation is changed
at a constant speed while monitoring the cantilever deflection
using a light-lever method. The interaction force can be ac-
curately measured as a function of the tip-substrate distance
from the spring deflection if the elastic constant of the can-
tilever is known beforehand. However, the actual separation
between the interacting AFM tip and substrate can only be de-
termined in an absolute fashion if and after tip-substrate con-
tact is reached.6

The practical use of the results from the experimental stud-
ies regarding the interaction forces (e.g., to describe the be-
havior of colloids or to develop a given theoretical descrip-
tion) requires considering the geometry of the interacting sur-
faces and their deformation under stress in a self-consistent
approach. However, such information is not always available.

In AFM force measurements, the tip geometry can only be
determined ex-situ, and its deformation can only be inferred
from contact mechanical models.6 A more direct determina-
tion of the geometry of the interacting surfaces can be ob-
tained in SFA, where the actual separation between the sur-
faces and their shapes are measured using white-light inter-
ferometry. However, such pieces of information are typically
obtained using silver mirrors coated on the back sides of the
interacting surfaces. As a consequence, changes occurring on
the upper sides of the surfaces (e.g. the deformation of an ad-
sorbed layer) are difficult to measure. A strategy to overcome
this limitation, based on the fine analysis of the interference
patterns and the contributions of the different layers was pro-
posed by Heuberger and coworkers,7 but has not been widely
implemented.

The need to monitor the interfacial geometry is even more
important for systems involving compliant interfaces. For rel-
atively rigid bodies, only deformations close to the interac-
tion zone must be considered, and accurate contact mechani-
cal models have been developed.8 On the contrary, the shape
of more compliant solids under stress can change over much
larger distances; this fact must be taken into account to prop-
erly disentangle the long-range aspect of surface forces.9–11 In
dynamic settings, the interfacial deformation due to hydrody-
namic forces can have significant consequences.12–14 For in-
stance, the emergence of a lift force at zero Reynolds numbers
resulting from the combination of confined viscous flows and
compliant boundaries15–19 has been recently demonstrated ex-
perimentally by several groups.20–25 Such a motion-induced
normal force pushes the surfaces apart, hence leading to a sig-
nificant reduction of effective friction forces, with key impli-
cations for industry and physiology for instance.

In a series of studies on interactions involving fluid
interfaces, Horn, Chan, and coworkers studied the cou-
pling between surface forces, hydrodynamics, and surface
deformation.26,27 In particular, they demonstrated that by
monitoring the interfacial deformation, the description of
the system dynamics could be envisioned. This description,
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which combines surface and hydrodynamic forces, takes ad-
vantage of the connection between forces and interfacial de-
formation. Thus, forces can be self-consistently derived from
deformation if an appropriate constitutive equation is used. It
thus appears that an equivalent approach may be developed for
a compliant solid interface, provided that the geometry can be
mapped out. Further improvements in this direction would be
of clear use for the non-invasive, contactless mechanical char-
acterization of soft, fragile and potentially alive solids (e.g.,
biological cells).

In the present article, we report on the design and princi-
ples of a new generation of SFA: the Soft SFA. The latter al-
lows to measure static and dynamic forces involving a rigid
sphere and a slender, compliant membrane, whose shape can
be accurately measured using Multiple Beam Interferometry.
Using this device, the membrane rheological properties can
be characterized from the response to a well-defined external
perturbation. Conversely, we describe how the membrane and
its electrostatic and dynamic responses provide fine measure-
ments of the forces at play.

II. EXPERIMENTAL SETUP

A. Operation principles

We have developed a modified Surface Forces Apparatus,
integrating a compliant membrane as one of the interacting
surfaces. The interest of this configuration is twofold. First,
as the membrane acts as an accurate force sensor itself, the
double-cantilever spring commonly used to measure forces in
SFA can be omitted, hence leading to a simpler design. Sec-
ond, the coupling between elastic deformations and hydrody-
namic interactions – central to many soft-matter settings – can
be studied with the new configuration we propose, which is
not possible with a classical rigid SFA.

