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We present an experimental study on a.c. measurements at low frequency (below 1MHz), when coaxial cables used for
the measurement are resistive, as in cryogenic conditions. More precisely we are interested in admittance or impedance
measurements and the accurate determination of the phase. Our experiments were completed using an auto-balancing
bridge impedance analyzer and various standard coaxial cables as well as their serial combinations. We characterize
experimental setup, then we analyze and measure the phase shift introduced in impedance measurements by leads
resistance. Using basic equations for electrical signal propagation in coaxial cables, we calculate phase shift in the
whole frequency range and explain our data in the low frequency limit of our model. We propose a quantitative
criterion to determine whether the experimental context is appropriate. If not, we show that by using an original
calibration procedure the imaginary part can be accurately recovered, avoiding artifacts. The calibration procedure can
be applied to any a.c. voltage or current measurement, whatever the detection technique, with known accuracy.

I. INTRODUCTION

Understanding the response of an electrical circuit to an
alternating excitation requires first to measure currents and
voltages. The purpose in this article is to illustrate experi-
mentally how those quantities are influenced by the lead re-
sistance of the cables at low frequency (below 1MHz). We
consider here the example of impedance and admittance mea-
surement, which requires to measure simultaneously current
and voltage, whose ratio delivers the linear response of the
circuit. More precisely we focus on the imaginary part of
the signal and all corrections that might hinder the phase de-
termination. We detail the procedure for accurate measure-
ments. Our conclusions, deduced from impedance or admit-
tance measurements, apply in fact to any a.c. electrical mea-
surements.

Impedance measurement is a well known technique for
characterization of electrical properties at finite frequency1

with many applications ranging from electronics to life
sciences2,3. Nowadays, impedance analyzers are easy to
operate and allow a fast measurement procedure with high
repeatability4–6, although their accuracy drops at very low fre-
quencies (below 10kHz see Ref.6).

For decades, metrologists working on the Ohm’s conserva-
tion have been concerned with side effects of coaxial cable7–9

and with intrinsic inductances and capacitances10, in order to
reduce the deviations of Hall resistance measurements from
the quantized value, at low frequency11–13. They have been
mainly concerned with the real part of the impedance (the Hall
resistance) although some works have explored the imaginary
part14–16. They finally built the double shielded device17,18, a
resistance standard in which the real part do not depend any-
more on frequency.

Even when metrological accuracy is not needed, a detailed
analysis of the experimental setup is necessary to avoid sys-
tematic errors19 and take into account the effects of cables20.

In general, main corrections in a.c. voltage measurement
arises from the capacitance C and the inductance L of the
coaxial cable, but not from the cable resistance, which is usu-
ally negligible.

As a striking example of cable capacitance influence on
impedance measurement, Melcher et al. explained in Ref.21,
how the cables have blurred the measurement (at kHz fre-
quencies) of small quantum capacitances in Ref.22. Later, C.
Hernández et al.23,24 used the principle of current loss in ca-
ble capacitance explained by Fisher and Grayson25, to obtain
the admittance of multi-terminal quantum Hall conductors by
a combined effect of chiral currents and cable capacitance.
They showed that any coaxial cables connected to an ohmic
contact on the high potential side of the Hall bar, introduces
a phase shift ϕ = RHCcableω in the admittance measurement,
where Ccable is the cable capacitance and RH the Hall resis-
tance. This phase shift prevents the small intrinsic imaginary
part (related to quantum capacitance) to be precisely mea-
sured. However, the influence of a coaxial cable on the phase
does not rely only on its capacitance: it relies also on its resis-
tance, even small.

In an Helium cryostat or in a dilution fridge, one or two
meters cables are usually needed to access low temperatures
stage. To reduce the thermal power input when working be-
low liquid Helium temperature, resistive cables (thermally and
therefore electrically) are chosen most of the time. For a
description of a full controlled environment for metrological
measurements at cryogenic temperatures, see Refs.26,27.

In this article, we experimentally highlight the resulting
artefact which appears in the imaginary part of the measured
impedance, when resistive cable (R ≥ 1Ω) are used to con-
nect the sample to the a.c. bridge, at low frequencies. This
effect was first described theoretically in Ref.28 and Ref.29, in
the approximation of quasi stationary regime (AQSR). Here
we focus on the experimental consequence which results in
a phase shift in the impedance or admittance measurements.
This phase shift is proportional to the resistance and to the ca-
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pacitance of the cable (ϕ =RcableCcableω). Of course, for short
and standard cables this shift is not observable. Contrarily, in
the case of resistive cables of some meters long (R ≥ 1Ω),
like in cryogenic environment, the phase shift is enough to
blur measurements of µH inductances such as encountered in
quantum electronics. In recent years indeed, quantum induc-
tances were unveiled in nano-inductors30–32, quantum coher-
ent circuit33,34 or plasmons devices35–38. Those studies were
performed at very high frequencies using GHz techniques,
which are totally different from those presented here. How-
ever, measurement of those inductances might also be done at
low frequency39,40, taking into account the cables influence.
In this article, we give the calibration procedure to get rid of
the artefact induced by the lead resistance.

