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A B S T R A C T

Convolutional neural networks (CNNs) are gradually being recognized in the neuroimaging community as a
powerful tool for image analysis. Despite their outstanding performances, some aspects of CNN functioning
are still not fully understood by human operators. We postulated that the interpretability of CNNs applied
to neuroimaging data could be improved by investigating their behavior when they are fed data with known
characteristics. We analyzed the ability of 3D CNNs to discriminate between original and altered whole-brain
parametric maps derived from diffusion-weighted magnetic resonance imaging. The alteration consisted in
linearly changing the voxel intensity of either one (monoregion) or two (biregion) anatomical regions in each
brain volume, but without mimicking any neuropathology. Performing ten-fold cross-validation and using
a hold-out set for testing, we assessed the CNNs’ discrimination ability according to the intensity of the
altered regions, comparing the latter’s size and relative position. Monoregion CNNs showed that the larger
the modified region, the smaller the intensity increase needed to achieve good performances. Biregion CNNs
systematically outperformed monoregion CNNs, but could only detect one of the two target regions when
tested on the corresponding monoregion images. Exploiting prior information on training data allowed for
a better understanding of CNN behavior, especially when altered regions were combined. This can inform
about the complexity of CNN pattern retrieval and elucidate misclassified examples, particularly relevant for
pathological data. The proposed analytical approach may serve to gain insights into CNN behavior and guide
the design of enhanced detection systems exploiting our prior knowledge.
1. Introduction

Convolutional neural networks (CNNs) have found great success in
medical image analysis to perform a range of tasks, including classifi-
cation and segmentation [1]. CNNs have shown promise when it comes
to classifying neurological and neurodegenerative disorders [2,3] such
as Alzheimer’s disease (AD) [4] and Parkinson’s disease (PD) [5]. These
networks can directly process raw data freeing researchers from time-
consuming manual feature extraction. Made up of multiple nonlinear
modules that can create representations at simple yet abstract levels,
CNNs automatically learn features during the training phase to optimize
task resolution [6].

Advances in computational resources mean that 3D images can
henceforth be used as input for CNNs. These have several advantages
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over 2D images [7–9]. In particular, 3D CNN architectures can integrate
spatial information from the whole brain [10]. That represents a con-
siderable advantage for data acquired with magnetic resonance imaging
(MRI), which can provide structural and functional information about
the entire brain volume [11].

Despite their remarkable performances, however, CNNs are re-
garded as black boxes, owing to their nontransparent decision-making
process and difficult interpretation, sometimes hindering their us-
age [12,13]. To improve their interpretability, various techniques have
been designed, such as producing explanations at the processing level
(e.g. GradCAM [14], saliency maps [15]) or representations of different
network components (i.e. layers, units), or creating self-explanatory
models [16]. However, explanations remain marginal, as they always
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refer to CNN subparts [13]. As an alternative, we suggest shifting the
focus to data, i.e. creating input data with specific characteristics to
test CNN behavior, instead of solely considering architecture, learning
rules, or objective functions [17].

Brain alterations in neurodegenerative diseases can be complex,
involving several anatomical regions and pathophysiological changes
[18]. Learning from neuropathological data to retrieve a compre-
hensive pathophysiological pattern may thus be extremely difficult
as we cannot know to which extent individual patients’ information
contributes to this process. Inputting more homogeneous knowledge
content into the network might shed light on how different features
(e.g. the involved brain regions and their relative characteristics)
influence CNN performance.

The present study aimed to ascertain whether we can study CNN be-
havior according to the provided input. More specifically, we modified
brain MRI data to evaluate the discrimination ability of the proposed
3D CNN according to changes in the input, i.e. mean diffusivity (MD)
parametric maps. To this end, we made specific alterations to the
intensity of brain MRI data for two anatomical brain regions featured
in mean diffusivity (MD) maps.

MD maps are computed from diffusion-weighted imaging (DWI),
commonly used to extract parameters relating to the Brownian motion
of water molecules [19]. Compared with other MRI indices, MD maps
have the advantage of expressing a quantitative parameter (measured
in mm2/s) that corresponds to the mean voxelwise diffusion of water
molecules [20,21].

Increase in MD values related to pathophysiological changes have
already been observed in AD [22], PD [23] and multiple system atro-
phy (MSA) [24]. Therefore, we altered the original parametric maps
(OPMaps) by linearly increasing the MD values of two specific brain
regions: the cerebellum and putamen. These regions have highly dis-
similar characteristics, in terms of tissue composition, shape, location
and size. They are also affected in several neurodegenerative diseases,
such as PD and MSA [24–28]. We were thus interested in investigat-
ing how even nonpathological modifications to these structures might
impact CNN performance.

Although the alterations featured in the altered parametric maps
(APMaps) were realistic compared to what can be observed in MD
maps as a result of microstructural anomalies, they represented a
plausible general pathological trait rather than reproducing a particular
neuropathology.

To further explore the influence of brain region characteristics, we
accounted for the different sizes of the two anatomical regions under
consideration by extending or reducing the number of modified voxels
while retaining their natural position. This size harmonization was
done merely to analyze CNN behavior when confronted with regions
of comparable size, with no intention of mimicking atrophy or other
pathological conditions. This approach enabled us to establish whether
the position of the target region inside the brain related to the number
of modified voxels (i.e. region size) could impact CNN performance.

The alterations featured in the APMaps allowed us to establish a
ground-truth behavior reflecting the discrimination ability of 3D CNNs
when dealing with region-specific brain MRI parametric maps.

Moreover, we extended our contribution by creating biregion
APMaps, namely APMaps in which both brain regions had been modi-
fied. Even though these modifications were well known from the user’s
point of view, we wished to show that CNN pattern retrieval is not
straightforward when more than one altered region is present in the
input data.

The aim of this study was to describe an approach that might facil-
itate the interpretation of 3D CNNs applied to brain MRI parametric
maps, by inputting known data for the network to learn from. We
postulated that if the input has known characteristics, results are more
predictable and interpretable, given that we can anticipate what the
2

CNN should look for.
To accomplish this aim, we established the regions of interest
and relative features to test (intensity, position, and number of mod-
ified voxels), along with the architecture of the deep learning method
(i.e. 3D CNN), and tracked the latter’s performance. In recent work,
we tested 3D CNNs trained to distinguish OPMaps from APMaps on an
unseen set of 29 patients with MSA and 26 age-matched controls [29].
Performances were comparable to those of the state-of-the-art for dif-
ferentiating patients with MSA from controls, proving the value of using
APMaps to teach CNNs to recognize specific traits [29].

Basing the choice of the relevant parameters (e.g. the type of
alteration, MRI modality, regions involved) on a priori knowledge
concerning a specific pathology, we could investigate the discrimi-
nation abilities of different deep-learning approaches and select the
most suitable one. This will ultimately improve the detection of the
pathology of interest.

2. Materials and methods

This section describes our approach based on the creation of the
APMaps (Section 2.1.3) and their successive exploitation as input data
to a 3D CNN for studying its discrimination ability (Section 2.3).
We aimed to evaluate CNN performance according to the different
modifications introduced into the APMaps, i.e. changing the size and
intensity of one or two brain regions.

2.1. Dataset

2.1.1. Participants and MRI protocol
A total of 89 participants (100% male) underwent brain imaging in

a 3T MRI scanner (Philips Achieva) with a 32-channel head coil at the
INSERM/UPS UMR1214 ToNIC technical platform (Toulouse, France).
The mean age of the participants was 56.19 years (SD = 18.08, range
= 20.67–85.25).

DWI acquisition parameters were as follows: TE = 55 ms; TR =
12.36 s; flip angle = 90◦; FOV = 112 × 112 voxels; number of slices
= 65; voxel size = 2 × 2 × 2 mm3; EPI factor = 59; parallel factor
= 2; phase encoding direction = postero-anterior; b value (number of
directions) = 0 (1), 1000 (32) s/mm2; total acquisition time = 16 min.

This study was approved by the local ethics committee and was
conducted in accordance with the Declaration of Helsinki. Written
informed consent was obtained from all participants. Additional infor-
mation can be found in previous work [30].

