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Context of the work

® |ncreasing need of 3D simulations of time-harmonic electromagnetic waves:
high-frequency, heterogeneous environments, wide domains (in terms of
wavelengths)...

Example of computation challenge:
field radiated by two antennas in Manhattan

® Large simulation domain.

® Wide range of frequencies (1-18
GHz).

— Need of efficient methods to solve
such ambitious cases!

Figure: FDTD simulation on a
Manhattan mesh of 700 x 600 x 300m,
Thibault Volpert (DEMR ONERA)
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Plan of the talk
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The 3D Maxwell problem: current limitations
and Trefftz method interests
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Current issues: memory and iterative resolution

Time-harmonic Maxwell equations for the electromagnetic field
Y := (E,H) € [H(curl, Q)]

OFIY
MY — =0inQ, 1
ik +]E o, in (1)

with impedance Boundary Conditions (BCs)

(npa x E) X npq + Zsq nga X H =g on 00Q. (2)

Many classic methods as Finite Differences [Yee 1966], Finite Elements [Nédélec 1980],
Discontinuous Galerkin [Fezoui et al. 2005], but limitations for current applications:

® Wide domains lead to very large linear systems.
® Traditional direct solvers induce a prohibitive memory consumption.

® Usual numerical methods are not well adapted to iterative resolution.
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Considered numerical method: the Trefftz approach

1. Belongs to the Discontinuous Galerkin methods, with the Galerkin space

X:= [] Xp made up of local solutions (i.e. in each mesh cell T € T},) of the
TET),
Maxwell equations.

2. Use of the reciprocity formula verified in each cell
vTed, [ FTHT 3BT+ THT <0, 3)
T
in addition to the introduction of numerical traces [Sirdey 2022]:

Find Y = (E,H) € X such that VY’ = (E/,H') € X,

> / VIHT - E'T + ET - 4TH'T = ((E),
Ty, YT
where ~ stands for upwind (or Riemann) numerical traces and with

'ytuT =ul — (uT . nT> nr and 'yzuT =ngp xu’.
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The Trefftz approach: properties and classic limits

1. The formulation is posed on the mesh skeleton and adaptable to an iterative
resolution (contraction property) [Cessenat, Després 1998].

2. A relevant choice of the numerical traces naturally implies formulation coercivity.

3. Basis functions have a physical meaning: leads to a reduced numerical pollution
[Ihlenburg, Babuska 1995].

100 T T T
Limits of the classic Plane Waves (PWs) choice:

® Numerical dependence phenomena:

—9
ill-conditioned basis [Congreve et al. 2019]. 10

/

® No adaptability of the basis to the local B
roperties: expected singularities, complex 10—18 . :
ipnteF;ference Eenomenag P 0 100 200
P Figure: Eigenvalues of the mass matrix for

196 PWs.
= Possible algebraic adaptations [Barucq et al. 2021].

— Introduction of well-conditioned basis by parameterising the space of local
solutions by polynomial boundary conditions.
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A Quasi-Trefftz approach

Definition of the local problem

A local solution Y7 in T is parameterised by a tangential field g7 € V such that
BT + Zor vTHT = g7 on 8T. (4)

—> Consider a finite-dimensional subspace V; C V and the associated Maxwell
solutions [Fure et al. 2020].
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A Quasi-Trefftz approach

Definition of the local problem
A local solution Y7 in T is parameterised by a tangential field g7 € V such that

BT + Zor vTHT = g7 on 8T. (4)

—> Consider a finite-dimensional subspace V; C V and the associated Maxwell
solutions [Fure et al. 2020].

Construction of Vy,:
® Consider a cell T € Ty,

Figure: 2D example of the mesh of
OT for ko = 1.

Quasi-Trefftz numerical analysis
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Definition of the local problem
A local solution Y7 in T is parameterised by a tangential field g7 € V such that
BT + Zor vTHT = g7 on 8T. (4)

—> Consider a finite-dimensional subspace V;, C V and the associated Maxwell
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Figure: 2D example of the mesh of
OT for ko = 1.
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A Quasi-Trefftz approach

Definition of the local problem
A local solution YT in T is parameterised by a tangential field g7 € V such that

WET + Zor vTHT = g7 on 8T. (4)

—> Consider a finite-dimensional subspace V; C V and the associated Maxwell
solutions [Fure et al. 2020].

Construction of Vy,:
® Consider a cell T' € Ty,.
® Define a mesh of T(9T). '

® Consider a piecewise polynomial g7 of

degree kgt on T(OT). Figure: 2D example of the mesh of

oT for kg = 1.

—> Associated Maxwell solutions are unknown: need of an auxiliary solver to
compute approximations!

= Other Quasi-Trefftz approaches: generalised PWs [Imbert-Gérard, Després
2013], polynomial Quasi-Trefftz functions [Imbert-Gérard, Sylvand 2023], Embedded
Trefftz DG [Lehrenfeld, Stocker 2023], BEM local solver [Barucq et al. 2017]...
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The Flux Reconstruction method for wave
propagation problems
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FR principle

Consider the homogeneous 1D model system on Q = [0, L]:
Find y = (u,v) : Q — C2? such that

iy + 92— o
IRy — — = U, —

dz in Q with F = (_01 01) ; (5)
¢ =Fy,

and the BCs

u(0) — Z1v(0) = g1,
{ 1 g1 ®)

u(L) + ZQU(L) = g2.