It is important to notice that the artefact would arise in fact
in any experimental situation where an a.c. voltage or an a.c.
current is measured using resistive coaxial cables, in link with
a physical quantity, not only the impedance. This includes of
course standard lock-in amplifier detection techniques. How-
ever, many publications involving a.c. measurements under
cryogenic conditions, do not mention which cables are used
neither their resistance, although measurements need a fine
analysis of the imaginary part to precisely explore the phase.
Refs.41–43 are examples where physical quantities are mea-
sured through an a.c. voltage in cryogenic conditions, con-
cerning respectively, magnetic susceptibilty, calorimetry and
low field NMR. In absence of cable specifications, the phase
is possibly affected by the lead resistance, exactly as for the
impedance here.

The paper is organized as follows: in section II, we present
a basic experiment at low frequency which highlights how the
lead resistance blurs the imaginary part of the impedance. In
section III, we use the model of wave propagation in a coaxial
cable to obtain the phase shift in the whole frequency range. In
section IV we detail the calibration experiment and we show
how to get rid of the artefact. We present further experimental
results on several series combinations of cables, to highlight
features that are important for accurate measurements. In the
following, we denote by f the frequency (always below 1MHz
in our experiments), and ω = 2π f is the angular frequency.

II. A BASIC EXPERIMENT INVOLVING RESISTIVE
COAXIAL CABLES

To highlight role of coaxial cables resistance in an admit-
tance measurement, we present in Fig.1 the result of a very
simple experiment, which will be analyzed in detail in section
IV to characterize the cable set. We have measured in two
different ways the admittance of a metallic resistor, known
to have a vanishing susceptance. All measurements are done
at T = 300K with an impedance analyzer "Agilent 4294A",
and are fully described in section III. In a first experiment, we
measured the susceptance of a metallic resistor placed directly
on the impedance analyzer, without cables, using a component
adaptor (see green triangles on Fig.1). Those metallic resis-
tors are thin metallic films deposited on a ceramic and have
very small inductances and capacitances (usually ≤ 0.1 µH

and ≤ 0.1pF respectively). For those resistors, we could not
measure any inductance and we found a stray capacitance of
0.15 pF (green curve Fig. 1).
In a second experiment, the metallic resistor was placed at
the end of 6 meters cables of total resistance 64Ω; we made
same measurements for two resistors, 12kΩ and 24kΩ (red
squares in Fig.1). We present here only the imaginary part of
the admittance, given that the resistor conductance (real part
of admittance) does not vary in this frequency range. It is
not shown here but behavior of conductances is exactly the
same with and without long cables (the effect of cables on the
conductance measurement is too small to be measured in our
experiment, as detailed in section III.D). However, it goes dif-
ferently for the imaginary part of admittance: it is clear on
Fig.1 that the susceptance obtained using cables are very dif-
ferent from the true susceptance of the resistor, which is nearly
zero. The red curves indicate undoubtly an artefact, which is
clearly proportional to conductance of the resistor.

The artefact is due to the influence of lead resistance on

FIG. 1. Imaginary part of admittance for two metallic resistances, as
function of frequency. Red squares: resistors are placed at the end
of long resistive cables. Green triangles: resistors are placed directly
on the impedance analyzer adaptor. T = 300K.

admittance measurement. The effect of cable resistance has
been explained long ago by Cutkosky28, detailed in Ref.29 but
theoretically and not experimentally, and only mentioned in
Ref.14,15: when measuring an admittance Y in a four terminal-
pair in AQSR with four identical resistive cables, the experi-
ment gives

Yexp = Y (1+ yz) . (1)

Here y and z are the impedance and conductance of a single
cable, namely y= jCcableω and z=Rcable+ jLcableω , such that
in the AQSR regime:

Yexp = Y (1+ jRcableCcableω) . (2)

Cable capacitance and resistance thus add an extra term (pro-
portional to real part of Y ) to the imaginary part of the ad-
mittance. As the true susceptance is nearly vanishing here,
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red curves in Fig.1 correspond exactly to the extra term. We
will return on this experiment in section IV to calibrate the ca-
ble set by measuring the characteristic time τc = RcableCcable,
and get rid of the artefact. In this article, we thus exhibit ex-
perimental consequence of lead resistance effect described in
Ref.29, which consists in a phase shift ϕ = ω τc in the admit-
tance measurement.