2.1.2. Image preprocessing
Diffusion-weighted images were processed with the standard FSL

pipeline [31], using fsl 5.0 [32]. This pipeline includes brain extraction,
correction for eddy current and realignment, and fitting a standard
tensor model to calculate MD (a more detailed description has been
provided in a previous study [33]). We computed mean diffusivity maps
and registered them in Montreal Neurological Institute (MNI) space
with 3 × 3 × 3 mm3 resolution by using nonlinear registration.

2.1.3. Creation of altered parametric maps
We developed a method for modifying MRI parametric maps of

healthy brains by introducing region-specific alterations. To this end,
we applied a linear intensity-based transformation to specific brain
regions in the MD maps.

This straightforward variation in voxel intensity was in line with the
physical meaning of MD maps, in that increased MD values generally
indicate water diffusion anomalies, suggesting reduced microstructural
integrity [19].

We selected the cerebellum and putamen as anatomical regions of

interest, as they differ in four main respects:
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Fig. 1. Schematic representation of the method for creating altered brain MRI para-
metric maps (APMaps). The region of interest is extracted from the original parametric
map, i.e. a healthy subject’s mean diffusivity (MD) map, using an atlas. The altered
parametric map is obtained by linearly increasing the MD values of the considered
region, leaving the rest of the image unchanged.

• Position. The cerebellum is located underneath the brain hemi-
spheres, surrounded by gray matter dorsally (the occipital lobe)
and by the meninges and cerebrospinal fluid ventrally and pos-
teriorly. By contrast, the putamen is located at the base of the
forebrain, surrounded mainly by white matter;

• Morphology. The cerebellum is a single rounded structure,
whereas the putamen, though rounded, is bilateral;

• Size. In normal individuals, the cerebellum has a mean volume of
300 cm3 [34], whereas the putamen has a mean volume of around
3.60 cm3 [35];

• Tissue composition. There is considerable heterogeneity in the
cerebellum, owing to gray and white matter presence along with
cerebrospinal fluid. The putamen is essentially composed of gray
matter tissue.

In addition, the cerebellum and putamen are key regions for the
assessment of a plethora of brain diseases, including motor disorders
and cognitive dysfunctions [36–38]. For example, cerebellar ataxia and
putaminal alterations are both encountered in MSA, categorized as an
atypical Parkinsonian syndrome [24–28], and biomarkers involving the
putamen are currently under development to distinguish Parkinson’s
disease from atypical syndromes [39].

The main steps for creating the APMaps are summarized in Fig. 1.
Regions of interest were extracted from the brain MRI volumes of

normal individuals using an atlas [40]. Only voxels within these regions
underwent the intensity modification, leaving the rest of each image
unaltered.

The modifications to regional intensity were modeled as in Eq. (1),
where 𝑦𝑟,𝑛 and 𝑥𝑟,𝑛 represent the altered and original regions (𝑟), whose
MD values lie below the 𝑛th intensity percentile (𝑛), and 𝑝 indicates the
intensity increase as a percentage. Percentages ranged from 3% to 99%,
in increments of 3%.

𝑦 = (1 + 𝑝) ⋅ 𝑥 (1)
3

𝑟,𝑛 𝑟,𝑛
We chose either the 75th, 90th, or 100th percentile to limit image
saturation effects. The 75th percentile was selected for the cerebellum,
and the 90th for the putamen (for additional details, see Section S1.A,
Supplementary Material).

Concerning size harmonization, we modified the size of each region
by performing morphological operations on the respective atlas-based
masks. Our goal was to determine whether the position of the region in
relation to the number of modified voxels affected CNN performance.

We implemented the following morphological operations on the
region masks:

• Erosion of the cerebellum (E-Cerebellum), to reach a size com-
parable to that of the putamen (about 400 voxels, given our
resolution in MNI space);

• Dilation of the putamen (D-Putamen), to approximately match the
size of the cerebellum (about 7200 voxels, given our resolution in
MNI space).

These changes in region size served solely to establish a fair comparison
to the anatomical reference and were not intended to imitate any
pathological traits. The size harmonization process and examples of
APMaps are given in Fig. 2.

We produced both monoregion APMaps, where only one region
was modified in intensity, and biregion APMaps, where two regions
were modified in intensity. Biregion APMaps are described in detail in
Section 2.3.

2.2. Convolutional neural networks

CNNs allow for automatic feature extraction from multiple arrays
(e.g. 3D images) and usually include a multilayer artificial neural net-
work for classification tasks [6]. Interested readers can find additional
information on CNNs in Section S1.B, Supplementary Material.

In the present study, we devised a 3D CNN for supervised binary
classification, the task being to distinguish OPMaps from APMaps.
Using the entire brain volume as CNN input preserves the spatial
information of the whole MRI at a 3D participant level [41].

An overview of the proposed deep learning approach is provided in
Fig. 3.

The CNN received as input the images (i.e. OPMaps and APMaps)
in the shape of (60, 72, 60) voxels. Given the limited sample size, we
carried out cross-validation as customary in the neuroimaging field [41,
42]. Each dataset (i.e. 89 paired images) was randomly divided: 80%
for training with a ten-fold cross-validation and the remainder to serve
as a hold-out set to assess CNN performance in the testing phase. The
random seed for cross-validation was kept constant. Data normaliza-
tion was performed on the training, validation, and hold-out sets by
considering the maximum value of the training set for each fold. The
best-epoch model with minimum loss value on the validation set was
selected to establish network parameters and be tested on the hold-out
set.

Our 3D CNN architecture was inspired by AlexNet [43] and VGG-
Net [44]. Fig. 4 presents a schematic diagram of our model, comprising
the following building blocks:

• ConvBlock, composed of a convolutional layer characterized by
filter size = 3 × 3 × 3, stride = 1, with an increasing number of
kernels going deeper into the network, and a batch normalization
(BN) layer to speed up learning through a reduction in internal
covariate shift [45], followed by an exponential linear unit (ELU)
as the activation function [46];

• Average Pooling, to retain as much information as possible
throughout the network, with filter size = 2 × 2 × 2 and stride =
2;

• d-FC Block, including a fully connected layer (FCL) with 512
neurons to ensure that enough units were available for the final
classification, followed by a BN layer, an ELU activation, and a
dropout layer, as part of a regularization technique intended to
prevent overfitting [47];
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Fig. 2. Intensity increase and size harmonization. Top: Examples of APMaps according to increase in intensity as a percentage. Arrows point to the altered regions. Bottom: Size
harmonization for the regions of interest with the corresponding number of voxels in each region mask. The brain is displayed in gray and the relevant region is in white. APMaps:
Altered Parametric Maps; D: Dilated; E: Eroded; OPMaps: Original Parametric Maps.
Fig. 3. Main steps of the proposed approach. MRI parametric maps of healthy individuals were modified to create the altered parametric maps by making intensity-based
modifications to specific regions of interest. The original and altered parametric maps were split into three nonoverlapping sets: a training set and a validation set, derived from
a ten-fold cross-validation scheme, and a hold-out set for the testing phase. A 3D convolutional neural network (CNN) was implemented to perform a binary classification task:
original vs. altered parametric maps. The alterations made to the original parametric maps helped to assess how CNN performance varied according to changes in the input data.
• FC Block, same as d-FC Block, but without dropout;
• FCL, fully connected layer for binary classification with two neu-

rons, followed by the softmax activation function.

The model was implemented using Keras library version 2.2.4 [48]
and TensorFlow library version 1.13.1 [49] in Python version 3.6.9,
4

supported by an NVIDIA® Quadro RTX™ 6000 graphical processing
unit.

