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Abstract

Mollusk shells are an ideal model system for understanding the morpho-elastic basis of mor-

phological evolution of invertebrates’ exoskeletons. During the formation of the shell, the

mantle tissue secretes proteins and minerals that calcify to form a new incremental layer of

the exoskeleton. Most of the existing literature on the morphology of mollusks is descriptive.

The mathematical understanding of the underlying coupling between pre-existing shell mor-

phology, de novo surface deposition and morpho-elastic volume growth is at a nascent

stage, primarily limited to reduced geometric representations. Here, we propose a general,

three-dimensional computational framework coupling pre-existing morphology, incremental

surface growth by accretion, and morpho-elastic volume growth. We exercise this frame-

work by applying it to explain the stepwise morphogenesis of seashells during growth: new

material surfaces are laid down by accretive growth on the mantle whose form is determined

by its morpho-elastic growth. Calcification of the newest surfaces extends the shell as well

as creates a new scaffold that constrains the next growth step. We study the effects of

surface and volumetric growth rates, and of previously deposited shell geometries on the

resulting modes of mantle deformation, and therefore of the developing shell’s morphology.

Connections are made to a range of complex shells ornamentations.

Author Summary

Molluska are the second most diversified phylum of the animal kingdom, and their evolu-

tionary success can be partly attributed to the hard shell that provides both protection and

support to the soft body. The distinctive anatomical features of these hard shells are their

rich pigmentation patterns and complex structural ornamentations. While the pigmenta-

tion patterns are primarily of biochemical origin, the ornamentations result from

mechanical deformation of the mantle due to growth induced forces. This mechanical

basis of “growth and form” has been previously investigated using simplified morpho-
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mechanical models, but restricted to reduced geometric representations. Here we propose

a three-dimensional computational framework coupling morphology, incremental surface

growth by accretion, and morpho-elastic volume growth, to enable an improved represen-

tation of the growth and structural parameters controlling the evolution of these orna-

mentations. We study the effects of growth rates, and of previously deposited shell

geometries on the resulting modes of mantle deformation, and present a “phase diagram”

of morphogenesis in molluskan shells. Our main motivation for focusing on generic phys-

ical processes involved in development is that they may shape living beings in a predictive

way and partly determine the spectrum of forms that have been and could have been gen-

erated during evolution.

Introduction

With around 200,000 living species, molluska are the second most diversified phylum of the

animal kingdom, including gastropods (snails, slugs), bivalves (mussels, oysters,. . .), cephalo-

pods (squids, Nautilus,. . .) and five other classes [1] occupying a wide range of marine, fresh-

water, and terrestrial habitats. The huge morphological diversity among classes makes

mollusks particularly interesting from an evolutionary perspective, notably with regard to

questions related to the origin, evolution, and disparity of their body plan and their shell [2, 3].

The evolutionary success of mollusks, spanning over 540 million years, can be at least partly

attributed to the shell that provides both protection and support to the soft body [4]. Beyond

their obvious aesthetic appeal, molluskan shells are an important research area in different

fields. They have become exemplar model systems for studying the processes of biomineraliza-

tion, a topic attracting a great deal of interest: from materials science to biomedical applica-

tions [5, 6]. Recent studies have begun to identify genes involved in these complex processes

and to analyse how they are developmentally regulated [7], although the physical mechanisms

underlying the morphogenesis of the shell ultrastructures remain poorly understood [8].

Recent attention has also been given to the formation and differentiation of the shell-secreting

mantle margin during development [9] and its morphological variations among classes [10,

11]. Detailed microscopic studies continue to provide important details about the structure

and mutual relationships between the mantle, periostracum, and shell [12]. However, despite

their importance to many fields, the morphogenetic processes underlying the diversity of

shapes remain elusive. This poor state of knowledge may lead to an incomplete, if not a dis-

torted, view of the mechanisms underlying their morphological evolution.

Several interesting theories have addressed the formation of pigmentation patterns. How-

ever, these theoretical models invoking either reaction-diffusion chemical systems [13] or ner-

vous activity in the mantle epithelial cells [14] cannot, by themselves, explain the emergence of

three-dimensional forms that are subject to forces during the organism’s development and life

span. Indeed, while colour patterns on surfaces are primarily of biochemical origin, the forma-

tion of three-dimensional ornamentations such as ribs, tubercles, and spines is mostly a

mechanical problem resulting from force generation on the mantle during growth, and its dis-

tortion in response to the force. Early studies have also considered the role of mechanics in the

development of molluskan shells [15–19]. More recently, some of the authors have developed

a general framework of mollusk shell morphogenesis based on continuum theories of growth

and mechanics [20, 21]. These models have been used to study the development and evolution

of shell shape from a biophysical perspective [22–26]. In particular, these morpho-mechanical

models suggest that three-dimensional ornamentations, either parallel (i.e. commarginal ribs)

Computational framework for molluskan shell growth
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or orthogonal (i.e. antimarginal ribs) to the growth lines do not require prefiguring patterns at

the molecular level but may emerge de novo from the balance of mechanical stresses intrinsic

to the secreting system constrained in its growth by the calcified shell edge to which it adheres.

Following these simplified models, we present a fully three dimensional numerical frame-

work to study the accretive growth and nonlinear elastic deformations of the secreting mantle.

As a first application, we study the effect of the geometry of the calcified shell edge, surface

growth rate and morpho-elastic growth rate of the mantle on the resulting elastic deformation

modes. We next study how these parameters may interact during shell development to gener-

ate diverse forms. Our main motivation for focusing on generic physical processes involved in

development is that they may shape living beings in a predictive way and partly determine the

spectrum of forms that have been and could have been generated during evolution. This out-

look can be traced back 100 years to the pioneering work of D’Arcy Thompson, whose 1917

tome “On Growth and Form” [27] continues to inspire a growing community of researchers

in various fields of theoretical, evolutionary and developmental biology (e.g. [21, 28]). In this

perspective, computational models of morphogenesis constitute an important tool to uncover

the non-contingent rules that physical processes introduced in the development and evolution

of forms.

Mollusk shell growth mechanics

Molluskan shells grow via an accretive process occurring at the shell margin by an organ called

the mantle, which is a thin elastic membrane lining the inner surface of the shell. Over each

increment, the mantle extends slightly beyond the calcified shell edge, while adhering to the

rigid shell. The mantle then secretes matrix proteins, which, through biomineralization and

calcification harden into a new layer of shell.

Within this process is an interesting mechanical interaction, due to the fact that the form

taken by the mantle along the growing shell front is fixed in the calcified edge, while the form

of the calcified edge partly determines the shape of the mantle at the next growth increment

[25]. As the mantle may have grown since the last shell secretion, its margin may be longer

than the shell edge, and hence attachment to the shell may induce deformation of the mantle

tissue that is then recorded and fixed in the shell shape upon secretion and calcification. We

introduce our foundational notions of two distinct modes of growth. A process that creates

new surface where none existed before is labelled as surface growth. In contrast, if growth takes

place by deposition where material already exists, i.e., over pre-existing volume, followed by

elastic relaxation, the effect is to locally increase the material volume without adding new sur-

face. For this reason we label it as volume growth. From a mechanical point of view, shell

growth may thus be summarized by the steps illustrated schematically in Fig 1: (1) the mantle

extends beyond the shell edge while also growing along the shell margin (volume growth), and

(2) adhering to the rigid shell, creating an elastic deformation (morphoelasticity); in this

deformed configuration, (3) new shell material is secreted (surface growth of the shell), and

thus (4) a new layer of shell appears in the shape of the deformed mantle, which undergoes

biomineralization and calcification, and the process repeats.