III. MEASURING IMPEDANCES WITH RESISTIVE
CABLES

In this section, we first recall the measuring principle of an
auto-balancing a.c. bridge. Then we use the standard model of
electrical signal propagation in coaxial cables to calculate the
corrections introduced by the lead resistance for all frequen-
cies, not limited to AQSR. We obtain the results of Ref.29 as
the low frequency development of a more general formula.

A. Principle of measurement for auto-balancing a.c. bridge

FIG. 2. Simplified guidelines for impedance measurement according
to standard definition of impedance, and used by impedance analyzer
"Agilent 4294A"44. Shielding is not represented here.

The convention for impedance measurements has been de-
fined by metrologists (see for example Refs.29,44,45) and is de-
picted in figure 2. We use 4 coaxial cables to connect the sam-
ple to the impedance analyzer. In a four terminal-pair config-
uration, the auto-balancing a.c. bridge applies the following
protocol: LP (Low Potential) terminal-pair is maintained at
V = 0 and i = 0 without being connected to the ground (it is
a virtual ground). The other side of the sample is connected
to the HC (High Current) terminal-pair which injects a current
by applying a finite potential V 6= 0. The potential is measured
using the HP connector (High Potential). At the level of con-
nector LC (Low Current), the auto-balancing bridge delivers
a current in opposition with the current i in the sample. To do
so, the impedance analyzer sets a potential VR through a po-
larization resistor Rr, and the potential VR is chosen in order to
maintain i = 0 and V = 0 on the LP terminal-pair (see Ref.44),
so that VR = Rri.

Under these conditions impedance analyzer measures VHP
and VR; it then performs the operation

Z = Rr
VHP

VR
=

V
i
. (3)

B. Measuring voltage and current using a resistive cable

The two fundamental characteristics of the coaxial cable "a"
are its impedance Za and its propagation coefficient γa given
by the relations46,47:

Za =

√
Ra + jLaω

Ga + jCaω
, (4)

γa(ω) =
√
(Ra + jLaω)(Ga + jCaω), (5)

where Ra, La, Ca and Ga are respectively the resistance, the
inductance, the capacitance and the dielectric conductance
of the coaxial cable. Importantly, the resistance Ra of the
cable "a" is the sum of the resistances of the outer and inner
conductors. The dielectric conductance Ga between inner and
outer conductor is sufficiently small to assume that Ga = 0 in
the following (it might be different at higher frequencies).

FIG. 3. Coaxial cable "a" (Ra, Ca) is used to measure potential V1
using a voltmeter of infinite input impedance. Voltmeter measures
potential V2, not in phase with V1 if cable resistance is finite.

A coaxial cable with parameters Za and γa is used to mea-
sure potential V1e jωt at sample side (see Fig.3). The voltmeter
(infinite input impedance) measures V2e jωt at the other end of
the coaxial cable. The usual model for propagation in coaxial
cables47 considers two counter propagating potential waves:
A+ and A− are the complex amplitudes of these two waves
at right end. The currents and the potentials on both end are
obtained using continuity relations:

i2 =
A+−A−

Za
= 0, (6)

V2 = A++A−, (7)

V1 = A+eγa +A−e−γa . (8)

We obtain the relation between V1 and V2:

V1 =V2 cosh(γa) . (9)

The ideal case of a perfect cable, Ra = 0, would result in
a pure propagative coefficient γa = jωτt where τt =

√
LaCa is

the transit time of the wave along the cable. Eq.(9) would be-
come V1 =V2 cos(ωτt), which shows that a perfect cable does
not introduce any phase shift between V1 and V2, but modifies
the voltage amplitude: resonances occur for ωτt = (k+1/2)π
( f ≈ 50MHz for a 1m cable and k = 0).
However, when using resistive cables γa =

√
jRaCaω− τ2

t ω2.
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Thus, even in the AQSR where τ2
t ω2 � 1, a phase shift ap-

pear between V1 and V2. This phase shift depends on both
the capacitance and the resistance of the cable. As the capac-
itance of coaxial cables does not vary much from one cable
to another (always more or less around 100pF/m), the rele-
vant characteristic here is the cable resistance, which varies in
a large range depending on the alloy and section of the inner
and outer conductors.

