
HAL Id: hal-04843985
https://hal.science/hal-04843985v1

Submitted on 17 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Time-domain system identification using fractional
models from non-zero initial conditions applied to Li-ion

Batteries
Abderrahmane Adel, Olivier Briat, Rachid Malti

To cite this version:
Abderrahmane Adel, Olivier Briat, Rachid Malti. Time-domain system identification using fractional
models from non-zero initial conditions applied to Li-ion Batteries. Signal Processing, In press. �hal-
04843985�

https://hal.science/hal-04843985v1
https://hal.archives-ouvertes.fr


Signal Processing
 

Time-domain system identification using fractional models from non-zero initial
conditions applied to Li-ion Batteries

--Manuscript Draft--
 

Manuscript Number: SIGPRO-D-24-02726

Article Type: Research Paper

Keywords: System identification, Fractional order equivalent circuit model, Batteries, Parameters
estimation, Time-domain identification.

Corresponding Author: Abderrahmane Adel, Ph.D. Candidate
Universite de Bordeaux
Talence, FRANCE

First Author: Abderrahmane Adel, Ph.D. Candidate

Order of Authors: Abderrahmane Adel, Ph.D. Candidate

Rachid Malti, Professor

Olivier Briat, Professor

Abstract: The main contribution of this paper is to present two distinct algorithms for fractional
system identification using non-zero initial conditions, by assuming  the input signal
prior to $t = 0$ and the input/output signals after $t = 0$  known.  Addressing this
problem is particularly important, in the context of short data acquisition, mainly for two
reasons (i) the effect of free response is important compared to the forced one (ii) time-
domain response of fractional systems converge polynomially, as compared to the
exponential convergence of rational systems. The first developed algorithm uses a
two-stage iterative procedure that computes system forced response at the upper
stage, and system parameters 
at the lower stage. The second one relies on an output error model,  estimating
parameters due to the simultaneous contribution of system free and forced responses.
The efficacy of both algorithms is first assessed using Monte Carlo simulations with
significant signal to noise ratios. The proposed algorithms, applied to the identification
of commercial Li-ion battery cells, allow solving a technical issue:  straightforward data
acquisition whatever the past history of the cells, i.e. the cells need not be in a
completely relaxed state prior to collecting data, contrary to the actual practice.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



Highlights

• Two novel algorithms developed for fractional system identification
with non-zero initial conditions.

• The first algorithm uses a two-stage process, separating free and forced
responses for accuracy.

• The second algorithm estimates parameters by simultaneously incor-
porating free and forced responses.

• Both algorithms validated experimentally and with Monte Carlo sim-
ulations on Li-ion batteries.

• Application to the identification of Li-ion batteries by eliminating the
relaxation time.
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Abstract

The main contribution of this paper is to present two distinct algorithms for
fractional system identification using non-zero initial conditions, by assuming
the input signal prior to t = 0 and the input/output signals after t = 0
known. Addressing this problem is particularly important, in the context of
short data acquisition, mainly for two reasons (i) the effect of free response is
important compared to the forced one (ii) time-domain response of fractional
systems converge polynomially, as compared to the exponential convergence
of rational systems. The first developed algorithm uses a two-stage iterative
procedure that computes system forced response at the upper stage, and
system parameters at the lower stage. The second one relies on an output
error model, estimating parameters due to the simultaneous contribution
of system free and forced responses. The efficacy of both algorithms is first
assessed using Monte Carlo simulations with significant signal to noise ratios.
The proposed algorithms, applied to the identification of commercial Li-ion
battery cells, allow solving a technical issue: straightforward data acquisition
whatever the past history of the cells, i.e. the cells need not be in a completely
relaxed state (with zero initial conditions) prior to collecting data, contrary
to the actual practice.
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Batteries, Parameters estimation, Time-domain identification.

1. Introduction

There are various system identification methods that use fractional mod-
els and zero initial conditions [1, 2, 3, 4]. The initial conditions are often
assumed to be zero for the sake of simplicity, which might have a limited
effect when the amount of data is big. However, in case of small data ac-
quisition, ignoring initial conditions leads to significantly biased parameter
estimation when the initial conditions are varied [5, 6, 7].