L2 regularization was applied with a factor of 0.0005 along with
the valid method in convolutional layers to avoid padding [48]. The
model trained over 100 epochs to prevent overfitting, with an initial
learning rate of 0.00005, subject to dynamic reduction if there was
no improvement in performance after five epochs. The training was
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Fig. 4. Schematic diagram of the proposed 3D CNN (a) and its building blocks (b). The
flatten operation yielded a 1-dimensional array for inputting to the FC layers. BN: Batch
Normalization; CNN: Convolutional Neural Network; ELU: Exponential Linear Unit; FC:
Fully Connected; FCL: Fully Connected Layer; prob: dropout probability.

carried out using mini-batch gradient descent, with a batch size of eight
samples to meet computational requirements. Categorical cross-entropy
(i.e. logarithmic loss function) was used with Adam optimizer. This
optimizer is characterized by the combination of an adaptive gradient
algorithm with root mean square propagation and is especially suited
to problems involving large amounts of data [50].

The code for creating the APMaps and the CNN model has been
released in a GitHub repository [51].

For model evaluation, we computed accuracy, measuring the overall
performance of the network, sensitivity and specificity, indicating re-
spectively the proportion of APMaps and OPMaps correctly classified as
such. We provide exhaustive definitions in Section S1.C, Supplementary
Material. All metrics are presented as the median and the interquartile
range (IQR) obtained on the hold-out set, given the adoption of a
ten-fold cross-validation.

2.3. Experiments

CNN performance was first assessed using OPMaps and monoregion
APMaps as input, with intensity increases between 3% and 99%, in
increments of 3%, for each region.
5

Based on these results, we established four levels of accuracy:
very low (VL), low (L), fair (F), and high (H), with reference val-
ues of 0.45, 0.65, 0.85, and 1.00. To create the biregion APMaps,
we combined regions according to their size and the accuracy levels
achieved by the CNN trained with the respective monoregion APMaps.
For brevity’s sake, we defined monoregion-trained and biregion-trained
CNNs according to the input data used in the performance assess-
ment (i.e. monoregion or biregion APMaps together with OPMaps).
Biregion APMaps featured two modified regions, which were paired
according to their size: either different (i.e. Cerebellum/Putamen) or
comparable (i.e. D-Putamen/Cerebellum and E-Cerebellum/Putamen).
Creating biregion APMaps allowed us to increase the complexity of the
input data, thereby approaching realistic pathological conditions where
more than one region is altered while keeping the training content still
known.

Monoregion-trained CNNs were associated with one of the four
accuracy levels depending on the achieved accuracy values. If needed,
additional intensity increases were computed in 1% increments to
match the accuracy levels as closely as possible. When the same ac-
curacy value (e.g. equal to 1.00) corresponded to different intensity
increases, we selected the one with the highest minimum accuracy
across the ten folds presenting the lowest intensity increase.

Biregion APMaps were obtained by applying the method described
in Section 2.1.3 with the intensity increase corresponding to the accu-
racy level and region dictated by the monoregion-trained CNNs (see
Table S1, Supplementary Material).

To evaluate the relative effects of position and size, we exam-
ined all 16 possible combinations of accuracy levels, either the same
(i.e. VL/VL, L/L, F/F, H/H) or different (e.g. VL/L, L/F) between
regions.

Moreover, we compared monoregion-trained CNNs with biregion-
trained CNNs by testing monoregion-trained CNNs on biregion APMaps
and vice versa to find out the contribution of each accuracy level to the
learned patterns. To this end, we examined the following cases:

• CNNs trained with biregion APMaps with the H/H accuracy com-
bination and tested on monoregion APMaps with intensity in-
creases dictated by the corresponding H accuracy level;

• CNNs trained with monoregion APMaps with intensity increases
dictated by the H accuracy level and tested on the corresponding
biregion APMaps with the H/H accuracy combination.

3. Results

3.1. Monoregion-trained CNNs

The investigation of CNN behavior began by assessing the ability to
distinguish between OPMaps and monoregion APMaps modified across
a range of intensity increases. Fig. 5 shows the median accuracy and
IQR achieved on the hold-out set for each intensity increase applied to
the regions.

Cerebellum and D-Putamen CNNs exhibited similar behavior, even
though the former reached maximum accuracy with a higher intensity
increase than the latter (27% vs. 15%).

The Putamen CNN achieved an accuracy of 1.00 at 84%, whereas
the E-Cerebellum CNN only reached an accuracy of 0.81 with an inten-
sity increase of 99%. Despite comparable region size, the E-Cerebellum
CNN only overcame near-to-chance accuracy with a 75% intensity
increase (vs. 45% for the Putamen CNN).

Regarding sensitivity and specificity, we found overall comparable
behavior with respect to accuracy, i.e. increasing performances with
the percentage used to modify the intensity of each brain region in
the APMaps. However, a higher IQR can be observed for the sensitivity
over low-intensity increases, although less evident for the D-Putamen
and Cerebellum CNNs (intensity increase <12%) and the Putamen

CNN (intensity increase <50%). The sensitivity of the E-Cerebellum
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Fig. 5. Performance of the monoregion-trained CNNs. Accuracy on hold-out set given as median and IQR over ten-fold cross-validation according to the intensity increase in the
APMaps. Gray lines indicate the four accuracy levels used for performance assessment. APMaps: Altered Parametric Maps; CNN: Convolutional Neural Network; D: Dilated; E:
Eroded; F: Fair; H: High; IQR: Interquartile Range; L: Low; VL: Very Low.
CNN revealed more fluctuations in the median value and higher IQR
until reaching intensity increases over 90%. The specificity presented
fewer variations and lower IQR compared to the sensitivity across all
monoregion-trained CNNs. These results are available in Section S2.A,
Supplementary Material.

3.2. Biregion-trained CNNs

Biregion-trained CNNs had to distinguish OPMaps from biregion
APMaps featuring two regions modified in intensity. Bar plots in Fig. 6
represent the accuracy achieved by the biregion-trained CNNs com-
pared with the best accuracy reached by the monoregion-trained CNNs
for the different combinations of accuracy levels. Unpaired Student t
tests computed between biregion accuracy and the best monoregion
accuracy showed that biregion performance was significantly better for
most of the VL/VL, L/L, and F/F combinations. For mixed combinations
of F, L, and VL levels, biregion-trained CNNs significantly outperformed
their monoregion counterparts (e.g. for VL/L, L/F). No significant
difference was found only for the combinations VL/VL and F/VL of
the D-Putamen/Cerebellum CNN and VL/F of the Cerebellum/Putamen
CNN. All three pairs of regions showed excellent performance (accuracy
equal to 1.00) when at least one of the two regions was characterized
by the H accuracy level.

Using one-way analysis of variance (ANOVA), we identified mean-
ingful differences in performances between the combinations of levels
of accuracy for the pairs represented by blue, orange, or green bars in
Fig. 6. Accuracy was significantly lower for VL/VL than for the other
combinations, with all the other comparisons (e.g. VL/L vs. L/VL, VL/F
vs. F/VL) revealing smaller differences in accuracy.

For clarity’s sake, significant differences derived from the one-
way ANOVA are not specified in Fig. 6, but are listed in Table S2,
Supplementary Material.

Findings regarding sensitivity and specificity obtained for each
accuracy level did not differ much from what emerged for accuracy,
remaining coherent for most comparisons (see Section S2.B, Supple-
mentary Material).

3.3. Monoregion- vs. Biregion-trained CNNs

We tested monoregion-trained CNNs on their ability to distinguish
OPMaps from biregion APMaps. Similarly, biregion-trained CNNs had
6

to distinguish OPMaps from monoregion APMaps, insofar as the inten-
sity increases between regions in the monoregion and biregion APMaps
were the same.

We can see from Table 1 that monoregion-trained CNNs successfully
classified the altered target regions in each biregion image, achieving
the highest performance for each of them.

By contrast, biregion-trained CNNs performed poorly on some of
the respective monoregion testing images: D-Putamen/Cerebellum CNN
trained with the D-Putamen/Cerebellum APMaps successfully classified
the Cerebellum APMaps achieving a median accuracy of 0.89 but
performed poorly on the D-Putamen APMaps. The biregion CNN trained
with E-Cerebellum/Putamen APMaps achieved a median accuracy of
around 0.65 for both the Putamen and E-Cerebellum APMaps.