The same basic process occurs in all shell-building mollusks, and yet produces a hugely

diverse output of shell shapes and ornamentations. A general goal is to produce a mathemati-

cal and computational framework to explore this diversity: in particular how mechanical prop-

erties of the mantle, growth rates, and geometry conspire to produce the beautiful and varied

outcomes observed in this phylum. However, a complete mathematical description is inher-

ently challenging, as it links complex shell geometry (helicospiral, e.g.), elements of both sur-

face and volume growth, nonlinear elastic deformations, and calcification. Previous work by

Computational framework for molluskan shell growth
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some of the authors has approached this problem in a setting of one-dimensional elasticity,

treating the interaction between the mantle margin and shell as a rod on an evolving elastic

foundation. Here, our objective is to develop an algorithmic approach and computational

tools to model the problem in a setting of three-dimensional nonlinear morphoelasticity.

However, the mathematical details of such a computation are quite complex; indeed the

combination of surface and volume growth is itself a significant challenge in biomechanics,

with evolving reference configurations and multiple growth tensors. Here, we have the added

complexity of the distinction between the growing shell and the growing mantle, as well as the

additional process of shell calcification. Hence, a proper description involves the delicate treat-

ment of surfaces evolving due to combined mechanisms of growth, mechanical forces, and a

calcification front that plays the role of a moving boundary condition. To simplify the descrip-

tion, in this paper we formulate a mathematical description of the process that treats the man-

tle and shell edge as a single elastic object undergoing surface growth, volume growth, and

calcification. The mathematical details are provided in the following subsection (which may be

skipped by the reader whose interest lies primarily in the outcome of applying the growth

models). In short, our algorithmic approach is to execute the process shown in Fig 1. In step

(1) of the figure, extension of the mantle edge beyond the shell edge is modelled as surface

growth. Volume growth is assumed to occur only in the direction parallel to the shell edge,

and produces an excess of length of mantle relative to the calcified shell edge. Upon

Fig 1. Schematic of shell growth. Growth process of a molluskan shell surface depicted through the steps of volume growth of mantle tissue, morphoelastic

deformation, and shell surface growth via secretion and calcification. The calcified region of the shell is indicated in yellow.

https://doi.org/10.1371/journal.pcbi.1007213.g001
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attachment, the calcified shell edge acts as a boundary condition constraining one edge of the

mantle margin in step (2). Elastic deformation is determined via mechanical equilibrium

within the framework of finite elasticity (and computed via the finite element method). This is

the morphoelastic volume growth step that causes out-of-plane deformation of the mantle.

Subsequent secretion of new shell material then occurs over the extended and deformed man-

tle in step (3) and the calcification front advances. Configurations of both the mantle and the

shell are updated in step (4), and the process is repeated. As discussed further below, there are

variations possible on exactly how this process is implemented in a computational setting. Our

objective in this paper is not to exhaustively explore all possibilities, but rather to demonstrate

the general validity of the algorithm and examine some basic properties of the shell patterns

that emerge as output.

Methods

Mathematical framework

We detail the mathematical framework that is the foundation for the eventual computational

treatment of the growth processes outlined above. This requires descriptions of surface and

volume growth, elasticity and calcification. In our model, de novo shell material is configured

by a combination of mechanisms among those introduced above: (a) surface growth (creation

of new surface) by mantle extension along a unit vector, s1, which is tangential to the shell sur-

face and perpendicular to the mantle margin, i.e. s1 denotes the general direction of shell

growth; (b) growth in size of the mantle over its pre-existing extent (therefore “volume”

growth) manifesting in its expansion along another unit vector s2, which is tangential to the

shell surface and in the direction of the mantle margin and shell edge (since the mantle takes

on the shape of the shell surface near its leading edge, the mantle margin tracks the shell edge);

and (c) formation of crests and valleys nominally perpendicular to the undeformed shell sur-

face, and along the unit vector s3. We have s3 = s1 × s2, and more specifically, si � sj = δij, where

the triad {s1, s2, s3} changes along the curved shell surface (Fig 2). The third mechanism above

arises from elastic bifurcations from a smooth surface, and post-bifurcation deformation

driven by “excess” mantle growth relative to the previous shell increment. As explained in the

Mollusk shell growth mechanics subsection of the Introduction, this is the morphoelastic

mechanism, which is susceptible to a continuum mechanical treatment. It is key to develop-

ment of the elaborate, antimarginal decorations of molluskan shells [20, 21, 29–32]. Although

surface growth due to mantle extension perpendicular to the shell edge occurs only following

volume growth along the shell edge, we have described the steps (a-c) in the order of surface

growth, volume growth and morphoelastic deformation. This is for mathematical purposes

only. In our model, these mechanisms are not separated in time. At the outset we remark that

the need for precision in describing the array of configurations and mechanisms leads to com-

plexity of notation.

Surface growth of the mantle. The mid-surface of the shell is represented by the surface,

S t � R
3
. We regardS t as a one-parameter family of surfaces, generated by τ 2 [0, T], from a

reference surfaceS 0 � R
3
. The generating curve, Gt � @S t, is the leading edge ofS t and

evolves along s1 (see Fig 2). For points X(τ) 2 Γt and X(0) 2 Γ0, where G0 � @S 0 is the initial

generating curve at time τ = 0, we have X(τ) = χτ (X(0)). Surface growth occurs by extension of

the mantle along the boundary curve Γτ, which advances with the velocity _χ ¼ v1s1. In our

computational studies, we will consider spatial and temporal variations in v1. In principle, v1

depends on space and time through quantities such as the density, stress, and chemical

fields, among others, but we neglect such details in this preliminary communication. We

Computational framework for molluskan shell growth
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Fig 2. Local coordinate system on the surface patch. s1 is the direction of surface growth due to mantle extension, s2 is the direction of volume growth along the

mantle margin, and s3 = s1 × s2 is the normal to the local surface patch. The calcified shell edge after time τ1 forms the generating curve Γτ1 for the time step, [τ1, τ2];

the leading edge of the grown and deformed mantle strip then forms the generating curve, Γτ2 for the next time step.

https://doi.org/10.1371/journal.pcbi.1007213.g002
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approximate the shell and the extended mantle as maintaining a constant thickness along s3

throughout the growth process.

Volume growth of the mantle. We next consider volume growth of the mantle by

expansion along s2, which is also the tangent to Γτ (both surface and volume growth of the

mantle as described are a consequence of growth in size of the mollusk. It is for purposes of

mathematical modelling that we have distinguished the process into surface and volume

growth). Due to this mechanism of growth the arc length of the fully relaxed mantle

increases over time. Our treatment is focused on the kinematic manifestation of possibly

inhomogeneous volume growth along s2. We adopt the framework of finite strain elasticity,

with one important variation on the traditional theme: The reference configuration of a

material point is determined by its deposition time. A family of reference surfaces (2-mani-

folds in R3) is defined: o0t
¼ Gt � ð� h=2; h=2Þ � R3, parameterized by the time of deposi-

tion, τ. A material point lies on a reference surface, XðtÞ 2 o0t
if it was deposited at time τ.