Handling initial conditions in fractional calculus has been solved in the
general case by [5, 6] (see also the excellent book by the same authors [8]).
However, to the best of the authors’ knowledge, only limited research has
addressed system identification with non-zero initial conditions, despite its
relevance in some practical applications. This gap, filled in this paper, has
interesting applications like in the case of modeling lithium-ion batteries for
the sake of predicting their State Of Charge (SOC) and State Of Health
(SOH) [9]. When battery cells are in operating conditions or brought in-
tentionally to a certain SOC-Level, usually a quite long relaxation period
is observed for the effect of initial conditions to vanish, prior to collecting
identification data [10, 11, 12, 13].

This paper presents two system identification algorithms able to compute
unbiased parameters in presence of non-zero initial conditions. The paper is
organized as follows. First of all, some basics on handling initial conditions
for rational and fractional systems are recalled and the difficulty of handling
the fractional case is explained. Then, the problem is formulated under some
hypotheses and the main contributions of the paper are stated. The case-
study application is also introduced in this section prior to describing the
main contribution of the paper with two developed algorithms in section
2. Their performance is tested in Monte Carlo simulation in section 3 and
applied to a real case study in section 4 before concluding.

1.1. Initial conditions in fractional calculus

Consider a linear system (rational or fractional) characterized by a trans-
fer function H(s). Basically, its time-domain response to an input signal
u(t) is governed by the following convolution integral, which clearly points
out the contribution (to the future output y(t) for t ≥ 0) of both the free
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response due to u(t) for t < 0, and the forced response due to u(t) for t ≥ 0
[8]:

y(t) =

∫ 0

a

h(t− x)u(x) dx︸ ︷︷ ︸
φ(t)≡ free response

+

∫ t

0

h(t− x)u(x) dx︸ ︷︷ ︸
forced response

(1)

The concept of free response, known also as the initial condition response,
refers to how a system reacts to displacements of its variables from their
equilibrium position. In rational (integer-order) systems, it is well established
that the initial values are all defined at t = 0, whatever the past trajectories
(t < 0) of system variables which allowed reaching these initial values. Take
for example the RC-circuit of Fig. 1 subject to the input signal, plotted in red,
in Fig.2. Then, its transfer function, computed from the circuit impedance,
writes:

H(s) =
Y (s)

U(s)
=

1

1 + τs
(2)

where Y (s) and U(s) are the Laplace transforms of the voltages y(t) and
u(t), indicated in Fig.1, and τ = RC. By computing the inverse Laplace
transform of (2), one may obtain the impulse response h(t) = 1

τ
exp(−t/τ),

and consequently reduce (1) to:

y(t) = y0 exp

(
−t
τ

)
︸ ︷︷ ︸

free response

+1− exp

(
−t
τ

)
︸ ︷︷ ︸

forced response

(3)

where y0 = (1− exp(a/τ)) represents the initial condition in this example. It
is fully characterized by the initial value y(0) = y0, whatever the possible past
trajectories of y(t), t < 0. When dealing with fractional differential equa-
tions, extra care is necessary due to their infinite memory behavior and the
polynomial convergence of their free response as compared to the exponential
convergence of rational systems [14, 15]. The free response not only depends
on the initial values of system variables but also on the past trajectory of
these variables. Instead of a finite number of initial conditions, fractional
systems require using an infinite number of initial values, usually gathered in
an initialization function. Two kinds of initialization functions are proposed
in the literature. The first one is based on a time-domain “history-function”
[16, 5] and the second one on the frequency-domain “infinite state approach”
[6]. Both approaches show similar results on numerous examples [17]. They
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E

−

+

t = a

u(t)

R

C y(t)

Figure 1: RC-circuit

t

y

u(t)

free response

forced response

a

y0

Figure 2: Input signal u(t) in red and output signal y(t) in blue, the blue dot indicates
the initial condition y0.
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+

t = a

u(t)

R

CPE y(t)

Figure 3: R−CPE-circuit

are presented in the sequel on a simple example borrowed from [17]. Con-
sider the circuit of Fig.3 with a constant phase element (CPE) having the
impedance 1

Qsα
, with 0 < α < 1. The case α = 1 describes a capacitor, α = 0

a resistor, and α = 0.5 Warburg impedance encountered in battery modeling
[18, 19]. This circuit is governed by the fractional differential equation:

τc
dα

dtα
y(t) + y(t) = u(t) (4)

where τc = RQ. Its transfer function may be computed from (4):

H(s) =
Y (s)

U(s)
=

1

1 + τcsα
(5)

Let h(t) = L −1{H(s)} be the impulse response of the new circuit. The
convolution product (1) yet holds for fractional systems. However, it becomes
more difficult to compute the free response integral in the fractional case.
The main approach developed in the literature is based on the infinite state
approach.