Regarding regions of different sizes, the Cerebellum/Putamen CNN
recognized Cerebellum APMaps almost perfectly, with a median ac-
curacy of 0.97, despite the much inferior performance obtained on
the Putamen APMaps, with a median accuracy of 0.50. Overall, the
OPMaps were correctly classified by the biregion-trained CNNs (speci-
ficity equal to 1), whereas the ability to recognize properly the monore-
gion APMaps varied according to the involved region. The Cerebel-
lum/Putamen CNN reported the highest sensitivity (0.94) on the Cere-
bellum APMaps and the lowest on the Putamen APMaps.

4. Discussion

In the present study, we analyzed the behavior of a 3D CNN when
fed with ad hoc modified brain MRI parametric maps.

As we had planned the modifications made to the data, we knew
what content was provided to the CNN, guiding us to interpret and
track the changes in performance according to the input characteristics.
This process would not have been so straightforward had we used a
typical set of pathological data, as these inevitably include unknown
components, owing to the different ways each disease can manifest
itself. We can assume that pattern retrieval becomes more difficult as
the heterogeneity of the data associated with each label increases.

To the best of our knowledge, this is the first study to have fed a
CNN with 3D neuroimaging data altered in a realistic and controlled
manner, i.e. modifying the value of specific brain regions according
to the physical meaning of the relevant MRI index. The results we
obtained were easier to interpret and helped us understand how CNN
behavior changes according to specific input features, such as intensity,
which is sensitive to modifications in a variety of pathologies. In line
with our expectations, we found that the larger the region, the smaller
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Fig. 6. Performance of the biregion-trained CNNs. Median accuracy and IQR on
hold-out set over a ten-fold cross-validation compared with the best performance of
monoregion-trained CNNs considering 16 combinations of accuracy levels. The dollar
sign stands for VL, L, F, H, as all combinations featuring at least one H resulted in equal
performances. ∗ p < 0.05. CNN: Convolutional Neural Network; D: Dilated; E: Eroded;
F: Fair; H: High; IQR: Interquartile Range; L: Low; VL: Very Low. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

the intensity increase required to achieve good performances by the
monoregion-trained CNNs.

In addition, we investigated the influence of the position of the
altered regions inside the brain by creating the D-Putamen and E-
Cerebellum APMaps. These contained a comparable number of mod-
ified voxels to the cerebellum or the putamen.

We found that as more centrally located, the putamen and D-
Putamen outperformed their equally sized but more peripheral coun-
terparts (i.e. the E-Cerebellum and cerebellum). Therefore, it seemed
7

easier for our 3D CNN to detect regions in the center of the brain
rather than on its periphery (e.g. comparing the performance of D-
Putamen CNN vs. Cerebellum CNN in Fig. 5). Nonetheless, additional
experiments may help clarify this point.

Moreover, we could determine an intensity threshold for each brain
region to ensure that the 3D CNN achieved high accuracy, as suggested
by the accuracy plateaus equal to 1.00 in Fig. 5. Considering the
sensitivity, monoregion CNNs showed greater instability on the perfor-
mance of smaller regions, i.e. E-Cerebellum and putamen, especially for
low-intensity increase. Smaller regions with less intense modifications
seemed to complicate the classification task for the CNN. Instead,
the CNN ability to classify OPMaps grew stably with the intensity
increase, as did the accuracy, albeit with higher variability regarding
smaller regions. The more heterogeneous nature of the APMaps due
to the alteration in intensity absent from the OPMaps may explain
this behavior. These findings concretely demonstrate CNN sensitivity to
both the intensity and position of the modified regions and the extent
to which these impacted pattern retrieval.

In a recent study, we used 3D CNNs trained with APMaps and
OPMaps to differentiate between 29 patients with MSA and 26 age-
matched controls [29]. Performances were in accord with the state-
of-the-art for MSA classification, proving that the traits learned from
the APMaps enclosed salient features that could also be detected in
the unseen brain MD maps of patients with MSA. This approach offers
a way of coping with small sample sizes in the case of rare diseases
such as MSA, making it feasible to use deep learning by exploiting a
priori knowledge of the disease. In another recent work [52], a deep
learning fused model based on diffusion-weighted images and clinical
data allowed for predicting the functional outcome of acute ischemic
stroke patients. The automatic feature extraction from DWI and B0
images via a 3D CNN enabled lesion characterization in a data-driven
manner, e.g. incorporating position and tissue variability, which can
be difficult to express with clinical variables. When dealing with mild
stroke severity, the performance was slightly inferior compared to more
severe conditions. These results may align with ours in that detecting
milder modifications can be more challenging.

Using the results obtained with the monoregion-trained CNNs as our
baseline, we examined how the CNN behaved when fed with APMaps
featuring two altered brain regions. We created biregion APMaps based
on four levels of accuracy (VL, L, F, and H, from lowest to highest)
exhibited by the monoregion-trained CNNs and combined the regions
accordingly.

The knowledge content corresponding to the combination of two ac-
curacy levels significantly improved the performances of the biregion-
trained CNNs, compared with when the regions were considered on
their own (see L/L, VL/L, etc., in Fig. 6). This result is encouraging
insofar as each region considered separately provided insufficient infor-
mation, whereas when the regions were combined, there was enough
information to provide a detectable pattern. Most remarkable was the
case of the L/L biregion-trained CNNs, which exceeded the accuracy of
the monoregion-trained CNNs by at least 20%, with a final accuracy
around 0.90. Unsurprisingly, when at least one region was featured
with the H accuracy level, biregion-trained CNNs yielded equally ex-
cellent performances independently of region size. No difference was
found between the mixed accuracy combinations (e.g. VL/L vs. L/VL),
suggesting that the content provided by each accuracy level was enough
to boost performance regardless of the region’s characteristics.

The last part of our investigation was designed to ascertain whether
a biregion-trained CNN could detect abnormal traits in a single region.
If pattern retrieval were simply additive, in terms of the information
provided to the CNN, we would expect the latter to be capable of
detecting each altered region individually.

In the case of monoregion-trained CNNs tested on the biregion
APMaps, we found that they performed well on each region, as can be
observed from Table 1. By contrast, when we used monoregion APMaps
to test biregion-trained CNNs, the latter performed more poorly than
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Table 1
Monoregion- vs. Biregion-Trained CNNs: CNNs trained with monoregion APMaps matching the H accuracy level were tested on the corresponding
H/H biregion hold-out set and vice versa. Metrics are provided as median (IQR) over a ten-fold cross-validation. APMaps: Altered Parametric
Maps; CNN: Convolutional Neural Network; D: Dilated; E: Eroded; H: High; IQR: Interquartile Range.
Training Testing

Monoregion-trained CNN Biregion APMaps Accuracy Sensitivity Specificity

Cerebellum Cerebellum/Putamen 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Putamen 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

E-Cerebellum E-Cerebellum/Putamen 1.00 (0.03) 1.00 (0.06) 1.00 (0.00)
Putamen 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

D-Putamen D-Putamen/Cerebellum 1.00 (0.03) 1.00 (0.06) 1.00 (0.00)
Cerebellum 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

Biregion-trained CNN Monoregion APMaps Accuracy Sensitivity Specificity

Cerebellum/Putamen Cerebellum 0.97 (0.02) 0.94 (0.04) 1.00 (0.00)
Putamen 0.50 (0.02) 0.00 (0.04) 1.00 (0.00)

E-Cerebellum/Putamen E-Cerebellum 0.64 (0.08) 0.28 (0.17) 1.00 (0.00)
Putamen 0.65 (0.03) 0.31 (0.06) 1.00 (0.00)

D-Putamen/Cerebellum D-Putamen 0.56 (0.08) 0.11 (0.15) 1.00 (0.00)
Cerebellum 0.89 (0.10) 0.78 (0.21) 1.00 (0.00)
the relevant monoregion-trained CNN on at least one of the two re-
gions. Monoregion- and biregion-trained CNNs presented all maximum
specificity but varied in sensitivity, proving that the positive class,
i.e. the APMaps, carried somewhat different information compared to
the training content. One possible explanation is that the biregion-
trained CNNs learned a multispatial signature, which was absent from
the monoregion APMaps, hence the unsatisfactory performances on
most regions considered singly. Given the results in Table 1, we can say
that either the larger yet less intense region (i.e. cerebellum in the Cere-
bellum/Putamen CNN), or the more intense yet more peripheral region
(i.e. cerebellum in the D-Putamen/Cerebellum CNN) was well detected
(more details in Table S1, Supplementary Material). This suggests that
in the presence of more than one altered region, more importance may
be given to specific characteristics of the altered regions (e.g. intensity,
size, and position) during the feature extraction process and/or the final
classification.