The point-to-point map of material points X(τ) from the reference surface o0t
to x(t; τ)

on the current surface, ott
, is x(t; τ) = φ(X(τ), t) = X(τ) + u(X(τ), t), where u is the displace-

ment field. Note that ott
2 R3 also is a 2-manifold. The primary strain quantity is the defor-

mation gradient, defined as F(X(τ), t) = @φ(X(τ), t)/@X. Morpho-elastic growth of the soft

mantle tissue is modeled by the multiplicative decomposition of the deformation gradient

F(X(τ), t) = Fe(X(τ), t)Fg(X(τ), t) into elastic and growth components, respectively [20, 21,

31, 33].

The intuitive idea is that with the mid-surface of the shell being represented byS t, the

mantle’s “preferred” state is given by the growth tensor Fg relative toS t � ð� h=2; h=2Þ.

Because of its attachment to the rigid shell the mantle cannot attain Fg, but only F, with Fe

being the elastic incompatibility. This multiplicative decomposition of the kinematics is the

framework of morphoelasticity. It depends on the time of deposition of material points, and

therefore on evolving reference configurations, and is depicted in Fig 3.

In the above parametrizations t� τ is understood. In what follows, we will suppress func-

tional and parameteric dependencies wherever there is no danger of confusion.

As expressed above, our key kinematic assumption on volume growth of the mantle is that

it occurs only along s2, so that, accounting for the appropriate tangent spaces between which

Fg is imposed,

_F g ¼ ε2F
gs2 � s2: ð1Þ

Here, ε2 is the rate of the growth strain along s2. As with the surface growth velocity, we will

consider spatial and temporal variations in ε2.

Secretion of shell material. The scaffold for de novo deposition of shell material is the

mantle that has undergone an increment of surface and volume growth. New shell material is

secreted on the mantle’s outer surface.

The calcification front. While the mantle can be treated as an elastic solid, the calcified

shell itself is rigid. An advancing calcification front, C t 2 φðS tÞ, is the interface between the

rigid shell and material recently secreted by the mantle. The velocity of C t is vc, which lies in

the plane defined by {s1, s2}.

Algorithmic formulation and implementation

The first step toward an algorithmic implementation is a discretization of the continuous

processes of surface growth, morphoelastic volume growth, and evolution of the calcification

front. The time interval of interest t 2 [0, T] is discretized by instants t0, t1,. . ., tN, into sub-

Computational framework for molluskan shell growth
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intervals [t0, t1],. . ., [tN−1, tN], where t0 = 0 and tN = T. For simplicity, we also consider depo-

sition times τ = t0, t1,. . .. In a time step Δt = tk+1 − tk, the leading surface of material secreted

by the mantle, ott
, advances by v1Δt s1. Fig 4 depicts the relevant geometry (generating curve,

mantle front surface in reference and deformed configurations parameterized by deposition

time) and the growth processes driving the mantle’s shape by surface growth and morphoe-

lastic volume growth. Secretion of shell material and calcification are implied, but not

shown.

The preceding mathematical model is continuous in time. It describes the biological pro-

cesses in the sequence of (1) the mantle’s surface growth (extension), (2) morphoelastic vol-

ume growth, (3) shell growth by secretion on the mantle’s current configuration, followed by

(4) calcification. However, the discrete model operates with time steps Δt = tk+1 − tk. While the

time-continuous setting led to complex notation for evolving configurations, the time-discrete

setting allows some simplifications in this regard. The above four processes are implemented

in parallel over [tk, tk+1]. We note that the time discretization reflects a time-discontinuous

process of growth and calcification.

Surface growth. We assume that at time tk, the shell has been fully calcified: C tk
¼ φðGtk

Þ.

In the time interval [tk, tk+1], the leading surface is displaced due to mantle extension by v1Δt s1

fromottk
(expressed as a deformed configuration) to a new reference surfaceo0tkþ1

. This allows

Fig 3. The kinematics of growth. The observed deformation gradient, F, is composed of an incompatible growth component, Fg, and another incompatible, but

elastic component, Fe, which restores compatibility of F.

https://doi.org/10.1371/journal.pcbi.1007213.g003
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us to define a strip of the mantle in its reference configuration O
m
0tkþ1

bounded by the surface

ottk
at its trailing edge and o0tkþ1

at its leading edge. See Fig 4.

Volume growth. Volume growth of the mantle is obtained by integrating Eq 1. We exploit

the exponential map:

Fg
tkþ1
¼ Fg

kexp½ε2k
Dts2 � s2�: ð2Þ

Since each increment of volume growth over a time step Δt = tk+1 − tk occurs relative to a new

reference configuration, e.g., O
m
0tkþ1

, we have Fg
k ¼ 1.

The actual deformation gradient achieved is Fk+1, with the elastic component

Fe
tkþ1
¼ Ftkþ1

Fg� 1

tkþ1
being governed by nonlinear elasticity. With a strain energy density func-

tion ψ(Fe) that satisfies frame invariance (so that cðFeÞ ¼ ~cðFeTFeÞ), the first Piola-Kirchhoff

stress tensor is

P ¼ @c=@Fe: ð3Þ

Fig 4. Mathematical model of molluskan shell growth over (tk, tk+1] through a sequence of surface growth, volume growth, secretion and calcification. Beginning

with a calcified mantle current configurationO
m
ttk

, growth over (tk, tk+1] is modelled via the following sequence of steps: (1) Surface growth—leading surfaceottk
is

displaced due to mantle extension by v1Δt s1 to a new reference surfaceo0tkþ1

defining a strip of the mantle in its reference configurationO
m
0tkþ1

. (2) Volume

(morphoelastic) growth— _F g is imposed on the mantle strip O
m
0tkþ1

over Δt = tk+1 − tk, driving its nonlinear deformation into the current configurationO
m
ttkþ1

. (3) Shell

growth occurs by secretion on the mantle stripO
m
ttkþ1

, followed by (4) calcification of the mantle strip O
m
ttkþ1

at tk+1. During the volume growth of the mantle strip from

its reference configurationO
m
0tkþ1

to its current configurationO
m
ttkþ1

, boundary conditions are applied on the trailing surface (highlighted in red) and the lateral surfaces

(highlighted in yellow) of the mantle strip. The front surface of the mantle strip is highlighted in green.

https://doi.org/10.1371/journal.pcbi.1007213.g004

Computational framework for molluskan shell growth

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007213 July 29, 2019 9 / 28

https://doi.org/10.1371/journal.pcbi.1007213.g004
https://doi.org/10.1371/journal.pcbi.1007213


It is governed by the quasistatic stress equilibrium equation imposed at time tk+1:

DivPtkþ1
¼ 0 in Om

0tkþ1

: ð4Þ

In our computations we apply Dirichlet boundary conditions u = 0 on the trailing surface

(boundary) ottk
of the mantle where it meets the rigid shell. A combination of fixed Dirichlet,

u = 0, and traction-free Neumann conditions, PNjtkþ1
¼ 0 are applied on the remaining sur-

faces (boundaries) @O
m
0tkþ1

n ottk
. This defines the morphoelastic growth problem for mapping

the mantle strip from its reference configuration O
m
0tkþ1

to its deformed configuration O
m
ttkþ1

.