1.1.1. Infinite-state approach (Trigeassou and Maamri)

In this approach [6], the free response of the fractional differential equa-
tion (4), is solution of the homogeneous equation (without the input u(t), for
t < 0):

τc
dα

dtα
y(t) + y(t) = u′(t) with u′(t) =

{
u(t) for t < 0

0 for t ≥ 0
(6)
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It may be expressed as a distributed differential system:
∂z(ω, t)

∂t
= −ωz(ω, t)− 1

τc
y(t)

y(t) =
∫∞
0

µα(ω)z(ω, t) dω
(7)

where µ(ω) is a weighting function defined in the case of an integrator by

µα(ω) =
sin(απ)

π
ω−α (8)

The distributed initial conditions are gathered in the function z(ω, 0), which
depends on all the frequencies ω and verifies the initial value:

y(0) =

∫ ∞

0

µα(ω)z(ω, 0) dω (9)

1.1.2. History-function (Hartley and Lorenzo)

The history function approach, due to [16, 5], corresponds to the applica-
tion of the input/output methodology. The authors compute the convolution
integral

φ(t) =

∫ 0

a

h(t− x)u(x) dx (10)

in the case of elementary systems of the first kind [20] by setting constant
and/or ramp history functions in order to be able to formulate analytical ex-
pressions, based on the Mittag-Leffler and the incomplete Gamma functions,
of φ(t) and its Laplace transform.

1.2. Problem formulation

The problem addressed in this paper is related to system identification
using linear fractional models from non-zero initial conditions under the fol-
lowing hypothesis:

(H1) The past (t < 0) and the future (t ≥ 0) of the input signal u(t) are
known.

(H2) Only the future (t ≥ 0) of the output signal y(t) is known.

(H3) Model structure is known.

(H4) Input signal is noise-free ; output signal may be affected by noise.
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Hence, model parameters and differentiation orders are unknown and esti-
mated. When model structure is unknown (i.e. when (H3) is invalidated),
searching for the model structure may be achieved by using some AIC-like cri-
teria. If input data are noisy (hypothesis (H4) invalidated), then the proposed
algorithms may be extended by using Error-In-Variables (EIV) methodology.

1.3. Main contributions

The main contributions of this paper are summarized below.

• Two methods are developed to solve the problem formulated in 1.2.

– The first one is based on a two stage algorithm allowing separation
of the free and the forced responses on each stage,

– the second one is based on a straightforward parameter estima-
tion taking into account simultaneously the free and the forced
responses.

• The accuracy and the computational efficiency of both methods is as-
sessed.

• A technical issue related to Li-ion batteries is solved. It avoids wait-
ing for long periods of time for the batteries to be in a completely
relaxed state, with a vanished free response, prior to collecting identi-
fication/validation data.

• Experimental validation is conducted on three commercial batteries.

Through the development and validation of these innovative techniques, this
study aims to advance the field of battery characterization with broader
applications and improved performance.

1.4. Motivations in Li-ion Battery modeling

One of the most used system identification techniques is based on Elec-
trochemical Impedance Spectroscopy (EIS) which consists in performing a
harmonic analysis with a sine excitation current and measuring the output
voltage across the electrodes. Then, the current and voltage signals are used
for computing the impedance spectrum, fitted to a fractional order equiv-
alent circuit model (FO-ECM) [21]. A typical impedance spectrum of a
commercial battery cell is plotted in Fig.4 . Low frequencies 0.1 < f < 1

7
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Figure 4: Nyquist plot of a Samsung “INR18650-25R” battery impedance measured in
GEIS mode at SOC 80%, 25◦C.

Hz, characterizing the diffusive Warburg phenomenon, may be modeled by a
Constant Phase Element, CPE2, in Fig.5 which impedance is:

Zd(s) = CPE2 =
1

Qdsβ
(11)

where Qd is a coefficient, and β a differentiation order equal to 0.5 when
Warburg impedance is considered and might be further adjusted from input-
output data. Mid-range frequencies 1 < f < 103 Hz, related to charge trans-
fer phenomenon, are usually modeled by another constant phase element,
CPE1, see e.g. [22], characterized by a constant Qdl and a differentiation
order α, in parallel with the resistor Rct:

Zct(s) = Rct ∥ CPE1, with CPE1 =
1

Qdlsα

Zct(s) =
Rct

1 +RctQdlsα
(12)

The high frequency f ≈ 103Hz, corresponding to the intersection of the
impedance with the real axis in Fig.5, corresponds to the ohmic resistor

8
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R0

Rct

CPE1

CPE2

Zct Zd

Figure 5: Global impedance model of the Li-ion battery. The rectangle highlights Zct,
consisting of Rct and CPE1.

of the battery, R0 in Fig.5. Beyond this frequency, f > 103Hz, an induc-
tive phenomenon appears characterized in Fig.4 by negative values of the
y-coordinate (or positive values of Im(z)). The inductive phenomenon is
not considered in this paper and the batteries are modeled in a frequency
range up to 103Hz. Hence, the overall impedance of the Li-ion battery, as
illustrated in Fig.5, is the combination of the three considered effects:

Z(s) = R0 + Zct(s) + Zd(s)

= R0 +
Rct

1 +RctQdlsα
+

1

Qdsβ
(13)

=
R0RctQ

a0
dl s

β+α +R0 +Ra1
ct s

β + RctQdl

Qd
sα + 1

Qd

RctQdlsβ+α + sβ
.

Let battery parameters be gathered in a vector

θ = [R0, Rct, Qdl, α,Qd, β]
T . (14)

The fractional-order equivalent circuit model (FO-ECM) with two constant
phase elements, as in (13) and in Fig.5, has been used in [21] to study the
structural identifiability of such models by solving algebraic equations. One
of the major issues with EIS data is the long acquisition time, as the method
sweeps through 5 decades of frequencies ranging from 0.01Hz to 1KHz (see
e.g. Fig.4). Such a long acquisition time may affect the SOC-level. An inter-
esting alternative to EIS data acquisition consists in using chronopotentiom-
etry time-domain measurements, which consists in applying an excitation
current (such as a pseudo-random-binary-signal (PRBS)) and measuring the

9
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output voltage across the electrodes. Multiple references [23, 24, 25, 21, 26]
suggest using the FO-ECM developed in section 1.4 as impedance models and
time domain data. Fractional models may be simulated in the time domain
using [27] approximation of fractional operators, implemented in the CRONE
Toolbox [28]. [24] use an output-error model combined to a non-linear pro-
gramming techniques to compute the model parameters. Such techniques
effectively reduce aquisition time [24, 25]; however, the battery cells yet need
be at a relaxed state, as explained below.

Impact of the relaxation period

To obtain accurate impedance models, frequency-domain and/or time-
domain measurements require thermodynamic steady-state conditions, which
are usually obtained after a significant relaxation time when the battery is
active or brought to a given SOC. Indeed, voltage relaxation (VR) stems
from an electrochemical process occurring after interrupting the current flow
into or from the battery which results in a gradient of lithium ions through
electrodes [29]. The bigger the relaxation time, the lesser the gradient of
ions across the electrodes. Various references [11, 12, 13] study the impact
of the relaxation time in modeling Li-ion batteries. [11] show the influence
of relaxation-time on the time-domain responses to a prescribed input. [13]
explore the variation of cell impedance for different relaxation periods (0,
30, 60, 180, 300, 420)mn, based Potentiostatic-EIS (on voltage variations
at the input and current measurement at the output). It is highlighted in
the aforementioned paper the necessity to wait for a sufficiently long period
(up to 420mn) for a battery cell [13] to be completely relaxed. [12] study
the influence of relaxation time on 5 different commercial batteries, stressing
the fact that the relaxation time might be as big as 900mn for certain cells.
Further, characterizing batteries at different SOC-levels requires the battery
to be in a relaxed state every time it is brought to the desired SOC-level,
whatever the acquisition: in frequency-domain or time-domain.

This paper aims at developing system identification algorithms able to es-
timate parameters, using non-relaxed Input-Output data, which constitutes
an important breakthrough in Li-ion batteries identification, eliminating re-
laxation time usually observed for the free response to vanish prior to data
acquisition.
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2. Contributions to system identification with non-zero initial con-
ditions

Consider a linear fractional system characterized by a transfer function:

H (s, θ) =

M∑
i=0

bis
βi

1 +
N∑
j=1

ajsαj

. (15)

or its impulse response h(t, θ) = L −1{H(s, θ)}, where the parameter vector

θ =

[
ρ
µ

]
(16)

is composed of a vector of N +M + 1 transfer function coefficients,

ρ = [b0, b1, . . . , bM , a1, . . . , aN ]
T , (17)

and additionally a vector of N +M + 1 ordered differentiation orders,

µ = [β0, . . . , βM , α1, . . . , αN ]
T. (18)