As commonly implemented in SFA,28 we use white-light
Multiple Beam Interferometry (MBI) to accurately detect
changes in the geometry of a pair formed by a rigid hemi-
sphere and a compliant circular membrane. The schematic
of the instrument is shown in Fig. 1. A thin, circular, free-
standing, silver-coated PDMS membrane of radius (of the
free-standing part only) a = 5.5 mm, and thickness tm, is
mounted on a rigid holder, which is attached to a piezoelectric
nanopositioner (P-753 Linear Actuator, Physik Instrumente)
for a precise control of the membrane vertical positioning. A
silver-coated hemispherical lens (borosilicate Half-Ball Lens,
Edmund Optics) of radius R0 = 5 mm is fixed in front of the
silver-coated membrane, separated by a distance D. White
light passing through the membrane-sphere cavity follows
multiple reflections between the two silver mirrors. The wave-
lengths that undergo constructive interference are transmit-
ted through the top surface, providing information about the
shape and optical thickness of the region in between the mir-
rors. Then, spectral decomposition of the emerging beam in
an imaging spectrometer (Jobin Yvon Triax 550) allows for
an accurate determination of the sphere-membrane distance D
(measured with an accuracy ca. 0.1 nm) and the shape of the

membrane. We use the multilayer matrix method for spec-
tral analysis and determination of the system geometry, as has
been widely discussed before.29

Figure 1: Schematic of the Soft-Membrane Surface Forces
Apparatus (Soft SFA). A silver-coated hemispherical rigid
lens of radius R0 is placed in front of a silver-coated
elastomeric PDMS membrane, both being separated by a
distance D. A voltage is applied between the two parts, and
white-light interferometry allows for the reconstruction of the
gap profile.

B. Thin elastic membrane

1. Membrane preparation

We prepare free-standing compliant membranes, by
using Sylgard 184 (Dow Corning). Sylgard is a
poly(dimethylsiloxane) (PDMS)-based kit that is commonly
used in microfluidics for the preparation of elastomers. It is
relatively easy to use, transparent, and exhibits good chemi-
cal and thermal stabilities. The precise composition of SYL-
GARD 184 is proprietary. It is often described as a two-
component material, involving the base resin, dimethylvinyl-
terminated telechelic dimethyl siloxane chains (component
A), and a crosslinker (tetramethyl tetravinyl cyclotetrasilox-
ane) (component B). However, other components are incor-
porated by the manufacturer into the formulation. In par-
ticular, a large concentration of silica-based nanoparticles
(dimethylvinylated and trimethylated silica, up to 60% w/w)
is included to improve the elastic properties and resistance
to rupture of the resulting material.30 The PDMS chains are
crosslinked after parts A and B are mixed together. The final
properties of the elastomer depend on the A:B mixing ratio
and the curing thermal history.

Spin coating is used to manufacture thin PDMS films
(Fig. 2). It allows in particular to achieve an accurate control
of their thickness. Briefly, we proceed as follows. A silicon
wafer is cleaned for 15 min in a UV-ozone cleaner (UVOCS),
rinsed with ethanol to remove impurities, and dried with nitro-
gen gas. A 50-nm-thick sacrificial layer of polystyrene (PS)
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is then spin-coated onto the wafer (Laurell WS-650Mz spin
coater), using a 2% PS-toluene solution (Fig. 2a). This layer
facilitates the detachment of the PDMS film at the end of the
process. The wafer-PS sample is heated at 70 °C during 15
min to ensure complete toluene evaporation. Then, we pre-
pare a Sylgard-184 mixture with a precise mass ratio of cross-
linking agent to elastomer base, X . The mixture is dissolved
in hexane (1:1 w/w) to reduce its viscosity and facilitate the
spin coating process. The preparation is then mixed during a
few minutes for homogenization. After mixing, a film of the
mixture is deposited on top of the thin PS film (Fig. 2b) and
the wafer-PS-PDMS sample is cured at a particular tempera-
ture during 2 h. Both the curing temperature and the curing
time play key roles in determining the mechanical properties
of the final membrane. Once the curing is complete, we use
an 8-mm-tall glass cylinder as a support for the free-standing
PDMS membrane. This holder is cut from a borosilicate glass
tube (11 mm inner diameter and 15 mm outer diameter), and
its annular face is sanded to improve the contact with the
membrane by decreasing the roughness. The membrane is
then irreversibly bonded to the glass cylinder after oxygen
plasma surface activation (Quorum, ref. power 50 W for 1
min on glass and PDMS surfaces, Fig. 2c). Immediately after
plasma treatment, the treated surfaces are brought into contact
and cured in an oven at 70◦C for 1 min to accelerate bond-
ing. The next step is the membrane release. Toluene exposure
(Fig. 2d) during a few minutes allows to completely dissolv-
ing the PS sacrificial film, while the PDMS film remains glued
to the glass cylinder. Finally, the top PDMS surface is coated
with a 41-nm-thick silver film by thermal evaporation.