A Presentation for a linear equation!

= Copy this equation at the discrete level on each cell of the mesh [Huynh 2007]:

Vne Hl,Nﬂ, iKYy + d({ﬂ =0in [Xn—laXn] . (7)
x
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FR construction steps and properties

vV n € [1,N], z/@yh—l—ﬂ—Om [Xn—1,Xn]. (8)

1. Approximation yj as piecewise polynomial of degree krg.

Xn—l Xn Xn+1
/ Yh,n
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FR construction steps and properties

vV n € [1,N], z/@yh—l—ﬂ—Om [Xn—1,Xn]. (8)

1. Approximation yj as piecewise polynomial of degree krg.

2. Natural flux approximation ¢, = Fyy,.

A
A
A
1N Yh,n+1
A
.
...h. . Ph,n
Xo Xnt1
Ph,n+1 -
. -
. B .
-
\‘ P L
A *
. .
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FR construction steps and properties

vV n € [1,N], z/@yh—l—ﬂ—Om [Xn—1,Xn]. (8)

1. Approximation yj as piecewise polynomial of degree krg.
2. Natural flux approximation ¢, = Fyy,.

3. Numerical fluxes ¢,, as a mean of ¢»,, and d)j,'

A
A
A
e Yh,n+1 \
-~ .
$n—1 “ Ph,n
Xn , Xn+1
N Ph,n+1 La==
M am="" .’
‘\ -—'-- —~ e
.o ¢1z+1 Jod
A\
- Pn
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FR construction steps and properties

vV n € [1,N], z/@yh—i—ﬂ—Om [Xn—1,Xn]. (8)
1. Approximation yj as piecewise polynomial of degree krg.
2. Natural flux approximation ¢, = Fyy,. 1
3. Numerical fluxes $7, as a mean of ¢,, and d)j,' 0.5
4. Correction polynomials ;" and /) of degree kpr + 1. 0
n—1 Xn
A
‘\
e, Yh,n+1 \
- A S
Pn—1 “ Ph,n
Xn , Xn+1
Ph,n+1 -
A3 -
- =" |
‘\ === - ~ ® ¢"
.o @n-‘—l Jod

s ¢’n
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FR construction steps and properties

vV n € [1,N], z/@yh—l—ﬂ—Om [Xn—1,Xn]. (8)

. Approximation y;, as piecewise polynomial of degree krpg.

. Natural flux approximation ¢;, = Fyy,. 1
. Numerical fluxes $7, as a mean of ¢,, and d)j,' 0.5
. Correction polynomials ;" and /°; of degree kppr + 1. 0

n—1 Xn

. Correction ¢;L," =¢pn+90, 1P+ P

Xn Xn+1

Ph,n +1

-
-
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FR construction steps and properties

dqgh

xT

Vn € [1,N], iy, + =0in [Xp—1,Xn]. (8)

1. Approximation yj as piecewise polynomial of degree krg.

2. Natural flux approximation ¢, = Fyy,. 1

3. Numerical fluxes qgn as a mean of and d),’,,. 0.5

4. Correction polynomials 7, and of degree krppr + 1. 0 A@)"(—’
5. Correction %;,,),,, =¢n,+0 7 P74+ nt "

n—1-"n

® Strong formulation: no dependence on a quadrature rule.

® Choice of correction polynomials allows to retrieve usual methods: classic choice
of Radau polynomials (nodal DG).

® Natural generalisation to 3D and adaptable to unstructured meshes.
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Numerical results
krr krr=1 krr =2 krr =3
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Table: h-convergence of the FR method in 1D and 3D for different correction polynomials

(SD_CLo (—*—), SD.IG (—*—), FR_Rad (—*—) and FR_G2 (—¢—)).

—> Dependence on the choice of the correction polynomials: what is the best

choice?
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Error estimate and optimised correction polynomials

Developed an explicit a priori error estimate with incoming BCs, i.e. Z1 =Z2 =1
[Rivet et al. 2023]:

Iy = yallf2 ) < C(x.h L P7) (Ig1f + lg21?) ©
= Choose the correction polynomial P~ as [Rivet et al. 2024]

P~ = argminC (n, h,L, ﬁ) . (10)
Pgpadm
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Error estimate and optimised correction polynomials

—> Direction-wise optimisation in the 3D case: applicable even for general BCs!

krr krr =2 krr =3 krr=4
~ 109 T T 109 T T T T T T T
c 1 N
EO.IJ 10-1 |- B 10~ | . 10 I ]
s | w02p e 1072 %] 1073 ST
- i 10—3 RN YRR IR S
1 T T T T Trrrrr 1 T T T T Trrrrr 1 T T T T Trrrrr
5 L N L N L N
3 L | L i L i
=
3 L i L i L i
SIS L i L i L i
:g | L 0.5 il
= 0.5 L1 ¥l 0.5 Lt .
o 3 10 3 10 3 10
N Naog/a Naog/a Naog/a

Table: General 3D simulation for Radau (—%—) and optimised (—+—) polynomials.