System identification using fractional models with zero initial conditions have
been treated in the litterature, mainly in an output error context [30, 31], or
using least squares estimates [22] and the optimal instrumental variable [4].
In the output error context, model parameters are computed by minimizing
the L2-norm squared

J(θ) = ∥ϵ(t, θ)∥2 (19)

of the output error:
ϵ(t, θ) = y(t)− ŷ(t, θ). (20)

as illustrated in Fig.6. In case of the impedance model (13), the parameter
vector θ is defined in (14). Equation (19) can be written in a discretized
form, based on trapezoidal rule:

J(θ) ≈ Ts

K−1∑
k=0

ϵ2(kTs, θ) = TsE
T (θ)E(θ) (21)
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Figure 6: Output error model.

where Ts is the sampling period, K the total number of samples and the error
vector E(θ) = [ϵ(0, θ), . . . , ϵ(K − 1, θ)]T

The optimal parameter vector, minimizing (21),

θ̂ = argmin
θ

J(θ), (22)

is usually obtained using a nonlinear optimization algorithm. The itera-
tive Levenberg-Marquardt algorithm [32] is often used. In case of rational
systems, when system output is a combination of a free and a forced re-
sponse, then the initial conditions, constituted of consecutive derivatives of
y up to system order minus one (n − 1) all evaluated at t = 0, gathered in

Y0 = [y(0), dy
dt
(0), . . . , d

n−1y
dtn−1 (0)], may be estimated along with system param-

eters
(θ̂,Y0) = argmin

θ,Y0

J(θ,Y0), (23)

by minimizing the quadratique criterion

J(θ,Y0) = ∥ϵ(t, θ,Y0)∥2 = ∥y(t)− ŷ(t, θ,Y0)∥2. (24)

Take for instance, the RC-circuit of Fig.1 and its global response in (3), then
the quadratic error may be expressed in terms of the initial condition y0 along
with the transfer function parameter τ :

J(τ, y0) = ∥ϵ(t, τ, y0)∥2 = ∥y(t)− ŷ(t, τ, y0)∥2. (25)

Such a formulation becomes impossible for fractional systems, because the
free response depends on an infinite number of initial conditions, as explained
in section 1.1. Hence, this section introduces two novel approaches for pa-
rameter estimation of fractional models with non zero initial conditions: the
separate free and forced response method and the simultaneous free and
forced response method.
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Start
input: u, y

iter ← 0
φ(t, θ̂iter)← 0

iter ← iter + 1
Evaluate y(t, θ̂iter−1) as in (26)

Estimate θ̂iter as in (27)
Evaluate φ(t, θ̂iter) as in (28)

(29) and (30)

End

Yes

No

2nd stage

1st stage

Stop condition

Initialization

Figure 7: Flowchart of the 1st method (separate free and forced responses) estimating the
fractional model of the battery considering historical data.

2.1. Parameter estimation using separate free and forced responses

In this section, an iterative two-stage algorithm is proposed to minimize
the output error when initial conditions are unknown. Two-stage algorithms,
have been used in various domains. For instance, in the context of structure
identification of Polynomial NARX models [33] utilize a two-stage algorithm
with at the first stage coarsely identifies the model structure, and the sec-
ond stage iteratively refines it. [4] employ a two-stage algorithm, estimating
transfer function parameters using least squares at one stage and differentia-
tion orders using a gradient-based algorithm at the other stage. The proposed
algorithm, sketched in Fig.7, is detailed below.
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2.1.1. Initialization

Start by initializing iter at 0, and consider that the free response equals
zero (the undetermined θ̂0 is not required).

2.1.2. First stage

The main idea is to subtract from the output signal, at the first stage and
from the second iteration on, the free response and to keep only the forced
one:

y(t, θ̂iter−1)← y(t)− φ(t, θ̂iter−1) (26)

At the very first iteration, as φ(t, θ̂0) = 0, system output is considered to
be only due to the forced response which is non-consistant, yielding biased
results, in presence of free response. The estimation is less biased as the
number of iterations gets bigger1.