Secretion. Following morphoelastic volume growth of the mantle in the algorithmic step

described above, a virtual step occurs, in which new material is secreted over the deformed

configuration of the mantle O
m
ttkþ1

.

Calcification. The final step of the algorithm is propagation of the calcification front so

that C tkþ1
¼ φðGtkþ1

Þ. The mantle strip is calcified into its deformed configuration, O
m
ttk

.

Remark 1: The above algorithm is a manifestation of our observation that it is over the

mantle that both surface growth and morpho-elastic volume growth occur. The actual forma-

tion of new shell material by secretion over the mantle, and the calcification of this material,

follow once the current mantle configuration has been defined by surface and volume growth.

Remark 2: The steps presented above impose full calcification of the secreted material in

deformed configuration O
m
ttk

. Consequently, the mantle in its reference configuration O
m
0tkþ1

attaches to the rigid material surface ottk
. An alternate model with possible biological relevance

is to assume that O
m
ttk

has not been calcified, but remains elastic. Then the attachment of the

mantle reference configuration O
m
0tkþ1

at time tk+1 and its morphoelastic volume growth over

[tk+1, tk+2] further deforms O
m
ttk

, also. Eq (4) is then to be solved overO
m
ttk
[ O

m
0tkþ1

. Variants on

this idea also are admissible, including complete calcification of a proper subset of O
m
ttk

by time

tk+1, so that C tkþ1
does not coincide with φðG0tkþ1

Þ.

Implementation. The above formulation for surface and volume growth has been imple-

mented in a finite element framework. An in-house C++ code based on the deal.II [34] open

source finite element library is used to implement the model of surface and volume growth

depicted in Fig 5. Key highlights of this computational implementation are the ability to handle

growing meshes (to model the growth of the reference configuration in a Lagrangian setting)

and related dynamic updates to the solution data structures (global vectors and matrices). Sim-

ulations presented in this work use hexahedral elements with a linear/quadratic Lagrange

basis, and one to four layers of elements through the thickness. The code base is publicly avail-

able as a GitHub repository [35].

The attachment of the mantle to ottk
and its extension up to o0tkþ1

is implemented by

extending the finite element mesh by one or more rows of elements as shown in Fig 5. This is

followed by the growth law in Eq (2) subject to the constitutive law Eq (3) and the governing

Eq (4). Following Remarks 1 and 2, secretion of shell material is a virtual step over the

deformed mantle configuration O
m
ttk

. Calcification is imposed by turning O
m
ttk

rigid for time t�

tk. A number of examples are considered of mollusk shells displaying the shapes and marginal

ornamentation that best demonstrate the interplay between surface growth, morphoelastic

volume growth and the reference generating curve, Γ0. In each case, the boundary condition

is u = 0 on the trailing surface (boundary) ottk
of the mantle where it meets the rigid shell.

The lateral surfaces (boundaries), @O
m
0tkþ1

n ottk
n o0tkþ1

, are subject to Dirichlet conditions
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on either u, or its normal component, with traction-free Neumann conditions, PN = 0 on the

remaining surfaces (boundaries) o0tkþ1

. See Fig 5 for an illustration of the evolving mantle and

calcified shell configurations.

Results

In the framework constructed above, there are three key parameters determining the orna-

mentation pattern that develops as the shell grows:

1. The active mantle width, i.e. the amount of surface growth occurring in each time incre-

ment, given by δs = |v1 s1 − vc|Δt.

2. The volumetric growth increment over each time increment: δg, which is related to the

growth strain rate _F g ¼ ε2F
gs2 � s2 by δg = ε2 Δt;

3. The initial curvature, κ, of Γ0.

These three governing parameters are illustrated in Fig 6. Our objective is to explore the

morphological space of patterns that results from variations in these parameters and explain

Fig 5. Space-time discretization in the finite element framework. Evolution of the mollusk shell surface through surface growth and morphoelastic volume growth

of mantle strips followed by their calcification. Also see S1 Movie for the time evolution of a representative molluskan shell surface through the accretive growth of 20

mantle strips.

https://doi.org/10.1371/journal.pcbi.1007213.g005
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them on a mechanistic basis while making connections to ornamentations observed on mol-

luskan shells.

In the first instance, we study the morphologies that result from varying each parameter in

isolation. In each case, we use our computational framework to impose either (1) a single,

finite increment of surface growth manifested in a specified active mantle width, or (2) an

increment of morphoelastic volume growth, or (3) observe the influence of the distribution of

curvature along s2 on the reference curve, Γ0. The effects will be characterized by the mode

number (the number of crests and valleys) along the lip of active mantle in the s2 direction, the

amplitudes and the locations of crests and valleys. In a growing molluskan shell, these effects

are coupled, and potentially dynamically changing through development. We therefore pro-

ceed next to analyze the coupled effects of variations in the above three parameters, as well as

of spatially and temporally varying surface and volume growth.

Effect of parameters on morphology

Variation in surface growth via the active mantle width. The effect of varying surface

growth by the active mantle width is studied for fixed volume growth rate and reference curva-

ture. With our computational formulation, we solve for the resulting shape after a single sur-

face growth increment of active mantle. We start from a reference generating curve, Γ0, which

is an arc of a circle with curvature κ = 0.01. Fig 7 shows the resulting morphologies when the

active mantle width δs = |v1 s1 − vc|Δt is varied by up to eightfold. We see that an increase in δs
leads to a decrease in mode number, which can be understood as follows: increasing δs places

the free edge of the active mantle strip, o0tkþ1

, further from the rigid boundary ottk
(k = 1,2,. . .)

Fig 6. Parameters controlling the morphology of shell ornamentations. The reference generating curve, Γ0, with its curvature, κ along s2; the active mantle width,

δs; volume growth strain increment, δg.

https://doi.org/10.1371/journal.pcbi.1007213.g006
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in the s1-direction, thus decreasing its structural stiffness to bending. The excess material

(along s2) created by the increment in volume growth strain δg can therefore be accommo-

dated by an increased deformation in the s3 direction, without paying a large strain energy

penalty. As a result, each increment in δs induces fewer wave crests/valleys, with progressively

larger wavelength and amplitude. Fig 7 also presents a comparison with the ornamentations

on Clinocardium nuttallii and Tridacna squamosa, the active mantle width being much larger

in the second species (giant clam), and both species differing in amplitude and wavelength of

the antimarginal ribs in a manner that is consistent with the model predictions.

Here, it is instructive to compare to an analogous reduced order model: a growing one-

dimensional rod on an elastic foundation. In this model, an elastic rod that has an excess of

length due to axial growth is connected elastically to a rigid support: a curve representing the

calcified shell edge. The support provides an external force that resists displacement of the rod

away from the foundation (i.e. displacement in the s3 direction in our framework). This system

has been formulated in detail by some of the authors [36] and forms the basis of previous

mechanical descriptions of shell morphogenesis [22, 24]. In the linearized system, with the rod

and foundation extending along the x-axis, the deformed rod has shape y(x) satisfying [36]

y0000ðXÞ þ ðg � 1Þy00ðXÞ þ kgyðXÞ ¼ 0; ð5Þ

Fig 7. Effect of incremental active mantle widths on mantle deformation for fixed δg and κ. Increasing the active mantle width δ s = |v1 s1 − vc|Δt over Γ0 leads to

morphologies bearing a similarity with the ornamentations on Clinocardium nuttallii (upper inset) and Tridacna squamosa (lower inset). Dirichlet boundary

conditions, u = 0, are applied on the trailing surface (boundary) and traction-free Neumann conditions, PN = 0, are applied on the remaining surfaces (boundaries).