The same calculation for the current, depicted in Fig.4,
gives the following expression for the current i2:

FIG. 4. Potential on sample side is maintained at V = 0 by the a.c.
bridge using a cable connected to LP. A current i1 flows through the
sample. At right end, i2 is measured.

i2 = i1 cosh(γa) . (10)

C. Impedance measurement using 4 resistive cables

We now consider the measurement of an impedance using a
set of four long and resistive cables to connect comfortably the
sample to sockets HP, LC, HC and LP of impedance analyzer.
As seen above, the cables connected to HP and LC influence
the measurement. Extending cables connected to LP and HC
has no effect, as yet mentioned in Ref.29. Indeed, the cable
connected to the LP terminal-pair is characterized by V = 0
and i = 0 at all time and everywhere on the cable, whatever
its length. Besides, the cable connected to HC is used to in-
ject current and its length has no effect either. Using Eq.(9)
and Eq.(10), the impedance-meter finally measures both po-
tentials:

VHP =V/cosh(γa), (11)
VR = Rri× cosh(γa), (12)

where V and i are the potential and current experienced by the
sample. Using Eq.(3) impedance analyzer returns the value

Zexp = Rr
VHP

VR
=

V
i
× 1

cosh2(γa)
. (13)

We finally obtain the relation between the experimental
impedance Zexp, and the true value Z of the impedance:

Zexp =
Z

cosh2(γa)
, (14)

with γa =
√

jτaω− τ2
t ω2 . (15)

The time τa = RaCa acts as a "delay" introduced by the set
of four cables "a", more precisely by only two of them: the
cable connected to HP and the cable connected to LC. The
admittance obeys a symmetrical equation,

Yexp = Y cosh2(γa) . (16)

D. Low frequency development

The above formula is valid at any frequency provided that
the radio-electric model of wave propagation holds. Particu-
larly, low frequency development of Eq.(15) gives

cosh2(γa)≈ 1+ γ
2
a ≈ (1−LaCaω

2)+ jRaCaω . (17)

Consequently, measuring with resistive cables a dipole
(G,C) of admittance Y = G+ jCω , yields from Eq.16:

Yexp = G(1−LaCaω
2)−Cτaω

2 + j(C+Gτa)ω, (18)

where τa = RaCa. The cable resistance appears in both the
real part and the imaginary part. Another quadratic term
(−Cτaω2), generally much lower than LaCaω2 except in par-
ticular conditions, is added to the real part. At 100kHz,
LaCaω2 ≈ 10−4 is not measurable by our means, so that in
AQSR, cosh2(γa)≈ 1+ jRaCaω , and Eq.18 reduces to:

Yexp = Ye jωτa = G+ j(C+Gτa)ω, (19)
τa = RaCa . (20)

At low frequency then, corrections introduced by cables result
in a phase shift, which adds an extra term Gτaω to the imag-
inary part, but only if the conductance is finite. The regime
G = 0 is therefore indicated to make a direct measure of quan-
tum capacitances39,48,49. In the general case G 6= 0, and to ob-
tain the true value B of the susceptance, it is necessary to sub-
tract Gτaω from the measured imaginary part. In other words,
it is necessary to subtract Gτa from the measured capacitance
to obtain C.

In the (R,X) mode of the impedance-analyzer, measure-
ments of an impedance Z = R+ jLω using resistive cables
"a" gives:

Zexp = R(1−LaCaω
2)−Lτaω

2 + j(L−Rτa)ω, (21)

which becomes, in the AQSR

Zexp = Ze− jωτa = R+ j(L−Rτa)ω , (22)

Again the phase is shifted, which adds an extra term
(−Rτaω) to the imaginary part, if the resistance is finite. Re-
actance X is always correctly measured if R = 0: in Ref.40,
Delgard et al. made a direct measurement of quantum induc-
tances of Hall bars, taking profit of the zero-resistance state of
the quantum Hall effect. In the general case R 6= 0, one must
add Rτa to the measured inductance, to obtain L.
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E. Result for a two cables series

Most of the time, cables used for wiring inside the cryo-
stat are different from standard coaxial cables used outside
the cryostat to connect instruments. If cables "a" are inside
the cryostat and are connected in series with cables "b" which
are outside the cryostat, the impedance measurement using 4
serial cables "a" and "b", gives the result (see appendix)

Yexp = Y (cosh(γa)cosh(γb)+(Za/Zb)sinh(γa)sinh(γb))
2 .
(23)

The low frequency development of this formula gives the re-
sult obtained in Ref.50 for two cables in AQSR:

Yexp = Ye jωτc , (24)
τc = RaCa +RbCb +2RaCb . (25)

Symetrically, measuring an impedance would lead to:

Zexp = Ze− jωτc . (26)

For two identical cables "a = b", this formula yields τc =
4RaCa = (2Ra)× (2Ca), showing that Eq.(25) is compatible
with Eq.(20) for a single cable with double length. This equa-
tion shows that even if cable "b" outside the cryostat has
no resistance (Rb = 0), it enhances anyway the time delay:
τc = Ra(Ca +2Cb).

