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We study a robust utility maximization problem in a general discrete-time frictionless market under quasi-
sure no-arbitrage. The investor is assumed to have a random and concave utility function defined on the
whole real-line. She also faces model ambiguity on her beliefs about the market, which is modeled through a
set of priors. We prove the existence of an optimal investment strategy using only primal methods. For that
we assume classical assumptions on the market and on the random utility function as asymptotic elasticity
constraints. Most of our other assumptions are stated on a prior-by-prior basis and correspond to generally
accepted assumptions in the literature on markets without ambiguity. We also propose a general setting
including utility functions with benchmark for which our assumptions are easily checked.
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1. Introduction In this article, we are interested in the following question: In a frictionless
discrete-time market, does an investor who tolerates negative wealth and faces model ambiguity
have an optimal investment strategy? Model uncertainty refers to random phenomena that have
an uncertain probability of occurrence. For example, in the Ellsberg experiments, people have to
choose between a risky urn which composition is known and an uncertain urn which composition
is unknown. As the world becomes more and more unpredictable, model ambiguity has become a
major issue especially in financial economics. This notion of model ambiguity, sometimes referred
to as “unknown unknown”, goes back to Knight, see [19], and is therefore called Knightian uncer-
tainty. To address our research question, we will model the preference of the investor with a utility
function. The classical utility maximization problem i.e. without Knightian uncertainty, has a rich
literature and we refer to [15] and the references therein for a detailed survey. In a general semi-
martingale setting for concave utility functions defined on (0,∞), [20] uses dual methods to show
that Asymptotic Elasticity (AE) constraint on +∞ is necessary in order to obtain the existence
of an optimal investment strategy. Roughly speaking, the AE constraint at +∞ states that for
positive large enough wealth, the marginal utility is small compared to the average utility. When
the utility function is defined on R, [27] shows that the AE constraints on both −∞ and +∞ are
necessary to obtain existence. In discrete time, [24] proves similar results using primal methods and
postulating the AE constraint only on one side. Later, [12] extends these results to non-concave
utility functions, see also [10]. As a result, constraints on AE have become classic assumptions for
solving utility maximization problems.

Going back to model uncertainty, a set Q of probability measures, also called priors, usually
models all the investor’s beliefs about the market. The earliest literature assumed that Q is dom-
inated. We refer to [16] for a comprehensive survey of the dominated case. Unfortunately, this
setting excludes volatility uncertainty and Bouchard and Nutz introduce the so-called quasi-sure
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uncertainty, see [11]. Random sets of “local” priors are first given. These probability measures are
“local” in the sense that they represent the investor’s belief between two successive moments. The
cornerstone assumption of [11] is that the graphs of these random sets are analytic sets, see [5] for
a comprehensive presentation of analytic sets. This allows measurable selection techniques and the
set of priors for the whole market is then constructed by taking the Fubini product of measurable
versions of the “local” priors. Note that the set of probability measures Q is neither assumed to be
compact nor to be dominated by any particular measure. In the case of model ambiguity, Gilboa
and Schmeidler [14] characterize the preference of the agents with the following numerical repre-
sentation X 7→ infQ∈QEQU(X). This is coherent with Ellsberg experiments: participants strictly
prefer the risky urn to the uncertain one, showing uncertainty aversion. Thus, optimal investment
amounts to show existence in a maxmin expected utility problem.

In the discrete time quasi-sure setting, [22] solves this maxmin problem for concave and bounded
from above utility functions, when only positive wealth is admissible, i.e. the utility function is
defined on the positive axis. The same result is proved in [9] for unbounded functions. The literature
dealing with potentially negative wealth in the discrete time nondominated quasi-sure setting is
quite recent. The existence of an optimal investment strategy is proved in [7] for a one-period
market. Assuming that the strategies are discrete (in ω), [21] obtains existence for non-concave
bounded from above utility functions. Using a dual approach, [2] solves the utility maximization
problem for an exponential utility function assuming a stronger no-arbitrage condition. Some of
these results have been extended in [3] always assuming a boundedness condition on the utility
function but also under the assumption that medial limits exist. Note also that [23] have derived
existence results in a different framework where the uncertainty is represented by a set of stochastic
processes. There seems to be no obvious connection between their framework and the quasi-sure
framework of [11].

To the best of our knowledge, there are no general results on the existence of an optimal in-
vestment strategy in the discrete-time nondominated quasi-sure setting of [11], when the wealth
of the investor can be negative. In this article, we show that under expected conditions (involving
no medial limits) on the market and on the utility function, an optimal investment strategy exists.
Since beliefs are uncertain, we consider random utility functions. We assume that the quasi-sure
no-arbitrage condition of [11] called NA(Q) holds true. To solve our optimisation problem, we first
consider a one-period case with strategy in Rd. We then “glue” together the solutions found in the
one-period case using dynamic programming together with measurable selection techniques. This is
where the analycity of the graph of priors is required. We now comment on our other assumptions.
The first one is the classical AE constraint. The second one requires that U is “negative enough”
and is automatically satisfied for deterministic non-constant concave utility functions. We provide
an example where there is no optimal strategy when this assumption fails. The third one states
that some simple strategies are admissible and is the only assumption that is postulated in a strong
sense, i.e. considering a supremum over all priors. This assumption ensures a control from below for
the value functions. These first three assumptions can be checked directly when the utility function
and the market are specified. This is not the case for the last one which requires that the value
function UP

0 at time 0 is finite for every prior P ∈H. The set H is the the set of all priors P such
that the P no-arbitrage condition holds true in a quasi-sure sense. The existence of such priors has
been proved in [9] under NA(Q). Note that this last assumption is stated on a prior-by-prior basis,
not for the supremum over all priors. So, it can be verified as in the setting without ambiguity and
this assumption is indeed required in [24]. It provides a control from above for the value functions.
We will provide an example where there is some prior P ∗ ∈ H such that UP∗

0 = +∞ and there
is no optimal strategy even if the value function is finite. The one-period assumptions and the
dynamic programming procedure of [22] and [8] are inspired from [24] and [25]. Here we follow a
different path and adapt to the quasi-sure setting the approach of [7] that was initially formulated
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for non-concave utility functions. We also use the set H and formulate our one-period assumptions
for a given prior in H and not for all P ∈ Q or for supP∈Q as [22, 8, 7]. Thus, our methods for
finding optimal strategies are different from those used before in the quasi-sure literature. Here are
some further examples. First, we introduce the random variables N∗t and NP

t that represent the
cash positions for which the value functions Ut+1 and UP

t+1 are below a certain threshold. These
random variables are unnecessary for utility functions defined only on the positive half-line, as
they take the value −∞ on the negative half-line, and this condition propagates through dynamic
programming, eliminating the need to check whether value functions are “sufficiently negative”.
The N∗t and NP

t are important for converting some of our assumptions into integrability conditions.
We provide both finiteness and integrability results for them. These results are new and nontrivial.
Secondly, we introduce the AE constraints in the context of uncertainty, which is new to the best
of knowledge. We define the random variables Ct and show that they are quasi-surely finite and
that their finiteness ensures that the dynamic AE constraints on the value functions are satisfied.
Finally, from a more technical side, we show that some results of [11] which are proved assuming
that −∞+∞= +∞ remain true under the opposite convention. The convention −∞+∞=−∞ is
crucial in order to propagate the concavity property through the dynamic programming procedure.
Indeed unlike [12], we have to assume in our quasi-sure setting that the utility function is concave
in order to obtain the regularity of the value functions Ut.
From all our assumptions, we prove in Theorem 1 that for any initial wealth x the optimal one-step
strategies Φ∗,xt+1 exist and that if these strategy are admissible, then they are optimal. The fact that
the Φ∗,xt+1 are not automatically admissible is not due to the quasi-sure uncertainty. Already, in [24]

(see [7, Remark 15]), one need to assume that E(V x,Φ∗,x

T )<∞ to get that Φ∗,x is admissible. Thus,
as in Rasonyi and Stettner, we propose in Theorem 2 a general setting where not only the one-step
optimal strategies are admissible, but also UP

0 <∞ for every prior P ∈ H. For this purpose, we
introduce a new kind of random utility functions called utility functions of type (A). They satisfy
the AE constraints, are negative enough but bounded from below by some power greater than 1,
all of this with integrability conditions. We show that random utility functions with benchmark
introduced by [18] are of type (A). For that we use nontrivial and new results on AE constraints
in the context of uncertainty. The proof of Theorem 2 uses integrability results for N∗t and NP

t .
The remainder of this article is organized as follows. In Section 2, we introduce the financial

model, the assumptions as well as the main results. In Section 3, we solve the utility maximization
problem in a one-period market, while in Section 4, we prepare the dynamic programming proce-
dure. Section 5 presents the proof of Theorem 1, while Section 6 presents the one of Theorem 2.
The appendix contains further proofs and results, in particular on AE and on a specific integral
that we introduce in order to preserve concavity through the dynamic programming procedure.

2. Setting and main result

2.1. Setting We fix a time horizon T and introduce a family of Polish spaces (Ωt)1≤t≤T . For
some 0≤ t≤ T , let Ωt := Ω1×· · ·×Ωt with the convention that Ω0 is a singleton. Let X be a Borel
space (see [5, Definition 7.7]). We denote by P(X), the set of probability measures defined on the
measurable space (X,B(X)), where B(X) is the usual Borel sigma-algebra on X. We denote by
Bc(X) the completion of (X,B(X)) with respect to all P ∈P(X). Let S := (St)0≤t≤T be a Rd-valued
process representing the discounted price of d risky assets over time. We first assume that S is
Borel. This assumption is usual in the quasi-sure financial literature (see [11]) and aims at solving
measurability issues.

Assumption 1. For all 0≤ t≤ T , St is B(Ωt)-measurable.

We consider a random utility function defined on the whole real line which models the investor’s
preference on the market in the case of possible negative wealth.
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Definition 1. A random utility U : ΩT ×R→R∪{−∞,+∞} is a function such that for all x∈
R, U(·, x) is B(ΩT )-measurable and U(ωT , ·) is nondecreasing, concave and upper-semicontinuous
(usc) for all ωT ∈ΩT .

In presence of uncertainty about the distribution of the states of nature, we expect that any
characterization of the investor’s behavior should also be uncertain. Hence, the choice of a random
utility. The concavity and monotonicity of U ensure that the investor is risk-averse and always
seeks for more money. Remark that as U is not necessarily finite, the usc condition is not vacuous.

Remark 1. Using [10, Lemma 5.10], U(ω, ·) is right-continuous and thus U is B(ΩT )⊗B(R)-
measurable (see [10, Lemma 5.13]).

We now construct the set QT of all priors on the market. The set QT captures all the investor’s
beliefs about the distribution of the future states of nature. For all 0≤ t≤ T − 1, let1 Qt+1 : Ωt �
P(Ωt+1) where Qt+1(ωt) can be seen as the set of all possible priors for the (t+ 1)-th period given
the state ωt at time t. The following assumption is now classical in the quasi-sure financial literature
(see [22], [11], [8], [9], [21] and [2]) and allows to do measurable selection.

Assumption 2. The set Q1 is nonempty and convex. For all 1≤ t≤ T −1, Qt+1 is a nonempty
and convex-valued random set such that graph(Qt+1) := {(ωt, p) ∈ Ωt ×P(Ωt+1), p ∈ Qt+1(ωt)} is
an analytic set.

Let X be a Polish space. An analytic set of X is the image of a Borel subset of some other Polish
space under some Borel measurable function (see [1, Theorem 12.24, p447]). We denote by A(X)
the class of analytic sets of X. Then, B(X)⊂A(X)⊂Bc(X) (see [5, p171]).

Explicit examples of nondominated financial markets satisfying Assumption 2 can be found in
[9] and [2]. Among them is a robust discrete time Black-Scholes model and a robust binomial model
where the uncertainty affects the probability of jumps and their size. We also propose in Example
1 a diffusion discretisation where the driving process have an unknown centered distribution, with
variance equal to 1 and bounded exponential moment.

For all 0≤ t≤ T − 1, let SKt+1 be the set of universally measurable stochastic kernels on Ωt+1

given Ωt. For qt+1(·|·) : B(Ωt+1)×Ωt→R, we have that qt+1 ∈ SKt+1 if for all ωt ∈Ωt, qt+1(·|ωt) ∈
P(Ωt+1) and for all B ∈B(Ωt+1), qt+1(B|·) is Bc(Ωt)-measurable (see [5, Definition 7.12, p134] and
[5, Lemma 7.28, p174]). Then, from the Jankov-von Neumann theorem (see [5, Proposition 7.49
p182]) and Assumption 2, there exists qt+1 ∈ SKt+1 such that for all ωt ∈Ωt, qt+1(·|ωt)∈Qt+1(ωt).
For all 1≤ t≤ T , let Qt ⊂P(Ωt) be defined by

Qt := {q1⊗ q2⊗ · · ·⊗ qt, q1 ∈Q1, qs+1 ∈ SKs+1, qs+1(·|ωs)∈Qs+1(ωs), ∀ωs ∈Ωs,∀1≤ s≤ t− 1},(1)

where q1⊗ q2⊗ · · · ⊗ qt denotes the t-fold application of Fubini’s theorem, see [5, Proposition 7.45
p175], and belongs to P(Ωt). From now, we will use Fubini’s theorem without further reference.
We also set Q0 := {δω0}, where δω0 is the Dirac measure on the single element ω0 of Ω0. If P :=
q1 ⊗ q2 ⊗ · · · ⊗ qT ∈ QT , we write for any 1 ≤ t ≤ T , P t := q1 ⊗ q2 ⊗ · · · ⊗ qt and P t ∈ Qt. In this
paper, most of the time, we work directly on the disintegration of P rather than P . So, from now,
we will specify the fixed disintegration for which the required result holds true. Usually the letter
q will designate a stochastic kernel while the letter p will be used for a probability measure.

Trading strategies are represented by d-dimensional, (Bc(Ωt−1))1≤t≤T -adapted processes φ :=
{φt, 1≤ t≤ T} representing the investor’s holdings in each of the d risky assets over time. The set of
all such trading strategies is denoted by Φ. Trading is assumed to be self-financing and the value at
time t of a portfolio φ∈Φ starting from initial capital x∈R is thus given by V x,φ

t = x+
∑t

s=1 φs∆Ss.
Note that if x, y ∈ Rd then the concatenation xy stands for their scalar product. The symbol | . |
refers to the Euclidean norm on Rd (or on R) and | . |1 is the norm on Rd defined by |x |1 :=

∑d

i=1 |xi|

1 The notation � stands for set-valued mapping.
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for all x∈Rd.

We use the quasi-sure no-arbitrage condition NA(QT ) introduced in [11, Definition 1.1]. Recall
that a set A⊂ΩT is a QT -polar set if there exists N ∈ B(ΩT ) such that A⊂N and P (N) = 0 for
all P ∈QT . A property holds true QT -quasi-surely (q.s.) if it holds true outside of a QT -polar set.
The complement of a QT -polar set is called a QT -full-measure set. Of course, any QT -full-measure
set is a P -full-measure set for all P ∈QT .

Definition 2. The NA(QT ) condition holds true if V 0,φ
T ≥ 0 QT -q.s. for some φ ∈ Φ implies

that V 0,φ
T = 0 QT -q.s.

In this paper, we will use an adhoc integral called
∫
− in order to preserve the concavity of the

value functions. When this integral is finite, it is just the usual integral. Else, it is computed using
the convention:

−∞+∞= +∞−∞=−∞. (2)

Unfortunately, [5] uses the opposite convention. Nevertheless, we will show in Appendix 7.2 that
important results of [5] still hold true for

∫
−. From now, we will simply write

∫
(or E) instead of∫

− except when we need to clarify the difference between both integrals. We now introduce the set
of admissible strategies for the utility maximization problem.
Definition 3. Let U be a random utility function as in Definition 1. Let P ∈P(ΩT ) and x∈R.

Φ(x,U,P ) := {φ∈Φ, EPU−(·, V x,φ
T (·))<+∞}

Φ(x,U,QT ) :=
⋂

P∈QT

Φ(x,U,P ).

We want to prove the existence of an optimal solution for the following max-min utility problem
when the uncertainty about the true probability is modeled by QT :

u(x) := sup
φ∈Φ(x,U,QT )

inf
P∈QT

EPU(·, V x,φ
T (·)). (3)

Note that u(x) = supφ∈Φ infP∈QT EPU(·, V x,φ
T (·)). Indeed, if φ ∈ Φ \ Φ(x,U,QT ), then

infP∈QT EPU(·, V x,φ
T (·)) =−∞ thanks to convention (2). We now introduce the different assump-

tions needed for the existence of an optimal strategy in (3).

2.2. Direct Assumptions on U We start with the assumptions which can directly and easily
be checked. The first one is on the asymptotic behavior of the random utility U . In the uni-prior
setting, this condition already appeared in [12, Proposition 4] for a finite nondecreasing continuous
and non necessarily concave function. See also [24, Proposition 5.1] and [8, Proposition 3.24].

Assumption 3. There exist γ > 0 such that γ 6= 1 and a B(ΩT )-measurable random variable
C : ΩT → R+ ∪ {+∞} such that supP∈QT EP C < +∞ and such that for all ωT ∈ ΩT satisfying
C(ωT )<+∞, for all λ≥ 1 and x∈R,

U(ωT , λx) ≤ λγ(U(ωT , x) +C(ωT )). (4)
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A consequence of Assumption 3 is that a one-step strategy must be bounded in order to be optimal
(see Proposition 2) and this compactness result will allow us to prove the existence of an opti-
mal strategy. Assumption 3 is related to the notion of Reasonnable Asymptotic Elasticity (RAE)
introduced in [20] and [27]. To see that, assume for a moment that U : R→ R is a non-random,
non-constant and continuously differentiable function such that limx→+∞U(x)> 0 and define

AE+∞(U) := limsup
x→+∞

xU ′(x)

U(x)
and AE−∞(U) := lim inf

x→−∞

xU ′(x)

U(x)
. (5)

AE+∞(U) (resp. AE−∞(U)) is well-defined and is called asymptotic elasticity of U at +∞ (resp.
−∞). Note that (xU ′(x))/U(x) can be seen as the ratio of the marginal utility U ′(x) and the average
utility U(x)/x. The reader may refer to [20], [27] and [17] for details on asymptotic elasticity. If
U is also nondecreasing and concave, then AE+∞(U)≤ 1 and AE−∞(U)≥ 1 (see Proposition 9).
A utility function is said to have RAE if AE+∞(U) < 1 and AE−∞(U) > 1. In the uni-prior and
continuous time setting, RAE is a necessary condition to get existence of an optimal solution for the
utility maximization problem (see [27]). However, [24] shows that in discrete time, it is enough to
have either AE+∞(U)< 1 or AE−∞(U)> 1 and this condition will be called RAE in discrete time.
We show in Proposition 10 that RAE in discrete time implies (4). Note that [24, Example 7.3] gives
an example of a market situation where AE+∞(U) = AE−∞(U) = 1 and the utility maximization
problem has no solution. The next assumption ensures that U takes negative values.

Assumption 4. There exists a Bc(ΩT )-measurable random variable X : ΩT →R such that for
all ωT ∈ ΩT , X(ωT ) < 0 and U(·,X(·)) < −C(·) QT q.s, where C(·) ≥ 0 has been introduced in
Assumption 3.

Assumption 4 is of course satisfied if U is deterministic, nondecreasing, non-constant and concave as
limx→−∞U(x) =−∞. Utility functions with benchmark (see Definition 6) are examples of random
utility functions satisfying Assumptions 3 and 4 (see Proposition 13). If Assumption 4 is not
satisfied, then (3) may have no solution, see Remark 5 in the one-period case Section.

The following assumption requires admissibility of simple strategies uniformly in P and is dis-
cussed in the one-period setting after Assumption 10.

Assumption 5. For all 1≤ t≤ T , x∈Q, h∈Qd, supP∈QT EPU−(·, x+h∆St(·))<+∞.

2.3. Value functions and Assumption on UP
0 We need a last assumption which will

provide a control from above on the value functions. This assumption stated on the value function
at time 0 relative to some priors P is similar to [24, Assumption 2.3 (1)] and is thus well-accepted
in the uni-prior setting. What is nice here is that the assumption is postulated prior by prior and
not uniformly on all of them. Nevertheless, it is obviously not easy to verify. We will propose a still
general context where it holds automatically true (see Theorem 2).
Before stating Assumption 6, we need some further notation. We introduce the conditional support
of the price increments. Let 0 ≤ t ≤ T − 1 and P ∈ P(ΩT ) with the fixed disintegration P :=
qP1 ⊗ · · · ⊗ qPT , the multiple-priors conditional support Dt+1 : Ωt �Rd and the conditional support
relatively to P , Dt+1

P : Ωt�Rd are defined by

Dt+1(ωt) :=
⋂
{A⊂Rd, closed, p(∆St+1(ωt, ·)∈A) = 1, ∀p∈Qt+1(ωt)}

Dt+1
P (ωt) :=

⋂
{A⊂Rd, closed, qPt+1(∆St+1(ωt, ·)∈A|ωt) = 1}.

Additionally, for some R⊂Rd, let

Aff(R) :=
⋂
{A⊂Rd, affine subspace, R⊂A} Conv(R) :=

⋂
{C ⊂Rd, convex, R⊂C}
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and if R is convex, ri(R) is the interior of R relatively to Aff(R).
The closure of a random function F : Ωt ×R→ R∪ {−∞,+∞} is defined as follows. Fix ωt ∈

Ωt. Then, x 7→ Fωt(x) := F (ωt, x) is an extended real-valued function and its closure, denoted by
Cl(Fωt), is the smallest upper-semicontinuous (usc) function w : R→ R ∪ {−∞,+∞} such that
Fωt ≤w. Now Cl(F ) : Ωt×R→R∪{−∞,+∞} is defined by Cl(F )(ωt, x) := Cl(Fωt)(x).

We now introduce the dynamic programming procedure and the associated value functions. We
do this for the multiple-priors utility maximization problem (3) with the value functions Ut and
also for the utility problem (6) related to a given prior P with the value functions UP

t . Fix P ∈QT
with the fixed disintegration qP1 ⊗ · · ·⊗ qPT . Let

uP (x) := sup
φ∈Φ(x,U,P )

EPU(·, V x,φ
T (·)). (6)

For all 0≤ t≤ T − 1, we define
UPT (ωT , x) :=U(ωT , x)
UPt (ωt, x) := suph∈Qd EqPt+1(·|ωt)U

P
t+1(ωt, ·, x+h∆St+1(ωt, ·))

UP
t (ωt, x) := Cl(UPt )(ωt, x).

(7)
UT (ωT , x) :=U(ωT , x)
Ut(ωt, x) := suph∈Qd infp∈Qt+1(ωt) EpUt+1(ωt, ·, x+h∆St+1(ωt, ·))
Ut(ω

t, x) := Cl(Ut)(ωt, x).
(8)

The existence and the measurability of UP
t and Ut are not trivial. The purpose of the closure is

to ensure that these value functions are usc for all ωt ∈Ωt and not only on a Qt-full-measure set.
This is crucial for the dynamic programming procedure to hold true.

Assumption 6 will ensure a control from above on each UP
t for P in the set HT defined by

HT := {P ∈QT , 0∈ ri(conv(Ds+1
P ))(·)Qs-q.s., Aff(Ds+1

P )(·) = Aff(Ds+1)(·)Qs-q.s. ∀0≤ s≤ T − 1}.

We first comment on the set HT and the link with the NA(QT ) condition, see Definition 2.

Lemma 1. We have that HT ⊂QT . Assume that Assumptions 1 and 2 hold true. If NA(QT )
holds true then HT 6= ∅, HT and QT have the same polar sets and NA(P ) holds true for all P ∈HT .
Conversely, if HT 6= ∅ then NA(QT ) holds true.