See Fig 4 for location of the trailing surface, front surface and the lateral surfaces. Also see S3 Movie for a morphology that is similar to the case δs = δs�, and bears

comparison to the ornamentation on members of the class Bivalvia.

https://doi.org/10.1371/journal.pcbi.1007213.g007
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Here γ> 1 describes the axial growth, analogous to δg in the computational framework.

The parameter k is proportional to the stiffness of the elastic foundation, and therefore models

the stiffness of the active mantle strip to deflections of the mantle margin. Considering for sim-

plicity an infinite rod and seeking a solution of the form y* exp(2πinx), the preferred bifurca-

tion mode corresponds to the smallest value of γ� > 1 for which (5) has a solution; this is

found to be γ� = 1 + 2k + 2(k + k2)1/2, from which we obtain that the mode number at buckling

satisfies n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g� � 1
p

=ð2
ffiffiffi
2
p

pÞ. From this we can extract the scaling relationship n �
ffiffiffi
k
p

for

large k.

Based on the intuitive argument above, we would posit an inverse relationship between k
and δs, e.g. k* δsα with α< 0, i.e. an increase in strip width acts to decrease the effective foun-

dation stiffness, leading to a decrease in bifurcation mode. To further explore this relationship,

we extract the dependence of mode number n on δs from the simulations presented in Fig 7,

and plot the comparison in Fig 8. Because of the highly nonlinear, post-bifurcation states of

deformation, n was defined as the number of waves, following crests or troughs, and ignoring

the dependence of amplitude and wavelength on the coordinate in the s2-direction. To validate

the computational model, we also include the critical mode as calculated from a buckling

analysis of a plate (see S1 Text). From the slope of this log-log plot, we get n* δs−1, and so

k* δs−2. In principle, one could use this map to more systematically parameterize the founda-

tion in the 1D morphoelastic rod framework. Computing the morphology of the shell edge as

a 1D (geometrically nonlinear) structure has the advantage of decreased computation time,

though with potential inaccuracies due to loss of detail. A systematic means of determining k
provides a very useful step in alleviating this, though it remains an interesting question how far

into the post-buckling regime the relation k* δs−2 holds.

Morphoelastic volume growth rate. In our model, the morphoelastic volume growth of

the soft mantle is the origin of the pattern of bifurcation: This mechanism generates an excess

of length in the active mantle strip relative to the rigid shell edge, whose distribution is given

by the variation of δg along s2. A compressive stress is thus induced in the mantle. As is well-

understood within the theory of finite strain elasticity, when this in-surface stress exceeds a

critical threshold, a bifurcation occurs and the mantle relaxes into a lower energy configura-

tion by deflecting out of the mid-surface in the local s3 direction.

Fig 9 illustrates the effect of varying the incremental growth strain δg by up to a factor of

4× while holding the incremental active mantle width fixed at δs = 1.0. The reference generat-

ing curve Γ0 has curvature of κ = 0.01 in the middle of its extent in the s2 direction, decreasing

toward zero near the ends. Note that this induces a length scale: the radius of curvature

r = 100, relative to which δs = 1.

In a time-continuous process, there would exist a critical time, tcr, and corresponding

amount of morphoelastic volume growth strain, dgcr ¼
R tcr

0
ε2ðtÞdt for which the compressive

stress crosses the critical threshold and the corresponding bifurcation mode appears. Modes

with greater numbers of waves have increased energy. Then, as volume growth continues

beyond δgcr the compressive mantle stress and amplitude of the first observed bifurcation

mode both increase, until the stress exceeds a second critical threshold corresponding to

another bifurcation and a higher mode appears. This effect is demonstrated in Fig 9, where ini-

tially the compressive stress (corresponding to δg = δg�) initiates bifurcation into a mode with

three discernible crests, n = 3. A growth strain increment to δg = 2δg� gives a compressive

mantle stress that exceeds a higher critical threshold, and is accommodated by an increase in

the mode number to n = 7. Increasing the growth to δg = 3δg�, 4δg� only increases the ampli-

tude of the seventh mode, with no further bifurcations.
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Remark 3: A careful examination of the bifurcated shape with mode number n = 3 for δg =

δg� reveals a deformation with amplitude that is highest at the midpoint of the arc of Γ0, where

the curvature κ = 0.01, decreases in the two immediate neighbor crests, and decays by more

than an order of magnitude toward the lateral edges, where κ!1. Inclusion of all crests

regardless of amplitude would raise the inferred mode number to n = 7 even for this first vol-

ume growth increment. We understand this as a cascade in which the lowest mode to appear

(n = 3) is localized to the higher curvature region. At δg = δg�, there is a super-position, with

the n = 5 and n = 7 modes also present, but at lower amplitude. The coincidence of crests for

modes n = 3, 5, 7 in the high curvature region leads to the higher amplitudes there. At the very

next increment to δg = 2δg� the strain energy settles into the seventh mode, whose prominence

is magnified. In contrast, for κ = 0.01, but uniform as in Fig 7, a single mode is observed,

Fig 8. Scaling study of mode number n versus the incremental active mantle width δs. Shown is the dependence of the mode number of the deformed mantle strip

on the incremental active mantle width, obtained from the finite element model (FE) and the buckling analysis of a plate.

https://doi.org/10.1371/journal.pcbi.1007213.g008
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whose amplitude is uniform provided it does not merge into the lateral boundary. Also con-

sider Fig 10a with κ! 0 and uniform, where the amplitude remains uniform. The localization

of mode shapes is a consequence of curvature, which we examine in greater detail in the next

subsection on Curvature.

Curvature. Taking a cue from the localization of modes in high κ regions of the reference

generating curve, Γ0, we next consider this effect in greater detail. We consider three geome-

tries for Γ0: a line with curvature κ!1, a curve with κ having almost uniform sign, and a sec-

ond curve with κ changing sign along the arc. The result appears in Fig 10. For all three cases

in the figure, the Dirichlet boundary conditions are u = 0 on the trailing surface (boundary),

o0t0
, and the lateral surfaces (boundaries) of the mantle, which are perpendicular to s2.

We find that the deformed configuration of the mantle O
m
tt0

is biased toward developing

curvature of the same sign as the reference curvature, κ, along s2. With Γ0 a straight line in Fig

10a, the mantle deforms upward and downward equally, i.e. curvatures of both signs are seen

inO
m
tt0

, and the crests/troughs have the same amplitude. The (mostly) single-signed κ of Fig

10b promotes like-signed crests and suppresses oppositely signed ones. This is also apparent

in Fig 10d(and to a lesser degree in Fig 10c), which has regions where κ takes on positive and

negative signs. Thus, we see the influence of geometry in inducing compliance to mantle

deformation by forming crests that are compatible, and resistance to forming crests that are

incompatible with the reference curvature, respectively. This pattern of deformation is consis-

tent with the greater amplitude of the central, compatible crest in Fig 9 with δg = δg�.