IV. EXPERIMENTAL RESULTS FOR TIME DELAY, τc,exp

A. Calibration experiment for τc,exp

The time τc characterizes the cable-set used in experiments
and theoretically it does not depend on frequency. However,
when we experimentally determine τc,exp, we find a frequency
dependent quantity.
Let us go back on Fig.1 (section II), where the basic experi-
ment is in fact the calibration experiment to obtain τc,exp( f ).
First, we measured the resistor on the adaptor without the use
of cables, and found a tiny but measurable imaginary part B0,
visible in Fig.1. Second, we connected the metallic resistor to
the termination of the cable-set and we measured again with
the impedance analyzer (see inset of Fig.1). In that case, as
indicated by Eq.(20) and Eq.(25), the imaginary part of the
admittance I (Y ) is directly Gωτc,exp( f )+B0. We finally ob-
tain τc,exp( f ) using ω and G, which are accurately known, and
taking into account the small intrinsic susceptance B0 of the
component, as follows,

τc,exp( f ) = (I (Y )−B0)/(2π f G) . (27)

Experimental results obtained using Eq.(27) and Fig.1 are
reported in Fig.5 for the cable combination combi-1 (see table
I and II for characteristics of cables and their serial combi-
nations), at temperatures of 300K and 1.5K, and using two
metallic resistors. For 1.5K, cables c1 are mounted on an ex-
perimental rod and are introduced into a cryostat. Outside the
cryostat, we used the same standard cables c00 than for the

TABLE I. List of coaxial cables used in our experiments. Time delay
τa is calculated from Eq.20. Except mentioned, T = 300K. For all
cables, the characteristic impedance is Z = 50Ω.

cable ρ(Ω/m) length(m) R(Ω) C(pF) τa(ns)
c1 26.6 2.4 64 335 21.4

c1 (1.5 K) 19 2.4 46 335 15.4
c2 2.3 2.0 4.6 201 0.9

c2 (1.5 K) 1.1 2.0 2.2 201 0.4
c3 2.4 3.0 7.2 300 2.3
c4 2.1 2.0 4.2 192 0.8

c0 0.22 1.0 0.22 100 ≈ 0.02
c00 0.22 2.0 0.45 200 ≈ 0.1

TABLE II. Calculated delay for cables combinations (eq.25), T =
300K.

combination cables τc(ns)
combi-1 c1 + 2 c00 72.8
combi-2 c1 + 2 c00 (1.5 K) 52.5
combi-3 c2 + c00 2.85
combi-4 c2 + c00 (1.5 K) 1.4
combi-5 c4 + c3 5.4
combi-6 c3 + c0 3.6
combi-7 c4 + 2 c0 2.7
combi-8 c3 twisted 2.3

T = 300K experiment. Solid horizontal lines in Fig.5 cor-
respond to the theoretical values obtained using Eq.(25) and
data of table I and II. We have used c1 for the cable "a" con-
nected to sample, and two cables c00 for the cable "b". The
expected theoretical values in Fig.5 are τc(300K) = 72.8 ns,
and τc(1.5K) = 52.5 ns (table II).

Both components give a coherent determination of

FIG. 5. Experimental delay τc( f ) for combination of cable c1 + 2 c00.
Both families of curves correspond to room temperature (T = 300K)
and pumped Helium temperature (T = 1.5K). There were obtained
using two different metallic resistors indicated in inset. Solid hori-
zontal lines correspond to the theoretical values reported in table II.
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τc,exp( f ), but the experimental values correspond to the the-
oretical ones only above 50kHz. Below this frequency, devia-
tion from the expected value increases. Contrarily, at 100kHz
and for T = 300K, the data dispersion is small ∆τc(exp) =
±4ns, and the experimental values fit the theoretical ones.

The deviations of τc,exp from theoretical values at low fre-
quencies, cannot be attributed to the cable capacitance nor to
the cable resistance: we have checked that those quantities do
not vary at all below 100kHz, as expected. Moreover, the skin
effect53 does not intervene here because for our cables (con-
ductors composed of a silver multi-strand wire) the skin depth
at 100kHz is 63 µm and comparable with the diameter of the
whole wire (100 µm), but more, the skin effect increases with
frequency, while the problem here appears at low frequency.