Thus, HT has the same properties as the set PT introduced in [9, Theorem 3.6]. This set PT is
defined as follows

PT := {(λ1q
∗
1 + (1−λ1)qQ1 )⊗ · · ·⊗ (λT q

∗
T + (1−λT )qQT ), 0<λi ≤ 1, Q∈QT} ⊂HT , (9)

for a fixed P ∗ := q∗1 ⊗ · · · ⊗ q∗T ∈HT , see [9, Remarks 3.7 and 3.31]. Note that there exist infinitely
many sets satisfying the properties of [9, Theorem 3.6] and HT is not the smallest one for the
inclusion. Indeed, let T = 1, d= 1, Ω =R, ∆S1 : ω 7→ ω

Q1 =

{
n∑
k=1

αkδak , n≥ 1, ak ∈R, αk ≥ 0 and
n∑
k=1

αk = 1

}
,

where for all a∈R, δa is the Dirac measure at a. Set P ∗ := 1
3
δ−1 + 1

3
δ0 + 1

3
δ1 ∈Q1 and P := 1

2
δ−1 +

1
2
δ1 ∈ Q1. Then, we trivially have that Aff(D1

P
) = Aff(D1

P∗) = R = Aff(D1) and that 0 belongs to

ri(conv(D1
P

)) and to ri(conv(D1
P∗)). Thus, P ∗ and P belong toH1. Nevertheless, as D1

P∗ = {−1,0,1}
and recalling (9), each P ∈P1 must have a support containing at least three points and this is not
the case for P . So, P /∈P1 but P ∈H1 and the inclusion P1 ⊂H1 is strict.
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Proof of Lemma 1 Clearly, HT ⊂QT . The fact that HT 6= ∅ is equivalent to NA(QT ) is proved in
[9, Theorem 3.29]. Assume that NA(QT ) holds true. Then, for all P ∈HT , NA(P ) holds true as 0∈
ri(conv(Ds+1

P ))(·) P s-a.s for all 0≤ s≤ T −1, see [9, Proposition 3.25]. As HT ⊂QT , it is clear that
a QT polar set is also a HT polar set. Now, let Q := qQ1 ⊗· · ·⊗q

Q
T ∈QT and P ∗ := q∗1⊗· · ·⊗q∗T ∈HT .

Set R :=
q
Q
1 +q∗1

2
⊗ · · · ⊗ q

Q
T

+q∗T
2

. Then, Proposition 12 shows that Q�R and (9) that R ∈PT ⊂HT .
So, a HT -polar set is also a QT -polar set. Thus, HT and QT have the same polar sets. �

Assumption 6. For all P ∈HT , UP
0 (1)<+∞.

Before commenting on Assumption 6, we first link it to the existence of a kind of admissible one-step
optimal strategies for all priors in HT and to the finiteness of the uni-prior value functions.

Lemma 2. Let U be a random utility function (see Definition 1) and QT as in (1). Assume
that HT 6= ∅, that for all P := qP1 ⊗ · · · ⊗ qPT ∈ HT , uP (1) < +∞ (see (6)) and that there exists
φ∗,P ∈Φ(1,U,P ) such that for all 0≤ t≤ T − 1, for all ωt in a P t-full-measure set,

UP
t (ωt, V 1,φ∗,P

t (ωt)) = EqPt+1(·|ωt)U
P
t+1

(
ωt, ·, V 1,φ∗,P

t (ωt) +φ∗,Pt+1(ωt)∆St+1(ωt, ·)
)
. (10)

Then, Assumption 6 holds true.

Proof. Let P := qP1 ⊗ · · · ⊗ qPT ∈HT . First, we apply recursively (10) from t= 0 to t= T − 1, as
UP
T =U , and then, we use Fubini’s theorem as φ∗,P ∈Φ(1,U,P )

UP
0 (1) =

∫
Ω1

· · ·
∫

ΩT

U(ωT , V 1,φ∗,P

T (ωT )) qPT (dωT |ωT−1) · · · qP1 (dω1)

=

∫
ΩT
U(ωT , V 1,φ∗,P

T (ωT )) P (dωT ) =EPU(·, V 1,φ∗,P

T (·))≤ uP (1),

where the last inequality follows again from φ∗,P ∈Φ(1,U,P ). As uP (1)<+∞, Assumption 6 holds
true. �

Assumption 6 is similar to [24, Assumption 2.3 (1)] or [12, Assumption 2 (11)] postulated for all
priors of HT . In the case of a utility function defined on the positive axis, [8, Assumption 3.5] also
allows to control from above the value function. It should be stressed however that [8, Assumptions
3.1 and 3.5] ensure that the set of admissible strategies is exactly the set of trading strategies
with positive terminal outcomes (see [8, Proposition 3.25]) and thus inadequate for our problem
where outcomes can be negative. Assumption 6 allows to show that the one-period Assumption 10
below holds on each one-period market quasi-surely. One may wonder if we can only require that
UP∗

0 (1)<+∞ for a given P ∗ ∈HT . In this case, Assumption 10 will only be true on a P ∗−related
full-measure set which is not enough to solve the multiple-priors utility maximization problem for
a nondominated set of priors QT . One may also wonder if we could assume instead of Assumption
6 that U0(1)<+∞. The answer is no, see Remark 2.

Remark 2. The existence of an optimal strategy may fail when U0(1) < +∞ but if there
exists some P ∗ ∈ HT such that UP∗

0 (1) = +∞. Set T = 1, d= 1, Ω1 = R, ∆S1 : ω 7→ ω and for all
ω ∈Ω1 and x ∈R, U(ω,x) := Ũ(x) + exp(exp(ω)) where Ũ(x) := 1− exp(−x). The function U is a
random utility in the sense of Definition 1. Let P ∗ ∈P(Ω1) be the standard normal law. Set Q1 :=
Conv(P ∗, δ1). Assumptions 1 and 2 trivially hold true and D1

P∗ =D1 =R. So, P ∗ ∈H1 and NA(Q1)
holds true, see Lemma 1. Noting that AE−∞(Ũ) = +∞> 1 and using Proposition 10 in Appendix
7.1, Assumption 3 holds true for Ũ with γ ∈ (1,AE−∞(Ũ)) and some C̃ > 0. So, Assumption 3 holds
true also for U with the same γ and C̃ as exp(exp(ω))≥ 0. Assumption 4 immediately holds true
with X(ω) := Ũ−1(−C̃−1−exp(exp(ω))) where Ũ−1 : (−∞,1)3 x 7→ − ln(1−x) is the (continuous)
inverse function of Ũ . For all (x,h) ∈ R × Rd, U−(ω,x) ≤ Ũ−(x) ≤ exp(−x) and we have that

EP∗U−(·, x+h∆S1(·))≤ exp(h
2

2
−x)<+∞, Eδ1U−(·, x+h∆S1(·))≤ exp(−(x+h))<+∞ and also,
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supP∈Q1 EPU−(·, x+h∆S1(·))<+∞ : Assumption 5 holds true. We now show that UP∗
0 (1) = +∞,

U0(1)<+∞ and that the multiple-priors utility maximization problem has no solution. Note first

that EP∗ exp(exp(·)) = +∞ and that EP∗Ũ(1+h∆S1(·)) = 1−exp(h
2

2
−1) for all h∈R. As a result,

EP∗U(·,1 + h∆S1(·)) = +∞. So, UP∗
0 (1) ≥ UP∗0 (1) ≥ EP∗U(·,1) = +∞ (see (7)). The function Ψ :

h 7→ infP∈Q1 EPU(·,1 + h∆S1(·)) = Eδ1U(·,1 + h∆S1(·)) = 1− exp(−(1 + h)) + exp(exp(1)) doesn’t
admit a maximizer and (3) has no solution. Nevertheless, as Ψ(h)≤ 1 + exp(exp(1)), we get that
U0(1)≤ 1 + exp(exp(1))<+∞ (see (8)).

2.4. Main result We are now in position to state our first main result.

Theorem 1. Let U be a random utility (see Definition 1). Assume that the NA(QT ) condition
as well as Assumptions 1, 2, 3, 4, 5 and designatehold true. Then there exist (φ∗,x)x∈R ⊂ Φ and
for all 0≤ t≤ T − 1, some Qt-full-measure set Ω̂t ∈Bc(Ωt) such that for all x∈R and ωt ∈ Ω̂t, we
have that φ∗,xt+1(ωt)∈Aff(Dt+1)(ωt) and that

Ut(ω
t, V x,φ∗,x

t (ωt)) = sup
h∈Rd

inf
p∈Qt+1(ωt)

EpUt+1

(
ωt, ·, V x,φ∗,x

t (ωt) +h∆St+1(ωt, ·)
)

(11)

= inf
p∈Qt+1(ωt)

EpUt+1

(
ωt, ·, V x,φ∗,x

t (ωt) +φ∗,xt+1(ωt)∆St+1(ωt, ·)
)
. (12)

Moreover, if φ∗,x ∈Φ(x,U,QT ), then

u(x) = U0(x) = inf
P∈QT

EPU(·, V x,φ∗,x

T (·)). (13)

The proof of Theorem 1 is quite involved and is delayed to Section 5. To construct φ∗,x, one
glues all the one-step optimal strategies constructed in Section 3 together. Indeed, the one-step
strategy φ∗,xt+1 will be the optimal strategy to adopt between time t and t+1 starting from an initial
wealth equal to

∑t

s=1 φ
∗,x
s ∆Ss i.e. if one has followed the strategies (φ∗,x1 , · · ·, φ∗,xt ) until time t.

Note that the strategy φ∗,x belongs to Φ but may fail to be admissible and thus to be a solution
of (3). However, when φ∗,x is admissible, it achieves the supremum in (3). If φ∗,x is not admissible,
infP∈QT EPU(·, V x,φ∗,x

T (·)) =−∞ by convention (2) and φ∗,x is not optimal. Indeed, Assumption 5
implies that u(x)>−∞ for all x∈R.
The fact that φ∗,x is not automatically admissible is not specific to our quasi-sure setting. Already
in [24, Theorem 2.7] or [12, Theorem 1], one has to assume that φ∗,x is admissible (in their case
that EPU(V x,φ∗,x

T (·)) exists) in order to be optimal (see [12, Remark 15]). We exhibit in Example
1 below some φ∗,x which is not admissible. However, Assumption 6 is not satisfied in this example.

2.5. Application The condition that φ∗,x ∈ Φ(x,U,QT ) is obviously not easy to verify and
we would like to check that Theorem 1 applies for a concrete, broad class of market models and
random utility functions. For that, we first define some sets of random variables which are integrable
enough.
Definition 4. Fix 0≤ t≤ T and P ∈P(Ωt).

Wt := {X : Ωt→R∪{−∞,+∞}, Bc(Ωt)-measurable such that sup
P∈Qt

EP |X|r <+∞, ∀r≥ 1}

Mt(P ) :=
{
X : Ωt→R∪{−∞,+∞}, Bc(Ωt)-measurable such that EP |X|r <+∞, ∀r≥ 1

}
Mt :=

⋂
P∈Qt

Mt(P ).

Note that W0 =M0 =M0(P ) =R. It is also clear that Wt ⊂Mt ⊂Mt(P ) for all P ∈Qt. The set
WT has already been introduced in [8, p1866] but for Borel measurable random variables.
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Definition 5. Let U be a random utility as in Definition 1. A random utility is of type (A)
if U+(·,1) ∈MT , Assumption 3 holds true for some C ∈MT , Assumption 4 holds true for some
X ∈MT such that 1/|U(·,X(·)) +C(·)| ∈MT , and if there exist p≥ 1 and a non-negative B(ΩT )-
measurable random variable C1 ∈WT such that QT -q.s, for all x∈R

U(·, x)≥−C1(·)(1 + |x|p). (14)

We propose first an example of a utility function of type (A).
Definition 6. Let Ũ : R→R be a concave, nondecreasing, non-constant, continuously differ-

entiable function satisfying either AE+∞(Ũ)< 1 and limx→+∞ Ũ(x)> 0 or AE−∞(Ũ)> 1. Assume
also that there exist p≥ 1 and b̃ > 0 such that for all x∈R,

Ũ(x)≥−b̃(1 + |x|p). (15)

Let Z ∈WT be B(ΩT )-measurable. A function U : ΩT ×R→ R is a utility function with random
benchmark if U(ωT , x) := Ũ(x−Z(ωT )) for all ωT ∈ΩT and x∈R.

A utility function with random benchmark is of type (A), see Proposition 13. Utility functions
with random benchmark have been introduced in Kahneman and Tversky, see [18]. The random
variable Z is the so-called benchmark or reference point. The need of a shift of reference point Z
arises as people usually express their decision problems in terms of net position with respect to
some benchmark rather than in terms of gains and losses, see [18, “Shifts of Reference”].

The following theorem shows the existence of an optimal strategy for random utility of type (A)
under some integrability conditions on the market especially on the process αP that we introduce
now and that is related to the “quantitative” no-arbitrage condition, see [9, Definition 3.19].

Lemma 3. Assume that the NA(QT ) condition as well as Assumptions 1 and 2 hold true. Fix
P := qP1 ⊗· · ·⊗qPT ∈HT . For all 0≤ t≤ T −1, there exists some Bc(Ωt)-measurable random variable
αPt (·)∈ (0,1] such that Ωt,P

qNA is a Qt-full-measure set, where

Ωt,P
qNA :=

{
ωt ∈Ωt,∀h∈Aff(Dt+1)(ωt), h 6= 0, qPt+1

(
h∆St+1(ωt, ·)<−αPt (ωt)|h||ωt

)
≥ αPt (ωt)

}
.(16)

Proof. See [9, Proposition 3.35]. �

Theorem 2. Let U be a random utility of type (A). Assume that the NA(QT ) condition as well
as Assumptions 1 and 2 hold true. Moreover, suppose that for all P ∈HT and for all 0≤ t≤ T −1,
1/αPt ∈Mt and |∆St+1| ∈Wt+1. Then, for all x∈R, there exists φ∗,x ∈Φ(x,U,QT ) such that

u(x) = sup
φ∈Φ(x,U,QT )

inf
P∈QT

EPU(·, V x,φ
T (·)) = inf

P∈QT
EPU(·, V x,φ∗,x

T (·)).

Proof. See Section 6. �
Remark 3. We will show in Remark 4 that the integrability condition on 1/αPt can not be

removed. The integrability conditions of Theorem 2 are quite classical in the uni-prior literature
on unbounded utility functions, see for example [24, Proposition 7.1], [10, Theorem 4.16] and [12,
Proposition 7]. In the multiple-priors setting, the chosen no-arbitrage condition and the set of
priors for which the integrability condition on αPt is postulated are crucial. For general utility
functions defined on the positive axis, [8, Theorem 3.6] states that if for all P ∈QT NA(P ) holds
true and 1/αPt ∈Wt, then there exists an optimal strategy. In [9, Corollary 3.16], the same result
is obtained under NA(QT ) if 1/αPt ∈ Wt for all P ∈ HT . So, Theorem 2 extends [9, Corollary
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3.16] to utility functions of type (A) defined on R assuming only that 1/αPt ∈Mt instead of Wt.
Moreover, the assumption that U+(·,1), C, X,1/|U(·,X(·)) + C(·)| ∈MT , C1 ∈ WT , 1/αPt ∈Mt

and |∆St+1| ∈ Wt+1 for all P ∈ HT and for all 0 ≤ t ≤ T − 1 could be weakened to the existence
of the N -th moment for N large enough but this would lead to complicated book-keeping with
no essential gain in generality, which we prefer to avoid. Note finally that in [23, Theorem 3.11],
for a utility function defined on R, the existence of an optimal strategy is proved under similar
integrability conditions as in Theorem 2 but in a different setup for the uncertainty and for another
kind of no-arbitrage condition.

Example 1. We provide an illustration of Theorem 2. Our example is similar to the one at
the end of [9, Section 4.2]. Let d= 1 and Ωt := Ω for some Polish space Ω. Let Z be some Borel-
measurable random variable defined on Ω. Define F :P(Ω)→R3 by

F (p) :=
(
Ep(Z), Ep(Z2)− 1, 1Ep exp(|Z|)>C

)
,

for some fixed C ≥ 2exp(1/2). Then, let Qt+1(ωt) := F−1({0}) =: Q for all 0 ≤ t ≤ T − 1 and
ωt ∈Ωt. For each ωt ∈Ωt and p ∈Qt+1(ωt), the law of Z under p for the next period is centered,
have a variance equal to 1 and a bounded exponential moment. Now, choose S0 ∈ R and for all
0≤ t≤ T − 1 and (ωt, ωt+1)∈Ωt×Ωt+1, set

St+1(ωt, ωt+1) := St(ω
t) + r+σZ(ωt+1),

for some r ∈ R and σ > 0 such that −β < r/σ < β where β is a “universal” constant defined in
Lemma 4 below. Then, [9, Assumption 4.7] is satisfied with P0 := p0⊗ · · ·⊗ p0, where p0 ∈P(Ω) is
such that the law of Z under p0 is a standard Gaussian distribution. Thus, [9, Lemmata 4.8 and
4.9] show that the NA(QT ) condition as well as Assumptions 1 and 2 hold true. The next lemma
allows to construct αPt that satisfies (16) for all P ∈QT . Note that in [9, Section 4.2], the result of
Lemma 4 is proved for p0 only.

Lemma 4. There exists β ∈ (0,1] such that p(Z <−β)≥ β and p(−Z <−β)≥ β for all p∈Q.

Proof. See Section 7.4.3. �
Fix P ∈QT . Let αPt+1(ωt) := min(β, σβ − r, σβ + r) for all 0≤ t≤ T − 1 and ωt ∈ Ωt. As −β <

r/σ < β and β ∈ (0,1], αPt+1(·) ∈ (0,1]. Moreover, Lemma 4 shows that (16) is satisfied. As αPt is
deterministic, it is immediate that 1/αPt ∈Mt for all P ∈HT ⊂QT and 0≤ t≤ T − 1. It remains
to show that |∆St+1| ∈ Wt+1 for all 0≤ t≤ T − 1. Let P = qP1 ⊗ · · · ⊗ qPt+1 ∈ Qt+1. Using Fubini’s
theorem and as qPt+1(·|ωt)∈Q for all ωt ∈Ωt,

EP |Z|n =

∫
Ωt

EqPt+1(·|ωt)|Z|nP t(dωt)≤ sup
p∈Q

Ep|Z|n ≤ n! sup
p∈Q

Ep exp(|Z|)≤ n!C,

using the exponential series inequality |x|n/n!≤ exp(|x|) and the definition of Q. Thus,

sup
P∈Qt

EP |∆St+1|n ≤ 2n−1(|r|n +σn sup
P∈Qt

EP |Z|n)≤ 2n−1(|r|n +σnn!C)<+∞

and as n is arbitrary, |∆St+1| ∈Wt+1. All the conditions of Theorem 2 are satisfied and there exists
an optimal strategy for all random utility U of type (A).

Remark 4. The integrability condition on 1/αPt is necessary in Theorem 2 even in a uni-
prior context. We exhibit a nonrandom utility function of type (A) for which one-step optimal
strategies exist (see the first part of Theorem 1) but all of them are not admissible and are
therefore not optimal. This means that the dynamic programming procedure fails. Set T = 2,
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Ω1 := R, Ω2 := {1,3} and d= 1. Fix 0.5< a < 1. Let U(x) := ax if x≤ 0 and U(x) := (1 + x)a − 1
if x > 0. It is easy to see that U is concave, nondecreasing, non-constant and continuously dif-
ferentiable. Now, AE+∞(U) = a < 1 and limx→+∞U(x) = +∞. Moreover, U(x) ≥ 0 for all x ≥ 0
and U(x) = ax = −a|x| ≥ −a(1 + |x|) for all x < 0 and (15) holds true with b̃ = a and p = 1.
Thus, U satisfies Definition 15 with Z = 0 and is a (nonrandom) utility function of type (A), see
Proposition 13. Let S0 := 2, S1(ω1) := 2 for all ω1 ∈ Ω1 and S2(ω2) := S2(ω2) := ω2. Then, As-
sumption 1 holds true. Let l : Ω1→ (0,1) be a Borel-measurable function and q1 ∈P(Ω1) be such
that the law of l under q1 is uniform on (0,1). Let q2(·|ω1) := l(ω1)δ{3}(·) + (1− l(ω1))δ{1}(·). Set
P := q1 ⊗ q2 and Q2 = {P}. Then, Assumption 2 holds true (see [5, Corollary 7.14.1, p121]). As
∆S1 = 0, ∆S1 ∈W1 and D1 =DP

1 = {0}. Thus, there is nothing to check in (16) and we can take
for α0 any number in (0,1]. We choose α0 = 1. Now, ∆S2(ω2) = ω2 − 2 and recalling the defini-
tion of q2(·|ω1), D2 =DP

2 (ω1) = {−1,1} for all ω1 ∈ Ω1 and |∆S2|= 1. Thus, ∆S2 ∈W2. We now
determine α1(·) ∈ (0,1] that satisfies (16). We need that q2(∆S2(ω1, ·) < −α1(ω1)|ω1) ≥ α1(ω1),
i.e. 1− l(ω1)≥ α1(ω1) and q2(∆S2(ω1, ·)> α1(ω1)|ω1)≥ α1(ω1), i.e. l(ω1)≥ α1(ω1). So, we choose
α1(ω1) := min(l(ω1),1 − l(ω1)). Thus, the NA(Q2) condition holds true. This follows also from
H2 =Q2 = {P} and Lemma 1. However, it is easy to see that EP1/α1 = +∞ as the law of l under
q1 is uniform on (0,1).
We claim now that the dynamic programming approach fails. Let u1 : Ω1 × R × R→ R be de-
fined by u1(ω1, x,h) := Eq2(·|ω1)U(x+ h∆S2(ω1, ·)) = l(ω1)U(x+ h) + (1− l(ω1))U(x− h). Recall
that U1(ω1, x) := suph∈Q u1(ω1, x,h). As U is continuous and concave, u1(ω1, ·, ·) is continuous and
concave. Thus, for all ω1 ∈Ω1, U1(ω1, ·) is concave and U1(ω1, x) = suph∈R u1(ω1, x,h). Simple com-
putations show that U1(ω1, x)<∞ and as U1(ω1, ·) is concave, it is also continuous and U1 = U1.
Set φ∗,01 := h∗ for any h∗ ∈R. As ∆S1 = 0, the candidate for optimal cash at time 1 (starting with
initial cash 0) is then V 0,φ∗

1 (ω1) := h∗∆S1(ω1) = 0 for all ω1 ∈Ω1. Now, for all (ω1, h)∈Ω1×R, we
have that

u1

(
ω1, V 0,φ∗,0

1 (ω1), h
)

= u1(ω1,0, h) =

{
((1 +h)a− 1)l(ω1)− ah(1− l(ω1)) if h≥ 0

((1−h)a− 1)(1− l(ω1)) + ahl(ω1) if h< 0
.

Moreover, U1(ω1, V 0,φ∗,0

1 (ω1)) = U1(ω1,0) = u1(ω1,0,H∗(ω1)) where

H∗(ω1) :=

((
l(ω1)

1− l(ω1)

) 1
1−a

− 1

)
if l(ω1)≥ 1

2
and H∗(ω1) :=

(
1−

(
1− l(ω1)

l(ω1)

) 1
1−a
)

if l(ω1)<
1

2
.

Let φ∗,02 (ω1) :=H∗(ω1) for all ω1 ∈Ω1. Then, the candidate for optimal cash is for all ω2 ∈Ω2,

V 0,φ∗,0

2 (ω2) := h∗∆S1(ω1) +H∗(ω1)∆S2(ω2) =H∗(ω1)∆S2(ω2).