These findings could inform clinical research. Neurodegenerative le-
sions start in one specific site and spread as the disease progresses [18].
Consequently, monoregion APMaps may represent early pathologi-
cal states and biregion APMaps more advanced states. CNNs trained
with data derived from early pathological conditions (e.g. monoregion
APMaps) may also be able to classify advanced stages (e.g. biregion
APMaps) involving the same region. Using biregion APMaps to classify
earlier pathological conditions may be less effective, depending on the
region of interest, as the learned patterns may carry a multispatial
signature incompatible with an earlier stage of the disease. Therefore,
building region-specific CNNs may ameliorate detection accuracy for
abnormalities in a particular brain region. The successive merging of
these results, for instance, by using majority voting or other techniques,
may eventually boost the overall performance. In this regard, the mod-
ifications applied to the brain regions studied here were oversimplified
compared to the complexity of neuropathological patterns. We aimed
to ascertain how the interpretation of CNN behavior is affected when
we operators are well-informed about the data these systems learn from
and how we can use this advantage fully to our benefit.

One limitation of the present study was the small sample size,
related to the use of real-world neuroimaging data. Nevertheless, mod-
ifying brain parametric maps of healthy individuals across a wide age
range enabled us to preserve the interindividual variability and intrinsic
heterogeneity in terms of morphology and anatomy. The advantage
here lies in reducing the distortions or artifacts that may arise from
a completely artificial set [53,54]. Although moderate, this sample size
allowed for testing on an external unseen set of pathological data as
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demonstrated in a previous study [29], reaching a good generalization
performance (accuracy higher than 0.8). In future work, we plan to
extend the sample size, including female subjects as well, and evaluate
the impact of increasing sample size with specific input characteristics
on the network’s performance.

Another deep learning approach, namely autoencoders for unsuper-
vised anomaly detection (UAD), relying on the images of healthy con-
trols for training, has been burgeoning with promising results, e.g. for
the detection of brain tumors or multiple sclerosis lesions [55,56].
This unsupervised strategy can cope with data scarcity encountered
in the medical domain, as no annotation is needed for training [57].
Briefly, anomalies in a patient population can result from the poor
reconstruction provided by the autoencoder, as it learned to model
the distribution of the healthy brain from the images. A recent study
explored autoencoders to detect subtle anomalies from brain diffusion
MRI of 129 de novo PD patients proposing different autoencoders
trained on a set of 56 healthy controls [58]. Overall, diffuse cerebral
anomalies were revealed rather than finding a specific biomarker for
early PD. However, the reconstruction ability of the model seemed
poorer for small regions, such as the substantia nigra, which is of great
interest in PD pathophysiology. A way to combine the strength of the
latter and our approach would be to create altered parametric maps
targeting the substantia nigra and explore the reconstruction ability
of the autoencoder to determine a sensitivity threshold. Compared
with UAD approaches, our goal was to better interpret supervised
CNN behavior thanks to prior knowledge of the data, whereas UAD
does not require a ground truth to work well, being unsupervised, but
could reveal new information about the data. Although different, both
approaches could benefit from these complementary aspects to reach
maximum potential. In this regard, a recent study on anomaly detection
and segmentation tasks exploited real and synthetic data to test the
capacity of variational autoencoders and transformers applied to 2D
and 3D medical images [59]. Remarkably, performances dropped when
the intensity modification of the synthetic images got closer to tissue
characteristics. These experiments can thus facilitate our interpreta-
tion of deep learning methods applied to supervised and unsupervised
settings.

It goes without saying that the results discussed in this study are
closely related to the 3D CNN architecture we adopted and the brain
regions we chose when modifying the MRI data. However, this encour-
ages us to explore a variety of settings, now that we have established
a baseline. Indeed, beginning from prior knowledge about a particu-
lar pathological condition, we could explore any CNN architecture’s

discrimination capacity by feeding more targeted APMaps.
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5. Conclusion

In the present study, we investigated the discrimination ability of
a 3D CNN to distinguish original from altered whole-brain MRI para-
metric maps. By linearly modifying the intensity of one (monoregion)
or two (biregion) brain regions, i.e. the cerebellum and putamen, we
showed how salient input features, such as size, position, and intensity,
influence CNN performance. Although these alterations were indepen-
dent of any specific neuropathology, they were in line with the physical
significance of the considered MRI index.

Monoregion-trained CNNs proved that the greater and more in-
tense the modified region, the easier its discrimination. Results from
biregion-trained CNNs were significantly better than those from their
monoregion counterpart, pointing out the importance of the joined
contribution of the altered regions rather than considering them alone.

Creating APMaps with different target regions and types of MRI
data may help us to customize CNNs, and respond to specific concerns
about why certain patterns are better discriminated than others, thanks
to the ground truth constituted by the APMaps. These have already
been used as ground truth images to assess the performance of a
straightforward visualization technique for CNN interpretability in the
case of 3D neuroimaging data, opening up the way for other possible
uses [60].

Building on the present study, we intend to increase the input
complexity by creating APMaps that evoke specific pathologies and
evaluating how CNNs react to increasingly varied knowledge content.
We hope our approach will pave the way for further applications
comprising different deep learning architectures and regions of interest,
possibly even beyond the brain, to favor the interpretability (and hence
the use) of deep learning applied to biomedical data. These findings are
just the starting point when it comes to grasping how the complexity
of input data influences CNN pattern retrieval.

Funding

This research did not receive any specific grant from funding agen-
cies in the public, commercial, or not-for-profit sectors.

CRediT authorship contribution statement

Giulia Maria Mattia: Writing – review & editing, Writing – original
raft, Validation, Software, Methodology, Formal analysis, Data cura-
ion, Conceptualization. Edouard Villain: Writing – review & editing,

riting – original draft. Federico Nemmi: Writing – review & editing,
riting – original draft. Marie-Véronique Le Lann: Writing – review &

diting, Writing – original draft. Xavier Franceries: Writing – review &
diting, Writing – original draft, Supervision, Methodology, Conceptu-
lization. Patrice Péran: Writing – review & editing, Writing – original
raft, Supervision, Methodology, Conceptualization.

eclaration of competing interest

The authors declare no conflict of interest.

ata availability

The data that support the findings of this study may be available
pon reasonable request.

cknowledgments

We would like to thank the MRI technical platform at Toulouse
euroimaging Center (ToNIC), Université de Toulouse, Inserm, UPS,
9

rance.
Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.artmed.2024.102897.

References

[1] Litjens G, et al. A survey on deep learning in medical image analysis. Med Image
Anal 2017;42:60–88. http://dx.doi.org/10.1016/j.media.2017.07.005.

[2] Vieira S, Pinaya WHL, Mechelli A. Using deep learning to investigate the
neuroimaging correlates of psychiatric and neurological disorders: Methods and
applications. Neurosci Biobehav Rev 2017;74:58–75. http://dx.doi.org/10.1016/
j.neubiorev.2017.01.002.

[3] Noor MBT, Zenia NZ, Kaiser MS, Mahmud M, Mamun SA. Detecting neurode-
generative disease from MRI: A brief review on a deep learning perspective.
In: Lecture notes in computer science (including subseries lecture notes in
artificial intelligence and lecture notes in bioinformatics). LNAI, LNAI, 2019;Vol.
11976:115–25. http://dx.doi.org/10.1007/978-3-030-37078-7_12.URL https://
link.springer.com/chapter/10.1007/978-3-030-37078-7_12,

[4] Payan A, Montana G. Predicting Alzheimer’s disease: a neuroimaging study with
3D convolutional neural networks. 2015, arXiv:1502.02506, Preprint.