Figure 2: Preparation protocol of the PDMS membranes. (a)
Spin coating of a PS solution. (b) Spin coating of PDMS
before curing in an oven. (c) O2-plasma surface activation of
both the glass cylinder corona and the PDMS surface. (d)
Membrane immersion in toluene to dissolve the PS film. (e)
Membrane release. (f) Silver coating of the membrane by
evaporation.

As detailed hereafter, several tests were performed to eval-
uate the properties of the produced membranes and validate
the reliability of the preparation method. In particular, the ho-
mogeneity of the membranes can be assessed, and the typical
pre-stress related to the preparation procedure can be quanti-
fied.

2. Static response

The static response of a given membrane can be explored by
performing a bulge test. This is a widely recognized technique
for determining the Young’s modulus and the pre-stress of thin
films.31 When subjected to an external pressure ∆P, the thin
film exhibits an out-of-plane deflection, which is determined
from the intrinsic material properties (Young’s modulus E and
Poisson’s ratio ν), geometrical parameters (film thickness tm
and radius a), residual stress σ0 (or the associated in-plane
tension N0, with σ0 = N0/tm), boundary conditions (e.g. sup-
ported vs clamped films), and the applied external load. Typ-
ical examples of external loads include uniform hydrostatic
pressure or a localized load applied by an indenter. Constitu-
tive equations are required to relate the mechanical response
of a system to externally applied forces. Then, converting the
force-displacement data into stress-strain data allows for the
mechanical characterization of the film, with the extraction of
the elastic parameters and the residual stress. Conversely, if
the properties of the membrane are known, the film can be
used as a sensor and the external force field responsible for
the measured membrane deformation can be determined.

The mechanical response of loaded membranes has been
widely investigated. Complete descriptions of the behavior of
films loaded under different conditions have been reported by
Komaragiri et al.32 and Wan and Dillard,33 although exact an-
alytical expressions that allow the calculation of the applied
load from the measured deflection are not available. Nev-
ertheless, accurate expressions relating load and membrane
deformation, based on finite-element calculations, have been
reported by several groups. For the case of a membrane un-
der uniform hydrostatic pressure as in a bulge test, Small and
Nix31 showed that the membrane deflection w0 at the center
can be well described by:

∆P =
8Etm

3(1−ν)a4 (1−0.241ν)w3
0 +

4σ0tm
a2 w0 . (1)

Similar expressions have also been proposed by other
groups.34 Wan and Dillard derived equivalent parametric
equations for the applied pressure and the membrane defor-
mation in terms of the total membrane stress, which combines
residual and stretching-induced stresses.33 Analogous expres-
sions have been proposed for different varieties of the applied
load (e.g. localized load).33,35 Equation (1) involves the bal-
ance between the applied pressure and the total elastic stress.
As such, a simple fit of the measured relation between ∆P/w0
and w0 allows for the determination of both the pre-stress and
the elastic modulus, provided that the other relevant param-
eters are known. At low pressures (i.e. small deformations),
the membrane response is dominated by the pre-stress. On the
contrary, at large deformations, the effect of the pre-stress is
negligible compared with the externally applied stress.

The bulge-test setup is illustrated in Fig. 3a. The glass
cylinder supporting the membrane is placed in a sealed alu-
minum holder. The setup consists of an inlet, connected to a
water-filled syringe, which allows for water to fill the chamber
underneath the membrane. For every experiment, we ensure
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that air is not present in the reservoir. The hydrostatic pres-
sure acting on the membrane is carefully controlled by varying
the height of the water column inside the syringe. The mem-
brane deflection is simultaneously monitored using a laser-
displacement sensor (Keyence LK-H008) mounted on a fixed
frame above the freestanding membrane. The device can mea-
sure vertical displacements of up to 500 µm with a precision
of 1 µm.