We show now that the strategy φ∗,0 is not admissible. Indeed,

EP U−
(
V 0,φ∗,0

2

)
= aEP

(
V 0,φ∗,0

2

)−
≥ aEP ((H∗)+(∆S2)−) = aEq1

(
(H∗)+(1− l(·))

)
= aEq1

(((
l(·)

1− l(·)

) 1
1−α

− 1

)
(1− l(·))1l(·)≥ 1

2

)
=∞,

where we have used Fubini’s theorem for the second equality and 0.5<a< 1 (and thus 1
1−α ≥ 2) for

the last one. It follows that EPU−(V 0,φ∗,0

2 ) = +∞, φ∗,0 is not admissible and thus not optimal (see
convention (2)). One can also show that U0(0) = Eq1U1(·,0) = +∞. As U0(0)≥U0(0), U0(0) = +∞
and Assumption 6 is not satisfied.
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3. One-period case As mentioned after Theorem 1, we construct the optimal solutions of (3)
by gluing together one-step optimal strategies. This is the reason why we start with a one-period
model. Let (Ω,G) be a measurable space, P(Ω) be the set of all probability measures on (Ω,G) and
Q be a nonempty convex subset of P(Ω). Let Y (·) := (Y1(·), ..., Yd(·)) be a G-measurable Rd-valued
random variable, which could represent the price process change of value during the period. Like
previously, D ⊂ Rd is the support of the distribution of Y (·) under Q and Dp ⊂ Rd is the one of
Y (·) under p ∈ Q. We first assume the NA(Q) condition, see [9, Proposition 5.8] and [4, Lemma
2.7].

Assumption 7. There exists p∗ ∈Q such that 0∈ ri(conv(Dp∗)) and Aff(D) = Aff(Dp∗).

In the rest of this Section, we fix some p∗ as in Assumption 7. As NA(p∗) holds true, the “quan-
titative” no-arbitrage condition is satisfied and [24, Proposition 3.3] shows that there exists some
0<α∗ ≤ 1 such that for all h∈Aff(Dp∗) = Aff(D) (see Assumption 7), h 6= 0,

p∗(hY <−α∗|h|)≥ α∗. (17)

Assumption 8. A random utility V : Ω×R→R∪ {−∞,+∞} is a function such that for all
x∈R, V (·, x) is G-measurable and V (ω, ·) is nondecreasing, concave and usc for all ω ∈Ω.

Under Assumption 8, V is G ⊗B(R) measurable, see Remark 1.

We aim to solve the one-period multiple-priors utility maximization problem:

v(x) := sup
h∈Rd

inf
p∈Q

EpV (·, x+hY (·)). (18)

This problem have already been solved in the PhD thesis of R. Blanchard under a different set of
assumptions, see [7]. We will comment as we go along on the difference between our assumptions
and his assumptions. We start with the integrability conditions.

Assumption 9. For all x∈Q, h∈Qd, supp∈QEpV −(·, x+hY (·))<+∞.

Assumption 10. Ep∗V +(·,1)<+∞.

Assumption 10 is of course satisfied when V is deterministic. We have seen in Remark 2 that
assuming only that v(x)<+∞ is not enough to get the existence of an optimal solution (see also
[22, Example 2.3] in the case of a bounded from above utility function defined on the positive
real axis). Assumption 10 is similar to [7, Assumption 3.5.6 (3.19)] and [8, Assumption 3.16]
and provides some upper bound for the value function. Nevertheless, these two assumptions were
postulated for all p ∈ Q and not only for p∗. Using Assumption 10, we can not apply Fatou’s
lemma in a straightforward manner for any other prior than p∗ and regularity results are more
difficult to obtain. Assumption 9 acts as a counterbalance to Assumption 10 and is stronger than [7,
Assumption 3.5.6 (3.20)] or [8, Assumption 3.13] which are stated only for h= 0. One may wonder if
it is possible to postulate Assumption 9 only for p∗. In this case, Ψ : (x,h) 7→ infp∈QEpV (·, x+hY (·))
may fail to be continuous (or even usc) which raises non trivial mathematical issues for finding an
optimal strategy, see Remark 6. A notable consequence of Assumption 9 is that Ψ will have full
domain, see Proposition 1. We now give the assumption related to RAE in discrete time.

Assumption 11. There exist some constants 0<γ ≤ 1≤ γ such that γ 6= γ and a G-measurable

random variable C : Ω→ R+ ∪ {+∞} such that c∗ := Ep∗(C) < +∞ and such that for all ω ∈ Ω
satisfying C(ω)<+∞, for all λ≥ 1, x∈R,

V (ω,λx) ≤ λγ(V (ω,x) +C(ω)) and V (ω,λx)≤ λγ(V (ω,x) +C(ω)). (19)

From now, we choose some 0< η < 1 such that γ < ηγ.
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The right-hand side of (19) will give a control on the negative part of V . Indeed, let ω ∈ Ω such
that C(ω)<+∞, x∈R and λ≥ 1. Then, as C is non-negative, we easily see that

V −(ω,λx) +λγC(ω)≥max(−V (ω,λx) +λγC(ω),0) ≥ max(−λγV (ω,x),0) = λγV −(ω,x).

A somewhat similar inequality for V + follows from the left-hand side of (19) as x 7→ x+ is nonde-
creasing and sub-additive,

V +(ω,λx)≤ λγ(V +(ω,x) +C(ω)). (20)

The coefficient η will play an important role to establish bounds for the value function and the
optimal strategy: it is crucial that the control γ on V − is strictly larger than the control γ on V +.

Assumption 12. There exists some n∗0 ∈N \ {0} such that,

p∗
(
V (·,−n∗0)≤−

(
1 + 2

c∗

α∗

))
≥ 1− α

∗

2
,

where α∗ is defined in (17) and c∗ in Assumption 11.

Assumption 12, already introduced in [12, Assumption 8], is the one-period counterpart of Assump-
tion 4 and ensures that the value function v (see (18)) can take arbitrary negative values. Note
that if limx→−∞ V (·, x) =−∞ p∗−almost surely, then Assumption 12 is verified. This assumption
is similar to [7, Assumption 3.5.8] but which was again postulated for all p∈Q.

Remark 5. If Assumption 12 fails, then there may be no solution to the one-step utility
maximization problem even in the uni-prior case. Fix p0 ∈ P(Ω) and set Q := {p0}. We choose
a bounded G-measurable random variable Y with a continuous cumulative distribution function
under p0 such that NA(p0) holds true. So, Assumption 7 is satisfied and recall α∗ ∈ (0,1] from (17).
As x 7→ p0(Y ≤ x) is continuous, one can find some M > 0 such that 0< p0(Y >M)< 1−α∗/2. Let
Ṽ : R→R be some continuously differentiable, nondecreasing, non-constant and concave function
satisfying limx→+∞ Ṽ (x) = +∞ and such that AE+∞(Ṽ ) < 1 or AE−∞(Ṽ ) > 1. Set for all ω ∈ Ω
and x ∈ R, V (ω,x) := Ṽ (x)1{Y >M}(ω). Then, Assumption 8 holds true. Applying Lemma 8 and

Proposition 10 in the appendix to Ṽ , we get that (83) and (84) hold true for some γ 6= 1. So,
Assumption 11 holds true with γ := max(γ,1) and γ := min(γ,1). Moreover, Assumptions 9 and
10 hold true as Y is bounded and Q= {p0}. However, Assumption 12 fails as for any n and µ> 0,
p0(V (·,−n)≤−µ) = 1{Ṽ (−n)≤−µ}p0(Y >M)< 1−α∗/2. Moreover, we have for all ω ∈Ω, x∈R and

h> 0 that V (ω,x+hY )≥ Ṽ (x+hM)1{Y >M}(ω), so that, Ep0V (·, x+hY )≥ Ṽ (x+hM)p0(Y >M).

Recalling that p0(Y >M)> 0, limx→+∞ Ṽ (x) = +∞ and taking the limit when h→+∞ show that
there is no solution to the utility maximization problem. Note that Assumption 4 fails also. Indeed,
for every random variables X and C(·)≥ 0

p0(V (·,X(·))<−C(·)) = p0({Ṽ (X(·))<−C(·)}∩ {Y (·)>M})≤ p0(Y (·)>M)< 1−α∗/2< 1.

Let p ∈Q. We introduce the functions Ψp and Ψ : R×Rd→R∪ {−∞,+∞} which are defined
for all x∈R and h∈Rd by

Ψp(x,h) :=EpV (·, x+hY (·)) and Ψ(x,h) := inf
p∈Q

Ψp(x,h). (21)

Then, v(x) = suph∈Rd Ψ(x,h), see (18). Recall that the expectations in (21) are defined in the gen-
eralized sense using the convention +∞−∞=−∞+∞=−∞ and that Ψp and Ψ are well-defined
although being potentially infinite. The function Ψp is introduced as a tool to prove properties on
Ψ and v but also to pass Assumption 6 through the dynamic programming procedure. The results
on Ψp can be found in [24] or [7] but under a different set of assumptions.
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Proposition 1. Fix p∈Q. If Assumption 8 holds true, then Ψp and Ψ are concave. If Assump-
tion 9 holds true, then for all (x,h)∈R×Rd, supp∈QEpV −(·, x+hY (·))<+∞ and Ψp ≥Ψ>−∞.
Assume that Assumptions 7, 8, 9, 10 and 11 hold true. Then, Ψ is finite and continuous and for
all (x,h)∈R×Rd,

Ep∗V +(·, x+hY (·))≤ (|h| ∨x+ ∨ 1)γ(l∗+ c∗), (22)

where c∗ =Ep∗C <+∞, l∗ :=
∑

θ∈{−1,1}d Ep∗V +(·,1 + θY (·))<+∞ and a∨ b= max(a, b).

Proof. Fix some p ∈ Q. First, assume that Assumption 8 holds true. Recall that a (extended)
function f :R→R∪{−∞,+∞} is said to be concave if for all 0< t< 1 and x, y ∈R,

f(tx+ (1− t)y)≥ tf(x) + (1− t)f(y),

using convention (2). Let (x1, h1) and (x2, h2) in R×Rd and 0< t < 1. Using the concavity of V
and in (23), [5, Lemma 7.11, (a), p140] adapted to convention (2), we get that

Ψp (t(x1, h1) + (1− t)(x2, h2)) = EpV (·, t(x1 +h1Y (·)) + (1− t)(x2 +h2Y (·)))
≥ Ep (t V (·, x1 +h1Y (·)) + (1− t)V (·, x2 +h2Y (·)))
≥ tEpV (·, x1 +h1Y (·)) + (1− t)EpV (·, x2 +h2Y (·)) (23)
= tΨp(x1, h1) + (1− t)Ψp(x2, h2),

which shows the concavity of Ψp. Then, as Ψ is the pointwise infimum of concave functions, Ψ is
also concave, see [26, Proposition 2.9].

We now show that Assumption 9 can be extended to all (x,h) ∈ R× Rd. Let (x,h) ∈ R× Rd.
For i ∈ {1, · · ·, d}, let θ̂i(·) := sgn(Yi(·)) where for all y ∈ R, sgn(y) := 1 if y ≥ 0 and sgn(y) :=−1
otherwise. Then, θ̂ is a {−1,1}d-valued process and

|Y (·)| ≤ |Y (·)|1 =
d∑
i=1

sgn(Yi(·))Yi(·) = θ̂(·)Y (·). (24)

Let ω ∈Ω, as V −(ω, ·) is nonincreasing, using Cauchy-Schwarz inequality and (24), we get that

V −(ω,x+hY (ω))≤ V −(ω,−dx−e− d|h|e|Y (ω)|) ≤ V −(ω,−dx−e− d|h|eθ̂(ω)Y (ω))

≤
∑

θ∈{−1,1}d

V −(ω,−dx−e− d|h|eθY (ω)), (25)

where dxe is the smallest natural number greater than x. Then, Assumption 9 shows that

sup
p∈Q

EpV −(·, x+hY (·))≤
∑

θ∈{−1,1}d

sup
p∈Q

EpV −(·,−dx−e− d|h|eθY (·))<+∞. (26)

This shows that Assumption 9 holds true for all (x,h)∈R×Rd. Moreover,

Ψ(x,h) ≥ inf
p∈Q

(
−EpV −(·, x+hY (·))

)
=− sup

p∈Q
EpV −(·, x+hY (·))>−∞ (27)

and Ψp ≥Ψ>−∞.
Assume now that Assumptions 7, 8, 9, 10 and 11 hold true. Let ω ∈Ω such that C(ω)<+∞ and
(x,h) ∈R×Rd. As V +(ω, ·) is nondecreasing, using Cauchy-Schwarz inequality, (20) and (24), we
obtain that

V +(ω,x+hY (ω)) ≤ V +(ω, (|h| ∨x+ ∨ 1)(1 + |Y (ω)|))≤ (|h| ∨x+ ∨ 1)γ(V +(ω,1 + |Y (ω)|) +C(ω))

≤ (|h| ∨x+ ∨ 1)γ

 ∑
θ∈{−1,1}d

V +(ω,1 + θY (ω)) +C(ω)

 . (28)
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As c∗ < +∞ by Assumption 11, p∗(C < +∞) = 1 and taking the expectation under p∗ in (28)
shows (22). If Ψp∗(x0, h0) = +∞ for some (x0, h0) ∈ R × Rd, as Ψp∗ is concave and Ψp∗ > −∞,
(23) will imply that Ψp∗(x,h) = +∞ for all (x,h) ∈R×Rd which contradicts Ψp∗(1,0)<+∞, see
Assumption 10. So, for all θ ∈ {−1,1}d, Ψp∗(1, θ)<+∞ and again, as Ψp∗ >−∞, we must have
that Ep∗V +(·,1 + θY (·))<+∞. It follows that l∗ <+∞ and Ψp∗ and Ψ are finite. As Ψ and Ψp∗

are concave and finite, they are continuous (see for example [26, Proposition 2.35]). �
Remark 6. The regularity of Ψ is the core argument to solve the one-period optimization

problem and Assumptions 9, 10 and the concavity of V are crucial to get the continuity of Ψ.
Otherwise, Ψ would only be continuous on the interior of its domain2 (see [26, Theorem 2.35,
p59]) which may be empty. It is also important to note that convention (2) is crucial to show the
concavity of Ψ (and Ψp), see (23).

The next proposition provides a polynomial control on Ψ as well as a bound on the optimal
strategies. It is a crucial step in order to solve the maximization problem (18). This proposition
provides similar results as [7, Lemma 3.5.12] in the multiple-priors case and [12, Lemma 3] in the
uni-prior case. However, recall that [7, Assumptions 3.5.6 and 3.5.8]) are stated for all p∈Q.

Proposition 2. Suppose that Assumptions 7, 8, 9, 10, 11 and 12 hold true. For x∈R, let

K0(x) := max

(
1, x+,

x+ +n∗0
α∗

,

(
x+ +n∗0
α∗

) 1
1−η
)
,

K1(x) := max

(
K0(x),

(
6l∗

α∗

) 1
ηγ−γ

,

(
6c∗

α∗

) 1
ηγ−γ

,

(
6

α∗
sup
p∈Q

EpV −(·,−x−)

) 1
ηγ

)
,

where α∗ is defined in (17), c∗, η, γ and γ in Assumption 11, l∗ in Proposition 1 and n∗0 in
Assumption 12. Then, K0(x)<+∞, K1(x)<+∞ for all x∈R. Let x∈R and h∈Aff(D). We get

|h| ≥K0(x) =⇒ Ψ(x,h)≤ |h|γ(l∗+ c∗)− |h|ηγ α
∗

2
(29)

|h| ≥K1(x) =⇒ Ψ(x,h)≤Ψ(x,0). (30)

Moreover, for all x∈R,

v(x) = sup
h∈Rd

Ψ(x,h) = sup
h∈Aff(D)

Ψ(x,h) = sup
|h|≤K1(x)
h∈Aff(D)

inf
p∈Q

EpV (·, x+hY ). (31)

Proof. Let (x,h)∈R×Rd. Using (22), if |h| ≥max(1, x+), we get that

Ep∗V +(·, x+hY (·))≤ |h|γ(l∗+ c∗). (32)

We introduce the set

B∗n0,h :=

{
V (·,−n∗0)≤−

(
1 +

2c∗

α∗

)
, hY (·)<−α∗|h|

}
. (33)

Assume that x+−α∗|h| ≤−n∗0. Let ω ∈B∗n0,h. As V (ω, ·) is nondecreasing, we have that

V (ω,x+hY (ω))≤ V (ω,x+−α∗|h|)≤ V (ω,−n∗0)≤ 0.

2 Let f : Rn→R∪{−∞,+∞}, Dom(f) := {x∈Rn, f(x) >−∞}.
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So, B∗n0,h ⊂ {V (·, x+hY (·))≤ 0}. Assume now that |h| ≥max
(

1, x+,
x++n∗0
α∗

)
. We get that

V −(·, x+hY (·)) = −V (·, x+hY (·))1{V (·,x+hY (·))≤0}(·)≥−V (·, x+hY (·))1B∗
n0,h

(·).

Let ω ∈Ω such that C(ω)<+∞. Using (19) with λ= |h|η ≥ 1 as |h| ≥ 1, we obtain that

V (ω,x+hY (ω)) ≤ |h|ηγV
(
ω ,

x+hY (ω)

|h|η

)
+ |h|ηγC(ω).

Thus, as C ≥ 0 and V is nondecreasing, we deduce that

V −(ω,x+hY (ω)) ≥ −V (ω,x+hY (ω))1B∗
n0,h

(ω)≥−|h|ηγV
(
ω ,

x+hY (ω)

|h|η

)
1B∗

n0,h
(ω)− |h|ηγC(ω)

≥ −|h|ηγV
(
ω ,x+−α∗|h|1−η

)
1B∗

n0,h
(ω)− |h|ηγC(ω).

Suppose furthermore that x+−α∗|h|1−η ≤−n∗0. Then,

V −(ω,x+hY (ω)) ≥ |h|ηγ
(

1 +
2c∗

α∗

)
1B∗

n0,h
(ω)− |h|ηγC(ω). (34)

Using Assumption 12 and (17), which holds true under Assumption 7 if h∈Aff(D) and h 6= 0,

p∗(B∗n0,h) ≥ p∗
(
V (·,−n∗0)≤−

(
1 +

2c∗

α∗

))
+ p∗(hY (·)<−α∗|h|)− 1≥ 1− α

∗

2
+α∗− 1 =

α∗

2
.(35)

So, as p∗(C < +∞) = 1 since c∗ < +∞, (34) shows that if |h| ≥K0(x) (recall that 0 < η < 1, see
Assumption 11)

Ep∗V −(·, x+hY (·))≥ |h|ηγ α
∗

2
. (36)

Finally, as Ψ(x,h)≤Ψp∗(x,h), (32) and (36) show (29). Then, as 0< η < 1, α∗ > 0 (see (17)) and
n∗0 ∈N \ {0} (recall Assumption 12), we get that K0(x)<+∞.
Now, using (26), we find that supp∈QEpV −(·,−x−)<+∞. As l∗ <+∞ (see Proposition 1), ηγ−γ >
0 and c∗ <+∞ (see Assumption 11), we obtain that K1(x)<+∞.
Assume now that |h| ≥K1(x). As γ < ηγ, we get that |h| ≥K0(x), |h|γl∗ ≤ (|h|ηγα∗)/6, |h|γc∗ ≤
(|h|ηγα∗)/6 and supp∈QEpV −(·,−x−)≤ (|h|ηγα∗)/6. So, using successively (29), that V is nonde-
creasing and (27), we obtain that

Ψ(x,h)≤−|h|ηγ α
∗

6
≤− sup

p∈Q
EpV −(·,−x−)≤Ψ(x,0)

and (30) is proved.
Assumption 7 shows that 0∈ ri(conv(Dp∗))⊂Aff(Dp∗) = Aff(D) and Aff(D) is a vector space. For
h∈Rd, let h⊥ be the orthogonal projection of h on Aff(D). Using [8, Remark 3.10], we get that for
all x∈R and h∈Rd, hY = h⊥Y Q−q.s. and Ψ(x,h) = Ψ(x,h⊥). So, we have that suph∈Rd Ψ(x,h) =
suph∈Aff(D) Ψ(x,h). Thus, (31) follows from (30) as 0∈Aff(D). �

We now define the auxiliary function vQ as follows

vQ(x) := sup
h∈Qd

inf
p∈Q

EpV (·, x+hY (·)). (37)

The function vQ will be useful for solving measurability issues arising in the multiple-period setting.
We will show in Proposition 3 that vQ equals v under all the previous assumptions. First, we prove
some fundamental properties of v, vQ and Cl(vQ) when only Assumption 8 is postulated.
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Lemma 5. Assume that Assumption 8 holds true. Then, Cl(vQ)(x) = limδ→0,δ>0 vQ(x+ δ) and
v, vQ and Cl(vQ) are nondecreasing and concave.

Proof. First, v, vQ and Cl(vQ) are clearly nondecreasing. Using for example [26, p14], we find
that for all x∈R,

Cl(vQ)(x) = lim
δ→0,δ>0

sup
x−δ<y<x+δ

vQ(y) = lim
δ→0,δ>0

vQ(x+ δ).

The concavity of v and vQ relies on a midpoint concavity argument and on the Ostrowski theorem,
see [13, p12]. The proof is very similar to [24, Proposition 4.2] (see also [22, Proposition 3.5]) and
is thus omitted. The concavity of Cl(vQ) follows then from [26, Proposition 2.32, p57]. �

We now show that under our assumptions an optimal strategy exists for (18).

Proposition 3. Assume that Assumptions 7, 8, 11, 9, 10 and 12 hold true. Then, v is finite
and for all x∈R, there exists an optimal strategy ĥx ∈Aff(D) such that

v(x) = inf
p∈Q

EpV (·, x+ ĥxY (·)). (38)

Moreover, for all x∈R,

v(x) = vQ(x) = Cl(vQ)(x). (39)

Proof. Recalling that Ψ is continuous from Proposition 1,

v(x) = sup
h∈Rd

Ψ(x,h) = sup
h∈Qd

Ψ(x,h) = vQ(x)

and the first equality in (39) holds true. Let x ∈ R. Noting that Ψ(x, ·) is continuous and finite
according to Proposition 1 again, we have that Ψ(x, ·) admits a maximizer ĥx on any compact set
and in particular on the intersection of Aff(D) and of the closed ball centered on 0 and of radius
K1(x). So, (38) follows from (31) and v(x) = Ψ(x, ĥx). So, v is finite as Ψ is finite. As vQ is concave
and vQ = v is finite, vQ is continuous on R and the second equality in (39) holds true. �

Finally, we show that v can take arbitrary negative values. This result will be essential to prove
that Assumption 12 is preserved by dynamic programming.