2.1.3. Second stage

The basic idea of the second stage is to compute the parameter vector
and once the model known, compute its free response. Hence, estimate the
parameter vector θ̂iter using the levenberg-Marquardt algorithm from (19)-
(22) by considering y(t, θ̂iter−1) instead of y(t) in (20):

θ̂iter = argmin
θ

J(θ). (27)

Once θ̂iter known, the transfer function and its impulse response are com-
pletely defined Ĥ(s, θ̂iter) = L {ĥ(t, θ̂iter)}. Hence model free response, is
computed:

φ(t, θ̂iter) =

∫ 0

a

ĥ(t− x, θ̂iter)u(x) dx︸ ︷︷ ︸
free response

, (28)

and the algorithm is iterated back to the first stage by separating the free
response from the whole system response as in (26).

1See section 2.1.5 for convergence notes.
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2.1.4. Convergence test

The procedure is iterated as long as a norm of the difference between
two successive normalized estimates is greater than a threshold ϵ (here the
ℓ1-norm is used):

L∑
ℓ=1

∣∣∣∣∣ θ̂ℓiter − θ̂ℓiter−1

θ̂ℓiter−1

∣∣∣∣∣ > ϵ, (29)

or a maximum number of iterations is not reached yet

iter ≤ itermax. (30)

here ℓ = 1, 2, . . . , L represents the number of estimated parameters, θ̂ℓiter is
the ℓth element of the estimated parameter vector at the iteration iter.

2.1.5. Convergence notes

To the best of authors’ knowledge, convergence of such two-stage algo-
rithms cannot be proven, although it is noted in multiple references (see e.g.
[34, 35, 4]) that they do often converge to a minimum.

2.2. Parameter estimation using simultaneous free and forced responses

In this section, a second algorithm is suggested, estimating model param-
eters on the basis of a simultaneous estimation of the free and the forced
responses by considering straightforwardly system whole response (1). The
algorithm, illustrated in Fig. 8, begins by initializing the parameter vec-
tor θ. Then, the global system response, constituted of the free and forced
responses, is computed:

y(t, θ)←
∫ 0

a

h(t− x, θ)u(x) dx︸ ︷︷ ︸
φ(t,θ)≡ free response

+

∫ t

0

h(t− x, θ)u(x) dx︸ ︷︷ ︸
forced response

(31)

where h(t − x, θ) represents the system impulse response parameterized by
the model parameter vector θ. Once the total system output is computed, the
algorithm proceeds by estimating the parameter vector θ̂ using the levenberg-
Marquardt algorithm from (19)-(22) by considering y(t, θ) of (31) instead of
y(t):

θ̂ = argmin
θ

J(θ). (32)
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Start
input: u, y

Evaluate y(t, θ) as in (31)

Estimate θ̂iter as in (32) using
Levenberg-Marquardt algorithm

End

Figure 8: Flowchart of the 2nd method (simultaneous free and forced responses) estimating
the fractional model of the battery considering historical data.

This method allows simultaneous consideration of both free and forced re-
sponses in estimating system fractional model, making it particularly suitable
for applications like battery modeling where the past history (free response)
significantly influences future behavior.

3. Simulation example on a battery impedance model

The objective of this section is to validate both algorithms described in
sections 2.1 and 2.2 on a simulation example with non-zero initial conditions.
The advantages of a simulation example are (i) evaluating the effectiveness
of the method, by testing whether the true parameters are recovered (ii)
using Monte Carlo simulation, with 100 runs, to determine the accuracy of
parameter estimation algorithms and their robustness in presence of noisy
data with a signal to noise ration of 20dB and then 10dB.

3.1. Simulation example of a battery system

The battery model structure (13) is chosen by setting its parameters to
values close to experimental ones computed in [26]:

R0 = 13.8mΩ, Qdl = 6.47F · s1−α, α = 0.7,

Rct = 5mΩ, Qd = 333F · s1−β, β = 0.6.

The input current signal, plotted in Fig. 9, is constituted of a historical input
signal (for t < 0) a charging sequence with a current amplitude of 1A and
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Figure 9: (a) Historical input signal. (b) Input signal used for system characterization.
(c) Zoom on the PRBS signal.

a duration of ten minutes, followed by an identification signal constituted
of fast and slow dynamics. An 8-second Pseudo-Random Binary Sequence
(PRBS) is implemented for current excitation, with an amplitude of 200 mA,
followed by an 8-second charge/discharge sequence with a current alternating
between −200 and 200 mA. Finally, a 4 seconds rest period is observed. The
entire sequence lasts 20 seconds.