(a) (b)

Figure 3: Hydraulic bulge test. (a) Schematic of the setup. A
water-filled syringe placed at a controlled height is connected
through a silicone tube to a sealed chamber containing the
free standing membrane. The membrane deflection is
monitored using a laser-displacement sensor. (b) Typical
pressure-deflection data, fitted to Eq. (1) by fixing the
membrane thickness tm = 15.4 µm, membrane radius
a = 5.5 mm, and membrane Poisson’s ratio ν = 0.5. The two
fitting parameters are the pre-stress σ0 = 54.8 kPa and the
membrane Young’s modulus E = 2.8 MPa. Curing
temperature 85◦C. X = 1:5.

Typical bulge-test results are shown in Fig. 3b. The thick-
ness tm of the PDMS membrane is independently measured
using MBI. Fitting the experimental bulge-test data to Eq. (1),
we find that σ0 = 54.8 kPa and E = 2.8 MPa. These val-
ues strongly depend on the fabrication procedure of the mem-
brane, particularly with respect to curing time and tempera-
ture.

3. Dynamic response

The vibrational modes of circular elastic membranes are
well known.36–39 In particular, when the bending contribu-
tion can be ignored, the modal frequencies of a stretched ideal
membrane are given by36:

∆ fi j =
µi j

2πa

√
N0

ρtm
, (2)

where ρ is the mass density of the membrane, µi j is the j-
th root of the order-i Bessel function Ji, and N0 is the radial
stress resultant (with unit of a force per unit length for a mem-
brane) at the clamping boundary (r = a), i.e. the in-plane ten-
sion in the membrane. By using Eq. (2), the in-plane pre-
stress σ0 = N0/tm can be evaluated from the measured reso-

nance frequencies, provided that the orders i and j of the vi-
brational modes can be identified. Different techniques have
been proposed to characterize the resonance frequencies of a
clamped membrane, with variations in the means of excita-
tion and methods of measurement of the deformation. In this
work, we have combined: i) Electronic Speckle Pattern Inter-
ferometry (ESPI) of the membranes, excited with a sinusoidal
pressure signal; ii) spectral analysis of the thermal motion of
the same membranes. We present both methods hereafter.

ESPI is a non-destructive whole-field technique that allows
the visualization of the out-of-plane displacement of a vibrat-
ing object with high resolution.40,41 This is achieved by de-
termining the difference in optical paths between two speckle
patterns resulting from the interference between a reference
laser beam and a reflected laser beam, at different excita-
tion levels.41,42 The experimental setup for the ESPI is de-
picted in Fig. 4. The light source is a 200 mW and 532 nm
NdYAG green laser (Spectra-Physics Excelsior). The power
range is controlled by passing it through a half-wave plate and
a polarizer. The laser is injected into a single-mode fiber at
532 nm Y 50/50 (OZ Optics) using a fiber coupler (KT120,
Thorlabs). At the fiber exit of each arm, the beam is col-
limated using a coupler and then expanded (GEB05, Thor-
labs). The size of the beam is adjusted to match the size of the
membrane. Then the two beams are recombined by a semi-
reflecting mirror (CM1-BS1, Thorlabs) towards the camera
(Lumenera, Lt425C-SCI, 2048x2048 px, 12 bits) fitted with
a zoom lens (Edmund Optics, 0.36X Telecentric Lens). Im-
age processing is carried out using a custom-made LabVIEW
program. We use loudspeakers fed with a purely sinusoidal
input to excite the motion of the membranes, sweeping the
excitation frequency while recording the speckle pattern for
both the excited (phase-shifted) and unperturbed (reference)
conditions. The subtraction I(φ)− I(φ +∆φ) of the light in-
tensity allows for the visualization of the deformed shape of
the membrane (Fig. 5) and the identification of the vibrational
mode.

Figure 4: Schematic of the Electronic Speckle Pattern
Interferometry (ESPI) setup. A green laser with a 532-nm
wavelength is transmitted through a half-wave plate (λ/2)
and a polarizer (P1) before being directed into a single-mode
fiber using two mirrors (M1, M2) and a lens (L1). The light
power is equally distributed between two other fibers ended
by collimated beam expanders (BE). The first one (left) is set
to be the reference beam and illuminates directly the CCD
camera, while the second one (top) gets reflected onto the
metallic surface of the sample membrane before reaching the
camera thanks to a beam splitter (BS).