Instead, we attribute the increase of τc,exp at low frequen-
cies, to a bad determination of small susceptances at very
low frequency by our impedance analyser. The measure-
ment accuracy is indicated on the reactance chart in Agilent
handbook54, which explicitly shows that the error exceeds
10% when measuring Gτc (which acts as a capacitance≈ 0.1-
1pF in our experiments) using frequency below 50kHz. The
measurement uncertainty increases even further at lower fre-
quencies, and it might be diverging and larger than 100%
below 15kHz. By the way, the observable enhanced noise
at very low frequency is also attributed to the imprecision
of the impedance analyzer below 15kHz (see Refs.6,44), and
supports the same conclusion. In fact, we show in section
IV that the appropriate frequency range in our conditions is
[50kHz, 1MHz]. However, despite low frequency deviations
from the model, we stress that we can still reconstruct the sig-
nal once we obtain the experimental function τc,exp( f ) in the
whole frequency range. This function indeed, takes into ac-
count the overall environment proper to each experiment, in-
cluding cables, including any systematic error introduced by
the impedance analyser itself.

The accuracy of the calibration method can be assessed
by repeating the same procedure described above, employing
various metallic resistors or 2DEG samples. As illustrated in
Fig.5 and Fig.7, the experimental results for τc exhibit slight
variations when different samples are used. Clearly, data dis-
persion determines the minimal experimental uncertainty. As
shown in sections B and C below, the precision of τc de-
termination using our experimental setup, is always above
∆τc = 0.2 ns, and can be as high as ∆τc = 4 ns.

B. Retrieving the true susceptance: a toy experiment

In this section, we show that the systematic error introduced
by both the cables and the impedance-analyzer can be sub-
tracted to obtain the true value of susceptance, up to some ac-
curacy lost. We measured the admittance of three dipoles: the
dipole D1 which is a test capacitance Ctest = 2.9±0.1 pF; D2
is Ctest in parallel with resistor R1 = 12kΩ; D3 is Ctest in par-
allel with R2 = 24kΩ. All dipoles are thus supposed to have
the same imaginary part and they are all measured at the end
of the same combination of cables combi-1, as for the calibra-
tion experiment. We reported in Fig.6 the imaginary part of

FIG. 6. Direct imaginary part of admittance versus frequency for
capacitance alone (green dashed line), and imaginary part after cor-
rection for D2 and D3. All dipoles are placed at the end of combi-1.
In inset, rough data of the admittance real and imaginary part for D1,
D2 and D3. T = 300K.

the admittance for the capacitance alone (D1), and the imag-
inary part of the admittance after correction for D2 and D3.
In inset, we reported rough measurements of the admittance
before correction.
The correction consists in applying the procedure described

in section III-D, using the experimental time delay defined
by Eq.(27). For this, we used τc,exp( f ) shown on Fig.5 (ob-
tained with combi-1 cables as well). We observe in inset of
Fig.6 a slope break around 20kHz in the susceptance, which
is due to the artificial low frequency enhancement of τc,exp( f ),
and which disappears with help of the procedure. In Fig.6 in-
deed, we observe a satisfactory linear increase with frequency
for susceptance of D2 and D3. We finally obtain Ctest =
2.8±0.3pF using D2, a result still in agreement with the con-
structor data Ctest = 2.9± 0.1pF. Meanwhile, the uncertainty
is of course increased compared to the case in which the ca-
pacitance is measured alone. The uncertainty is entirely due
to bad determination of time delay ∆τc,exp =±4ns (see Fig.5),
which results in ∆(Gτc,exp)≈ 8.10−5×4.10−9 ≈ 0.3pF.

In the present example, the experimental environment is not
suitable for this measurement. Indeed, the additional phase in-
troduced by cables, ωτc = 4.6 10−2rad at 100kHz, is of same
order of magnitude than the measured phase of dipole D2 at
100kHz (ϕmeasured = B/S = 6.8 10−2rad). The real phase is
ϕsample = 2.2 10−2rad, and it is clear that the phase introduced
by the cables adds directly to the signal phase, to give the mea-
sured phase.

Consequently, an objective, quantitative criterion can be es-
tablished to determine whether the experimental context is ad-
equate: the measurement is free from systematic errors if the
phase added by the cables (ωτc) is significantly smaller than
the measured phase of the signal at this frequency. It is there-
fore essential to estimate or to measure the time τc of the ex-
perimental system, prior to sample analysis. In general, and
to be more precise, experimental constraints impose limits on
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FIG. 7. Experimental delay τc,exp for combi-3 and combi-4. For each
temperature, both curves have been obtained using two different sam-
ples processed on a same AlGaAs/GaAs hererojunction, whose 2D
electron density is Ns = 4.31011 cm−2 and mobility is µ = 42m2/V.s.
The sample consists in a single channel 2mm long and 200 µm wide
for S1 (400 µm for S2).

the value of τc, which cannot be less than 10−11 s (the approx-
imate value for a 1m coaxial cable with a resistance of 0.1Ω),
and can be as large as 10−7 s, like in our case. Consequently,
at 1MHz, ωτc ranges from 10−5 rad to 10−1 rad, a quantity
to be compared to the sample phase. If these two phases are
comparable, the systematic error introduced by the cables can
nevertheless be deducted from measurement to find the real
phase, but this operation will result in a minimal final uncer-
tainty ω∆τc.