3.2. Results of both algorithms

The results are plotted in Fig. 10 and further illustrated in Table 1 which
show that the parameters converge for both algorithms to the true values
with very low standard deviation.

For a SNR of 20 dB. Both methods, described in section 2.2 and 2.1, con-
verge for all simulations with a 100% convergence rate. Moreover, both
algorithms provide accurate parameter estimates, with low standard devi-
ations for all parameters, indicating good precision under moderate noise
conditions.
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Figure 10: Simulated battery model without relaxation period: (a) Free response. (b)
Battery model and estimated model responses. (c) Zoom of the battery model and esti-
mated model responses. (d) Zoom of the forced response.

Table 1: A comparison of parameter estimation accuracy with and without a relaxation
period of 60 min using both algorithms in case of SNR equal to 20dB and 10dB.

Trelax Algo. section 2.1 Algo. section 2.2

signal to noise ration SNR 20dB 10dB 20dB 10dB
Parameter True θ̄ σ̂θ θ̄ σ̂θ θ̄ σ̂θ θ̄ σ̂θ

R0 (mΩ) 13.8 13.791 0.015 13.762 0.021 13.802 0.009 13.814 0.017
Rct (mΩ) 5 5.11 0.08 26.34 4.12 5.01 0.01 5.07 0.02

Qdl (F·s1−α) 6.47 6.49 0.44 1.42 0.85 6.46 0.18 6.49 0.47
α 0.7 0.7041 0.0134 0.7108 0.0201 0.7012 0.0135 0.7083 0.0141

Qd (F·s1−β) 333 320 10 287 26 334 3 330 8
β 0.6 0.6031 0.0044 0.5921 0.0065 0.6011 0.0041 0.6034 0.0043
Convergence 100/100 81/100 100/100 100/100

Non convergence - 19/100 - -
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Table 2: Characteristics of three commercial battery cells used in this experiment.
Cell ref SGg LGb SGp
Reference INR1865025R INR18650HG2 ICR1865026F
Manufacturer Samsung LG Chem Samsung
Chemistry NCA NMC LCO, NMC
Vnom (V) 3.6 3.6 3.7
Cnom (Ah) 2.5 3 2.6
Standard charge
CC-CV

1.25A 4.2V 125mA 1.5A 4.2V 50mA 1.3A 4.2V 520mA

For a SNR of 10 dB. The method described in section 2.2 demonstrates
superior robustness, achieving a 100% convergence rate, while the two-stage
algorithm only reaches 81%. The algorithm fails to converge, when during
the iterative optimisation process, two differentiation orders have exactly
the same value. Then, a loss of observability occurs and the algorithm fails.
When the algorithm of section 2.1 converges, it shows highly biased results on
some parameters, whereas the algorithm of section 2.2 still exhibits unbiased
results and low standard deviation.

4. Experimental results on real batteries

Both algorithms are applied in this section for estimating parameters of
three commercial battery cells which characteristics are provided in Table 2.

4.1. Experimental setup

An electrochemical workstation constituted of a Biologic-BCS-815 gal-
vanostat/potentiostat, is used to perform charge and discharge cycles. The
input signal used for identification is the Pseudo-Random Binary Sequence
(PRBS) of Fig.9 (b-c). Temperature variations are negligible for such short
durations of experiment. These experiments are conducted twice on each
battery cell (i) once with no relaxation time after the charging sequence of
Fig.9 (a) and (ii) once with a relaxation time of 60 minutes. The latter exper-
iment is considered to provide reference values for the estimated parameters,
as the free response vanishes after the observed delay. The objectives of the
former experiment are to apply:

• the output error system identification method that assume the presence
of only the forced response, to show how biased it is,
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Figure 11: (a) Response of SGg cell to a PRBS input with no relaxation time (in red) and
a PRBS with a relation time of 60 mn (in yellow). (b) Zoom of (a) in the indicated interval.
(c) Zoom of (b) in the indicated interval. (d) Zoom of (a) in the indicated interval.

• the system identification algorithms with non-zero initial conditions
developed in this paper to show that the bias is eliminated.

The input/output identification data obtained for one of the three cells
are plotted in Fig.11 (data of other cells exhibit quite similar dynamics). This
figure presents data from both experiments: without and with a 60-minute
relaxation period. Validation input data are depicted in Fig.12(a).