Proposition 4. Suppose that Assumptions 7, 8, 9, 10, 11 and 12 hold true and let

K̄ := max

(
1,
n∗0
α∗
,

(
n∗0
α∗

) 1
1−η

,

(
8c∗

α∗

) 1
ηγ−γ

,

(
8l∗

α∗

) 1
ηγ−γ

)
. (40)

Then, K̄ <+∞. For all m≥ 1, let nm := dNme where

Nm := n∗0

(
4

α∗
(
m+ (K̄γ + 1)(l∗+ c∗)

)) 1
γ

. (41)

Then, nm <+∞ and

v(−nm)≤−m. (42)

Recall that α∗ is defined in (17), c∗, η, γ and γ in Assumption 11, l∗ in Proposition 1 and n∗0 in
Assumption 12.
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Proof. Recall that 0< α∗ ≤ 1 from (17), n∗0 ∈ N \ {0} from Assumption 12 and that 0< η < 1,
ηγ− γ > 0 and c∗ <+∞ from Assumption 11. Moreover, l∗ <+∞ by Proposition 1. So, K̄ <+∞,
Nm <+∞ and nm <+∞ for any m≥ 1.
We are looking for an upper bound for Ψp∗(x,h) when x≤−n∗0 and h ∈Aff(D). We first provide
a lower bound for Ep∗V −(·, x+ hY (·)). Let x≤−n∗0 and h ∈Aff(D), h 6= 0. Using (19) and C ≥ 0,
we get as in Proposition 2 that for all ω ∈Ω such that C(ω)<+∞,

−V −(ω,x+hY (ω)) = V (ω,x+hY (ω))1{V (ω,x+hY (ω))≤0} ≤ V (ω,x+hY (ω))1B∗
n0,h

(ω)

≤ V (ω,x−α∗|h|)1B∗
n0,h

(ω)≤ V (ω,x)1B∗
n0,h

(ω)

≤
(

x

−n∗0

)γ
(V (ω,−n∗0) +C(ω)) 1B∗

n0,h
(ω)

≤ −
(

x

−n∗0

)γ (
1 +

2c∗

α∗

)
1B∗

n0,h
(ω) +

(
x

−n∗0

)γ
C(ω),

where B∗n0,h is defined in (33). Then, using (35) and recalling that p∗(C <+∞) = 1, we get that

Ep∗V −(·, x+hY (·))≥
(

x

−n∗0

)γ
α∗

2
. (43)

Now, we turn to the majoration of Ep∗V +(·, x+ hY (·)). Fix x≤ 0 and h ∈Aff(D). We distinguish
two cases. Assume first that |h|< K̄. Using (22) in Proposition 1 (recall that K̄ ≥ 1 and x+ = 0),

Ep∗V +(·, x+hY (·))≤ (|h| ∨ 1)γ(l∗+ c∗)≤ K̄γ(l∗+ c∗). (44)

Thus, using (43) and (44), we obtain for x≤−n∗0, h∈Aff(D), h 6= 0 and |h|< K̄ that

Ψp∗(x,h) =Ep∗V (·, x+hY (·))≤ K̄γ(l∗+ c∗)−
(

x

−n∗0

)γ
α∗

2
. (45)

We now study the case of |h|> K̄. First, we show that if h∈Aff(D), |h| ≥ K̄ and x≤ 0,

Ep∗V (·, x+hY (·)) = Ep∗V +(·, x+hY (·))−Ep∗V −(·, x+hY (·))≤−1

2
Ep∗V −(·, x+hY (·)). (46)

Indeed, using (22) and (36), as K̄ ≥K0(x) (recall that x+ = 0 and |h| ≥ K̄ ≥ 1),

Ep∗V +(·, x+hY (·))− 1

2
Ep∗V −(·, x+hY (·))≤ |h|γ(l∗+ c∗)− |h|ηγ α

∗

4
≤ 0,

as |h|γl∗ ≤ (|h|ηγα∗)/8 and |h|γc∗ ≤ (|h|ηγα∗)/8. So, (46) is proved. Now, combining (43) and (46),
we get that when x≤−n∗0, h∈Aff(D) and |h| ≥ K̄,

Ψp∗(x,h) =Ep∗V (·, x+hY (·))≤−
(

x

−n∗0

)γ
α∗

4
. (47)

Comparing (45) and (47), we finally find that for all x≤−n∗0 and h∈Aff(D), h 6= 0

Ψ(x,h)≤Ψp∗(x,h)≤ K̄γ(l∗+ c∗)−
(

x

−n∗0

)γ
α∗

4
.

Recall from (22) that Ψ(x,0)≤ l∗+ c∗. So, the second equality in (31) implies that for x≤−n∗0,

v(x)≤ (K̄γ + 1)(l∗+ c∗)−
(

x

−n∗0

)γ
α∗

4
.

Consequently, for m≥ 1, recalling the definition of nm and Nm, we have that nm ≥Nm ≥ n∗0 and

v(−nm)≤ v(−Nm)≤ (K̄γ + 1)(l∗+ c∗)−
(
Nm

n∗0

)γ
α∗

4
=−m.

This concludes the proof. �



20

4. Dynamic Programming In this section, we prepare the proofs of Theorems 1 and 2. For
that we will apply the one-period results in two contexts. The first one, called the robust context,
assume that Q :=Qt+1(ωt) and V := Ut+1(ωt, ·, ·) and is used to prove Theorem 1. For P ∈ HT ,
the second one, called the P -prior context, suppose that Q := {qPt+1(·|ωt)} and V := UP

t+1(ωt, ·, ·)
and is used to prove Theorem 2. Note that in the P -prior context, Graph(Q) = Graph(qPt+1) may
not be an analytic set. This will not be an issue as in the one-period case, we did not assume
that Graph(Q) is analytic. We will construct a Qt-full-measure set Ω̃t (resp. a P t-full-measure set
Ω̃t,P ) where Assumptions 7 to 12 hold true in the robust (resp. P -prior) context (see Lemma 7 and
Proposition 7). To do that, we first introduce and prove properties for a lower bound of Ut and for
the dynamic version of C that appears in Assumption 3 (see Proposition 5). Then, Proposition 6
gives fundamental properties of the values functions Ut and UP

t . The proof of Proposition 6 will be
given in Appendix 7.5.1. To prove measurability results, we will also use Proposition 11 and Lemma
10 stated and proved in Appendix 7.2. For the rest of this section, we fix a random utility function
U in the sense of Definition 1. For 0≤ t≤ T , we define by induction Jt : Ωt×R→R∪{−∞,+∞}
and Ct : Ωt→R∪{−∞,+∞} as follows: for all ωt ∈Ωt and x∈R,{

JT (ωT , x) :=U−(ωT , x)
Jt(ω

t, x) := supp∈Qt+1(ωt) EpJt+1(ωt, ·, x).
(48){

CT (ωT ) :=C(ωT )
Ct(ω

t) := supp∈Qt+1(ωt) EpCt+1(ωt, ·). (49)

The function −Jt will serve as a lower bound for Ut, while Ct will appear in (4) in Assumption 3
stated for Ut. We first show crucial properties for Jt and Ct. The definition of lower-semianalytic
(lsa) and upper-semianalytic (usa) functions is recalled in Definition 9 in the appendix.

Proposition 5. Assume that Assumptions 1, 2, 3 and 5 hold true. For all 0≤ t≤ T , Jt and
Ct are non-negative, usa and satisfy for all x∈R that

Jt(·, x)<+∞ Qt− q.s and Ct(·)<+∞ Qt− q.s. (50)

Moreover, for all 0≤ t≤ T − 1, x∈R and h∈Rd, the set

Ωt
J,x,h :=

{
ωt ∈Ωt, sup

p∈Qt+1(ωt)

EpJt+1(ωt, ·, x+h∆St+1(ωt, ·))<+∞

}
(51)

belongs to Bc(Ωt) and is of Qt-full-measure.

Proof. We first show the following claim:
Jt and Ct are non-negative, usa and satisfy for all 1≤ k≤ t, x∈R, h∈Rd that

sup
P∈Qt

EPJt(·, x+h∆Sk(·))<+∞ and sup
P∈Qt

EPCt <+∞. (52)

We show the claim by backward induction. At time T , U is B(ΩT )⊗B(R)-measurable (see Remark
1) and C is non-negative and B(ΩT )-measurable (see Assumption 3). Thus, JT =U− and CT =C
are non-negative and usa. The second inequality in (52) at time T is given in Assumption 3. For
the first one, fix 1≤ k ≤ T , x ∈R and h ∈Rd. As U−(ωT , ·) is nonincreasing for all ωT ∈ΩT , (25)
shows that,

U−(·, x+h∆St(·)) ≤
∑

θ∈{−1,1}d

U−(·,−dxe− d|h|eθ∆St(·)).
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So, the first inequality in (52) follows from Assumption 5.
Let 0≤ t≤ T − 1. Assume that Jt+1 and Ct+1 are non-negative, usa and that (52) holds at time
t+ 1. Let t : Ωt ×R×P(Ωt+1)×Rd→ R∪ {−∞,+∞} and ̃t : Ωt ×R×Rd→ R∪ {−∞,+∞} be
defined for all (ωt, x, p,h)∈Ωt×R×P(Ωt+1)×Rd by

t(ω
t, x, p,h) := EpJt+1(ωt, ·, x+h∆St+1(ωt, ·)) and ̃t(ω

t, x,h) := sup
p∈Qt+1(ωt)

t(ω
t, x, p,h).(53)

As Jt+1 is usa, Lemma 10 (iii) shows that t and ̃t are usa. Now, using [5, Lemma 7.30 (3), p177],
we get that Jt(·, ·) = ̃t(·, ·,0) is usa. The non-negativity of Jt (resp. of ̃t) follows from the one of
Jt+1 and of (48) (resp. (53)). Let 0≤ k ≤ t, x ∈R and h ∈Rd. Recalling Assumption 1 and using
again [5, Lemma 7.30 (3), p177], (ωt, p, h) 7→ t(ω

t, x+ h∆Sk(ω
t), p, h) is usa. Then, Assumption

2 and [5, Proposition 7.50, p184] show that given any ε > 0, there exists qε : Ωt ×Rd→P(Ωt+1),
which is Bc(Ωt×Rd)-measurable, such that for all ωt ∈Ωt and h∈Rd, qε(·|ωt, h)∈Qt+1(ωt) and

t(ω
t, x+h∆Sk(ω

t), qε(·|ωt, h), h)≥
{

1
ε

if ̃t(ω
t, x+h∆Sk(ω

t), h) = +∞,
̃t(ω

t, x+h∆Sk(ω
t), h)− ε otherwise.

(54)

For all P ∈Qt, taking the expectation under P and using Fubini’s theorem as Jt+1 ≥ 0 we get

EP⊗qεJt+1(·, x+h∆Sk(·) +h∆St+1(·))≥ 1

ε
P
(
̃t(·, x+h∆Sk(·), h) = +∞

)
+EP

((
̃t(·, x+h∆Sk(·), h)− ε

)
1{̃t(·,x+h∆Sk(·),h)<+∞}

)
. (55)

As P ⊗ qε ∈Qt+1 and ̃t is non-negative, we get that

sup
P∈Qt+1

EPJt+1(·, x+h∆Sk(·) +h∆St+1(·))≥ 1

ε
P
(
̃t(·, x+h∆Sk(·), h) = +∞

)
− ε. (56)

As Jt(·, ·) = ̃t(·, ·,0), if P (Jt(·, x+h∆Sk(·)) = +∞)> 0, taking the limit when ε goes to 0 in (56)
applied to h= 0, we find that supP∈Qt+1 EPJt+1(·, x+ h∆Sk(·)) = +∞, which contradicts (52) at
time t+ 1. Thus, P (Jt(·, x+h∆Sk(·)) = +∞) = 0. So, (55) for h= 0 implies that

sup
P∈Qt+1

EPJt+1(·, x+h∆Sk(·))≥EPJt(·, x+h∆Sk(·))− ε.

So, letting ε go to 0, taking the supremum over all P ∈ Qt and using (52) for t+ 1, we get that
supP∈Qt EPJt(·, x+h∆Sk(·))<+∞. Similar arguments show that Ct is non-negative, usa and that
supP∈Qt EPCt <+∞, which gives (52) at time t and concludes the backward induction.

Proof of (50).
Let 0≤ t≤ T − 1. Assume that there exists some P ∈Qt such that P (Jt(·, x) = +∞)> 0. Then, as
Jt ≥ 0, EPJt(·, x) = +∞ and also supP∈Qt EPJt(·, x) = +∞, a contradiction to (52) with h= 0. So,
P (Jt(·, x)<+∞) = 1 for all P ∈Qt. The proof for Ct is similar and thus omitted.

The set Ωt
J,x,h

belongs to Bc(Ωt) and is of Qt-full-measure.

Fix some 0≤ t≤ T −1, x∈R and h∈Rd. As ̃t is usa and Ωt
J,x,h

= {ωt ∈Ωt, ̃t(ω
t, x,h)<+∞}, we

get that Ωt
J,x,h
∈Bc(Ωt). Assume that Ωt

J,x,h
is not a Qt-full-measure set. Then, there exists P ∈Qt

such that P (Ωt
J,x,h

)< 1. Using (56) with x= x and h= 0, we get that

sup
P∈Qt+1

EPJt+1(·, x+h∆St+1(·))≥ 1

ε
(1−P (Ωt

J,x,h
))− ε. (57)

Taking the limit in (57) when ε goes to 0, we find that supP∈Qt+1 EPJt+1(·, x+ h∆St+1(·)) = +∞,
which contradicts (52) at time t+ 1. Thus, for all P ∈ Qt, P (Ωt

J,x,h
) = 1 and Ωt

J,x,h
is a Qt-full-

measure set. �
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The next proposition gives some fundamental properties of the value functions Ut and UP
t .

Proposition 6. Assume that Assumptions 1, 2, 3 and 5 hold true. Let P ∈ QT and 0≤ t≤
T . We have that (i) Ut is lsa, (ii) UP

t is Bc(Ωt × R)-measurable, (iii) for all ωt ∈ Ωt, Ut(ω
t, ·),

UP
t (ωt, ·) : R→ R ∪ {−∞,+∞} are nondecreasing, usc and concave, (iv) U−t ≤ Jt, (v) Ut ≤ UP

t .
Moreover, for all ωt ∈Ωt such that Ct(ω

t)<+∞, λ≥ 1, x∈R, we get that

Ut(ω
t, λx) ≤ λγ(Ut(ω

t, x) +Ct(ω
t)) (58)

UP
t (ωt, λx) ≤ λγ(UP

t (ωt, x) +Ct(ω
t)). (59)

Proof. See Appendix 7.5.1. �
Assume that NA(QT ) and Assumptions 1, 2 and 3 hold true. Then, Lemma 1 shows that HT 6= ∅

and we fix for the rest of the paper some P ∗ ∈HT with the following fix disintegration

P ∗ := qP
∗

1 ⊗ · · ·⊗ qP
∗

T . (60)

Lemma 3 shows the existence and the Bc(Ωt)-measurability of the functions αP
∗

t : Ωt→ (0,1] and
also that Ωt,P∗

qNA defined in (16) is a Qt-full-measure set. The stochastic kernels (qP
∗

t )1≤t≤T will be
of special interest for the statements of the one-period Assumptions 7, 10 and 11 in the multiple-
period contexts. On the other hand, (αP

∗
t )0≤t≤T−1 will serve for the one of Assumption 12.

We now present the two different contexts where we will apply the one-period results. The robust
context will be used to prove Theorem 1 while the P -prior one will be used to prove Theorem 2.

Definition 7. Let 0≤ t≤ T − 1. For any ωt ∈ Ωt, we call context (t+ 1), the following one-
period market: Ω := Ωt+1, G := Bc(Ωt+1), Y (·) := ∆St+1(ωt, ·), C(·) := Ct+1(ωt, ·) + Jt+1(ωt, ·,0),
γ := max(1, γ) and γ := min(1, γ), where γ is introduced in Assumption 3.

Then, we are in the robust (t+1) context if in additionQ :=Qt+1(ωt), p∗ := qP
∗

t+1(·|ωt), α∗ := αP
∗

t (ωt)
and V (·, ·) := Ut+1(ωt, ·, ·). As a consequence, vQ(x) = Ut(ωt, x) and cl(vQ)(x) = Ut(ω

t, x), see (8)
and (37).
Now, let P := qP1 ⊗· · ·⊗qPT . We are in the P -prior (t+1) context ifQ := {qPt+1(·|ωt)}, p∗ := qPt+1(·|ωt),
α∗ := αPt (ωt) and V (·, ·) := UP

t+1(ωt, ·, ·). As a consequence, vQ(x) = UPt (ωt, x) and cl(vQ)(x) =
UP
t (ωt, x), see (7) and (37).

Let 0≤ t≤ T − 1 and P := qP1 ⊗ · · ·⊗ qPT ∈HT . For all ωt ∈Ωt, we define

cPt (ωt) := EqPt+1(·|ωt) Ct+1(ωt, ·) +EqPt+1(·|ωt)Jt+1(ωt, ·,0) (61)

iPt (ωt) := 1 + 2
cPt (ωt)

αPt (ωt)
. (62)

Fix ωt ∈ Ωt. The multiple-period counterpart of c∗, l∗ and n∗0 (see Assumption 11, Proposition 1
and Assumption 12) in the robust (t+ 1) context are respectively cP

∗
t (ωt),

l∗t (ω
t) :=

∑
θ∈{−1,1}d

EqP∗t+1(·|ωt) U
+
t+1(ωt, ·,1 + θ∆St+1(ωt, ·)),

N∗t (ωt) := inf

{
k≥ 1, qP

∗

t+1

(
Ut+1(ωt, ·,−k)≤−iP

∗

t (ωt)|ωt
)
≥ 1− α

P∗
t (ωt)

2

}
, (63)

with the convention (which will be used until the end of the paper) that inf ∅= +∞.
Now, the counterpart of c∗, l∗ and n∗0 in the P -prior (t+ 1) context are respectively cPt (ωt),

lPt (ωt) :=
∑

θ∈{−1,1}d

EqPt+1(·|ωt) (UP
t+1)+(ωt, ·,1 + θ∆St+1(ωt, ·)), (64)

NP
t (ωt) := inf

{
k≥ 1, qPt+1

(
UP
t+1(ωt, ·,−k)≤−iPt (ωt)|ωt

)
≥ 1− α

P
t (ωt)

2

}
. (65)
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Note that for all ωt ∈Ωt, using (61), (48), (49) and Proposition 5,

0≤ cPt (ωt) ≤ sup
p∈Qt+1(ωt)

Ep Ct+1(ωt, ·) + sup
p∈Qt+1(ωt)

EpJt+1(ωt, ·,0) =Ct(ω
t) +Jt(ω

t,0). (66)

We first show that all the previous random variables are measurable.

Lemma 6. Assume that the NA(QT ) condition as well as Assumptions 1, 2, 3 and 5 hold true.
Let P ∈HT and 0≤ t≤ T − 1. Then, l∗t , N

∗
t , iPt , cPt , lPt and NP

t are Bc(Ωt)-measurable.

Proof. Recalling that αPt is Bc(Ωt)-measurable (see Lemma 3) and that Ct+1 and Jt+1(·,0) are
usa (see Proposition 5), Proposition 11 (iii) shows that cPt and iPt are Bc(Ωt)-measurable. Now,
as UP

t+1 and Ut+1 are Bc(Ωt+1 ×R)-measurable (see Proposition 6) and Assumption 1 holds true,
Lemma 10 (i) and [5, Lemma 7.29, p174] prove that lPt and l∗t are Bc(Ωt)-measurable. We now
show that N∗t is Bc(Ωt)-measurable. The proof for NP

t is completely similar and thus omitted. Let
n≥ 1. By definition of N∗t in (63),

{N∗t ≤ n}=
n⋃
k=1

{
ωt ∈Ωt,

∫
Ωt

1A(k)(ω
t, ωt+1)qP

∗

t+1(dωt+1|ωt)− 1 +
αP
∗

t (ωt)

2
≥ 0

}
,

where A(k) := {(ωt, ωt+1)∈Ωt×Ωt+1, Ut+1(ωt, ωt+1,−k)+ iP
∗

t (ωt)≤ 0} ∈ Bc(Ωt×Ωt+1). So, Propo-
sition 11 (iii) shows that {N∗t ≤ n} ∈ Bc(Ωt) and this concludes the proof. �

The following sets describe the paths ωt ∈Ωt for which the one-period assumptions are satisfied
in the robust (t+1) context and/or in the P -prior (t+1) context for a prior P := qP1 ⊗· · ·⊗qPT ∈HT .
Definition 8. Let 0≤ t≤ T − 1. For i∈ {7,8,9,10,11}, let

Ωt
i := {ωt ∈Ωt, Assumption i holds true in the robust (t+ 1) context}

Ωt
12 := Ωt,P∗

qNA ∩{N∗t <+∞}
Ωt,P
i := {ωt ∈Ωt, Assumption i holds true in the P -prior (t+ 1) context}

Ωt,P
12 := Ωt,P

qNA ∩{NP
t <+∞},

recall (16) for the definition of Ωt,P∗

qNA and Ωt,P
qNA. Moreover, we set

Ω̃t :=
12⋂
i=7

Ωt
i and Ω̃t,P :=

12⋂
i=7

Ωt,P
i . (67)

The next lemma shows that if we choose ωt in Ω̃t or Ω̃t,P , the one-period assumptions are true
in the associated (t+ 1) context.

Lemma 7. Assume that the NA(QT ) condition as well as Assumptions 1, 2, 3 and 5 hold true.
Let 0≤ t≤ T − 1 and P := qP1 ⊗ · · ·⊗ qPT ∈HT . If ωt ∈ Ω̃t (resp. ωt ∈ Ω̃t,P ), then Assumptions 7, 8,
9, 10, 11 and 12 hold true in the robust (t+ 1) context (resp. P -prior (t+ 1) context).

Proof. We make the proof for ωt ∈ Ω̃t. The proof for ωt ∈ Ω̃t,P is completely similar and thus
omitted. For 7 ≤ i ≤ 11, we trivially have that if ωt ∈ Ωt

i, Assumption i holds true in the robust
(t+ 1) context. Now, for ωt ∈Ωt

12, N∗t (ωt)<+∞, so that

qP
∗

t+1

(
Ut+1(ωt, ·,−N∗t (ωt))≤−

(
1 + 2

cP
∗

t (ωt)

αP
∗

t (ωt)

)∣∣∣∣ωt)≥ 1− α
P∗
t (ωt)

2
.

The fact that ωt ∈Ωt,P∗

qNA shows (17) and Assumption 12 holds true in robust (t+ 1) context. �
We now prove that the Ωt

i are Qt-full-measure sets while the Ωt,P
i are P t-full-measure sets. The

proof needs the technical Lemmata 14 and 15 which are relegated to Appendix 7.5.
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Proposition 7. Assume that the NA(QT ) condition as well as Assumptions 1, 2, 3 and 5
hold true. Let P ∈HT and 0≤ t≤ T − 1. Then, for all i ∈ {7,8,9,11}, Ωt

i is a Qt-full-measure set
and Ωt,P

i is a P t-full-measure set. Assume furthermore that Assumptions 4 and 6 hold true. Then,
Ωt

10 and Ωt
12 are Qt-full-measure sets while Ωt,P

10 and Ωt,P
12 are P t-full-measure sets. So, there exists

a Qt-full-measure set Ω̂t ∈Bc(Ωt) that satisfies Ω̂t ⊂ Ω̃t.

Proof. Fix P := qP1 ⊗ · · ·⊗ qPT ∈HT .
Let 0 ≤ t ≤ T − 1 and i ∈ {7,8,9,11}. The sets Ωt

i and Ωt,P
i are of Qt-full-measure and also of

P t-full-measure under NA(QT ) and Assumptions 1, 2, 3 and 5.
By Definitions 7 and 8, we see that

Ωt,P
7 := {ωt ∈Ωt, 0∈ ri(conv(Dt+1

P )(ωt))}
Ωt

7 := {ωt ∈Ωt, 0∈ ri(conv(Dt+1
P∗ )(ωt)),Aff(Dt+1

P∗ )(ωt) = Aff(Dt+1)(ωt)},

and Ωt
7 ⊂Ωt,P∗

7 . As P ∗ and P belong to HT Ωt
7, Ωt,P∗

7 and Ωt,P
7 are Qt-full-measure sets. Proposition

6 at t+ 1 is now in force. Assertions (i) and (ii) together with [5, Lemma 7.29, p174] and Assertion
(iii) show that Ωt

8 = Ωt,P
8 = Ωt, which is of course of Qt-full-measure. Using now (iv) and (v), we

have that
⋂

(x,h)∈Q×Qd Ωt
J,x,h ⊂ Ωt

9 ⊂ Ωt,P
9 and Proposition 5 shows that Ωt

9 and Ωt,P
9 are Qt-full-

measure sets. Fix ωt ∈ Ωt such that Jt(ω
t,0)<+∞ and Ct(ω

t)<+∞. Let ωt+1 ∈ Ωt+1 such that
Jt+1(ωt, ωt+1,0) < +∞ and Ct+1(ωt, ωt+1) < +∞. Let λ ≥ 1 and x ∈ R. Lemma 8 together with
Assertions (iii) and (iv) and the fact that Ct+1 ≥ 0 show that

Ut+1(ωt, ωt+1, λx) ≤ λ(Ut+1(ωt, ωt+1, x) +U−t+1(ωt, ωt+1,0))
≤ λ(Ut+1(ωt, ωt+1, x) +Jt+1(ωt, ωt+1,0) +Ct+1(ωt, ωt+1)).