[5] Martínez-Murcia FJ, et al. A 3D convolutional neural network approach for
the diagnosis of Parkinson’s disease. In: Ferrández Vicente JM, Ramón A-SJ,
de la Paz López F, Toledo Moreo J, Adeli H, editors. Natural and artificial
computation for biomedicine and neuroscience. Cham: Springer International
Publishing; 2017, p. 324–33. http://dx.doi.org/10.1007/978-3-319-59740-9_32.

[6] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521:436–44. http:
//dx.doi.org/10.1038/nature14539.

[7] Esmaeilzadeh S, Yang Y, Adeli E. End-to-end Parkinson disease diagnosis using
brain MR-images by 3D-CNN. 2018, arXiv:1806.05233, Preprint.

[8] Sarraf S, DeSouza DD, Anderson J, Tofighi G, for the Alzheimer’s Disease
Neuroimaging Initiativ. DeepAD: Alzheimer’s disease classification via deep
convolutional neural networks using MRI and fMRI. bioRxiv 2017. http://dx.
doi.org/10.1101/070441, URL https://www.biorxiv.org/content/early/2017/01/
14/070441, Preprint.

[9] Hosseini-Asl E, Ghazal M, Mahmoud AH, Aslantas A, Shalaby AM, Casanova MF,
Barnes GN, Gimel’farb GL, Keynton RS, El-Baz AS. Alzheimer’s disease di-
agnostics by a 3D deeply supervised adaptable convolutional network. Front
Biosci-Landmark (FBL) 2018;23(3):584–96. http://dx.doi.org/10.2741/4606.

[10] Trivizakis E, et al. Extending 2-D convolutional neural networks to 3-D for
advancing deep learning cancer classification with application to MRI liver tumor
differentiation. IEEE J Biomed Health Inf 2019;23:923–30. http://dx.doi.org/10.
1109/JBHI.2018.2886276.

[11] Rosenbloom M, Pfefferbaum A. Magnetic resonance imaging of the living brain:
Evidence for brain degeneration among alcoholics and recovery with abstinence.
Alcohol Res Health 2008;31:362–76.

[12] Shrikumar A, Greenside P, Kundaje A. Learning important features through
propagating activation differences. In: Proceedings of the 34th international
conference on machine learning - volume 70. ICML ’17, JMLR.org; 2017, p.
3145–53.

[13] Elton DC. Self-explaining AI as an alternative to interpretable AI. In: Goertzel B,
Panov AI, Potapov A, Yampolskiy R, editors. Artificial general intelligence. Cham:
Springer International Publishing; 2020, p. 95–106. http://dx.doi.org/10.1007/
978-3-030-52152-3_10.

[14] Selvaraju RR, Das A, Vedantam R, Cogswell M, Parikh D, Batra D. Grad-CAM:
Visual explanations from deep networks via gradient-based localization. Int J
Comput Vis 2019;128:336–59. http://dx.doi.org/10.1109/ICCV.2017.74.

[15] Simonyan K, Vedaldi A, Zisserman A. Deep inside convolutional networks:
Visualising image classification models and saliency maps. In: Bengio Y, LeCun Y,
editors. 2nd international conference on learning representations, ICLR 2014,
banff, AB, Canada, April 14-16, 2014, workshop track proceedings. 2014, URL
http://arxiv.org/abs/1312.6034.

[16] Gilpin LH, Bau D, Yuan BZ, Bajwa A, Specter M, Kagal L. Explaining explana-
tions: An overview of interpretability of machine learning. In: 2018 IEEE 5th
international conference on data science and advanced analytics. DSAA, 2018,
p. 80–9. http://dx.doi.org/10.1109/DSAA.2018.00018.

[17] Richards BA, et al. A deep learning framework for neuroscience. Nat Rev
Neurosci 2019;22:1761–70. http://dx.doi.org/10.1038/s41593-019-0520-2.

[18] Brettschneider J, Tredici K, Lee V, Trojanowski J. Spreading of pathology
in neurodegenerative diseases: A focus on human studies. Nat Rev Neurosci
2015;16:109–20. http://dx.doi.org/10.1038/nrn3887.

[19] Bihan D. Looking into the functional architecture of the brain with diffusion
MRI. Nat Rev Neurosci 2003;4:469–80. http://dx.doi.org/10.1038/nrn1119.

[20] Kim H, Kim S, Kim HS, Choi C, Lee C. Alterations of mean diffusivity in
brain white matter and deep gray matter in Parkinson’s disease. Neurosci Lett
2013;550:64–8. http://dx.doi.org/10.1016/j.neulet.2013.06.050.

[21] Vos S, Jones D, Jeurissen B, Viergever M, Leemans A. The influence of complex
white matter architecture on the mean diffusivity in diffusion tensor MRI of
the human brain. NeuroImage 2012;59:2208–16. http://dx.doi.org/10.1016/j.

neuroimage.2011.09.086.

https://doi.org/10.1016/j.artmed.2024.102897
http://dx.doi.org/10.1016/j.media.2017.07.005
http://dx.doi.org/10.1016/j.neubiorev.2017.01.002
http://dx.doi.org/10.1016/j.neubiorev.2017.01.002
http://dx.doi.org/10.1016/j.neubiorev.2017.01.002
http://dx.doi.org/10.1007/978-3-030-37078-7_12
https://link.springer.com/chapter/10.1007/978-3-030-37078-7_12
https://link.springer.com/chapter/10.1007/978-3-030-37078-7_12
https://link.springer.com/chapter/10.1007/978-3-030-37078-7_12
http://arxiv.org/abs/1502.02506
http://dx.doi.org/10.1007/978-3-319-59740-9_32
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/nature14539
http://arxiv.org/abs/1806.05233
http://dx.doi.org/10.1101/070441
http://dx.doi.org/10.1101/070441
http://dx.doi.org/10.1101/070441
https://www.biorxiv.org/content/early/2017/01/14/070441
https://www.biorxiv.org/content/early/2017/01/14/070441
https://www.biorxiv.org/content/early/2017/01/14/070441
http://dx.doi.org/10.2741/4606
http://dx.doi.org/10.1109/JBHI.2018.2886276
http://dx.doi.org/10.1109/JBHI.2018.2886276
http://dx.doi.org/10.1109/JBHI.2018.2886276
http://refhub.elsevier.com/S0933-3657(24)00139-8/sb11
http://refhub.elsevier.com/S0933-3657(24)00139-8/sb11
http://refhub.elsevier.com/S0933-3657(24)00139-8/sb11
http://refhub.elsevier.com/S0933-3657(24)00139-8/sb11
http://refhub.elsevier.com/S0933-3657(24)00139-8/sb11
http://refhub.elsevier.com/S0933-3657(24)00139-8/sb12
http://refhub.elsevier.com/S0933-3657(24)00139-8/sb12
http://refhub.elsevier.com/S0933-3657(24)00139-8/sb12
http://refhub.elsevier.com/S0933-3657(24)00139-8/sb12
http://refhub.elsevier.com/S0933-3657(24)00139-8/sb12
http://refhub.elsevier.com/S0933-3657(24)00139-8/sb12
http://refhub.elsevier.com/S0933-3657(24)00139-8/sb12
http://dx.doi.org/10.1007/978-3-030-52152-3_10
http://dx.doi.org/10.1007/978-3-030-52152-3_10
http://dx.doi.org/10.1007/978-3-030-52152-3_10
http://dx.doi.org/10.1109/ICCV.2017.74
http://arxiv.org/abs/1312.6034
http://dx.doi.org/10.1109/DSAA.2018.00018
http://dx.doi.org/10.1038/s41593-019-0520-2
http://dx.doi.org/10.1038/nrn3887
http://dx.doi.org/10.1038/nrn1119
http://dx.doi.org/10.1016/j.neulet.2013.06.050
http://dx.doi.org/10.1016/j.neuroimage.2011.09.086
http://dx.doi.org/10.1016/j.neuroimage.2011.09.086
http://dx.doi.org/10.1016/j.neuroimage.2011.09.086


Artificial Intelligence In Medicine 153 (2024) 102897G.M. Mattia et al.
[22] Eustache P, Nemmi F, Saint-Aubert L, Pariente J, Péran P. Multimodal mag-
netic resonance imaging in Alzheimer’s disease patients at prodromal stage. J
Alzheimer’s Dis 2016;50:1035–50. http://dx.doi.org/10.3233/JAD-150353.