As shown in Fig. 5, the quality, regularity and symmetry of
the ESPI images indicate a good level of homogeneity of the
membranes. However, the accurate determination of the res-
onance frequencies requires a fine monitoring of the system
response, which is cumbersome with ESPI. For more detailed
spectral characterization, we thus use a Picoscale interferom-
eter. This device is a fiber-optic Michelson interferometer that
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Figure 5: Typical mode patterns of a freestanding PDMS
membrane observed using ESPI, along with the (i, j) orders
identified. tm = 14.1 µm, curing temperature T = 85◦C.
X = 1:5

can be used for contactless displacement measurements with
picometer accuracy. Signals are generated in fiber-coupled
sensor heads that are connected to a controller via optical
fibers. A beam splitter divides the laser beam into a refer-
ence beam and a measurement beam, with the reference beam
reflected off a mirror (included in the sensor head), and the
measurement beam reflected off the target. The interferome-
ter uses a 1550-nm laser (class 1, 400 µW) stabilized by a gas-
absorption cell. This setup enables precise quadrature detec-
tion through advanced modulation of the native wavelength of
the laser. Additionally, the system is integrated with an Envi-
ronmental Sensor Module that compensates for changes in the
air refractive index due to variations in pressure, temperature,
and relative humidity. Using this device, we measured the
thermal spectra of PDMS membranes in order to accurately
determine their resonance frequencies. A typical spectrum is
shown in Fig. 6. We can identify all the vibrational modes
and relate them to the ESPI data. Therefore, the membrane
pre-stress can be computed from the measured resonance fre-
quencies, using Eq. (2).

We investigated more than 20 different membranes and
consistently observed pre-stress values between 35 and 120
kPa. However, we are not able to correlate such values with
the preparation parameters (membrane thickness, curing tem-
perature, or cross-linker-to-base ratio). We can further esti-
mate the strain ε corresponding to the measured pre-stress us-
ing the relation σ0 = Eε/(1−ν). Assuming a Poisson’s ratio
of ν = 0.5, values of ε in between 0.03 and 0.04 can be esti-
mated. We believe that the main factor responsible for the ob-
served pre-stress is the difference in the coefficients of thermal
expansion between the borosilicate glass (ca. 3 ppm/K), the
silicon wafers (2.5 ppm/K) and the PDMS (ca. 250 ppm/K).43

The variability in the experimental conditions during curing

Figure 6: Typical thermal spectrum of a free-standing PDMS
membrane with a resolution of 0.6 Hz, measured with a
Picoscale interferometer.tm = 16.9 µm, curing temperature
T = 100◦C. X = 1:5. Insets: Two ESPI images. Left, mode
(1,1). Right, mode (2,1)

probably leads to further variation in the pre-stress. The adhe-
sion between the PDMS films and the silicon wafers at early
stages of the preparation, and the bonding between the PDMS
membranes and the glass cylinder later on severely hinder the
relaxation of the membrane after the thermal treatments dur-
ing cross-linking and bonding.

III. ELECTROSTATIC ACTUATION

A. Experiments

We evaluate the performance of the Soft SFA by measur-
ing the response to an externally-applied potential difference
between the silver layers on the sphere and the membrane,
which can be readily used as electrodes. The oppositely
charged surfaces then attract each other because of Coulom-
bic interactions. Specifically, we apply a Direct Current (DC)
voltage U to bias the electrodes (power supply ELEKTRO-
AUTOMATIK EA-PS8160-04-T) and measure the deforma-
tion w0 at the center of the compliant membrane, as illustrated
in Fig. 7.

Typical results are presented in Fig. 8, for various voltages
and for two cross-linking temperatures during the membrane
preparation protocol. In all cases, a quick response of the
membrane is detected upon the application or removal of the
DC voltage. For a membrane cross-linked at 100 ◦C (Fig. 8a),
a stationary deformation state is achieved shortly after the ap-
plication or removal of the voltage. Moreover, the changes
in the membrane deflection are reproducible (not shown) and
reversible. In sharp contrast, for a membrane cross-linked at
85 ◦C (Fig. 8b), a more complex behavior is observed. Mainly,
a slow viscoelastic temporal evolution of the membrane defor-
mation is observed after any voltage change, and the station-
ary state is still not reached after two minutes. This observa-
tion indicates that the viscoelastic rheology of the membrane
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Figure 7: Schematic showing the deflection w0 and the
surface charges of the deformed (dashed line) freestanding
PDMS membrane, when submitted to a DC voltage U with
respect to the rigid hemisphere counterpart of the Soft SFA.

can be simply adjusted by changing the curing temperature
during the preparation step. Furthermore, the behavior ob-
served in Fig. 8b is reversible, as: i) the membrane eventually
returns to the initial non-deformed state after sufficient time
under zero voltage (not shown); and ii) subsequent on-off cy-
cles produce identical responses (not shown).