4.2. Experimental results and discussion

The %fit is used as a metric. It is defined as

%fit =

(
1−

√
ET (θ)E(θ)

yTy

)
100 (33)

where the error vector E(θ) = [ϵ(0, θ), . . . , ϵ(K − 1, θ)]T and ϵ is the output
error from (20).
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Fig. 12(b,c and d) and table 3 present the validation results on parameter
estimation with both algorithms applied on the three battery cells. The ob-
tained results using a relaxation period of 60 minutes (θ̂60 in Table 12) have
a %fit between 98.4 and 99.9%. Additionally, the results obtained using the
two methods presented in this paper are compared to the one that uses the
output error method by considering that the whole output is due only to
the forced response as in [36]. In the latter case, the parameter estimation
is very biased (see θ̂00 in Table 12) and its corresponding %fit is the worse
which explains why a quite long relaxation period is usually observed in the
literature prior to data acquisition. Both algorithms developed in this paper
perform quite well with a higher %fit rate for the second algorithm, also con-
firmed on Fig. 12. Additionally, the second algorithm has closer parameters
to the ones computed by observing 60mn relaxation period, which provides
another way for validating the performance of the proposed algorithms.

It is evident that taking the free response (algorithm of section 2.2) into
account significantly improves the identification results. Hence, the proposed
algorithms eliminate the need to wait for the system free response to decay,
which is even more important in the case of fractional systems which de-
cay polynomially, as compared to the exponential decal of rational systems.
Hence, the relaxation period traditionally observed in battery systems prior
to collecting identification/validation data can now be squeezed. Both algo-
rithms have successfully been applied to all three commercial battery cells
and the identified parameters were quite close to the ones estimated after
a relaxation time of 60mn, which allows asserting that the algorithms are
performant.

5. Conclusions

This paper introduces two novel algorithms for system identification using
fractional models with non-zero initial conditions. To the best of authors’
knowledge, no such algorithm has ever been proposed in the literature. It
has been shown using Monte Carlo simulation and on real data that both
algorithms perform well, with a slight superiority of the one-stage algorithm,
described in section 2.2, as compared to the the two-stage algorithm, of
section 2.1. The main reason is that the former algorithm uses both the free
and the forced responses for parameter estimation, whereas the latter isolates
the forced response which is then used for parameter estimation.
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Figure 12: Comparison on validation data between system output y, model output con-
sidering that the whole output is due only to the forced response, (ŷ0), model output
obtained by the algorithm of section 2.1 (ŷ1), model output obtained by the algorithm of
section 2.2(ŷ2), and model output obtained using a relaxation period of 60min (ŷ).
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Table 3: Comparison of parameter estimation accuracy with and without a relaxation
period of 60 min for various battery cells using different methods. θ̂60 refers to the results
obtained with a 60-minute relaxation period, θ̂00 refers to results obtained without relax-
ation model output considering that the whole output is due only to the forced response,
θ̂10 refers to results obtained using the method described in section 2.1, and θ̂20 refers to
results obtained using the method described in section 2.2.

Cell ref SGg LGb SGp

Parameters θ̂60 θ̂00 θ̂10 θ̂20 θ̂60 θ̂00 θ̂10 θ̂20 θ̂60 θ̂00 θ̂10 θ̂20
R0 (mΩ) 14.2 14.25 14.2 14.2 15.1 15.3 15.1 15.1 49.5 50 49.5 49.5
Rct (mΩ) 7.9 25.8 18 7.8 3.5 0.36 3.2 6.5 12.2 18.4 19.8 18.6

Qdl (F.s
1−α) 6.81 3.1 10.75 5.98 1.42 3.37 4.8 1.4 0.45 16.33 1.13 0.83

α 0.67 0.66 0.67 0.66 0.88 0.73 0.88 0.88 0.86 0.89 0.86 0.86
Qd (F.s1−β) 301 4000 437 340 348 3998 518 348 230 148 478 391

β 0.65 0.61 0.65 0.65 0.53 0.72 0.53 0.53 0.48 0.008 0.48 0.48

%fitidentif 98.4 37.3 92.5 94.7 99.57 60.89 96.1 98.2 98.5 17.40 94.9 96.3
%fitval 99.7 63.9 94.6 99.7 99.9 80.94 96.7 98.7 99.9 89.9 99.3 99.5

It has been shown that the algorithms are particularly useful in Li-ion
battery cells identification, as they allow to completely eliminate the relax-
ation time, usually observed when a battery is driven to a given SOC-level.
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