Fig 9. Effect of volume growth strain increment. δg = ε2 Δt on the amplitude and mode numbers of the deformed mantle. The observed high mode number

morphologies are similar to the ornamentations observed in bivalves like Clinocardium nuttallii (inset). Dirichlet boundary conditions, u = 0, are applied on the

trailing surface (boundary) and traction-free Neumann conditions, PN = 0, are applied on the remaining surfaces (boundaries). See Fig 4 for location of the trailing

surface, front surface and the lateral surfaces.

https://doi.org/10.1371/journal.pcbi.1007213.g009
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This result has an intriguing relevance for mollusk shell ornamentation: the reference shape

of the shell on which ornamentation appears, modelled here by Γ0, is generally convex and sur-

rounds the mollusk body. It would be disadvantageous for the ornamentation to appear

inward, as this would intrude on the mollusk’s living space. A natural question then is whether

the mollusk must execute a complex developmental process to ensure that the ornamentation

is built in the outward direction. The results here suggest, rather, that the geometry and growth

mechanisms naturally conspire to bias the pattern outward.

More complex patterning

The influences of the surface and volume growth rates, and of the geometry via reference

curvature, have been established. We now consider the combination of these effects, and

their temporal and spatial variations, in two mechanisms that lead to more complex

ornamentations.

Fig 10. The influence of the geometry of reference curves on antimarginal ornamentation. For fixed active mantle width, the amplitudes of crests in the deformed

configurations are magnified if they are compatible, and attenuated if they are incompatible, respectively, with the reference generating curve. These reference curves

bear similarity to the shape of the mantle surface (highlighted in red) found in (a) Pterynotus phyllopterus, (b) Nucella freycineti, (c) Normal Bolinus brandaris and (d)

Abnormal Bolinus brandaris (insets). Dirichlet boundary conditions, u = 0, are applied on the trailing surface (boundary) and the lateral surfaces (boundaries) of the

mantle, which are perpendicular to s2, and traction-free Neumann conditions, PN = 0, are applied on the front surface (boundary). The underlying spatial

discretization (mesh) is also shown on the model geometries. Also see S2–S5 Movies for the evolution of mantle deformation and accretive growth over planar, arc,

and closed circular geometries of the reference curves.

https://doi.org/10.1371/journal.pcbi.1007213.g010
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Progression of ornamentation with volume growth. As demonstrated above, geometry

exerts its influence by magnifying the amplitudes of crests in mantle deformation that are com-

patible, and attenuating those crests that are incompatible, respectively, with reference curva-

ture. It is of interest to study the progression of these crests with continued volume growth.

With this aim, we consider a shell edge with the geometry of Fig 10(c), having varying curva-

ture, and impose volume growth strain increments ranging from δg = 0.0 to δg = 0.56. Several

of these mantle deformations are shown in Fig 11. The trend observed in Fig 10—of magnifica-

tion and attenuation of mantle deformation that is respectively compatible and incompatible

with the reference curvature—continues. Favored crests display progressive magnification of

amplitudes with continued growth. Also shown are Bolinus brandaris shells with progressively

increasing amplitudes of crests corresponding to the mantle deformations in our computa-

tions. The pronounced localization into spines has been explained by some of the authors of

this communication via the added mechanism of spatially varying material properties [36]. Fig

12 examines the smoothness of geometry. Mild reference curvature singularities leave virtually

no visible trace on mantle deformation following volume growth. However, strong reference

curvature singularities promote compatible crests, and remain visible as mild singularities in

the deformed mantle lip. Smoothly varying reference curvature also replicates the trend of

favoring compatible crests.

Hierarchical ornamentation by temporal variation of growth rates. As a second

approach to complex patterning we study the effect of multiple generations of surface and vol-

ume growth. Since the examples presented in the earlier sections have already considered a

range of either surface or volume growth rates varying individually, we now consider the effect

of combining these growth rates while also allowing them to vary in time. Our aim in this sec-

tion is to identify a mechanism that could explain the secondary and tertiary crests and valleys

that are visible along the shell edge in species such as Hexaplex cichoreum. We recognize these

as the potential remnants of increasing mode number during shell growth. Noting that the

decrease in mode number with increasing active mantle width, as shown earlier, implies an

increase in mode number with decreasing active mantle width, and recalling the magnification

of higher modes with increasing volume growth strain rates, we consider the following proto-

col of surface and volume growth rates in Fig 13: initial surface growth lays down a mantle of

width δs0 = δs�, forming a reference configuration O
m
0t0

, which, under morphoelastic volume

growth over (t0, t1] deforms into O
m
tt0

. Upon calcification, the curved mantle edge ott1
provides

the reference curvature for subsequent growth. The second reference configuration O
m
0t1

laid

down by surface growth has only half the initial mantle width: δs1 = 0.5δs�. However, with the

same morphoelastic volume growth δg1 = δg� over (t1, t2], a mode of higher mode number

(n = 3) develops: secondary ornamentation is achieved on configuration O
m
tt1

. No further sur-

face growth occurs, but the volume growth undergoes another increment of δg2 = 2δg� over

(t2, t3]. Another bifurcation into a higher mode, n = 4, is seen and further detail of secondary

ornamentation is visible on the configuration O
m
tt2

. In the interval (t1, t3], the calcification front

is stationary at a distance of δs� along the nominal s1 direction, as indicated by the dotted

white line in Fig 13.

The resulting shell morphology thus has a hierarchical structure to its ornamentation, with

higher modes appearing over configurations that initially have lower modes. Such features are

present in the ornamentations of a number of muricid species including Hexaplex cichoreum
and Hexapelx duplex. Indeed, as shown in the H. cichoreum shell in Fig 13, a tertiary bifurca-

tion mode also appears, with some shells even showing quaternary modes in a fractal-like

structure. Such morphological features are within reach of our model in principle, although
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resolving details beyond secondary modes becomes challenging due to the computational

complexity associated with ensuring curvature continuity in the s1 direction with accumula-

tion of high curvature crests. The combined modulation of surface growth rate (active mantle

width), volume growth rate and curvature presents a simple mechanical basis for the morpho-

genesis of hierarchical ornamentation in seashells, which has not previously been described.

Fig 11. Progression of curvature-compatible ornamentation with volume growth strain increments, δg. The deformed mantles show marginally preferred

localization around points of high curvature and thereafter the amplitude increases with volume growth strain increments. Some of these shapes with different

amplitudes can be observed in the shells of the species Bolinus brandaris (bottom row of inset images). Dirichlet boundary conditions, u = 0, are applied on the trailing

surface (boundary) and traction-free Neumann conditions, PN = 0, are applied on the remaining surfaces (boundaries).

https://doi.org/10.1371/journal.pcbi.1007213.g011
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Ornamentation with negative Gaussian curvature due to spatial variation in growth

rate. An examination of the mantle deformation in Fig 7 and Figs 9–13 shows that the major-

ity of crests and valleys form with positive Gaussian curvature. One exception is Fig 10b. This

case is explained by the strain energy due to high curvature, κ of the reference curve, Γ0, being

relieved by development of negative Gaussian curvature in the active mantle strip. The other

interesting case is in Fig 13, where the positive Gaussian curvature after the first two growth

increments, i.e., over (t0, t1] and (t1, t2] up to mantle configuration O
m
tt1

, changes into negative

Gaussian curvature after the final volumetric growth increment in O
m
tt2

. Taking a cue from the

temporal variation in volume growth over (t2, t3], we recognize that it also imposes a spatial

variation: the mantle strip of width δs� formed by surface growth over (t0, t1] experiences vol-

ume growth δg = δg�, but the strip of length ds ¼ 1

2
ds� from surface growth over (t1, t2] experi-

ences a total volume growth of δg = 3δg�. We are therefore prompted to consider that the rate

of growth strain ε2 is an increasing function along the s1 direction, i.e., @ε2/@ξ1> 0, where ξ1 is

the curvilinear coordinate defining s1. In this instance, within a single growth increment there

is greater excess of length at the leading edge of the active mantle strip compared to the trailing

edge. The elastic mantle attains a locally energy minimizing configuration by adopting nega-

tive Gaussian curvature of the deformed mantle.