Clearly here, cable c1 won’t allow accurate measurement of
capacitances below 1pF if there’s a resistor in parallel. Less
resistive cables are needed to accurately measure smaller ca-
pacitances. This is the subject of the next paragraph.

C. Characteristic time delay for low resistive cables

From now we are concerned with cables whose resistance
is much less than for cable c1, but still finite and ≥ 1Ω. Such
cables bring some heat in the cryostat, however they enable
more accurate measurements. Characteristics of cables and
their combinations are reported in tables I and II. The char-
acteristic time τc (Eq.25), contains contribution of 4 identical
cable combinations, that we connect between the four sockets
of impedance analyzer and the dipole under test.

Results for combi-3 are reported in Fig.7 up to 200kHz.
Experiments was carried out using a two-dimensional elec-
tron gas (2DEG) found at the interface of a AlGaAs/GaAs
heterojunction. A 2DEG has indeed a vanishing imaginary
part at zero magnetic field. The kinetic inductance of a 2DEG
is Lkin = Rτd where the diffusion time is τd ≈ 1ps52. For our
sample with a typical kΩ resistance, the kinetic inductance
Lkin is in the nH range and too small to be measured here.

Measurements seem closer to the model than in Fig.5 for

combi-1, because we increased the frequency range. Low
frequency enhancement is attributed again to a bad measure-
ment from the impedance analyzer at these frequencies. Be-
sides, we notice as well a large dispersion of experimental
points for low frequencies. However, the data dispersion at
high frequency is small enough for an accurate determina-
tion of a 0.1pF capacitance. We performed same experiment
with same combination of cables but at pumped Helium tem-
perature (refered as combi-4 in table II). At T = 1.5K and
100kHz, we measure τc,exp = 1.3 ± 0.2ns, this value is lower
than for room temperature, due to the decrease of the cable
resistance.

In Fig.8 we reported experimental and theoretical values
for combinations combi-5, combi-6 and combi-8. We obtain
again a good agreement between experimental and theoretical
values for τc, at high frequencies. It is remarkable that all
combinations of cables exhibit the same behavior for τc,exp,
which claims again for a systematic imperfect measurement
at low frequencies, due to the impedance analyser itself.

FIG. 8. Delay τc,exp for combi-5, combi-6 and combi-8 defined in
Table II. Solid horizontal lines correspond to the expected theoretical
values. T = 300K.

D. Influence of cables relative position

The uncertainty in the determination of τc,exp results from
three main difficulties. The first is the unavoidable presence
of stray capacitances (of sample holder for instance) or par-
asitic inductances (of wire-bonding when we used 2DEG),
which introduce an error proper to each experimental situa-
tion. This un-determination is observable in Fig.5 and Fig.7
through the dispersion of curves obtained in same conditions
with different samples, while they should be superimposed.
The second difficulty is due to deviations at low frequencies
caused by the impedance analyser itself. The third difficulty
lies in the control of relative position of all cables. We re-
ported in Fig.9, results of three experiments made with same
resistor and same set of cables (combi-8). Relative position of
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cables was modified between each experiment and is schema-
tized in inset: twisted cables with no space between each
other, cables parallel but spaced out, and widely spaced out.
We observe first, that the results obtained for twisted cables
are the closest to the theoretical model. Second, it is clear
that the more the space between cables, the more the results
deviate from expected behavior. For all results presented in
this paper (except mentioned, as in this part) we have used
twisted cables. In an experimental campaign indeed, unfixed
cables would make the time delay to vary from one experi-
ment to another. Therefore, cables should always be twisted
or at least gathered and attached together in order to suppress
ground loops: when cables are twisted, small magnetic fields
induced by current flowing through cables compensate, while
large open loops cannot guarantee a precise measurement free
of interferences51. Of course, very high-quality rigid coaxial
cables should perfectly shield electric fields and avoid inter-
ferences; but generally speaking, what is often used in labora-
tories are standard cables and RF connectors.

FIG. 9. Delay τc,exp for combination of cables combi-8, and three
different relative arrangement for cables schematized in inset. Full
horizontal line corresponds to expected theoretical value (see Table
II). The twisted cables give the lower time delay and best result com-
pared to the model. T = 300K.