[23] Péran P, et al. Magnetic resonance imaging markers of Parkinson’s disease
nigrostriatal signature. Brain 2010;133(11):3423–33. http://dx.doi.org/10.1093/
brain/awq212.

[24] Péran P, et al. MRI supervised and unsupervised classification of Parkinson’s
disease and multiple system atrophy. Mov Disord 2018;33:600–8. http://dx.doi.
org/10.1002/mds.27307.

[25] Berg D, Steinberger J, Olanow CW, Naidich T, Yousry T. Milestones in magnetic
resonance imaging and transcranial sonography of movement disorders. Mov
Disord 2011;26(6):979–92. http://dx.doi.org/10.1002/mds.23766.

[26] Shin H, Kang S, Yang JH, Kim H, Lee M-S, Sohn Y. Use of the putamen/caudate
volume ratio for early differentiation between parkinsonian variant of mul-
tiple system atrophy and Parkinson Disease. J Clin Neurol (Seoul, Korea)
2007;3(2):79–81. http://dx.doi.org/10.3988/jcn.2007.3.2.79.

[27] Seppi K, et al. Progression of putaminal degeneration in multiple system atrophy:
A serial diffusion MR study. NeuroImage 2006;31:240–5. http://dx.doi.org/10.
1016/j.neuroimage.2005.12.006.

[28] Barbagallo G, et al. Multimodal MRI assessment of nigro-striatal pathway in
multiple system atrophy and Parkinson disease. Mov Disord 2016;31(3):325–34.
http://dx.doi.org/10.1002/mds.26471.

[29] Mattia GM, Villain E, Nemmi F, Rascol O, Meissner WG, Franceries X, Péran P.
Neurodegenerative traits detected via 3D CNNs trained with simulated brain
MRI: Prediction supported by visualization of discriminant voxels. In: 2021 IEEE
international conference on bioinformatics and biomedicine. BIBM, 2021, p.
1437–42. http://dx.doi.org/10.1109/BIBM52615.2021.9669894.

[30] Nemmi F, Levardon M, Péran P. Brain-age estimation accuracy is signifi-
cantly increased using multishell free-water reconstruction. Hum Brain Mapp
2022;43:2365–76. http://dx.doi.org/10.1002/hbm.25792.

[31] Behrens T, et al. Characterization and propagation of uncertainty in diffusion-
weighted MR imaging. Magn Reson Med 2003;50(5):1077–88. http://dx.doi.org/
10.1002/mrm.10609.

[32] Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. FSL. NeuroIm-
age 2012;62(2):782–90. http://dx.doi.org/10.1016/j.neuroimage.2011.09.015,
URL https://www.sciencedirect.com/science/article/pii/S1053811911010603,
20 YEARS OF fMRI.

[33] Nemmi F, Pavy-Le Traon A, Phillips O, Galitzky M, Meissner W, Rascol O,
Péran P. A totally data-driven whole-brain multimodal pipeline for the discrimi-
nation of Parkinson’s disease, multiple system atrophy and healthy control. Neu-
roImage: Clin 2019;23:101858. http://dx.doi.org/10.1016/j.nicl.2019.101858,
URL https://www.sciencedirect.com/science/article/pii/S2213158219302086.

[34] Shepherd G. The synaptic organization of the brain. New York: Oxford University
Press; 2004, http://dx.doi.org/10.1093/acprof:oso/9780195159561.001.1.

[35] Yin D, Valles F, Fiandaca M, Forsayeth J, Bankiewicz K. Striatal volume
differences between non-human and human primates. J Neurosci Methods
2009;176:200–5. http://dx.doi.org/10.1016/j.jneumeth.2008.08.027.

[36] Molinari M, Leggio M. Cerebellum: Clinical pathology. In: Encyclopedia of
neuroscience. Elsevier Ltd; 2010, p. 737–42. http://dx.doi.org/10.1016/B978-
008045046-9.00567-2.

[37] Viñas-Guasch N, Wu YJ. The role of the putamen in language: a meta-analytic
connectivity modeling study. Brain Struct Funct 2017;222:3991–4004. http://dx.
doi.org/10.1007/s00429-017-1450-y.

[38] Haber S. Corticostriatal circuitry. Dialogues Clin Neurosci 2016;18:7–21. http:
//dx.doi.org/10.31887/DCNS.2016.18.1/shaber.

[39] Michell A, Lewis S, Foltynie T, Barker R. Biomarkers and Parkinson’s disease.
Brain 2004;127 Pt 8:1693–705. http://dx.doi.org/10.1093/brain/awh198.

[40] Hammers A, et al. Three-dimensional maximum probability atlas of the hu-
man brain, with particular reference to the temporal lobe. Hum Brain Mapp
2003;19(4):224–47. http://dx.doi.org/10.1002/hbm.10123.

[41] Wen J, et al. Convolutional neural networks for classification of Alzheimer’s dis-
ease: Overview and reproducible evaluation. Med Image Anal 2020;63:101694.
http://dx.doi.org/10.1016/j.media.2020.101694.

[42] Qureshi MNI, Oh J, Lee B. 3D-CNN based discrimination of schizophrenia using
resting-state fMRI. Artif Intell Med 2019;98:10–7. http://dx.doi.org/10.1016/j.
artmed.2019.06.003.

[43] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convo-
lutional neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ,
editors. Adv Neural Inf Process Syst 2012;25. URL https://proceedings.neurips.
cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.
10
[44] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale
image recognition. In: Bengio Y, LeCun Y, editors. 3rd international conference
on learning representations, ICLR 2015, san diego, CA, USA, May 7-9, 2015,
conference track proceedings. 2015, URL http://arxiv.org/abs/1409.1556.

[45] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In: Proceedings of the 32nd international
conference on international conference on machine learning - volume 37. ICML
’15, JMLR.org; 2015, p. 448–56.

[46] Clevert D, Unterthiner T, Hochreiter S. Fast and accurate deep network learning
by exponential linear units (ELUs). In: Bengio Y, LeCun Y, editors. 4th interna-
tional conference on learning representations, ICLR 2016, san juan, puerto rico,
May 2-4, 2016, conference track proceedings. 2016, URL http://arxiv.org/abs/
1511.07289.

[47] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout:
A simple way to prevent neural networks from overfitting. J Mach Learn Res
2014;15(56):1929–58, URL http://jmlr.org/papers/v15/srivastava14a.html.

[48] Chollet F, et al. Keras. 2015, https://keras.io.
[49] Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A,

Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M,
Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R,
Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I,
Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P,
Wattenberg M, Wicke M, Yu Y, Zheng X. TensorFlow: Large-scale machine
learning on heterogeneous systems. 2015, URL https://www.tensorflow.org/,
Software available from tensorflow.org.

[50] Kingma DP, Ba J. Adam: A method for stochastic optimization. In: Bengio Y,
LeCun Y, editors. 3rd international conference on learning representations, ICLR
2015, san diego, CA, USA, May 7-9, 2015, conference track proceedings. 2015,
URL http://arxiv.org/abs/1412.6980.

[51] Mattia GM. CNNDiscriminationAbility. 2023, https://github.com/
GiuliaMariaMattia/CNNDiscriminationAbility.

[52] Liu Y, Yu Y, Ouyang J, Jiang B, Yang G, Ostmeier S, Wintermark M, Michel P,
Liebeskind DS, Lansberg MG, Albers GW, Zaharchuk G. Functional outcome
prediction in acute ischemic stroke using a fused imaging and clinical deep learn-
ing model. Stroke 2023;54:2316–27. http://dx.doi.org/10.1161/STROKEAHA.
123.044072.