Fig 12. Influence of reference curvature singularities, and of smooth curvatures. Mild reference curvature singularities leave virtually no visible trace on mantle

deformation following volume growth. However, strong reference curvature singularities promote compatible crests, and remain visible as mild singularities in the

deformed mantle lip. Smoothly varying reference curvature also replicates the trend of favoring compatible crests. Dirichlet boundary conditions, u = 0, are applied on

the trailing surface (boundary) and traction-free Neumann conditions, PN = 0, are applied on the remaining surfaces (boundaries).

https://doi.org/10.1371/journal.pcbi.1007213.g012
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An example of directly imposing such spatial variation is shown in Fig 14, where the profile

of ε2(ξ1) has low but positive curvature @
2ε2=@x

2

1
> 0 for small ξ1, changing smoothly to high

curvature @
2ε2=@x

2

1
� 0 for larger ξ1. The variation in the rate of growth strain generates a

deformation with a finite component in the negative s1 direction, i.e. the mantle “arches back”

to accommodate the excess length, creating ornamentation with negative Gaussian curvature.

Fig 13. Hierarchical ornamentation arising from temporally varying surface growth, δs volume growth strains, δg ε2. In the Hexaplex cichoreum image shown in

the inset, three levels of ornamentation hierarchy are shown: primary (red) as a low mode bifurcation from a flat surface, secondary ornamentation as a second mode

bifurcation (magenta) and tertiary ornamentation mode as a third mode (blue). The corresponding first, second and third modes are traced on the mantle edge of the

computational model. The dotted white line indicates the location of the fixed calcification front between (t1, t3]. Dirichlet boundary conditions, u = 0, are applied on

the trailing surface (boundary) and the lateral surfaces (boundaries) of the mantle, which are perpendicular to s2, and traction-free Neumann conditions, PN = 0, are

applied on the front surface (boundary). Inset image of Hexaplex cichoreum modified from source [37]. Original images licensed under the Creative Commons

Attribution-Share Alike License.

https://doi.org/10.1371/journal.pcbi.1007213.g013
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While, as suggested by our computations and demonstrated in Fig 7 and Figs 9–13, antimar-

ginal ornamentation in shells is often with Gaussian curvature that is positive or appears to

vanish, there are a number of species of bivalves, cephalopods and gastropods that display such

negative Gaussian curvature. In Fig 14(c) we show a top view of Hexaplex chicoreum, which

displays a strongly backward arching ornamentation, similar to the mantle deformation in Fig

14(b). Here we have another instance of a mechanical basis for a feature of ornamentation in

mollusk shells for which no mechanistic explanation has previously been advanced, and that

can be reproduced in our computational framework for coupled surface and volume growth.

Discussion

Mechanics has been recognized as a framework for explaining biological growth and form

since at least the appearance of D’Arcy Thompson’s work [27]. However, a large part of the

Fig 14. Spatially varying volume growth. We impose volume growth strain increments that vary along the ξ1 direction that is the curvilinear coordinate defining s1,

with an increasing gradient toward the leading edge, as shown in (a). The result appears in (b), displaying large, negative Gaussian curvature, mimicking the strongly

backward arching morphology observed in a number of shell species, for example as seen also in (c) Hexaplex chicoreum. Dirichlet boundary conditions, u = 0, are

applied on the trailing surface (boundary) and the lateral surfaces (boundaries) of the mantle, which are perpendicular to s1, and traction-free Neumann conditions,

PN = 0, are applied on the front surface (boundary). Also see S6 Movie for the evolution of deformation leading to a morphology with strongly negative Gaussian

curvature.

https://doi.org/10.1371/journal.pcbi.1007213.g014
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literature on morphological aspects of growth since the 1970s, such as that assembled by Mein-

hardt [38] and others, has focused on applying analytic or semi-analytic generating curves to

the forms of shells, horns and antlers. The coupling of three-dimensional form to material

forces and displacements, one aspect of which is morphoelasticity, has remained a more diffi-

cult problem. The difficulty stems from the complexity attained by the coupled equations,

especially where nonlinear elasticity appears, and has been very well laid out in [20] and [21].

Consequently, it is only with the marriage of mathematics and numerical methods that gen-

eral, three-dimensional, initial and boundary value problems have been solved [33, 39]. The lit-

erature on computational treatments of biological growth also has, in our eyes, suffered a

limitation: problems addressable by the model of inhomogeneous, volume growth, i.e., mor-
phoelasticity, have formed the mainstay of this body of work. Effective as this treatment has

been in explaining tumor growth [40–42], aspects of cardiovascular systems, and the folding of

soft, layered structures during morphogenesis [43], it cannot be elegantly extended to accre-

tive, surface growth. For such problems, the morphoelastic treatment is restricted to represent-

ing advancing fronts by a thickening surface layer. Under its effect, the front’s motion is an

emergent phenomenon that is controlled by local, pointwise, volume growth. Neither the elab-

orate, generated surfaces, nor their accompanying elastic fields can be represented by such an

application of volume growth with its foundations in local volume changes, rather than de
novo deposition of material.

Against this backdrop, we have presented, to the best of our knowledge, the first combined

computational framework for accretive, surface growth and local, morphoelastic, volume

growth. The mathematical basis for this framework in terms of generating surfaces, evolving

reference configurations and moving fronts has been crucial because it has provided a rigorous

foundation on which to elucidate the discretized, space-time formulation, as well as the finite

element framework. The discretized space-time is a faithful reflection of the coupled processes

of accretive surface growth and morphoelastic volume growth. There are alternatives to the

finite element framework, however. Variants of level-set, phase field and immersed boundary

methods would allow propagation of surface growth and the calcification front by fractions of

an element width. Arbitrary changes in the propagation directions s1 and vc could also be eas-

ily represented. We do not, however, see that this restriction to propagation by integral ele-

ment widths presents a fundamental limitation in the shell morphologies and ornamentations

that can be represented by the approach presented here. The advantages listed above for

immersed boundary type methods could be approached by nonuniform element sizes in the

advancing surface, and stepped fronts approximating changing directions on average.

Most crucially, our work has identified the prominent role played by geometry in control-

ling mantle deformation under the driver of morphoelastic growth. The active mantle width,

which is a direct outcome of the surface growth rate, has a very visible influence on the mode

number, mode shape and, as we have demonstrated, on the appearance of hierarchical orna-

mentation. The curvature of reference surfaces is the other parameter by which geometry acts

directly to control the locations of crests and valleys. The evolving reference configurations, as

each generation of active mantle is enslaved to the reference curvature of the previous genera-

tion, present a pathway for coupling of morphoelastic volume growth with surface growth and

curvature. Fig 15 is a “phase diagram” illustrating salient aspects of our studies over this

parameter space.