Now, (58) and Jt+1 ≥ 0 implies that

Ut+1(ωt, ωt+1, λx) ≤ λγ(Ut+1(ωt, ωt+1, x) +Jt+1(ωt, ωt+1,0) +Ct+1(ωt, ωt+1)).

Let C(ωt+1) := Jt+1(ωt, ωt+1,0)+Ct+1(ωt, ωt+1), then cP
∗

t (ωt) =Eq∗t+1(·|ωt)C(·)≤Ct(ωt)+Jt(ω
t,0)<

+∞ using (66). So, the inequalities in (19) are satisfied in the robust (t+ 1) context with γ :=
min(1, γ) and γ := max(1, γ). Thus, {ωt ∈ Ωt, Jt(ω

t,0) < +∞, Ct(ωt) < +∞} ⊂ Ωt
11. So, (50) in

Proposition 5 shows that Ωt
11 is a Qt-full-measure set. The same arguments apply for UP

t+1 (using
(59) instead of (58) and cPt (ωt) instead of cP

∗
t (ωt)) and Ωt,P

11 is also a Qt-full-measure set.
Note that, as HT ⊂QT , Ωt

i and Ωt,P
i are also P t-full-measure sets for all i∈ {7,8,9,11}.

Let 0≤ t≤ T − 1 and i ∈ {10,12}. The set Ωt
i is of Qt-full-measure and Ωt,P

i is of P t-full-measure
if we also assume Assumptions 4 and 6.
The assertions for Ωt

10 and Ωt,P
10 are proved in Lemma 14 in the Appendix. Recall Ωt

12 and Ωt,P
12

from Definition 8. We prove by backward induction that Ωt
12 is a Qt-full-measure set and that Ωt,P

12

is a P t-full-measure set for P ∈HT . The initialization step at T −1 is a direct consequence of (104)
in Lemma 15 and of the fact that ΩT−1,P∗

qNA and ΩT−1,P
qNA are QT−1-full-measure sets under NA(QT )

(see Lemma 3). Assume now that the induction hypothesis holds true for some 1≤ t≤ T − 1. We
have already proved that for all 7≤ i≤ 11, the sets Ωt,P

i are of P t-full-measure. So, the induction
hypothesis implies that Ω̃t,P (see (67)) is also a P t-full-measure set for all P ∈HT and Lemma 15
can be applied for t. Thus, (105) and the fact that Ωt−1,P∗

qNA and Ωt−1,P
qNA are Qt−1-full-measure sets

show the heredity step. This concludes the backward induction.

Finally, under all the assumptions, Ω̃t is a Qt-full-measure set and we choose Ω̂t ∈ Bc(Ωt) such
that Ω̂t is a Qt-full-measure set and Ω̂t ⊂ Ω̃t. �
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5. Proof of Theorem 1 We now turn to the proof of Theorem 1. First, we show that for all
0≤ t≤ T −1, there exists a jointly measurable optimal investment strategy at time t when starting
with a cash position x. For that, we use the results obtained on Ω̂t and Ut in the preceding section.

Proposition 8. Assume that the NA(QT ) condition as well as Assumptions 1, 2, 3, 4, 5 and
6 hold true. Let 0≤ t≤ T −1. There exists a Bc(Ωt)⊗B(R)-measurable function H∗t+1 : Ωt×R→Rd
such that H∗t+1(ωt, ·) ∈ Aff(Dt+1)(ωt) for all ωt ∈ Ω̂t, where Ω̂t has been defined in Proposition 7

and does not depend from x. Moreover, for all ωt ∈ Ω̂t and x∈R,

Ut(ω
t, x) = sup

h∈Rd
inf

p∈Qt+1(ωt)
EpUt+1

(
ωt, ·, x+h∆St+1(ωt, ·)

)
(68)

= inf
p∈Qt+1(ωt)

EpUt+1

(
ωt, ·, x+H∗t+1(ωt, x)∆St+1(ωt, ·)

)
. (69)

Proof. Fix x∈R. First note that the set Ω̂t, introduced in Proposition 7, does not depend from x.
In this proof, we will apply several results of the one-period section in the robust (t+1) context (see
Definition 7). This is possible if we choose ωt ∈ Ω̂t ⊂ Ω̃t. Indeed, Lemma 7 shows that Assumptions
7 to 12 hold in the robust (t+1) context. Now, recalling Definition 7, vQ(x) = Ut(ωt, x), cl(vQ)(x) =
Ut(ω

t, x) and (68) is an immediate consequence of (8), (18) and from (39) in Proposition 3. Now,
(21) implies that

Ψ(x,h) = inf
p∈Qt+1(ωt)

EpUt+1(ωt, ·, x+h∆St+1(ωt, ·)) =: ũt(ω
t, x,h). (70)

Proposition 6 shows that Ut+1 is lsa and Lemma 10 (ii) for f = Ut+1 proves that ũt is lsa. Let
ût : Ωt×R×Rd→R∪ {−∞,+∞} be defined by ût(ω

t, x,h) := 1Ω̂t(ω
t)ũt(ω

t, x,h). As Ω̂t ∈ Bc(Ωt),

ût is Bc(Ωt×Ωt+1×Rd)-measurable. Fix ωt ∈ Ω̂t ⊂ Ω̃t, Proposition 1 shows that ût(ω
t, ·, ·) is finite-

valued and continuous. Fix some h∈Rd. We get that for all x∈R, ût(·, x,h) is Bc(Ωt)-measurable,
see [5, Lemma 7.29, p174]. So, ût(·, ·, h) is a Caratheodory integrand and thus a normal integrand
(with respect to Bc(Ωt)), see [26, Example 14.29, p662]. Note that here f is a normal integrand if
−f satisfies [26, Definition 14.27, p661]. Now, [26, Corollary 14.34, p664] shows that ût(·, ·, h) is
Bc(Ωt)⊗B(R)-measurable for all h∈Rd. Then, as ût(ω

t, x, ·) is continuous for every (ωt, x)∈Ωt×R,
we get that ût is also a Caratheodory integrand and thus a normal integrand (with respect to
Bc(Ωt) ⊗ B(R)). Set for all (ωt, x) ∈ Ωt × R, Z(ωt, x) := argmax ût(ω

t, x, ·). Then, [26, Theorem
14.37, p665] shows that Z : Ωt × R � Rd is closed-valued and Bc(Ωt) ⊗ B(R)-measurable in the
sense of [26, Definition 14.1, p643]. Moreover, Aff(Dt+1) : Ωt�Rd is non-empty, closed-valued and
Bc(Ωt)-measurable using [9, Lemma 2.6]. So, Z ∩Aff(Dt+1) is closed-valued and Bc(Ωt)⊗ B(R)-
measurable, see [26, Proposition 14.11 (a), p651]. Remark that for all (ωt, x) ∈ Ω̂t×R, Z(ωt, x) =
argmax ũt(ω

t, x, ·). Thus, using (38) in Proposition 3, we get that

Ω̂t×R⊂ {(ωt, x)∈Ωt×R, Z(ωt, x)∩Aff(Dt+1)(ωt) 6= ∅}.

So, [26, Corollary 14.6, p647] applies to Z ∩ Aff(Dt+1) and shows the existence of a Bc(Ωt) ⊗
B(R)-measurable function Ht+1 : Ω̂t × R→ Rd such that for all (ωt, x) ∈ Ω̂t × R, Ht+1(ωt, x) ∈
Aff(Dt+1)(ωt) and (69) is true. We extend Ht+1 on Ωt × R as follows. Let H∗t+1 be defined by

H∗t+1(ωt, x) := Ht+1(ωt, x)1Ω̂t(ω
t) for all (ωt, x) ∈ Ωt ×R. As Ω̂t ∈ Bc(Ωt), H∗t+1 is Bc(Ωt)⊗B(R)-

measurable. Moreover, for all (ωt, x) ∈ Ω̂t ×R, H∗t+1(ωt, x) =Ht+1(ωt, x) ∈Aff(Dt+1)(ωt) and (69)

remains true (on Ω̂t). �

We are now in position to prove Theorem 1.
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Proof of Theorem 1 First, we show that U0(x)≥ u(x) and that the admissibility of a strategy is
stable in time. Then, we prove that there exists an appropriate strategy satisfying (12). Finally,
we show that when this strategy is admissible, it achieves the maximum in (3).

Upper bound for u(x) and stability of admissibility.
We show that for any x∈R,

U0(x)≥ sup
φ∈Φ(x,U,QT )

inf
P∈QT

EPU(·, V x,φ
T (·)) = u(x), (71)

and if φ ∈ Φ(x,U,QT ), then φ ∈ Φ|t(x,Ut,Qt) for all 1 ≤ t ≤ T , where Φ|t(x,Ut,Qt) is the set of
admissible strategies for the random utility Ut with time horizon t, see Definition 3. Note that
Φ|T (x,UT ,QT ) = Φ(x,U,QT ). Fix x ∈ R and φ ∈ Φ(x,U,QT ). We proceed by backward induction
with the following induction hypothesis:

φ∈Φ|t(x,Ut,Qt) and inf
P∈QT

EPU(·, V x,φ
T (·))≤ inf

P∈Qt
EPUt(·, V x,φ

t (·)). (72)

The initialization step is trivial as UT = U . Let 0 ≤ t ≤ T − 1 and assume that the induction
hypothesis holds true at time t+ 1. Proposition 6 shows that Ut+1 is lsa and Lemma 10 (ii) for
f =Ut+1 that

(ωt, x,h, p) 7→ ut(ω
t, x,h, p) :=EpUt+1(ωt, ·, x+h∆St+1(ωt, ·)) (73)

is lsa. Note that ut(ω
t, ·, ·, p) is equal to Ψp (see (21)) in the robust (t + 1) context. Let ε > 0.

Assumption 2 and [5, Proposition 7.50, p184] show that there exists a Bc(Ωt×R×Rd)-measurable
qεt+1 : Ωt×R×Rd→P(Ωt+1) such that ∀(ωt, x,h)∈Ωt×R×Rd, qεt+1(·|ωt, x,h)∈Qt+1(ωt) and

ut(ω
t, x,h, qεt+1(·|ωt, x,h))≤−1

ε
1{ũt(ωt,x,h)=−∞}+ (ũt(ω

t, x,h) + ε)1{ũt(ωt,x,h)>−∞}, (74)

where ũt is defined in (70). Recall Ω̂t from Proposition 7. Fix ωt ∈ Ω̂t ⊂ Ω̃t. Proposition 1 applies
in the robust (t+ 1) context thanks to Lemma 7 and ũt(ω

t, x,h) > −∞ for all (x,h) ∈ R× Rd.
Moreover, recalling (8) and (70), Ut(ω

t, x)≥Ut(ωt, x)≥ ũt(ωt, x,h) for all (x,h)∈R×Rd. So, using
(74) with x= V x,φ

t (ωt) and h= φt+1(ωt) and setting qεt+1(·|ωt) := qεt+1(·|ωt, V x,φ
t (ωt), φt+1(ωt)), we

have that for all ωt ∈ Ω̂t,

ut
(
ωt, V x,φ

t (ωt), φt+1(ωt), qεt+1(·|ωt)
)
≤ Ut(ω

t, V x,φ
t (ωt)) + ε.

Then, taking the negative part and using Jensen inequality, we obtain that,∫
Ωt+1

U−t+1(ωt, ωt+1, V
x,φ
t+1 (ωt, ωt+1))qεt+1(dωt+1|ωt) ≥ U−t (ωt, V x,φ

t (ωt))− ε.

Let P ∈Qt. As Ω̂t is a Qt-full-measure set (see Proposition 7), we obtain from the two preceding
inequalities that∫

Ωt

∫
Ωt+1

Ut+1(ωt, ωt+1, V
x,φ
t+1 (ωt, ωt+1))qεt+1(dωt+1|ωt)P (dωt) ≤ EPUt(·, V x,φ

t (·)) + ε (75)∫
Ωt

∫
Ωt+1

U−t+1(ωt, ωt+1, V
x,φ
t+1 (ωt, ωt+1))qεt+1(dωt+1|ωt)P (dωt) ≥ EPU−t (·, V x,φ

t (·))− ε. (76)

As φ ∈ Φ and Assumption 1 holds true, φt+1 and V x,φ
t are Bc(Ωt)-measurable. Recalling that

qεt+1 is Bc(Ωt ×R×Rd)-measurable, [5, Proposition 7.44, p172] shows that qεt+1 ∈ SKt+1. So, P ⊗
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qεt+1 ∈ Qt+1 and Fubini’s theorem applied to (76), together with the induction hypothesis φ ∈
Φ|t+1(x,Ut+1,Qt+1) show that

+∞>EP⊗qεt+1
U−t+1(·, V x,φ

t+1 (·))≥EPU−t (·, V x,φ
t (·))− ε.

As this holds true for all P ∈ Qt, φ ∈ Φ|t(x,Ut,Qt) and the first part of the induction is proved.
Similarly, using (75), we get that

inf
P∈Qt+1

EPUt+1(·, V x,φ
t+1 (·))≤EP⊗qεt+1

Ut+1(·, V x,φ
t+1 (·))≤EPUt(·, V x,φ

t (·)) + ε.

Taking the infimum over all P ∈Qt on the right-hand side, letting ε go to 0 and using the second
part of the induction hypothesis in (72), we get that

inf
P∈QT

EPU(·, V x,φ
T (·))≤ inf

P∈Qt+1
EPUt+1(·, V x,φ

t+1 (·))≤ inf
P∈Qt

EPUt(·, V x,φ
t (·)).

This concludes the induction.
Now, (72) shows that for φ ∈Φ(x,U,QT ), infP∈QT EPU(·, V x,φ

T (·))≤U0(x) and (71) follows taking
the supremum over all such φ.

Existence of a one-step optimal strategy.
Let x∈R. We define recursively the strategy φ∗,x as follows. Let φ∗,x1 := x and for all 1≤ t≤ T − 1
and ωt ∈ Ωt, φ∗,xt+1(ωt) := H∗t+1(ωt, x+

∑t

s=0 φ
∗,x
s (ωt)∆Ss(ω

t)) where H∗t+1 : Ωt ×R→ Rd is defined

in Proposition 8. Let 1 ≤ t ≤ T − 1. Proposition 8 shows that for all (ωt, x) ∈ Ω̂t ×R, φ∗,xt+1(ωt) ∈
Aff(Dt+1)(ωt) and that (68) and (69) hold true for x= V x,φ∗,x

t (ωt) (recall that Ω̂t does not depend
from x). So, (11) and (12) hold also true.
We show by induction that φ∗,xt+1 is Bc(Ωt)-measurable for all 0≤ t≤ T − 1. At t= 0, this is trivial
(recall that Ω0 is a singleton). Suppose that this holds true for all 0 ≤ s ≤ t − 1. Then, recall-
ing Assumption 1, V x,φ∗,x

t is Bc(Ωt)-measurable. Thus, as H∗t+1 is Bc(Ωt)⊗B(R)-measurable (see
Proposition 8), we find that φ∗,xt+1 is Bc(Ωt)-measurable.This concludes the induction and φ∗,x ∈Φ.

Optimality of an admissible one-step optimal strategy.
Assume now that φ∗,x ∈Φ(x,U,QT ). Let 0≤ t≤ T −1 and P := qP1 ⊗· · ·⊗qPT ∈QT . We have proved
in the preceding step that (12) holds true. So, we have for all ωt ∈ Ω̂t that

Ut(ω
t, V x,φ∗,x

t (ωt))≤
∫

Ωt+1

Ut+1

(
ωt, ωt+1, V

x,φ∗,x

t+1 (ωt, ωt+1)
)
qPt+1(dωt+1|ωt).

As Ω̂t is a Qt-full-measure set (see Proposition 7), we get that

EP tUt(·, V x,φ∗,x

t (·))≤
∫

Ωt

∫
Ωt+1

Ut+1

(
ωt, ωt+1, V

x,φ∗,x

t+1 (ωt, ωt+1)
)
qPt+1(dωt+1|ωt)P t(dωt).

As φ∗,x ∈ Φ(x,U,QT ), we have proved in the first step that φ∗,x ∈ Φ|t+1(x,Ut+1,Qt+1). So,

EP t+1U−t+1(·, V x,φ∗,x

t+1 (·))<+∞ and using Fubini’s theorem, we get that

EP tUt
(
·, V x,φ∗,x

t (·)
)
≤EP t+1Ut+1

(
·, V x,φ∗,x

t+1 (·)
)
.

Iterating the process, we get that U0(x)≤EPU(·, V x,φ∗,x

T (·)) for all P ∈QT and thus

U0(x)≤ inf
P∈QT

EPU(·, V x,φ∗,x

T (·))≤ u(x),

as φ∗,x ∈Φ(x,U,QT ). Using (71), we get that (13) holds true which concludes the proof. �



28

6. Proof of Theorem 2 In this part, we prove Theorem 2. We will apply Theorem 1 and
verify the different conditions needed for that. We will prove that if Assumptions 1 and 2 as well
as NA(QT ) hold true and if U is a random utility of type (A), then Assumptions 5 and 6 hold
true. We will also show that the optimal strategy is admissible. Recall that Assumptions 3 and 4
hold true by definition of a random utility of type (A). For that, we use the result of Section 4 for
Ωt,P and UP

t .

Assumption 5 holds true.
Let x ∈R, h ∈Rd and 1≤ t≤ T . Let r ≥ 1 and P ∈QT . Thanks to Remark 1 and Assumption 1,
U−(·, x+h∆St(·)) is Bc(Ωt)-measurable. Using (14) and Cauchy-Schwarz inequality, we get that

EP
(
U−
(
·, x+h∆St(·)

))r
≤ EP (Cr

1(·)(1 + |x+h∆St(·)|p)r)≤ 2r−1EP (Cr
1(·)(1 + |x+h∆St(·)|pr))

≤ 2r−1(1 + 2pr−1|x|pr)EPCr
1(·) + 2r−12pr−1|h|pr

√
EPC2r

1 (·)
√
EP |∆St(·)|2pr.

As C1 ∈WT and |∆St| ∈Wt, we get that

U−(·, x+h∆St(·))∈WT (77)

and, in particular, that Assumption 5 holds true.

Assumption 6 holds true.
Let P ∈HT . Recall that cPt , iPt , lPt , NP

t and Ω̃t,P are defined respectively in (61), (62), (64), (65)
and (67) and the setsMt(P ),Mt and Wt are defined in Definition 4 for all 0≤ t≤ T −1. We need
to define some of them also for t = −1 and t = T and we set NP

−1 := 0, lPT := 0, Ω̃T,P := ΩT and
M−1(P ) := {0}. For all 0≤ t≤ T , we prove by backward induction the following induction hypothe-
sis: (UP

t )+(·,1) and lPt belong toMt(P ), Ct and Jt(·, x) belong toMt for all x∈R, NP
t−1 ∈Mt−1(P )

and Ω̃t,P is a P t-full-measure set. Then, we will obtain from the induction hypothesis at t= 0 that
Assumption 6 holds true.
Initialization step.
We trivially have that lPT = 0 ∈MT (P ) and that Ω̃T,P = ΩT is a P -full-measure set. Moreover,
JT (·, x) =U−(·, x)∈WT ⊂MT for all x∈R by (77). Additionally, CT =C ∈MT and U+(·,1)∈MT

as U is of type (A). AsMT ⊂MT (P ), (UP
T )+(·,1) =U+(·,1)∈MT (P ). By assumption of Theorem

2, we have that 1/αPT−1 ∈MT−1 ⊂MT−1(P ). Again, as U is of type (A), we know that X and
1/|U(·,X(·)) +C(·)| belong to MT and also to MT (P ). So, we can use assertion (A1) in Lemma
15 (recall from (77) that U−(·,0)∈MT (P )) and we get that NP

T−1 ∈MT−1(P ).

Assume that the induction hypothesis holds true at time t+ 1 for some 0≤ t≤ T − 1.

Heredity step 1: Ct ∈Mt and Jt(·, x)∈Mt for all x∈R.
Using (50), we have that Jt(·, x)<+∞ Qt-q.s. Recalling the definitions of Jt and ̃t (see (48) and
(53)), ̃t(ω

t, x,0) = Jt(ω
t, x). So, using (54) with h= h= 0 and ε= 1, we see that there exists some

qt+1 ∈ SKt+1 such that for all ωt ∈ Ωt, qt+1(·|ωt) ∈ Qt+1(ωt) and for all ωt in the Qt-full-measure
set where Jt(·, x)<+∞,

Eqt+1(·|ωt)Jt+1(ωt, ·, x)≥ Jt(ωt, x)− 1. (78)

By the induction hypothesis Jt+1(·, x)∈Mt+1 and Lemma 13 shows that ωt 7→Eqt+1(·|ωt)Jt+1(ωt, ·, x)
belongs to Mt. Proposition 5 shows that Jt(·, x) is non-negative and Bc(Ωt)-measurable. So, (78)
and Lemma 12 ensure that Jt(·, x)∈Mt. A very similar reasoning shows that Ct ∈Mt.
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Heredity step 2: lPt ∈Mt(P ), Ω̃t,P is a P t-full-measure set and (UP
t )+(·,1)∈Mt(P ).

We first show that lPt ∈Mt(P ). Let θ ∈ {−1,1}d. Using (50), Ct+1 < +∞ Qt+1-q.s. So, Cauchy-
Schwarz inequality and (59) at time t+ 1 in Proposition 6 show that Qt+1-q.s.

(UP
t+1)+(·,1 + θ∆St+1(·)) ≤ (UP

t+1)+(·,1 + |θ||∆St+1(·)|)
≤
(

1 +
√
d|∆St+1(·)|

)γ
((UP

t+1)+(·,1) +Ct+1(·)). (79)

As UP
t+1 is Bc(Ωt×R)-measurable (see Proposition 6) and Assumption 1 holds true, (UP

t+1)+(·,1 +
θ∆St+1(·)) is also Bc(Ωt)-measurable. Now, recalling that (UP

t+1)+(·,1)∈Mt+1(P ) and Ct+1 ∈Mt+1

by the induction hypothesis and that |∆St+1| ∈Wt+1 by assumption of Theorem 2, we deduce from
(79) and Lemma 12 that (UP

t+1)+(·,1+θ∆St+1(·))∈Mt+1(P ). Thus, Lemma 13 (recall Assumption
2) shows that ωt 7→EqPt+1(·|ωt)(U

P
t+1)+(ωt, ·,1 + θ∆St+1(ωt, ·)) belongs toMt(P ) for all θ ∈ {−1,1}d.