(a) (b)

Figure 8: Central deflection w0 of the membrane as a
function of time t, for different voltages U as indicated, and
for two different cross-linking temperatures during the
membrane preparation step: a) 100◦C; and b) 85◦C. In all
cases, the voltage is first off (U = 0), then turned on to the
chosen U value indicated in the legends, and then turned off
again. a) tm = 20.3 µm. X = 1:5. Initial gap D = 9000 nm. b)
tm = 14.1 µm. X = 1:5. Initial gap D = 9050 nm.

Interestingly, the fast elastic response observed upon turn-
ing off the voltage is substantially larger in magnitude than
the fast elastic response observed upon turning on the volt-
age (Fig. 8b). This feature may suggest a strain-softening be-
havior, where the membrane would become more compliant
under strain, and may be related to the Payne effect.30,44 The
latter effect designates the reduction of storage modulus of
particle-loaded elastomers under strain, which is typically re-
ported for strain values above 0.1 %. Here, we may observe
a strain-softening effect for much smaller strains (ca. 10−5),
a regime that is out of reach with common rheometers or Dy-
namic Mechanical Analyzers (DMA).

We can now assess the detection limit of the force measure-
ment in the Soft SFA. The following approximate expression
for the electrostatic force F between a conducting sphere and

a conducting plate under a constant potential difference has
been reported45,46

F = πε0U2 1
ξ +ξ 2 (3)

where ε0 denotes the permittivity of the gap region, and
ξ = D/R0. The deflection at the center of the membrane as
a function of the applied electrostatic force F estimated us-
ing this expression is presented in Fig. 9. By extrapolation
from these data, a membrane deflection of w0 = 1 nm, which
is above the detection limit of MBI (0.1 nm), corresponds to a
force of F = 4 nN. Therefore, a resolution F/R0 on the order
of 1 µNm−1 is readily accessible with the setup described in
this work. This is one order of magnitude smaller of what is
commonly achieved with conventional SFA setups, highlight-
ing the great potential of the Soft SFA towards force sensing.
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Figure 9: Central deflection w0 of the membrane as a
function of the applied electrostatic force F , calculated using
Eq. (3). tm = 18 µm, membrane preparation temperature T =
100◦C. X = 1:5.

B. Theoretical description

In this section, we provide a theoretical description of the
axisymmetric shape of a pre-stressed elastic membrane in an
applied electrostatic field.

1. Elastic equation

The out-of-plane deflection field w(r) of the membrane is
governed by the Föppl-von Kármán (FvK) equations,47,48 as
follows:

B
d4w
dr4 −

[
(σ0 +σr)tm

d2w
dr2 +

(σ0 +σθ )tm
r

dw
dr

]
= p , (4)

dσr

dr
+

1
r
(σr −σθ ) = 0 , (5)
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with p being the pressure resulting from the electrostatic in-
teraction between the membrane and the hemispherical probe
of radius R0, the in-plane stress fields in the radial (r) and az-
imuthal (θ ) directions are respectively denoted by σr(r) and
σθ (r), and the mechanical properties of the membrane are
characterized by its bending stiffness B = Et3

m/[12(1− ν2)].
Besides, the central deflection of the membrane is given by
w0 = w(0).

We then consider a more specific situation, in which the
deformation of the membrane is controlled by the pre-stress
σ0 only. We can make an order-of-magnitude estimation of
the contributions of the different terms in Eq. (4) to support
this approximation. The contribution of the bending term is
on the order of Bw0

L4 , whereas the contribution of the stretch-
ing term is on the order of σ0tmw0

L2 , with L a typical horizontal
length scale in the problem that should be comparable to a
in magnitude. As a consequence, and given the membrane
parameters and the typical values of the pre-stress measured
above, the bending-to-stretching ratio is much smaller than 1,
and bending can be neglected. Suppressing further the nonlin-
ear terms within a small-deformation approximation, Eq. (3)
can be rewritten as:

N0
d2w
dr2 +

N0

r
dw
dr

=−p . (6)

Finally, since the membrane is clamped on the supporting
cylinder at its edges, and due to the axisymmetry of the prob-
lem, the boundary conditions are assumed to be:

w(a) = 0 , (7)

dw
dr

∣∣∣∣
r=0

= 0 . (8)