We have not attempted to compile computational demonstrations that match molluskan

morphologies with high fidelity. While, in our opinion, most of our computations match well

with features of actual molluskan morphologies, others such as in Fig 10c and 10d are less sat-

isfying, especially in representation of spiny outgrowths (see the following paragraph in this

regard). It is also true, however, that more complexity could be introduced to the model.
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Contact mechanics is one such addition, which is on our critical path, but must await a future

communication. Another is the spatial variation of material properties, which we have already

addressed before (see following paragraph). While a detailed tuning over such effects may add

insight to mechanisms, several trends are visible in what we have explored here. We have

experimented with some variations on our basic themes; variations that typically are not

describable with analytic forms, but are ubiquitous in nature, thus making them obvious

Fig 15. Phase diagram representing the effect of the growth and geometric parameters—growth strain increment (δg), active mantle width (δg), and curvature

of the reference curve (κ), on the morphology of shell ornamentations.

https://doi.org/10.1371/journal.pcbi.1007213.g015
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candidates for computational exploration. This is the rational for investigations of temporal

and spatial variations in growth.

We note that previous work by some of the authors [36] already has highlighted the role of

a spatial variation in material properties in shaping the sharp spines seen on the shells of

bivalves, cephalopods and gastropods. The present communication adds to this emerging pic-

ture of the influence of physics, by shifting the focus to geometry, which, driven by morphoe-

lastic growth, acts through the mechanism of surface growth and a parametric dependence on

curvature.

Of particular interest is the further coupling of this framework with pattern formation by a

range of reaction-transport equations. This would make accessible well-studied developmental

milestones such as the patterning and morphogenesis of limbs and digits. Other problems in

morphogenesis, such as the formation of skeletons are also within reach of our computational

framework. Finally, we note that we have modelled antimarginal ornamentation events via

bursts of growth. It is more likely that the growth rate does not change significantly at the loca-

tion of ornamentations, but rather that the thickness of the mantle decreases, creating an

increase in the length of the active mantle strip and a corresponding decrease in stiffness with-

out requiring a strong increase in material. This effect would be interesting to incorporate in

future studies, as the decrease in stiffness would further amplify the amplitudes of transverse

deformation, and also may be non-uniform along the length of the mantle strip.

Supporting information

S1 Text. Buckling analysis of a plate.

(PDF)

S1 Movie. Space-time discretization of the molluskan shell in the finite element frame-

work. Shown at the top is the evolution of the geometry (finite element mesh) for 20 surface

growth increments (addition of the mantle in 20 incremental strips, each being four elements

wide) of a representative molluskan shell in its reference configuration, without the morphoe-

lastic volume growth increments. As a result the reference configuration remains a flat plate.

The accompanying computation at the bottom shows the 20 growth increments with the com-

plete model (surface growth, volume growth and calcification of 20 mantle strips in sequence).

Beginning with a flat plate geometry, each surface growth increment is followed by its mor-

phoelastic volume growth increment and calcification.Calcification is the final stage of the

sequence for each such mantle strip of four elements. Therefore, at any instant, it is only the

mantle strip at the leading edge that undergoes morphoelastic volume growth. The mantle

strips that grew before it have already undergone calcification. This is the case for S1 Movie-S3

and S5 Movies.

(MP4)

S2 Movie. Influence of the geometry of reference curves on antimarginal ornamentation:

Planar geometry. Shown is the evolution of 10 mantle strips starting from a flat plate geometry

of the reference curve. The contour colors indicate the normalized displacement magnitude.

As in S1 Movie, at any instant, it is only the mantle strip at the leading edge that undergoes

morphoelastic volume growth. The mantle strips that grew before it have already undergone

calcification.

(MP4)

S3 Movie. Influence of the geometry of reference curves on antimarginal ornamentation:

Arc geometry. Shown is the evolution of 4 mantle strips starting from an arc geometry of the

reference curve. The contour colors indicate the normalized displacement magnitude. As in
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S1 and S2 Movies, at any instant, it is only the mantle strip at the leading edge that undergoes

morphoelastic volume growth. The mantle strips that grew before it have already undergone

calcification.

(MP4)

S4 Movie. Influence of the geometry of reference curves on antimarginal ornamentation:

An arc with positive and negative curvature. Shown is the evolution of a single mantle strip

starting from a reference curve that is an arc with curvature of changing signs. Note that there

is no surface growth in this movie. The trailing edge is the the only calcified part of the shell.

The snap-through events seen during the deformation of the mantle strip are the elastic bifur-

cations (buckling modes) triggered by growth over this geometry. There are several bifurca-

tions occurring in rapid succession due to volume growth within a single growth increment, in

this simulation. Because of the stiff, nonlinear response of the shell undergoing elastic bifurca-

tions, the single increment of volume growth is numerically applied as 20 load steps, and the

evolution of the deformed geometry after each load step is shown in the corresponding evolu-

tion of the 20 frames shown in this movie. The contour colors indicate the normalized dis-

placement magnitude.

(MP4)

S5 Movie. Influence of the geometry of reference curves on antimarginal ornamentation:

Closed circular geometry. Shown is the evolution of 3 mantle strips starting from a circular

geometry of the reference curve, and is representative of growth over a closed shell geometry.

The contour colors indicate the normalized displacement magnitude. As in S1–S3 Movies, at

any instant, it is only the mantle strip at the leading edge that undergoes morphoelastic volume

growth. The mantle strips that grew before it have already undergone calcification.

(MP4)

S6 Movie. Evolution of deformation leading to a backward arching morphology. The con-

tour colors indicate the normalized displacement magnitude. Note that there is no surface

growth in this movie. The trailing edge is the only calcified part of the shell.

(MP4)

Author Contributions

Conceptualization: Shiva Rudraraju, Derek E. Moulton, Alain Goriely, Krishna Garikipati.

Formal analysis: Derek E. Moulton, Krishna Garikipati.

Investigation: Derek E. Moulton, Alain Goriely.

Methodology: Shiva Rudraraju.

Software: Shiva Rudraraju.

Validation: Régis Chirat, Krishna Garikipati.

Writing – original draft: Shiva Rudraraju, Derek E. Moulton, Alain Goriely, Krishna

Garikipati.

Writing – review & editing: Shiva Rudraraju, Derek E. Moulton, Régis Chirat, Alain Goriely,

Krishna Garikipati.

References
1. Ponder W. F. and Linderg D. R. Molluscan evolution and phylogeny. In Phylogeny and Evolution of the

Mollusca, pages 1–17. University of California Press, Berkeley, 2008.

Computational framework for molluskan shell growth

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007213 July 29, 2019 26 / 28

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007213.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007213.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007213.s007
https://doi.org/10.1371/journal.pcbi.1007213


2. Wanninger A. Evolutionary Developmental Biology of Invertebrates 2:Lophotrochozoa (Spiralia).

Springer, 2015.

3. Sigwart J. D. Zoology: molluscs all beneath the sun, one shell, two shells, more, or none. Current Biol-

ogy, 27(14):R708–R710, 2017. https://doi.org/10.1016/j.cub.2017.05.075 PMID: 28743018

4. Runnegar B. Early evolution of the mollusca: the fossil record. Origin and evolutionary radiation of the

Mollusca, 1996.
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