So, lPt ∈Mt(P ), see (64) and Lemma 12.
We now prove that the set Ω̃t,P is a P t-full-measure set. By the induction hypothesis, NP

t ∈Mt(P ),
which implies that NP

t < +∞ P t − a.s. Lemma 3 shows that Ωt,P
qNA is a Qt-full-measure set and

also a P t-full-measure set as HT ⊂QT . Thus, Ωt,P
12 is a P t-full-measure set. Moreover, using the

first part of Proposition 7, which do not require Assumption 6, we also have that Ωt,P
i is a P t-

full-measure set for all i ∈ {7,8,9,11}. As (UP
t+1)+(·,1) ∈Mt+1(P ), Assumption 2 and Lemma 13

show that ωt 7→ EqPt+1(·|ωt)(U
P
t+1)+(ωt, ·,1) belongs to Mt(P ). As a result, Ωt,P

10 and also Ω̃t,P are

P t-full-measure sets. Thus, we can find a P t-full-measure set Ω̂t,P ∈Bc(Ωt) such that Ω̂t,P ⊂ Ω̃t,P .
We now turn to the proof of (UP

t )+(·,1) ∈Mt(P ). First, we introduce a bound for the strategies.
We define KP

t (ωt) as follows. If ωt ∈ Ω̂t,P , let KP
t (ωt) :=K1(1) where K1 is defined in Proposition 2

applied in the P -prior (t+ 1) context (see Definition 7). This is possible as ωt ∈ Ω̃t,P and Assump-
tions 7 to 12 are satisfied in this context. Recall that in the P -prior (t+ 1) context, α∗ = αPt (ωt),
n∗0 =NP

t (ωt), c∗ = cPt (ωt) and l∗ = lPt (ωt). When ωt /∈ Ω̂t,P , we set KP
t (ωt) := 1. We now prove that

KP
t ∈Mt(P ). As Ct and Jt(·,0) belong toMt(P ) (see Heredity step 1), we have using (66), Lemma

6 and Lemma 12 that cPt ∈Mt(P ). Recall then that NP
t ∈Mt(P ) by the induction hypothesis

and that 1/αPt ∈Mt(P ) by assumption. We have proved in the beginning of Heredity step 2 that
lPt ∈Mt(P ). So, it remains to prove that for all x ∈ R, ωt 7→ EqPt+1(·|ωt)(U

P
t+1)−(ωt, ·, x) belongs to

Mt. This function is Bc(Ωt)-measurable (see Lemma 10). As (UP
t+1)− ≤U−t+1 ≤ Jt+1 (see Proposition

6), we have that for all ωt ∈Ωt and x∈R,

EqPt+1(·|ωt)(U
P
t+1)−(ωt, ·, x) ≤ sup

p∈Qt+1(ωt)

EpJt+1(ωt, ·, x) = Jt(ω
t, x), (80)

see (48) for the last equality. As Jt(·, x) ∈Mt for all x ∈ R (see Heredity step 1), we get that
ωt 7→ EqPt+1(·|ωt)(U

P
t+1)−(ωt, ·, x) belongs to Mt by Lemma 12. So, we deduce (again from Lemma

12) that KP
t ∈Mt(P ). We now prove that (UP

t )+(·,1) ∈Mt(P ). As already mentioned, for all
ωt ∈ Ω̂t,P , Assumptions 7 to 12 are satisfied in the P -prior (t+ 1) context. We can apply (39) in
Proposition 3 and (31) in Proposition 2 both in the P -prior (t+ 1) context and

UP
t (ωt,1) = sup

h∈Rd
EqPt+1(·|ωt)U

P
t+1(·,1 +h∆St+1(ωt, ·)) = sup

|h|≤KPt (ωt)

EqPt+1(·|ωt)U
P
t+1(·,1 +h∆St+1(ωt, ·)).

So, as UP
t+1(ωt, ·) is nondecreasing, we get for all ωt ∈ Ω̂t,P that

(UP
t )+(ωt,1) ≤ EqPt+1(·|ωt)(U

P
t+1)+(ωt, ·,1 +KP

t (ωt)|∆St+1(ωt, ·)|). (81)

Using again (59), we get that,

(UP
t+1)+(·,1 +KP

t (·)|∆St+1(·)|)≤
(
1 +KP

t (·)|∆St+1(·)|
)γ

((UP
t+1)+(·,1) +Ct+1(·)).



30

Recalling that KP
t ∈Mt(P ), that |∆St+1(·)| ∈Wt+1 by assumption of Theorem 2 and that Ct+1 ∈

Mt+1 and (UP
t+1)+(·,1) ∈ Mt+1(P ) from the induction hypothesis, we get that (UP

t+1)+(·,1 +
KP
t (·)|∆St+1(·)|) ∈ Mt+1(P ), see Lemma 12. Indeed, as UP

t+1 is Bc(Ωt+1 × R)-measurable (see
Proposition 6) and KP

t is Bc(Ωt)-measurable, [5, Proposition 7.44, p172] shows that (UP
t+1)+(·,1 +

KP
t (·)|∆St+1(·)|) is Bc(Ωt)-measurable. Thus, as Ω̂t,P is a P t-full-measure set, Lemmata 12 and 13

and (81) imply that (UP
t )+(·,1)∈Mt(P ).

Heredity step 3: NP
t−1 ∈Mt−1(P ).

If t = 0, we trivially have that NP
−1 = 0 ∈ M−1(P ) = {0}. So, assume that t > 0. Recall from

Heredity steps 1 and 2 that lPt ∈Mt(P ), Ct, Jt(·,0) ∈Mt ⊂Mt(P ), from the induction hypoth-
esis that NP

t ∈Mt(P ) and from assumption of Theorem 2 that 1/αPt−1 ∈Mt−1 ⊂Mt−1(P ) and
1/αPt ∈Mt ⊂Mt(P ). Thus, assertion (A2) in Lemma 15 for 1 ≤ t ≤ T − 1 (recall from Heredity
step 2 that Ω̃t,P is a P t-full-measure set for all P ∈HT ) shows that NP

t−1 ∈Mt−1(P ).

This concludes the heredity step and we can now apply Theorem 1.
Application of Theorem 1 and proof of φ∗,x ∈Φ(x,U,QT ).
Let x ∈ R. As the NA(QT ) condition as well as Assumptions 1, 2, 3, 4, 5 and 6 hold true, we
can apply Theorem 1 and there exists φ∗,x ∈ Φ such that (12) is true. We prove now that φ∗,x ∈
Φ(x,U,QT ) i.e. that for all P ∈QT , EP U−(·, V x,φ∗,x

T (·))<+∞. As (14) holds true and C1 ∈WT ,
we only need to check that V x,φ∗,x

T ∈MT (P ) for all P ∈QT . Fix 0≤ t≤ T − 1 and recall Ω̂t from
Proposition 7. As for all ωt ∈ Ω̂t ⊂ Ω̃t, Assumptions 7 to 12 are satisfied in the robust (t+1) context
(see Lemma 7 and Definition 7), we can apply Proposition 2 in the robust (t+ 1) context and
we have for all ωt ∈ Ω̂t that |φ∗,xt+1(ωt)| ≤Kt(ω

t), where for ωt ∈ Ω̂t, Kt(ω
t) := K1(x) with K1(x)

defined in Proposition 2 in the robust (t+ 1) context and Kt(ω
t) := 1 when ωt /∈ Ω̂t. So, as Ω̂t is a

Qt-full-measure set,

|V x,φ∗,x

T | ≤ |x|+
T−1∑
t=0

Kt|∆St+1| QT − q.s. (82)

Assume for a moment that for all P := qP1 ⊗ · · · ⊗ qPT ∈QT and 0≤ t≤ T − 1, Kt ∈Mt(P ). As for
all 0≤ t≤ T − 1, |∆St+1| ∈ Wt+1, we get using (82) and Lemma 12 that V x,φ∗,x

T ∈MT (P ) for all
P ∈QT . Thus, φ∗,x ∈Φ(x,U,QT ) and Theorem 1 ensures that (13) holds true, which concludes the
proof of of Theorem 2.
Now, we prove that Kt ∈Mt(P ). For that, we use P̂t+1 ∈ HT defined in (103) in the Appendix.
Note that Lemma 11 shows that Mt(P̂t+1) ⊂Mt(P ). Recall that in the robust (t+ 1) context,
α∗ = αP

∗
t (ωt), n∗0 = N∗t (ωt), c∗ = cP

∗
t (ωt) and l∗ = l∗t (ω

t). By assumption of Theorem 2, 1/αP
∗

t ∈
Mt ⊂Mt(P ) and also 1/αP

∗
t ∈Mt(P̂t+1). We first prove that l∗t ∈Mt(P̂t+1)⊂Mt(P ). Using that

Ut ≤U
P̂t+1
t (see Proposition 6), we have that l∗t ≤ l

P̂t+1
t . So, as l

P̂t+1
t ∈Mt(P̂t+1) (see Heredity step 2)

and l∗t is Bc(Ωt)-measurable (see Lemma 6), we get that l∗t ∈Mt(P̂t+1) by Lemma 12. We now prove
that N∗t ∈Mt(P ). Recall assertions (B1) and (B2) from Lemma 15. Assertion (B1) applies if t=
T−1 and thus shows thatN∗T−1 ∈MT−1(P ) as 1/αP

∗
T−1 ∈MT−1 ⊂MT−1(P̂T ) andX, 1/|U(·,X(·))+

C(·)|, C, U−(·,0) belong to MT (P̂T ), see initialization step for P = P̂T . Assertion (B2) applies
and shows that N∗t ∈Mt(P ) as Ω̃t+1,P is a P t+1-full-measure set for all P ∈ HT , 1/αP

∗
t ∈Mt ⊂

Mt(P̂t+1), 1/α
P̂t+1
t+1 , Ct+1, Jt+1(·,0)∈Mt+1 ⊂Mt+1(P̂t+1) and l

P̂t+1
t+1 , N

P̂t+1
t+1 ∈Mt+1(P̂t+1), see Hered-

ity steps 2 and 3 for P = P̂t+1. Now, as Ut+1 is lsa (see Proposition 6), Lemma 10 (iii) with f =U−t+1

alongside [5, Lemma 7.30 (3), p177] show that ωt 7→ supp∈Qt+1(ωt) EpU−t+1(ωt, ·,−x−) is usa and so

Bc(Ωt)-measurable. We deduce then from (48), U−t+1 ≤ Jt+1 (see Proposition 6) and the fact that
Jt(·,−x−)∈Mt (see Heredity step 1) that ωt 7→ supp∈Qt+1(ωt) EpU−t+1(ωt, ·,−x−) belongs toMt, see
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Lemma 12. Finally, as Ct+1 and Jt+1(·,0) belong to Mt+1, cP
∗

t ∈Mt using (61) and Lemma 13.
Thus, recalling again that 1/αP

∗
t ∈Mt, we deduce that Kt ∈Mt(P ). �

7. Appendix The first part of the appendix shows some properties of the asymptotic elastic-
ity. We prove that Assumption 3 holds true for a deterministic utility function under the condition
of Reasonable Asymptotic Elasticity in discrete time (see Proposition 10). In the second part,
we introduce the concept of (−∞) integrals that plays an important role to prove that concavity
is preserved through dynamic programming (see Remark 6). We show that several measurability
properties are still true for (−∞) integration (see Proposition 11 and Lemma 10). In the third
part, we give a sufficient condition so that a probability measure with a given disintegration is
dominated by another (see Proposition 12). This is used to extrapolate some properties from HT

to QT . The next part provides the missing results of Section 2.5. We give properties on Wt, Mt

and Mt(P ) (see Lemmata 11, 12 and 13). We show that a random utility with benchmark is of
type (A) (see Proposition 13). We also prove Lemma 4 which is used to provide an example of
application of Theorem 2. Finally, the last part collects the missing proofs and results of Section 4.
Proposition 6 is proved and two technical lemmata and their proofs are given. Lemma 14 ensures
that Assumption 10 is preserved through dynamic programming while Lemma 15 shows that N∗t
(see (63)) and NP

t (see (65)) are almost-surely finite and may be integrable.

7.1. Asymptotic elasticity First, we show that a concave deterministic function U satisfies
the growth condition (4) in Assumption 3 with γ = 1. Then, we prove that such a function U satisfies
AE+∞(U) ≤ 1 and AE−∞(U) ≥ 1 and finally that under the Reasonable Asymptotic Elasticity
condition in discrete time, Assumption 3 holds true.

Lemma 8. Let U : R→R∪{−∞,+∞} be a concave function with U−(0)<+∞. Then, for all
λ≥ 1 and x∈R,

U(λx)≤ λ(U(x) +U−(0)). (83)

Proof. Let λ≥ 1 and x∈R. Using the concavity of U , we get that 1
λ
U(λx)+

(
1− 1

λ

)
U(0)≤U(x).

As U−(0)<+∞, we have that

U(λx) ≤ λU(x)− (λ− 1)U(0)≤ λU(x) + (λ− 1)U−(0)≤ λU(x) +λU−(0). �

Proposition 9. Let U : R→ R be a concave, nondecreasing, non-constant and continuously
differentiable function such that limx→+∞U(x)> 0. Then, AE+∞(U)≤ 1 and AE−∞(U)≥ 1.

Proof. The fact that AE+∞(U) ≤ 1 is proved in [20, Lemma 6.1]. We show analogously that
AE−∞(U)≥ 1. Let x<−1, using the concavity of U , we get that

xU ′(x) = (x+ 1)U ′(x)−U ′(x)≤U(x)−U(−1)−U ′(x)≤U(x)−U(−1)−U ′(−1).

Observe now that as U is concave, nondecreasing and non-constant, limx→−∞U(x) =−∞. So, for

x small enough, U(x)< 0 and xU ′(x)

U(x)
≥ 1− U(−1)+U ′(−1)

U(x)
. We conclude as limx→−∞U(x) =−∞. �

Proposition 10. Let U : R→R be a concave, nondecreasing, non-constant and continuously
differentiable function. Assume that either AE+∞(U)< 1 and limx→+∞U(x)> 0 or AE−∞(U)> 1.
Then, there exist some γ 6= 1 and some C > 0 such that for all λ≥ 1 and x∈R,

U(λx)≤ λγ(U(x) +C). (84)

Moreover, γ and C can be specified as follows.
Assume that AE−∞(U)> 1. Let γ ∈ (1,AE−∞(U)). Then, there exists x< 0 such that U(x)< 0 and
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xU ′(x)

U(x)
> γ for all x≤ x. Now, choosing such an x and setting C :=U+(0) +U−(0) +U−(x), γ and

C satisfy (84).
Assume that AE+∞(U)< 1 and limx→+∞U(x)> 0. Let γ ∈ (AE+∞(U),1). Then, there exist x′ < 0

and x> 0 such that U(x′)< 0, U(x)> 0 and xU ′(x)

U(x)
<γ for all x≥ x. Now, choosing such an x′ and

x and setting C :=U+(x) +U−(x′) +U−(0), γ and C satisfy (84).

Proof. Assume first that AE−∞(U)> 1 and choose γ ∈ (1,AE−∞(U)). We prove that there exists
a real number x< 0 such that for all λ≥ 1 and x≤ x,

U(λx)<λγU(x). (85)

The proof is very similar to the proof of [20, Lemma 6.3]. As U is non-constant, nondecreasing

and concave, we have that limx→−∞U(x) =−∞. Moreover, lim inf
x→−∞

xU ′(x)

U(x)
>γ. So, there exists (and

we fix) some x < 0 such that U(x)< 0 and xU ′(x)

U(x)
> γ for all x≤ x. Now, for all x≤ x, as U(x)≤

U(x)< 0, we have that xU ′(x)<γU(x).
Let x≤ x. Let F and G be defined by F (λ) :=U(λx) and G(λ) := λγU(x) for λ≥ 1. Then, F and
G are differentiable and F ′(λ) = xU ′(λx) and G′(λ) = γλγ−1U(x). So, we find that

F ′(1) = xU ′(x)<γU(x) =G′(1).

As F (1) =G(1) and F ′(1)<G′(1), there exists ε > 0 such that for all λ ∈ (1,1 + ε), F (λ)<G(λ).
Let λ̂ := inf{λ≥ 1,F (λ) =G(λ)}. Assume that λ̂ <+∞. By continuity of F and G, F (λ̂) =G(λ̂).
Now remark that, by definition of λ̂, we have that

0≤ lim
h→0+

F (λ̂−h)−G(λ̂−h)

−h
= F ′(λ̂)−G′(λ̂). (86)

However, as λ̂x≤ x, F (λ̂) =G(λ̂) shows that

F ′(λ̂) = xU ′(λ̂x)<
γ

λ̂
U(λ̂x) =

γ

λ̂
F (λ̂) =

γ

λ̂
G(λ̂) =G′(λ̂),

which contradicts (86). Thus, λ̂= +∞ and (85) is true. Now, we show that (84) holds true. Set
C := U+(0) +U−(0) +U−(x). Let λ≥ 1. Assume first that x > 0. Then, U(x) +U−(0)≥ 0. Using
(83) and γ > 1, we have that U(λx)≤ λ(U(x) +U−(0))≤ λγ(U(x) +C).
Assume now that x< x≤ 0. We have that

λγ(U(x) +C)≥ λγ(U(x) +C) = λγ(U+(x) +U+(0) +U−(0))≥U+(0)≥U(0)≥U(λx),

as x≤ 0. Now, for x≤ x, (85) implies (84).
Assume now that AE+∞(U) < 1 and choose γ ∈ (AE+∞(U),1). Furthermore, assume that

limx→+∞U(x)> 0. Then, there exist (and we fix) some x> 0 such that U(x)> 0 and xU ′(x)

U(x)
<γ for

all x> x. Then, [20, Lemma 6.3] shows that for all λ≥ 1 and x≥ x,

U(λx)<λγU(x). (87)

As limx→−∞U(x) = −∞, there exists (and we fix) some x′ < 0 such that U(x′) < 0. Let C :=
U+(x)+U−(x′)+U−(0). We show that (84) holds true. Let λ≥ 1. If x≥ x, (84) follows directly from
(87). Assume now that x< x. As U is nondecreasing, U(λx)≤U(λx)≤ λγU(x). So, if x′ <x<x,

λγ(U(x) +C)≥ λγ(U(x′) +C) = λγ(U+(x′) +U+(x) +U−(0))≥ λγU(x)≥U(λx)

and (84) holds true. Now, if x≤ x′, as U is nondecreasing, U(λx)< 0. We distinguish two cases.
If U(x) +C ≥ 0, then (84) holds true trivially. If U(x) +C < 0, recalling (83), U(λx)≤ λ(U(x) +
U−(0))≤ λ(U(x) +C) and (84) follows as γ < 1. �
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7.2. The (−∞)-convention Let X be a Borel space (see [5, Definition 7.7]). Let f : X →
R∪ {−∞,+∞} be a Bc(X)-measurable function and let p ∈P(X). We define the (−∞) integral,
denoted by

∫
− fdp, and the (+∞) integral, denoted by

∫ −
fdp, as follows. If

∫
f+dp < +∞ or∫

f−dp <+∞, both integrals are equal and are defined as the extended integral of f i.e.∫
−
fdp=

∫ −
fdp :=

∫
f+dp−

∫
f−dp. (88)

Otherwise,
∫
− fdp :=−∞ and

∫ −
fdp := +∞. We adopt the usual arithmetic rules in calculations

involving +∞ and −∞ described in [5, p26-27] except that we assume that +∞−∞=−∞+∞=
−∞. In particular, we have that

+(−∞) =−∞ and − (+∞) =−∞. (89)

We state now a first lemma that links
∫ −

and
∫
−.

Lemma 9. Let X be a Borel space. Let f :X→R∪{−∞,+∞} be a Bc(X)-measurable function
and p∈P(X). Then, ∫ −

(−f)dp=−
∫
−
fdp. (90)

Proof. The function −f is Bc(X)-measurable. When
∫
f+dp =

∫
(−f)−dp < +∞ or

∫
f−dp =∫

(−f)+dp <+∞, the usual definition through the extended integral can be used:∫ −
(−f)dp =

∫
(−f)dp=

∫
(−f)+dp−

∫
(−f)−dp=

∫
f−dp−

∫
f+dp

= −
(∫

f+dp−
∫
f−dp

)
=−

∫
fdp=−

∫
−
fdp, (91)

where the first equality in (91) may follow from (89). Otherwise,
∫
− fdp=−∞ and

∫ −
(−f)dp=

+∞. Thus, (90) follows again from (89). �
Definition 9. A function f : X → R ∪ {−∞,+∞} is lower-semianalytic or lsa (resp. upper-

semianalytic or usa) if {x∈X, f(x)≤ a} (resp. {x∈X, f(x)≥ a}) is an analytic set for all a∈R.

Any lsa or usa function is Bc(X)-measurable as A(X)⊂Bc(X). As already mentioned, [5] uses the
convention +∞−∞=−∞+∞= +∞ and thus the (+∞) integral. We now adapt [5, Proposition
7.46, p177] and [5, Proposition 7.48, p180] to our convention +∞−∞=−∞+∞=−∞.

Proposition 11. Let X and Y be Borel spaces. Let f :X × Y →R∪ {−∞,+∞} and let q be
a stochastic kernel on Y given X. Let λ :X→R∪{−∞,+∞} be defined by

λ(x) :=

∫
−
f(x, y)q(dy|x).

(i) Assume that q is a Borel measurable stochastic kernel and that f is usa. Then, λ is usa.
(ii) Assume that q is a Borel measurable stochastic kernel and that f is lsa. Then, λ is lsa.
(iii) Assume that q is a universally measurable stochastic kernel and that f is Bc(X × Y )-
measurable. Then, λ is Bc(X)-measurable.
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Proof. Proof of (i). Using (90), we get that for all x∈R,

−λ(x) =−
∫
−
f(x, y)q(dy|x) =

∫ −
(−f(x, y))q(dy|x). (92)

As −f is lsa, [5, Proposition 7.48, p180], which works for the (+∞) integral, shows that −λ is lsa
and thus that λ is usa.

Proof of (ii). For all n≥ 0, we define λ1,n, λ2 :X→R∪{−∞,+∞} as follows

λ1,n(x) :=

∫
min(f+(x, y), n) q(dy|x) and λ2(x) :=−

∫
f−(x, y)q(dy|x) =

∫
(−f−(x, y))q(dy|x).

Let n≥ 0. As the integrands in the definition of λ1,n and λ2 are non-negative, the (+∞) and (−∞)
integrals equal the extended integral and the last equality follows from (90). First, we show that
λ1,n and λ2 are lsa. As f is lsa, using [5, Lemma 7.30 (2), p177] (which proof does not rely on the
convention +∞−∞= +∞), f+, min(f+, n) and −f− = min(f,0) are lsa. So, [5, Proposition 7.48,
p180] shows that λ1,n and λ2 are indeed lsa. Now, as λ1,n +λ2 ∈ [−∞, n], for any a∈R,

{x∈X,λ1,n(x) +λ2(x)<a}=
⋃
r∈Q

{x∈X,λ1,n(x)< r}∩ {x∈X,λ2(x)<a− r}.

So, we get that λ1,n +λ2 is also lsa. Assume for a moment that we have proved that for all x∈E,

λ(x) =

∫
−
f(x, y)q(dy|x) = sup

n≥0

(λ1,n +λ2) (x). (93)

Then, using again [5, Lemma 7.30 (2), p177], we deduce that λ is lsa. Now, we prove (93). Let
x ∈ R. Assume that

∫
f−(x, y)q(dy|x) = +∞. Then, λ(x) = −∞ and λ2(x) = −∞, see (89). Re-

calling that 0 ≤ λ1,n(x) ≤ n, we get that (λ1,n + λ2)(x) = −∞ for all n ≥ 0. Thus, (93) holds
true. Assume now that

∫
f−(x, y)q(dy|x)<+∞. The monotone convergence theorem shows that

limn→+∞ λ1,n(x) = supn≥0 λ1,n(x) =
∫
f+(x, y)q(dy|x) ∈ [0,+∞]. As λ2(x) > −∞, we deduce from

(88) that supn≥0(λ1,n +λ2)(x) =
∫
f+(x, y)q(dy|x)−

∫
f−(x, y)q(dy|x) = λ(x).

Proof of (iii). As −f is Bc(X)−measurable, (92) and [5, Proposition 7.46, p177] (which again works
for the (+∞) integral) shows that −λ is Bc(X)-measurable. So, λ is Bc(X)-measurable. �

This lemma is a direct application of Proposition 11 and allows to solve measurability issues in
Section 4.

Lemma 10. Assume that Assumption 1 holds true. Let 0≤ t≤ T − 1. Let f : Ωt+1 ×R→ R∪
{−∞,+∞} and define λ : Ωt×R×Rd×P(Ωt+1)→R∪ {−∞,+∞} and λ̃inf , λ̃sup : Ωt×R×Rd→
R∪{−∞,+∞} as follows

λ(ωt, x,h, p) :=

∫
−
f(ωt, ωt+1, x+h∆St+1(ωt, ωt+1))p(dωt+1)

λ̃inf(ω
t, x,h) := inf

p∈Qt+1(ωt)
λ(ωt, x,h, p) and λ̃sup(ωt, x,h) := sup

p∈Qt+1(ωt)

λ(ωt, x,h, p).