2. Electrostatic equation

Invoking the Maxwell-Gauss equation in the absence of
bulk charge sources, the electrostatic potential ψ(r,z) within
the membrane-probe gap region satisfies the Laplace equa-
tion:

∇
2
ψ = 0 , (9)

where ∇ is the nabla operator. The hemispherical probe is as-
sumed to be held at a constant electrostatic potential U , while
the membrane is held at a null potential. We further assume
that U is small enough for the membrane to be weakly de-
formed, i.e. w0 ≪ D, allowing us to write the profile h(r) of
the gap region between the probe and the membrane as the
undeformed one:

h(r) = R0 +D−
√

R2
0 − r2 . (10)

Considering further the small-gap limit, where ε = D/R0 ≪
1, the latter equation can be approximated by its parabolic
expansion:

h(r) = D+
r2

2R0
. (11)

Interestingly, the small-gap limit allows for a scale separa-
tion between: i) an inner region, for r ≪ √

2DR0, where the
electrostatic loading is dominant; and ii) an outer region, for
r ≫ √

2DR0, where the membrane relaxes freely towards its
clamping boundary condition.

Let us now focus on the inner region, and non-
dimensionalize the spatial coordinates in the problem by the
probe radius R0 of the membrane, the electrostatic potential
by the voltage U , and the pressure by a pressure scale p∗. We
denote the resulting dimensionless quantities with an overbar.
Therefore, the Laplace equation becomes:

1
r̄

∂

∂ r̄

(
r̄

∂ψ̄

∂ r̄

)
+

∂ 2ψ̄

∂ z̄2 = 0 , (12)

while the profile of the gap region becomes:

h̄ = ε +
r̄2

2
. (13)

As previously done49,50, we now introduce the following
stretched coordinates for the inner region:

Z =
z̄
ε
, R =

r̄√
2ε

. (14)

Thus, the height function H = h̄/ε in the stretched-coordinate
system reads:

H = 1+R2 . (15)

Similarly, the potential Ψ(R,Z) = ψ(r̄, z̄) in the stretched-
coordinate system satisfies:

1
2ε

1
R

∂

∂R

(
R

∂Ψ

∂R

)
+

1
ε2

∂ 2Ψ

∂Z2 = 0 , (16)

which reduces, at leading order in ε , to:

∂ 2ψ̄

∂Z2 = 0 . (17)

The latter equation is subject to the following boundary condi-
tions: i) at Z = H,Ψ = 1; and ii) at Z = 0, Ψ = 0. The solution
reads:

Ψ =
Z
H

. (18)

The electrostatic pressure exerted on the membrane reads
p = ε0(∇ψ)2/2. Hence, in dimensionless variables where
P(R,Z) = p̄(r̄, z̄), one has:

P =

[
ε

2

(
∂Ψ

∂R

)2

+

(
∂Ψ

∂Z

)2
]
, (19)

provided that we set the pressure scale as p∗ = ε0U2/(2R2
0ε2).

At leading order in ε , one thus gets:

P =
1

(1+R2)2 . (20)

This electrostatic pressure field of the inner region vanishes
rapidly as R → +∞, which is consistent with the fact that we
neglect the electrostatic pressure in the outer region.
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3. Deflection field

We consider the deflection field win(r) in the inner region.
By introducing the deflection scale w∗, so that we can switch
to dimensionless variables through win(r) = w∗w̄in(r̄), and the
stretched-coordinate notation Win(R) = w̄in(r̄), Eq. (6) can be
non-dimensionalized as:

d2Win

dR2 +
1
R

dWin

dR
=−P , (21)

provided that we set the deflection scale to be w∗ = ε0U2

εN0
.

Besides, the dimensionless electrostatic pressure p̄ (or
equivalently P) typically decays as ∼ ε2/r̄4 in the far field, as
can be estimated from the inner pressure solution found above.
Therefore, at leading order in ε , the differential equation for
the dimensionless deflection field w̄out(r̄) = wout(r)/w∗ in the
outer region reads:

d2w̄out

dr̄2 +
1
r̄

dw̄out

dr̄
= 0 . (22)

The general solution of the latter equation is w̄out = c1 ln(r̄)+
c2, where c1 and c2 are two unknown constants. Since
w̄out(r̄ = a/R0) = 0 from the clamping boundary condition,
c2 can be found, and one gets w̄out = c1 ln(r̄R0/a).