E. behavior at higher frequency

The characteristic τc,exp( f ) is the identity card of the cable
set. It allows to define the range of frequencies for more accu-
rate measurements. In Fig.10, we present ID cards for combi-
6 and combi-7 (see table II) and frequencies up to 1MHz. In
combi-6 cables are twisted while they were not in combi-7.
The deviation from expected value in the case of combi-7 is
attributed to open configuration of cables, which persist un-
til 1 MHz and probably more. Contrarily, measurements us-
ing combi-6 (twisted cables) are fully conform to the theory
above 50kHz. Thus, the appropriate frequency range in our
technical environment is [50kHz, 1MHz]. Each set of cables

should be characterized in its own, and used in a definite range
of frequencies for which measurements are accurate.

FIG. 10. Using a larger scale for frequency, we highlight differences
between cables sets. τc,exp is stable, constant and close to the ex-
pected value for combi-6 (twisted cables), while it is not for combi-7
due to an open configuration of cables as in Fig.9. T = 300K.

F. Magnetic field has no effect on cables behavior

We have plotted in Fig.11 values of τc,exp for combi-4 ob-
tained using a 12kΩ metallic resistor, for several values of the
magnetic field. All curves overlap completely. This allow to
define τc,exp properly when working with magnetic field. As
expected, coaxial cables electrical properties are not sensitive
to magnetic field and thus, effect of magnetic field on sample
may be distinguished easily.

FIG. 11. τc,exp for combination of cables combi-4, using a 12kΩ

resistor and for several values of the magnetic field. Magnetic field
has no effect on the electrical properties of cables. T = 1.5K.
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V. SUMMARY

We have exhibited and analyzed the role of coaxial cables
resistance in an admittance measurement at low frequency.
We obtain theoretical expressions for the measured quantities
in the whole frequency range, not limited to AQSR. At low
frequency, the lead resistance introduces a phase shift charac-
terized by a time delay τc which depends on total resistance
and total capacitance of cables. To obtain the true admittance
phase, the time delay must be measured within the working
frequency range (calibration experiment) and the phase shift
ωτc subtracted from the rough data.
Although we have been concerned here with impedance, our
results extend to any a.c. electrical measurements in which
the problem is to determine precisely the imaginary part. We
have shown that It is essential to estimate or to measure the
phase shift ωτc prior to sample analysis, and compare it to
the measured phase. If those two phases are comparable, the
phase shift introduced by the cables should be deducted.
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APPENDIX

Measuring a potential V1e jωt using a series combination of
two coaxial cables

We reconsider previous calculations for a measurement in-
volving two coaxial cables in series: cable "a" on the sample
side, and cable "b" on the voltmeter side, see Fig.12. The con-

FIG. 12. Two coaxial cables in series: "a" connected to the sample
side and "b" connected to measuring instruments. A+ and A− (resp.
B+ and B−) are the complex amplitudes at left (resp. right) end.

tinuity relations for current and potential impose

i2 =
B+e−γb −B−e−γb

Zb
=

A+e−γa −A−eγa

Za
,

i3 =
B+−B−

Zb
= 0,

V1 = A++A−,

V2 = B+eγb +B−e−γb = A+e−γa +A−e−γa ,

V3 = B++B−.

Using B+ = B− from above, and setting α = Za/Zb, we get

A+e−γa = B+(cosh(γb)+α sinh(γb)),

A−eγa = B+(cosh(γb)−α sinh(γb)).

The relation between voltages V1 and V3 is finally:

V1 =V3(cosh(γa)cosh(γb)+α sinh(γa)sinh(γb)) . (A.1)

Measuring a current i1e jωt using two coaxial cables

FIG. 13. V = 0 is imposed at left end of the coaxial cable by the a.c.
bridge. Measurement of current i1 gives i3 at right end of cable.

Writing the three continuity relations for current and poten-
tial in Fig.13, gives the relation between i1 and i3:

i3 = i1(cosh(γa)cosh(γb)+α sinh(γa)sinh(γb)). (A.2)

Measuring an impedance using 4 series of coaxial cables

In conclusion of this appendix, we obtain the phase
shift which appear when measuring an admittance Y or an
impedance Z with a set of 4 combinations of cable "a" in se-
ries with cable "b". If cables "a" are connected to the sample
side and cables "b" are connected to impedance analyzer, the
relation between experimental quantities and true values are:

Zexp = Z/(cosh(γa)cosh(γb)+α sinh(γa)sinh(γb))
2, (A.3)

Yexp = Y (cosh(γa)cosh(γb)+α sinh(γa)sinh(γb))
2. (A.4)

In the low frequency development (γa,γb� 1), we have

Yexp = Y (1+ γ
2
a + γ

2
b +2αγaγb), (A.5)

which can be written as a small phase shift,

Yexp = Ye jωτc , (A.6)
τc = RaCa +RbCb +2RaCb . (A.7)
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