[53] Kazuhiro K, et al. Generative adversarial networks for the creation of realistic
artificial brain magnetic resonance images. Tomography 2018;4:159–63. http:
//dx.doi.org/10.18383/j.tom.2018.00042.

[54] Laino ME, Cancian P, Politi LS, Della Porta MG, Saba L, Savevski V.
Generative adversarial networks in brain imaging: A narrative review. J Imag-
ing 2022;8(4). http://dx.doi.org/10.3390/jimaging8040083, URL https://www.
mdpi.com/2313-433X/8/4/83.

[55] Baur C, Denner S, Wiestler B, Navab N, Albarqouni S. Autoencoders for
unsupervised anomaly segmentation in brain MR images: A comparative study.
Med Image Anal 2021;69. http://dx.doi.org/10.1016/j.media.2020.101952.

[56] Kascenas A, Pugeault N, O’Neil AQ. Denoising autoencoders for unsupervised
anomaly detection in brain MRI. In: Konukoglu E, Menze B, Venkataraman A,
Baumgartner C, Dou Q, Albarqouni S, editors. Proceedings of the 5th inter-
national conference on medical imaging with deep learning. Proceedings of
machine learning research, Vol. 172, PMLR; 2022, p. 653–64, URL https://
proceedings.mlr.press/v172/kascenas22a.html.

[57] Baur C, Wiestler B, Muehlau M, Zimmer C, Navab N, Albarqouni S. Modeling
healthy anatomy with artificial intelligence for unsupervised anomaly detec-
tion in brain MRI. Radiol: Artif Intell 2021;3. http://dx.doi.org/10.1148/ryai.
2021190169.

[58] Muñoz-Ramírez V, Kmetzsch V, Forbes F, Meoni S, Moro E, Dojat M. Subtle
anomaly detection: Application to brain MRI analysis of de novo parkinsonian
patients. Artif Intell Med 2022;125. http://dx.doi.org/10.1016/j.artmed.2022.
102251.

[59] Pinaya WH, Tudosiu PD, Gray R, Rees G, Nachev P, Ourselin S, Cardoso MJ.
Unsupervised brain imaging 3D anomaly detection and segmentation with
transformers. Med Image Anal 2022;79. http://dx.doi.org/10.1016/j.media.2022.
102475.

[60] Villain E, Mattia GM, Nemmi F, Péran P, Franceries X, Le Lann MV. Visual
interpretation of CNN decision-making process using simulated brain MRI. In:
2021 IEEE 34th international symposium on computer-based medical systems.
CBMS, 2021, p. 515–20. http://dx.doi.org/10.1109/CBMS52027.2021.00102.

http://dx.doi.org/10.3233/JAD-150353
http://dx.doi.org/10.1093/brain/awq212
http://dx.doi.org/10.1093/brain/awq212
http://dx.doi.org/10.1093/brain/awq212
http://dx.doi.org/10.1002/mds.27307
http://dx.doi.org/10.1002/mds.27307
http://dx.doi.org/10.1002/mds.27307
http://dx.doi.org/10.1002/mds.23766
http://dx.doi.org/10.3988/jcn.2007.3.2.79
http://dx.doi.org/10.1016/j.neuroimage.2005.12.006
http://dx.doi.org/10.1016/j.neuroimage.2005.12.006
http://dx.doi.org/10.1016/j.neuroimage.2005.12.006
http://dx.doi.org/10.1002/mds.26471
http://dx.doi.org/10.1109/BIBM52615.2021.9669894
http://dx.doi.org/10.1002/hbm.25792
http://dx.doi.org/10.1002/mrm.10609
http://dx.doi.org/10.1002/mrm.10609
http://dx.doi.org/10.1002/mrm.10609
http://dx.doi.org/10.1016/j.neuroimage.2011.09.015
https://www.sciencedirect.com/science/article/pii/S1053811911010603
http://dx.doi.org/10.1016/j.nicl.2019.101858
https://www.sciencedirect.com/science/article/pii/S2213158219302086
http://dx.doi.org/10.1093/acprof:oso/9780195159561.001.1
http://dx.doi.org/10.1016/j.jneumeth.2008.08.027
http://dx.doi.org/10.1016/B978-008045046-9.00567-2
http://dx.doi.org/10.1016/B978-008045046-9.00567-2
http://dx.doi.org/10.1016/B978-008045046-9.00567-2
http://dx.doi.org/10.1007/s00429-017-1450-y
http://dx.doi.org/10.1007/s00429-017-1450-y
http://dx.doi.org/10.1007/s00429-017-1450-y
http://dx.doi.org/10.31887/DCNS.2016.18.1/shaber
http://dx.doi.org/10.31887/DCNS.2016.18.1/shaber
http://dx.doi.org/10.31887/DCNS.2016.18.1/shaber
http://dx.doi.org/10.1093/brain/awh198
http://dx.doi.org/10.1002/hbm.10123
http://dx.doi.org/10.1016/j.media.2020.101694
http://dx.doi.org/10.1016/j.artmed.2019.06.003
http://dx.doi.org/10.1016/j.artmed.2019.06.003
http://dx.doi.org/10.1016/j.artmed.2019.06.003
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
http://arxiv.org/abs/1409.1556
http://refhub.elsevier.com/S0933-3657(24)00139-8/sb45
http://refhub.elsevier.com/S0933-3657(24)00139-8/sb45
http://refhub.elsevier.com/S0933-3657(24)00139-8/sb45
http://refhub.elsevier.com/S0933-3657(24)00139-8/sb45
http://refhub.elsevier.com/S0933-3657(24)00139-8/sb45
http://refhub.elsevier.com/S0933-3657(24)00139-8/sb45
http://refhub.elsevier.com/S0933-3657(24)00139-8/sb45
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1511.07289
http://jmlr.org/papers/v15/srivastava14a.html
https://keras.io
https://www.tensorflow.org/
http://tensorflow.org
http://arxiv.org/abs/1412.6980
https://github.com/GiuliaMariaMattia/CNNDiscriminationAbility
https://github.com/GiuliaMariaMattia/CNNDiscriminationAbility
https://github.com/GiuliaMariaMattia/CNNDiscriminationAbility
http://dx.doi.org/10.1161/STROKEAHA.123.044072
http://dx.doi.org/10.1161/STROKEAHA.123.044072
http://dx.doi.org/10.1161/STROKEAHA.123.044072
http://dx.doi.org/10.18383/j.tom.2018.00042
http://dx.doi.org/10.18383/j.tom.2018.00042
http://dx.doi.org/10.18383/j.tom.2018.00042
http://dx.doi.org/10.3390/jimaging8040083
https://www.mdpi.com/2313-433X/8/4/83
https://www.mdpi.com/2313-433X/8/4/83
https://www.mdpi.com/2313-433X/8/4/83
http://dx.doi.org/10.1016/j.media.2020.101952
https://proceedings.mlr.press/v172/kascenas22a.html
https://proceedings.mlr.press/v172/kascenas22a.html
https://proceedings.mlr.press/v172/kascenas22a.html
http://dx.doi.org/10.1148/ryai.2021190169
http://dx.doi.org/10.1148/ryai.2021190169
http://dx.doi.org/10.1148/ryai.2021190169
http://dx.doi.org/10.1016/j.artmed.2022.102251
http://dx.doi.org/10.1016/j.artmed.2022.102251
http://dx.doi.org/10.1016/j.artmed.2022.102251
http://dx.doi.org/10.1016/j.media.2022.102475
http://dx.doi.org/10.1016/j.media.2022.102475
http://dx.doi.org/10.1016/j.media.2022.102475
http://dx.doi.org/10.1109/CBMS52027.2021.00102

	Investigating the discrimination ability of 3D convolutional neural networks applied to altered brain MRI parametric maps
	Introduction
	Materials and Methods
	Dataset
	Participants and MRI Protocol
	Image Preprocessing
	Creation of Altered Parametric Maps

	Convolutional Neural Networks
	Experiments

	Results
	Monoregion-Trained CNNs
	Biregion-Trained CNNs
	Monoregion- vs. Biregion-Trained CNNs

	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Supplementary data
	References