Since the outer solution diverges logarithmically as r̄ → 0,
the inner solution must have a switchback logarithmic de-
composition. We thus introduce the general form: Win(R) =
f0(R)+ f1(R) ln(ε)+O(ε), where f0 and f1 are two unknown
functions. Invoking Eq. (21), the latter satisfy:

d2 f0

dR2 +
1
R

d f0

dR
=− 1

(1+R2)2 , (23)

d2 f1

dR2 +
1
R

d f1

dR
= 0 . (24)

Using the boundary conditions at R = 0, i.e. d f0/dR = 0 and
d f1/dR = 0, one gets:

f0 =−1
4

ln(1+R2)+ c3 , (25)

f1 = c4 , (26)

where c3 and c4 are two unknown constants.
We now proceed to the asymptotic matching of the inner

and outer solutions, in order to find the three unknown con-
stants and have an approximate expression of the membrane
deflection over the full spatial range. The matching condition
reads:

f0|R→+∞ + f1|R→+∞ ln(ε) = w̄out|r→0 , (27)

⇒−1
2

ln
(

r̄√
2ε

)
+ c3 + c4 ln(ε) = c1 ln

(
R0r̄
a

)
, (28)

which results in c1 = −1/2, c3 = ln
[
a/

(
R0

√
2
)]

/2, and
c4 = −1/4. As a consequence, the solution W (R) = w̄(r̄) =

w(r)/w∗ over the full spatial range can be approximated by
the matched expression:

W =Wout +Win −Win|R→+∞, (29)

=
1
4

ln
[

a2

2εR2
0(1+R2)

]
. (30)

Putting back dimensions, one finally gets:

w(r) =
ε0U2R0

4Dσ0tm
ln
[

a2

2DR0 + r2

]
. (31)

Thus, the deformation at the center (r = 0) of the membrane
reads:

w0 =
ε0U2R0

4Dσ0tm
ln
[

a2

2DR0

]
. (32)

0 1 2 3 4

ε0U
2R0 ln(R2

M/2DR0)
4D [F.m−1.V2]

×10−6

0.0

0.5

1.0

1.5

2.0

2.5

w
0

[µ
m

]

D = 8600 nm

D = 7708 nm

D = 5850 nm

Figure 10: Measured central deflection w0 of the membrane,
as a function of the squared voltage U2 re-scaled according
to Eq. (32), for different gap distances D, as indicated. The
dashed black line is a fit of the data for w0 < 1 µm, with
N0 = 1.67 N/m as the single fit parameter (equal to the
inverse of the slope of the linear fit). tm = 13.8 µm, T =
100◦C, X = 1:5.

The central deflection measured for a single membrane at
three different gap distances is shown as a function of the
rescaled squared voltage in Fig. 10. As can be seen, Eq. (32)
accurately represents the data at low membrane deflections
(w0 < 1 µm), and can be used to extract the tension of the
membrane N0 = 1.67 N/m. Conversely, if the tension on the
membrane was known beforehand, which can calculated from
its resonance frequency, an accurate determination of the ap-
plied force field could be achieved with this method. At larger
membrane deflections the weakly deformed approximation
(Eq. (10)) is no longer valid. Let us end the discussion with a
remark on nonlinearities in the deflection, that we neglected.
Based on previous calculations,51 nonlinearities would lead to
a deflection that would be proportional to p1/3. Since the latter
behavior is not observed in our experimental results, we con-
clude that nonlinear aspects remain insignificant within our
parametric range and that pre-stress dominates.
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CONCLUSION

We have described the development, principles, and cali-
bration of a novel class of Surface Forces Apparatus (SFA):
the Soft SFA. It involves a compliant elastomeric membrane
instead of the rigid surfaces used in classical SFA. The interest
of this configuration is threefold. First, the membrane being
compliant, it can serve as a force probe itself and no external
spring is required for force measurement purposes. Secondly,
its large compliance allows for the improvement in force sen-
sibility, as compared to classical SFAs. The nanonewton range
is already reached with the current window of parameters, and
could still be improved further. Lastly, the setting is an ideal
platform to investigate the intricate coupling between confined
nanofluidics and complex soft interfaces, which is ubiquitous
in material science, nanophysics and biophysics.
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