(i) If f is Bc(Ωt+1×R)-measurable, then λ is Bc(Ωt×R×Rd×P(Ωt+1))-measurable.
Assume furthermore that Assumption 2 holds true.
(ii) If f is lsa, then λ and λ̃inf are lsa.
(iii) If f is usa, then λ and λ̃sup are usa.
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Proof. Let g : (ωt, x,h, p,ωt+1) 7→ f(ωt, ωt+1, x+ h∆St+1(ωt, ωt+1)) and consider the Borel mea-
surable stochastic kernel q defined by q(·|ωt, x,h, p) := p(·). For (i), remark that as f is Bc(Ωt+1×R)-
measurable and Assumption 1 holds true, g is Bc(Ωt ×R×Rd ×P(Ωt+1)×Ωt+1)-measurable and
Proposition 11 (iii) shows that λ is Bc(Ωt ×R×Rd ×P(Ωt+1))-measurable. For (ii), assume now
that f is lsa. As Assumption 1 holds true, [5, Lemma 7.30 (3), p177] shows that g is lsa. So,
Proposition 11 (ii) with the Borel measurable stochastic kernel q shows that λ is lsa. Assumption
2 provides that projΩt(graph(Qt+1)) = Ωt as Qt+1 6= ∅. It also, together with [5, Proposition 7.47,
p179], shows that λ̃inf is lsa and (ii) is proved. The proof if f is usa is similar and omitted. �

7.3. Absolute continuity The following proposition is important to prove that Assumption
6 is preserved by dynamic programming. Let p, q ∈P(X), we write that p� q if for all A∈B(X),
q(A) = 0 implies that p(A) = 0.

Proposition 12. Let l≥ 1 and X1, · · ·, Xl be Borel spaces. Let Yk :=X1×···×Xk for 1≤ k≤ l.
Let q1, q̂1 ∈ P(X1) such that q1 � q̂1 and for all 1 ≤ k ≤ l − 1, let qk+1 and q̂k+1 be universally
measurable stochastic kernels on Xk+1 given Yk such that qk+1(·|yk)� q̂k+1(·|yk) for all yk ∈ Yk. Let
P := q1⊗ · · ·⊗ ql and P̂ := q̂1⊗ · · ·⊗ q̂l. Then, P � P̂ .

Proof. We prove the claim for l= 2 as the general case can easily be obtained by induction. Let
A∈B(Y2) such that P̂ (A) = q̂1⊗ q̂2(A) = 0. Fubini’s theorem implies that

∫
X1
q̂2(Ax1 |x1)q̂1(dx1) = 0

where Ax1 := {x2 ∈X2, (x1, x2)∈A}. Let B := {x1 ∈X1, q̂2(Ax1 |x1) = 0}. Then, q̂1(B) = 1 and also
q1(B) = 1 as q1� q̂1. Let x1 ∈ B. Then, as q2(·|x1)� q̂2(·|x1), we have that q2(Ax1 |x1) = 0. This
implies that {x1 ∈X1, q2(Ax1 |x1) = 0} is a q1-full measure set. So, using Fubini’s theorem again,

P (A) = q1⊗ q2(A) =
∫
X1
q2(Ax1 |x1)q1(dx1) = 0 and P � P̂ . �

7.4. Missing results of Section 2.5

7.4.1. The sets Mt(P ), Mt and Wt We give properties of these sets defined in Definition
4. First, we show that if a random variable has moments of any orders with respect to some convex
combination of two priors, then it also have moments of any orders with respect to these priors.

Lemma 11. Let 1≤ l≤ T . Let P := q1⊗ · · ·⊗ ql ∈Ql, P̃ := q̃1⊗ · · ·⊗ q̃l ∈Ql and

P̂ := (λ1q1 + (1−λ1)q̃1)⊗ · · ·⊗ (λlql + (1−λl)q̃l), (94)

where λi ∈ (0,1] for all 1≤ i≤ l. Then, for all 0≤ t≤ l, Mt(P̂ )⊂Mt(P ).

Proof. The inclusion is trivial if t= 0 asM0(P̂ ) =M0(P ) =R. Let 1≤ t≤ l. Let P̂ be defined as
in (94) with l= t and let X ∈Mt(P̂ ). Noting that for all 1≤ k≤ t, λkqk + (1−λk)q̃k ≥ λkqk (recall
that 0<λk ≤ 1) and using Fubini’s theorem, we obtain that for all r≥ 1,

EP̂ t |X|
r =

∫
Ωt
|X(ωt)|r (λtqt + (1−λt)q̃t)(dωt|ωt−1)⊗ · · ·⊗ (λ1q1 + (1−λ1)q̃1)(dω1)

≥ λ1 · · ·λt
∫

Ω1

· · ·
∫

Ωt

|X(ωt)|r qt(dωt|ωt−1)⊗ · · ·⊗ q1(dω1) = λ1 · · ·λt EP t |X|r.

As X ∈Mt(P̂ ), we have that EP̂ t |X|r < +∞ and also EP t |X|r < +∞ (recall that λ1 · · ·λt > 0).
Thus, X ∈Mt(P ) and the inclusion is proved. �

We give without proof some further simple properties of the sets Mt, Wt and Mt(P ).

Lemma 12. Fix 0≤ t≤ T , P ∈QT and a≥ 0. If X,Y ∈Wt (resp. Mt, Mt(P )), then X + Y ,
XY , min(X,Y ), max(X,Y ) and Xa belong toWt (resp.Mt,Mt(P )). Let Z : Ωt→R∪{−∞,+∞}
be Bc(Ωt)-measurable. If 0≤ Z ≤ Y Qt-q.s. with Y ∈Wt (resp. Mt), then Z ∈Wt (resp. Mt). If
0≤Z ≤ Y P t-a.s. with Y ∈Mt(P ), then Z ∈Mt(P ).
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We now show that the sets Mt and Mt(P ) are stable by dynamic programming.

Lemma 13. Let 0 ≤ t ≤ T − 1. Let X : Ωt+1 → R ∪ {−∞,+∞} be Bc(Ωt+1)-measurable and
choose qt+1 ∈ SKt+1 such that qt+1(·|ωt) ∈Qt+1(ωt) for all ωt ∈ Ωt. Let λX : Ωt→ R∪ {−∞,+∞}
be defined by λX(ωt) := Eqt+1(·|ωt)X(ωt, ·). Let P ∈Qt. If X ∈Mt+1(P ⊗ qt+1), then λX ∈Mt(P ).
If X ∈Mt+1, then λX ∈Mt.

Proof. The function λX is Bc(Ωt)-measurable by Proposition 11. Let P ∈ Qt and assume that
X ∈Mt+1(P ⊗ qt+1). Let r≥ 1. Jensen’s inequality applied to the convex function x 7→ |x|r implies
that |Eqt+1(·|ωt)X(ωt, ·)|r ≤Eqt+1(·|ωt) |X(ωt, ·)|r for all ωt ∈Ωt. Using Fubini’s theorem, we find that

EP |λX |r =

∫
Ωt
|Eqt+1(·|ωt)X(ωt, ·))|rP (dωt)≤EP⊗qt+1

|X|r <+∞.

Thus, λX ∈Mt(P ). Assume now that X ∈Mt+1. Then, X ∈Mt+1(P ⊗ qt+1) for all P ∈Qt. Using
the preceding inequality, we deduce that λX ∈Mt(P ) for all P ∈Qt. So, λX ∈Mt. �

7.4.2. Utility function with random benchmark We show that it is indeed possible to
apply Theorem 2 to a random utility with benchmark.

Proposition 13. A utility function with random benchmark (see Definition 6) is a random
utility of type (A) (see Definition 5).

Proof. Let U be a utility function with random benchmark as in Definition 6. Then, as Ũ is
concave and Dom Ũ =R, Ũ is continuous and U is trivially a random utility (see Definition 1).
Step 1: for all A∈WT , U−(·,A(·))∈WT and (14) holds true.
Let A∈WT . Let ωT ∈ΩT , recalling (15) and p≥ 1, we obtain that

U(ωT ,A(ωT )) = Ũ(A(ωT )−Z(ωT ))≥−b̃
(
1 + |A(ωT )−Z(ωT )|p

)
≥ −b̃

(
1 + 2p−1(|Z(ωT )|p + |A(ωT )|p)

)
≥−C1(ωT )

(
1 + |A(ωT )|p

)
, (95)

where C1(·) := b̃2p−1(1 + |Z(ωT )|p). We obtain that C1 ∈WT as Z ∈WT . So, for all x ∈ R, (14)
holds true choosing A(·) = x. Now, as A is Bc(ΩT )-measurable, Remark 1 shows that U−(·,A(·)) is
Bc(ΩT )-measurable and thus belongs to WT , see Lemma 12 and (95).

Step 2: for all A∈WT , U+(·,A(·))∈WT .
Let A∈WT . Let ωT ∈ΩT . Recalling that Ũ is nondecreasing and using (83) for Ũ , we get that

U+(ωT ,A(ωT )) = Ũ+(A(ωT )−Z(ωT ))≤ Ũ+(1 + |A(ωT )|+ |Z(ωT )|)
≤ (1 + |A(ωT )|+ |Z(ωT )|)(Ũ(1) + Ũ−(0))+

≤ (1 + |A(ωT )|+ |Z(ωT )|)(Ũ+(1) + Ũ−(0)).

As U+(·,A(·)) is Bc(ΩT )-measurable and Z ∈WT , we deduce from Lemma 12 that U+(·,A(·)) ∈
WT . Choosing A(·) = 1, we get that U+(·,1)∈WT .

Step 3: Assumption 3 holds true with C ∈WT .
We show first that for all ωT ∈ΩT , AE−∞(U(ωT , ·)) =AE−∞(Ũ). Fix ωT ∈ΩT . Then,

AE−∞(U(ωT , ·)) = lim inf
x→−∞

xU ′(ωT , x)

U(ωT , x)
= lim inf

x→−∞

[
(x−Z(ωT ))Ũ ′(x−Z(ωT ))

Ũ(x−Z(ωT ))

x

x−Z(ωT )

]
= AE−∞(Ũ).
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A similar reasoning shows that AE+∞(U(ωT , ·)) =AE+∞(Ũ). Now, we distinguish two cases and
show that we can use Proposition 10 for U(ωt, ·).
Step 3.1: AE−∞(Ũ)> 1
Assume first that AE−∞(Ũ)> 1. Let γ, γ̃ ∈R such that AE−∞(Ũ)> γ̃ > γ > 1 and set η := γ/γ̃ ∈
(0,1). Using Proposition 10 for Ũ , there exists some x < 0 such that Ũ(x)< 0 and xŨ ′(x)

Ũ(x)
> γ̃ for

all x ≤ x. Let X(·) := min(x,x+ Z(·),− η
1−ηZ(·)). Fix ωT ∈ ΩT . Then, X(ωT ) ≤ x < 0. Moreover,

U(ωT ,X(ωT )) = Ũ(X(ωT )−Z(ωT ))≤ Ũ(x)< 0 as Ũ is nondecreasing. Now, let x≤X(ωT ). First,

we show that xU ′(ωT ,x)

U(ωT ,x)
>γ. As x≤X(ωT )≤ x+Z(ωT ), we have that

(x−Z(ωT ))U ′(ωT , x)

U(ωT , x)
=

(x−Z(ωT ))Ũ ′(x−Z(ωT ))

Ũ(x−Z(ωT ))
> γ̃. (96)

Now, as x ≤X(ωT ) ≤ − η
1−ηZ(ωT ) and η < 1, we get that (1− η)x ≤ −ηZ(ωT ). Remarking that

x−Z(ωT )≤X(ωT )−Z(ωT )≤ x< 0, we have that x
x−Z(ωT )

≥ η. So, using (96), we deduce that

xU ′(ωT , x)

U(ωT , x)
=

(x−Z(ωT ))Ũ ′(x−Z(ωT ))

Ũ(x−Z(ωT ))

x

x−Z(ωT )
> γ̃η= γ. (97)

We can apply Proposition 10 to U(ωT , ·). Indeed, AE−∞(U(ωT , ·)) = AE−∞(Ũ) > 1, γ ∈
(1,AE−∞(U(ωT , ·)), X(ωT )< 0, U(ωT ,X(ωT ))< 0 and (97) holds true for all x≤X(ωT ). It follows
that (84) holds true for U(ωT , ·) with γ and C(ωT ) := U+(ωT ,0) + U−(ωT ,0) + U−(ωT ,X(ωT )).
Now, we show that C ∈ WT . As Z ∈ WT , X ∈ WT (see Lemma 12). Step 1 shows that
U−(·,X(·)),U−(·,0) ∈WT and Step 2 that U+(·,0) ∈WT . Thus C ∈WT and Assumption 3 holds
true with C ∈WT .
Step 3.2: AE+∞(Ũ)< 1 and limx→+∞ Ũ(x)> 0
Let γ̃′ and γ′ be such that AE+∞(Ũ)< γ̃′ <γ′ < 1 with γ̃′ > 0 and set η′ := γ′/γ̃′ > 1. Using Proposi-

tion 10 for Ũ , there exists x′ < 0 and x> 0 such that Ũ(x′)< 0, Ũ(x)> 0 and xŨ ′(x)

Ũ(x)
< γ̃′ for all x≥ x.

Let X(·) := max(x,x+Z(·),− η′

1−η′Z(·)) and X ′(·) := min (x′, x′+Z(·)). Let ωT ∈ΩT . We trivially

have that limx→+∞U(ωT , x)> 0 as limx→+∞ Ũ(x)> 0. Then, X(ωT )≥ x > 0 and X ′(ωT )≤ x′ < 0.
Moreover, U(ωT ,X(ωT )) = Ũ(X(ωT )−Z(ωT ))≥ Ũ(x)> 0 and U(ωT ,X ′(ωT ))≤ Ũ(x′)< 0 as Ũ is

nondecreasing. Now, let x≥X(ωT ). First, we show that xU ′(ωT ,x)

U(ωT ,x)
<γ′. As x≥X(ωT )≥ x+Z(ωT ),

we have that

(x−Z(ωT ))U ′(ωT , x)

U(ωT , x)
=

(x−Z(ωT ))Ũ ′(x−Z(ωT ))

Ũ(x−Z(ωT ))
< γ̃′. (98)

As x≥X(ωT )≥− η′

1−η′Z(ωT ) and η′ > 1, we get that (1− η′)x≤−η′Z(ωT ). As x−Z(ωT )≥ x> 0,
we get that 0≤ x

x−Z(ωT )
≤ η′. So, using (98), we deduce that

xU ′(ωT , x)

U(ωT , x)
=

(x−Z(ωT ))Ũ ′(x−Z(ωT ))

Ũ(x−Z(ωT ))

x

x−Z(ωT )
< γ̃′η′ = γ′. (99)

As AE+∞(U(ωT , ·)) =AE+∞(Ũ)< 1, limx→+∞U(ωT , x)> 0, γ′ ∈ (AE+∞(U(ωT , ·)),1), X ′(ωT )< 0
is such that U(ωT ,X ′(ωT ))< 0 and X(ωT )> 0 is such that U(ωT ,X(ωT ))> 0 and as (99) holds
true for all x≥X(ωT ), Proposition 10 applies for U(ωT , ·) and (84) holds true with γ′ and C(ωT ) =
U+(ωT ,X(ωT )) +U−(ωT ,X ′(ωT )) +U−(ωT ,0). As Z ∈WT , X ′,X ∈WT (see Lemma 12) and as
before Steps 1 and 2 show that C ∈WT . So, Assumption 3 holds true for C ∈WT .
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Step 4: Assumption 4 holds true for some X ∈WT such that 1/|U(·,X(·)) +C(·)| ∈WT .
As Ũ is concave, nondecreasing, non-constant and finite, we have that Ũ is continuous and that
limx→−∞ Ũ(x) = −∞. As a result, one can find a real x < 0 such that Ũ(x) = −Ũ−(0)− 1. Set
Y (·) := x(C(·) + 1), where C(·) ∈WT has been defined in Step 3.1 or Step 3.2 and is such that
Assumption 3 holds true. Using (83) in Proposition 9 for Ũ , we see that

Ũ(Y (·)) = Ũ

(
Y (·)
x

x

)
≤ Y (·)

x

(
Ũ(x) + Ũ−(0)

)
=−Y (·)

x
=−C(·)− 1.

Let X(·) := min(Y (·) +Z(·),−1)< 0. Then, X ∈WT as Z and C belong to WT (see Lemma 12).
As Ũ is nondecreasing U(·,X(·)) = Ũ(X(·)− Z(·)) ≤ Ũ(Y (·)) ≤ −C(·)− 1 < −C(·). So, Assump-
tion 4 holds true for U . Moreover, U(·,X(·)) + C(·) ≤ −1 and so 1/|U(·,X(·)) + C(·)| ≤ 1. As
1/|U(·,X(·))+C(·)| is Bc(ΩT )-measurable (see Remark 1), it belongs toWT (see Lemma 12 again).
Putting all the steps together, U is a random utility of type (A). �

7.4.3. Proof of Lemma 4 Lemma 4 was used to provide an example of application of Theo-
rem 2. We prove it by contradiction. Assume that there exists (pn)n≥1 ⊂Q such that pn(Z <− 1

n
)<

1
n

or pn(−Z < − 1
n

) > 1
n

for all n ≥ 1. We only treat the case pn(Z < − 1
n

) < 1
n

, the other case is
completely similar and thus omitted.
The sequence of image laws (µn)n≥1 := (pn ◦Z−1)n≥1 is tight.
Let K > 0 and n≥ 1, Markov’s inequality and the definition of pn ∈Q show that

µn(R \ [−K,K]) = pn(|Z|>K)≤ exp(−K)Epn exp(|Z|)≤C exp(−K).

Thus, (µn)n≥1 is tight and using Prokhorov’s theorem (see [6, Theorem 5.1, p59]), we can extract
a subsequence (still denoted by (µn)n≥1) such that (µn)n≥1 converges weakly to some µ∈P(R).
Using Portmanteau theorem (see [6, Theorem 2.1, p16]) and µn((−∞,− 1

n
)) < 1

n
, we get that

µ((−∞,−ε))≤ lim infn≥1 µn((−∞,−ε))≤ 0 for every 0< ε< 1.
Application of Skorokhod’s representation theorem.
Using Skorokhod’s representation theorem (see [6, Theorem 6.7, p70]), there exist a probability
space (Ω̂, Â, p̂) and random variables X and (Xn)n≥1 such that p̂ ◦X−1 = µ, p̂ ◦X−1

n = µn for all
n≥ 1 and Xn converges to X p̂-a.s. Moreover, as p̂(X <−ε) = µ((−∞,−ε))≤ 0 for all 0< ε < 1,
we have that p̂(X ≥ 0) = 1.
Contradiction.
Remark that Ep̂Xn =

∫
xµn(dx) = EpnZ = 0 by definition of Q and also that Ep̂X2

n = 1. Assume
for a moment that (Xn)n≥0 and (X2

n)n≥0 are uniformly integrable under p̂. Then, as (Xn)n≥1 con-
verges to X p̂-a.s. we get that 0 = limn→+∞Ep̂Xn = Ep̂X and 1 = limn→+∞Ep̂X2

n = Ep̂X2, see for
example [6, Theorem 3.5, p31]. As p̂(X ≥ 0) = 1 and Ep̂X = 0, we must have that X = 0 p̂-a.s. a
contradiction to Ep̂X2 = 1. Finally, to show that (Xn)n≥1 and (X2

n)n≥1 are uniformly integrable
under p̂, it is enough to prove that for all n≥ 1, Ep̂|Xn|3 is uniformly bounded in n (see [6, (3.18),
p31]). This follows from Ep̂|Xn|3 =

∫
|x|3µn(dx) =Epn |Z|3 ≤ 3!Epn exp(|Z|)≤ 3!C. �

7.5. Proofs of Section 4 We now provide the missing proofs and results of Section 4.

7.5.1. Proof of Proposition 6 We first show the following claim.
Proof of (i) to (v).
Let P := qP1 ⊗ · · ·⊗ qPT ∈QT . The proof is made by backward induction.
Initialization step.
As UT =UP

T =U and JT =U−, (iv) and (v) hold true with an equality. Remark 1 shows that U is
B(ΩT )⊗B(R)-measurable. So, UT is lsa, UP

T is Bc(ΩT ×R)-measurable and (i) and (ii) are proved.
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Finally, Definition 1 implies that for all ωT ∈ΩT , UT (ωT , ·) =UP
T (ωT , ·) =U(ωT , ·) is nondecreasing,

usc and concave and (iii) holds true.
Heredity step.
Fix 0≤ t≤ T − 1 and assume that the induction hypothesis holds at time t+ 1. Fix x ∈R. (i) at
t+ 1 implies that Ut+1(·, ·, x) is Bc(Ωt ×Ωt+1)-measurable and so is UP

t+1(·, ·, x) thanks to (ii) at
t+ 1 and [5, Lemma 7.29, p174]. The same lemma also shows that Ut+1(ωt, ·, x) and UP

t+1(ωt, ·, x)
are Bc(Ωt+1)-measurable for all ωt ∈Ωt. So, (iii) at t+ 1 shows that Assumption 8 is satisfied both
in the robust and in the P -prior (t+ 1)-context (see Definitions 7 and 8). Lemma 5 applies and we
get that for all ωt ∈Ωt, Ut(ω

t, ·) and UP
t (ωt, ·) are nondecreasing, usc and concave on R and (iii)

at t is proved. Moreover, for all ωt ∈Ωt,

Ut(ω
t, x) = lim

n→+∞
Ut
(
ωt, x+

1

n

)
and UP

t (ωt, x) = lim
n→+∞

UPt
(
ωt, x+

1

n

)
. (100)

Using (i) at time t+ 1, Lemma 10 (ii) for f = Ut+1 and [5, Lemma 7.30, p177], we find that Ut
is lsa. So, (100) and [5, Lemma 7.30, p177] again imply that Ut is lsa and thus that (i) at t is
proved. Similarly, (ii) at t+1, Lemma 10 (i) and [5, Lemma 7.30, p177] show that UPt is Bc(Ωt×R)-
measurable and (100) shows (ii) at t. Now, (v) at t follows from (v) at t + 1 and (7) and (8).
Similarly, for all ωt ∈Ωt, starting from (iv) at time t+ 1, we get using (8) and (48) that

−Ut(ωt, x) ≤ −Ut(ωt, x)≤ sup
p∈Qt+1(ωt)

EpU−t+1(ωt, ·, x)≤ sup
p∈Qt+1(ωt)

EpJt+1(ωt, ·, x) = Jt(ω
t, x).

and (iv) at t follows as Jt ≥ 0, see Proposition 5.

Proof of (58) and (59).
We proceed again by backward induction. We only show (58) as the proof of (59) is very similar and
thus omitted. Assumption 3 ensures that (58) holds true at time T as CT :=C. Fix 0≤ t≤ T − 1
and assume that (58) holds true at t+ 1. Let ωt ∈ Ωt such that Ct(ω

t)<+∞, x ∈ R, h ∈Qd and
λ ∈ Q ∩ [1,+∞). Take any p ∈ Qt+1(ωt). The set {ωt+1 ∈Ωt+1, Ct+1(ωt, ωt+1)<+∞} is a p-full
measure set. Otherwise, we get a contradiction with (50). So, (58) at time t+ 1 implies that

EpUt+1 (ωt, ·, λx+λh∆St+1(ωt, ·))≤ λγ (EpUt+1 (ωt, ·, x+h∆St+1(ωt, ·)) +EpCt+1(ωt, ·)) .

So, taking the infimum over all p∈Qt+1(ωt) and using (49)

inf
p∈Qt+1(ωt)

EpUt+1 (ωt, ·, λx+λh∆St+1(ωt, ·)) ≤ λγ inf
p∈Qt+1(ωt)

(EpUt+1 (ωt, ·, x+h∆St+1(ωt, ·)) +EpCt+1(ωt, ·))

≤ λγ inf
p∈Qt+1(ωt)

EpUt+1 (ωt, ·, x+h∆St+1(ωt, ·)) +λγCt(ω
t).

Now, taking the supremum over every h∈Qd (recall that λ∈Q), we obtain recalling (8) that

Ut(ωt, λx)≤ λγUt(ωt, x) +λγCt(ω
t)≤ λγUt(ωt, x) +λγCt(ω

t).

As x 7→ λγUt(ω
t, x) +λγCt(ω

t) is usc (see (iii)), by definition of the closure in Ut (see (8)), (58) at
t is proved for λ∈Q and λ≥ 1. Take now λ≥ 1 (not necessarily a rational number). Assume first
that x ≥ 0 and take a sequence (λn)n≥0 ⊂ Q such that λn is nonincreasing and limn→+∞ λn = λ.
Let n≥ 0. Using that Ut(ω

t, ·) is nondecreasing (see (iii)), we obtain that

Ut(ω
t, λx)≤Ut(ωt, λnx)≤ λγnUt(ωt, x) +λγnCt(ω

t).

Taking the limit gives (58) for any λ≥ 1 and x≥ 0. When x< 0, the same method with a sequence
of nondecreasing rational numbers gives the desired result. �
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7.5.2. Lemma 14 The following lemma shows that Ωt
10 is a Qt-full-measure set and Ωt,P

10 is
a P t-full-measure set.

Lemma 14. Assume that Assumptions 1, 2, 3 and 5 hold true. Let P := qP1 ⊗· · ·⊗ qPT ∈QT and
0≤ t≤ T − 1. Then, Ωt

10 and Ωt,P
10 belong to Bc(Ωt). Assume furthermore that UP

0 (1)<+∞, then
P t(Ωt,P

10 ) = 1. Moreover, if Assumption 6 holds true, Ωt
10 is a Qt-full-measure set.

Proof. Definitions 7 and 8 imply that

Ωt,P
10 =

{
ωt ∈Ωt, EqPt+1(·|ωt)(U

P
t+1)+(ωt, ·,1)<+∞

}
Ωt

10 =
{
ωt ∈Ωt, EqP∗t+1(·|ωt)U

+
t+1(ωt, ·,1)<+∞

}
.

Recalling that UP
t+1 is Bc(Ωt+1×R)-measurable (see Proposition 6 (ii)), [5, Proposition 7.44, p172]

shows that (ωt, ωt+1) 7→ (UP
t+1)+(ωt, ωt+1,1) is Bc(Ωt × Ωt+1)-measurable. So, Proposition 11 (iii)

shows that ωt 7→ EqPt+1(·|ωt)(U
P
t+1)+(ωt, ·,1) is Bc(Ωt)-measurable, which implies that Ωt,P

10 ∈ Bc(Ωt).

Similarly, using Proposition 6 (i), we get that Ωt
10 ∈Bc(Ωt).

If UP
0 (1)<+∞, then P t(Ωt,P

10 ) = 1.
Assume now that UP

0 (1) < +∞. We proceed by contraposition. Assume that there exists some
0≤ t≤ T − 1 such that P t(Ωt,P

10 )< 1. Then, for all ωt /∈Ωt,P
10 ,

EqPt+1(·|ωt)(U
P
t+1)+(ωt, ·,1) = +∞. (101)

For all 0≤ k ≤ t, we show by backward induction the following property: there exists some Ω̃k
+ ∈

Bc(Ωk) such that P k(Ω̃k
+)> 0 and UP

k (ωk,1) = +∞ for all ωk ∈ Ω̃k
+. The property at k= 0 will show

that UP
0 (1) = +∞: a contradiction that proves the claim.

We start with k= t. For all ωt ∈Ωt, (7) implies that

UP
t (ωt,1)≥UPt (ωt,1)≥EqPt+1(·|ωt)(U

P
t+1)+(ωt, ·,1)−EqPt+1(·|ωt)(U

P
t+1)−(ωt, ·,1). (102)

Let Ω̃t
+ := (Ωt,P

10 )c ∩ Ωt
J,1,0 (see (51) for the definition of Ωt

J,1,0). Then, Proposition 5 shows that

Ω̃t
+ ∈ Bc(Ωt) and P t(Ω̃t

+) = P t((Ωt,P
10 )c)> 0 as P t(Ωt

J,1,0) = 1. Let ωt ∈ Ω̃t
+. Using that Ut+1 ≤ UP

t+1

and U−t+1 ≤ Jt+1 (see Proposition 6), we get that EqPt+1(·|ωt)(U
P
t+1)−(ωt, ·,1)≤EqPt+1(·|ωt)Jt+1(ωt, ·,1)<

+∞, see (51). Consequently, using (101) and (102), UP
t (ωt,1) = +∞ and the property is proved for

k= t. Now, we prove the induction step. Assume that the property holds true for some 1≤ k+1≤ t.
Define Ω̂k

+ := {ωk ∈Ωk, qPk+1(Ω̃k+1

+,ωk
|ωk)> 0}, where for all ωk ∈Ωk, the section of Ω̃k+1

+ along ωk is

defined by Ω̃k
+,ωk

:= {ωk+1 ∈Ωk+1, (ωk, ωk+1)∈ Ω̃k
+}. As Ω̃k+1

+ ∈Bc(Ωk+1), [5, Corollary 7.44.1, p172]

shows that Ω̃k+1

+,ωk
∈Bc(Ωk+1). Moreover, we have that

P k+1(Ω̃k+1
+ ) = P k⊗ qPk+1(Ω̃k+1

+ ) =

∫
Ω̂k+

qPk+1(Ω̃k+1

+,ωk
|ωk)P k(dωk) +

∫
(Ω̂k+)c

qPk+1(Ω̃k+1

+,ωk
|ωk)P k(dωk)

=

∫
Ω̂k+

qPk+1(Ω̃k+1

+,ωk
|ωk)P k(dωk).

As P k+1(Ω̃k+1
+ ) > 0, we get that P k(Ω̂k

+) > 0. Let Ω̃k
+ := Ω̂k

+ ∩ Ωk
J,1,0. Then, Ω̃k

+ ∈ Bc(Ωk)

and P k(Ω̃k
+) = P k(Ω̂k

+) > 0. Let ωk ∈ Ω̃k
+. As Uk+1 ≤ UP

k+1 and U−k+1 ≤ Jk+1, we have that
EqP

k+1
(·|ωk)(U

P
k+1)−(ωk, ·,1)<+∞, see (51). Finally, using (7), we see that

UP
k (ωk,1) ≥ UPk (ωk,1)≥EqP

k+1
(·|ωk)U

P
k+1(ωk, ·,1)

≥ EqP
k+1

(·|ωk)

(
(+∞)1

(ωk,·)∈Ω̃k+1
+
− (UP

k+1)−(ωk, ·,1)1
(ωk,·)/∈Ω̃k+1

+

)
≥ (+∞)qPk+1(Ω̃k+1

+,ωk
|ωk)−EqP

k+1
(·|ωk)

(
(UP

k+1)−(ωk, ·,1)1
(ωk,·)/∈Ω̃k+1

+

)
,
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using for the last inequality [5, Lemma 7.11 (a), p139] adapted to convention (2). As
qPk+1(Ω̃k+1

+,ωk
|ωk)> 0, we find that for all ωk ∈ Ω̃k

+, UP
k (ωk,1) = +∞.

If Assumption 6 holds true, Ωt
10 is a Qt-full-measure set.

Let P̃ := qP̃1 ⊗ · · · ⊗ qP̃T ∈ QT and P̂ :=
qP
∗

1 +qP̃1
2
⊗ · · · ⊗ qP

∗
T +qP̃T

2
. As P̂ ∈ HT (see (9)), we have that

U P̂
0 (1) < +∞ by Assumption 6. So, the preceding step shows that Ωt,P̂

10 is a P̂ t-full-measure set.

Using now (v) in Proposition 6 at t+ 1, Ut+1 ≤U P̂
t+1, Ωt,P̂

10 ⊂Ωt
10 and Ωt

10 is also a P̂ t-full-measure

set. So, Ωt
10 is a P̃ t-full-measure set using Proposition 12 and P̃ � P̂ . As P̃ is arbitrary and

Ωt
10 ∈Bc(Ωt), Ωt

10 is a Qt-full-measure set. �

7.5.3. Lemma 15 The next lemma ensures that Assumption 12 is preserved through dynamic
programming and provides some useful properties on NP

t and N∗t .

Lemma 15. Assume that the NA(QT ) condition as well as Assumptions 1, 2, 3, 4 and 5 hold
true. For all P := qP1 ⊗ · · ·⊗ qPT ∈QT and 1≤ t≤ T , let

P̂t :=
qP
∗

1 + qP1
2

⊗ · · ·⊗ qP
∗

t ⊗ · · ·⊗
qP
∗

T + qPT
2

. (103)

Then, P̂t ∈HT and we have that

NP
T−1 <+∞ P T−1− a.s. and N∗T−1 <+∞ QT−1− q.s. (104)

Moreover, for all P ∈HT , Assertions (A1) and (B1) below hold true.
(A1): If 1/αPT−1 ∈ MT−1(P ) and X, 1/|U(·,X(·)) + C(·)|, C, U−(·,0) ∈ MT (P ), then NP

T−1 ∈
MT−1(P ).
(B1): If 1/αP

∗
T−1 ∈MT−1(P̂T ) and X, 1/|U(·,X(·)) + C(·)|, C, U−(·,0) ∈MT (P̂T ), then N∗T−1 ∈

MT−1(P ).
Assume now that there exists some 1≤ t≤ T − 1 such that Ω̃t,P (see (67)) is a P t-full-measure set
for all P ∈HT . Then,

NP
t−1 <+∞ P t−1− a.s. and N∗t−1 <+∞ Qt−1− q.s. (105)

Moreover, for all P ∈HT , Assertions (A2) and (B2) below hold true.
(A2): If 1/αPt−1 ∈Mt−1(P ) and 1/αPt , NP

t , lPt , Ct, Jt(·,0)∈Mt(P ), then NP
t−1 ∈Mt−1(P ).

(B2): If 1/αP
∗

t−1 ∈Mt−1(P̂t) and 1/αP̂tt , N P̂t
t , lP̂tt , Ct, Jt(·,0)∈Mt(P̂t), then N∗t−1 ∈Mt−1(P ).

Proof. Let P := qP1 ⊗ · · · ⊗ qPT ∈ HT , R := qR1 ⊗ · · · ⊗ qRT ∈ HT and 0 ≤ t ≤ T − 1. We define
NP,R
t : Ωt→N∪{+∞} by

NP,R
t (ωt) := inf

{
k≥ 1, qPt+1

(
UP
t+1(ωt, ·,−k)≤−iRt (ωt)|ωt

)
≥ 1− α

R
t (ωt)

2

}
.

The proof that NP,R
t is Bc(Ωt)-measurable is completely similar to the proof that NP

t is Bc(Ωt)-
measurable in Lemma 6 and is thus omitted.

Step 1: Case 1≤ t≤ T − 1.
We prove that if there exists some 1≤ t≤ T −1 such that Ω̃t,P is of P t-full-measure for all P ∈HT ,
then for all P,R ∈HT , NP,R

t−1 <+∞ P t−1 − a.s. and that Assertion (C1) below holds true. Recall
that P 0 = δ{ω0}, see Section 2.1.
(C1): If 1/αRt−1 ∈Mt−1(P ) and 1/αPt , NP

t , lPt , Ct, Jt(·,0)∈Mt(P ) and Ct, Jt(·,0)∈Mt(P t−1⊗qRt ),



42

then NP,R
t−1 ∈Mt−1(P ).

As Ω̃t,P is a P t-full-measure set, there exists Ω̂t,P ∈Bc(Ωt) such that Ω̂t,P ⊂ Ω̃t,P and P t(Ω̂t,P ) = 1.
Define

Ω
t,P

:= Ω̂t,P ∩{ωt ∈Ωt, Ct−1(ωt−1)<+∞, Jt−1(ωt−1,0)<+∞}.

Then, Ω
t,P ∈Bc(Ωt) and P t(Ω

t,P
) = 1, see Proposition 5. Let ωt ∈Ω

t,P ⊂ Ω̃t,P . Lemma 7 shows that
Assumptions 7 to 12 hold true in the P -prior (t+ 1)-context (see Definitions 7 and 8) and (39) in
Proposition 3 applies:

UP
t (ωt, x) = UPt (ωt, x) = sup

h∈Rd
EqPt+1(·|ωt)U

P
t+1(ωt, ·, x+h∆St+1(ωt, ·)). (106)

We can also apply Proposition 4 in the P -prior (t+ 1) context with m= iRt−1(ωt−1)≥ 1, see (62).

Indeed, iRt−1(ωt−1)<+∞ using (66) at time t− 1 and αRt−1(ωt−1)> 0. We denote by N̂P
t (ωt), the

associated finite bound defined in (41). Recall that in the P -prior (t+ 1) context, α∗ = αPt (ωt),

n∗0 =NP
t (ωt), c∗ = cPt (ωt) and l∗ = lPt (ωt). When ωt /∈Ω

t,P
, we set N̂P

t (ωt) := 1. Then, let N
P

t (ωt) :=

dN̂P
t (ωt)e. We get that N

P

t (ωt)<+∞.

Now, we show that under the assumptions of (C1), N
P

t ∈Mt(P ). Lemma 6 shows that N̂P
t and

thus N
P

t are Bc(Ωt)-measurable. Moreover, if 1/αRt−1 and cRt−1 belong to Mt−1(P ) and 1/αPt , NP
t ,

lPt , cPt toMt(P ), then N
P

t also belongs toMt(P ), see Lemma 12. Thus, under the assumptions of
(C1), it remains to show that cRt−1 ∈Mt−1(P ) and cPt ∈Mt(P ). Lemma 6 shows that cPt is Bc(Ωt)-
measurable. So, as Ct and Jt(·,0) belong to Mt(P ), (66) and Lemma 12 imply that cPt ∈Mt(P ).
Recall that Ct and Jt(·,0) also belong to Mt(P t−1⊗ qRt ). Thus, (61) at t− 1 and Lemma 13 imply
that cRt−1 ∈Mt−1(P ).

Now, using N
P

t , we construct a P t−1-a.s. finite upper bound for NP,R
t−1 . For all ωt ∈Ω

t,P
, N

P

t (ωt)<

+∞ and recalling (42) and (106), UP
t (ωt,−NP

t (ωt))≤−iRt−1(ωt−1). So, as Ω
t,P

is a P t-full-measure
set, we get that

At :=
{
ωt ∈Ωt, UP

t (ωt,−NP

t (ωt))≤−iRt−1(ωt−1), N
P

t (ωt)<+∞
}

(107)

is also a P t-full-measure set. As UP
t is Bc(Ωt×R)-measurable and iRt−1 is Bc(Ωt−1)-measurable (see

Proposition 6 and Lemma 6), we have that At ∈Bc(Ωt). Let

At−1
1 :=

{
ωt−1 ∈Ωt−1,

∫
Ωt

1At(ω
t−1, ωt)q

P
t (dωt|ωt−1) = 1

}
. (108)

Proposition 11 shows that At−1
1 ∈ Bc(Ωt−1). Moreover, P t−1(At−1

1 ) = 1 as P t−1 ⊗ qPt (At) = 1. Let
ÑP
t−1 : Ωt−1→N∗ ∪{+∞} be defined for all ωt−1 ∈Ωt−1 by,

ÑP
t−1(ωt−1) := inf

{
k≥ 1, qPt (N

P

t (ωt−1, ·)≤ k|ωt−1)≥ 1−
αRt−1(ωt−1)

2

}
.

Fix ωt−1 ∈At−1
1 . Then, limx→+∞ q

P
t (N

P

t (ωt−1, ·)≤ x|ωt−1) = qPt (N
P

t (ωt−1, ·)<+∞|ωt−1) = 1 using

the monotone convergence theorem. So, ÑP
t−1(ωt−1)<+∞ and qPt (N

P

t (ωt−1, ·)≤ ÑP
t−1(ωt−1)|ωt−1)≥

1−αRt−1(ωt−1)/2. Using that UP
t (ωt, ·) is nondecreasing, we get that

qPt (UP
t (ωt−1, ·,−ÑP

t−1(ωt−1))≤−iRt−1(ωt−1)|ωt−1) ≥ 1−
αRt−1(ωt−1)

2
.

So, as P t−1(At−1
1 ) = 1, we find by definition of NP,R

t−1 that

NP,R
t−1 ≤ ÑP

t−1 <+∞ P t−1-a.s. (109)
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Now, we construct a second upper bound for NP,R
t−1 for which the estimation of the moment of order

r is easy for r≥ 1. Let N̂P
t−1 : Ωt−1→N∗ ∪{+∞} be defined for all ωt−1 ∈Ωt−1 by

N̂P
t−1(ωt−1) := 2

EqPt (·|ωt−1)N
P

t (ωt−1, ·)
αRt−1(ωt−1)

.

Let ωt−1 ∈Ωt−1. Applying Markov’s inequality, we get that

qPt (N
P

t (ωt−1, ·)≤ N̂P
t−1(ωt−1)|ωt−1) ≥ 1−

EqPt+1(·|ωt−1)N
P

t (ωt−1, ·)

N̂P
t−1(ωt−1)

= 1−
αRt−1(ωt−1)

2
.

So, by definition of ÑP
t−1, we have that ÑP

t−1(ωt−1)≤ N̂P
t−1(ωt−1) and using also (109) that

NP,R
t−1 ≤ N̂P

t−1 P
t−1-a.s. (110)

Let r≥ 1. Using Jensen’s inequality, we have for all ωt−1 ∈Ωt−1 that

(N̂P
t−1(ωt−1))r =

(
EqPt (·|ωt−1)

2N
P

t (ωt−1, ·)
αRt−1(ωt−1)

)r
≤EqPt (·|ωt−1)

(
2N

P

t (ωt−1, ·)
αRt−1(ωt−1)

)r
.

Now, (110), Fubini’s theorem and Cauchy-Schwarz inequality show that

EP t−1

(
NP,R
t−1

)r ≤ 2r
√

EP t(N
P

t )2r

√
EP t−1

(
1

αRt−1

)2r

.

As a result, if 1/αRt−1 ∈Mt−1(P ) and N
P

t ∈Mt(P ), then NP,R
t−1 ∈Mt−1(P ). Recalling that N

P

t ∈
Mt(P ) under the assumptions of (C1), this shows assertion (C1).

Step 2: case t= T .
We now prove that NP,R

T−1 <+∞ P T−1-a.s and that Assertion (C2) below holds true.
(C2): If 1/αRT−1 ∈MT−1(P ), X, 1/|U(·,X(·))+C(·)| ∈MT (P ) and C(·), U−(·,0)∈MT (P T−1⊗qRT ),
then NP,R

T−1 ∈MT−1(P ). Let

Ω
T,P

:= {C <+∞}∩{U(·,X(·))<−C(·)}∩ {CT−1(·) +JT−1(·,0)<+∞}.

Assumptions 3 and 4, Remark 1 and Proposition 5 show that Ω
T,P ∈ Bc(ΩT ) and is of P -full-

measure. Let ÑP
T : ΩT →R∗ ∪{+∞} be defined for all ωT ∈Ω

T,P
by

ÑP
T (ωT ) :=

(
iRT−1(ωT−1)

|U(ωT ,X(ωT )) +C(ωT )|
+ 1

) 1
γ

|X(ωT )|

and ÑP
T (ωT ) := 1 otherwise. For all ωT ∈ΩT , we set N

P

T (ωT ) := dÑP
T (ωT )e. We see easily that N

P

T

is Bc(ΩT )-measurable (recall that iRT−1 is Bc(ΩT−1)-measurable from Lemma 6).

We show under the conditions of (C2) that N
P

T ∈MT (P ). Indeed, N
P

T ∈MT (P ) if cRT−1, 1/αRT−1 ∈
MT−1(P ) and X, 1/|U(·,X(·))+C(·)| ∈MT (P ). Now as C and U−(·,0) belong toMT (P T−1⊗qRT ),
cRT−1 ∈MT−1(P ), see Lemma 13 and (61) (and also (48) and (49)).

Let ωT ∈ Ω
T,P

. Note that cRT−1(ωT−1) < +∞ using (66) at T − 1. Moreover, αRT−1(ωT−1) > 0 and
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U(ωT ,X(ωT )) +C(ωT )< 0. So, iRT−1(ωT−1)<+∞ and also N
P

T (ωT )<+∞. As U(ωT , ·) is nonde-

creasing and using (4) with x=−|X(ωT )|=X(ωT ) and λ=
ÑPT (ωT )

|X(ωT )| ≥ 1, we find that

U(ωT ,−NP

T (ωT ))≤U(ωT ,−ÑP
T (ωT )) ≤

(
ÑP
T (ωT )

)γ
|X(ωT )|γ

(
U(ωT ,X(ωT )) +C(ωT )

)
≤−iRT−1(ωT−1).

So, we get that Ω
t,P ⊂

{
ωT ∈ΩT , U(ωT ,−NP

T (ωT ))≤−iRT−1(ωT−1) andN
P

T (ωT )<+∞
}

and this

last set is of P -full measure. The rest of the proof is exactly as in Step 1 after (107).

Step 3: We apply Steps 1 and 2 to R= P . Remark that for all 1≤ t≤ T ,Mt(P t−1⊗ qRt ) =Mt(P t)
and NP

t = NP,P
t (see (65)). Thus, (104) for NP

T−1, (105) for NP
t−1 as well as Assertions (A1) and

(A2) hold true.

Step 4: (104) for N∗T−1, (105) for N∗t−1 and Assertions (B1) and (B2) hold true for all 1≤ t≤ T
and P ∈HT .
Let P := qP1 ⊗· · ·⊗qPT ∈HT . Recall P ∗ from (60) and P̂t from (103). Then, P ∗, P̂t ∈HT , see (9). Let
1≤ t≤ T . Steps 1 and 2 applied to P = P̂t and R= P ∗ show that for all ωt−1 in a P̂ t−1

t -full-measure

set, N P̂t,P
∗

t−1 (ωt−1)<+∞ and thus

qP̂tt

(
U P̂t
t (ωt−1, ·,−N P̂t,P

∗

t−1 (ωt−1))≤−iP
∗

t−1(ωt−1)|ωt−1
)
≥ 1−

αP
∗

t−1(ωt−1)

2
.

As Ut ≤U P̂t
t (see Proposition 6) and qP̂tt = qP

∗
t , we get that

qP
∗

t

(
Ut(ω

t−1, ·,−N P̂t,P
∗

t−1 (ωt−1))≤−iP
∗

t−1(ωt−1)|ωt−1
)
≥ 1−

αP
∗

t−1(ωt−1)

2
.

So, we deduce from the definition of N∗t−1 in (63) that

0≤N∗t−1 ≤N
P̂t,P

∗

t−1 <+∞ P̂ t−1
t − a.s. (111)

If t= 1, then, P 0 = δω0 � δω0 = P̂ 0
t . If t > 1, Proposition 12 for l = t− 1 shows that P t−1� P̂ t−1

t .
So, N∗t−1 <+∞ P t−1− a.s. As P is arbitrary, (104) and (105) hold true.

If t= 1, we have that M0(P̂t) =M0(P ) = R. Now, if t > 1, Lemma 11, again with l= t− 1, shows

that Mt−1(P̂t) ⊂Mt−1(P ). For all 2 ≤ t ≤ T , as qP̂tt = qP
∗

t , Mt(P t−1 ⊗ qRt ) =Mt(P̂ t−1
t ⊗ qP∗t ) =

Mt(P̂t). Thus, under the assumptions of (B2) for t (resp. (B1) for T ), Assertion (C1) for t (resp.

(C2) for T ) shows N P̂t,P
∗

t−1 ∈Mt−1(P̂t) ⊂Mt−1(P ). So, (111) and Lemma 12 show that N∗t−1 ∈
Mt−1(P ) and Assertion (B1) for t (resp. (B2) for T ) holds true. �
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