= Possible to find better polynomials than the classic ones!
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A quasi-Trefftz approach based on
a Flux Reconstruction auxiliary solver:
numerical analysis
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Summary of this Quasi-Trefftz approach

Variational formulation posed on X := [] X7 made up of local solutions.
TE,
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Summary of this Quasi-Trefftz approach

Variational formulation posed on X := [] X7 made up of local solutions.
TE,

¥

Functions (E7, H”') of X1 parameterised by g’ € V such that:

wEL + Zagr vLHT = g7 on 9T (11)
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Summary of this Quasi-Trefftz approach

Variational formulation posed on X := [] X7 made up of local solutions.
Ty,

¥

Functions (E7", H”") of X7 parameterised by g’ € V such that:

B + Zop vTHT = g7 on 8T. (11)

¥

Polynomial approximation of the trace space: V) = span(g!).
For all 4, the associated solutions (EZ', HT) are taken as basis functions of Xr.
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Summary of this Quasi-Trefftz approach

Variational formulation posed on X := [] X7 made up of local solutions.
TE,

¥

Functions (E7", H”") of X7 parameterised by g’ € V such that:

WwET 4+ Zyp vTHT = g7 on T. (11)

¥

Polynomial approximation of the trace space: V; = span(giT).
For all ¢, the associated solutions (E,T, H,T) are taken as basis functions of X-.

¥

FR auxiliary solver to compute an approximation of (E}IL-, H;‘IF)
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Numerical experiments: basis quality
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Figure: Eigenvalues of the mass matrix for 196 PWs (and reduction for e = 10~%) and 192
Quasi-Trefftz basis functions.

Basis quality
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Numerical experiments: basis quality
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Figure: Eigenvalues of the mass matrix for 196 PWs (and reduction for e = 10~%) and 192
Quasi-Trefftz basis functions.

Basis quality

—> Possible reduction techniques to restore the condition number.
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Numerical experiments: basis quality
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Figure: Eigenvalues of the mass matrix for 196 PWs (and reduction for e = 10~%) and 192
Quasi-Trefftz basis functions.

Basis quality

— Possible reduction techniques to restore the condition number.

— Avoids spurious numerical modes and ill-conditioning of the mass matrix!
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Approximation properties of the basis for a smooth solution:
sum of random PWs

10-1 —+ PW
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104
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-7 Ly I Lol I
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Number of basis functions
Figure: Projection error on the different basis for a sum of random PWs.

Rel. L2-projection error

—> Saturation phenomenon due to condition number.
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Approximation properties of the basis for a smooth solution:
sum of random PWs
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Figure: Projection error on the different basis for a sum of random PWs.

—> Saturation phenomenon due to condition number.

—> Reduction techniques avoid conditioning issues, but locked convergence because
of rounding pollution error for an asked threshold.
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Approximation properties of the basis for a smooth solution:
sum of random PWs

S 1071} -+ o
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40 100 1000 2500

Number of basis functions
Figure: Projection error on the different basis for a sum of random PWs.

—> Saturation phenomenon due to condition number.

—> Reduction techniques avoid conditioning issues, but locked convergence because
of rounding pollution error for an asked threshold.

—> Robust approximation by FR basis.
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Figure: Projection error on the different basis for a sum of random dipoles.

— Saturation phenomenon due to condition number: difficult representation of

complex local solutions with PWs.
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Figure: Projection error on the different basis for a sum of random dipoles.

— Saturation phenomenon due to condition number: difficult representation of

complex local solutions with PWs.

—> Reduction techniques avoid conditioning issues, but locked convergence because

of rounding pollution error for an asked threshold.

—> Robust approximation by FR basis.
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Calibration of the FR auxiliary solver

Trefftz approach rests on the use of exact solutions of the Maxwell equations:

Is using quasi-solutions enough?
How to adapt the FR order to the Trefftz one?
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Calibration of the FR auxiliary solver

Trefftz approach rests on the use of exact solutions of the Maxwell equations:

Is using quasi-solutions enough?
How to adapt the FR order to the Trefftz one?

® Uniform Cartesian mesh T (€2) of the domain ©Q: N macro-cells per direction.

r N

Figure: Mesh T () for N = 3.

limitations and Trefftz method FR for wave propagation problems Quasi-Trefftz numerical analysis
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Calibration of the FR auxiliary solver

Trefftz approach rests on the use of exact solutions of the Maxwell equations:

Is using quasi-solutions enough?
How to adapt the FR order to the Trefftz one?

® Uniform Cartesian mesh T (€2) of the domain ©Q: N macro-cells per direction.

® Uniform Cartesian mesh T, (9T) of OT: M micro-faces per direction.

1
r N 0
Figure: Mesh T (Q) for N = 3. Figure: Mesh T}, (8T') for M = 2 and
k}QT =1.
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Calibration of the FR auxiliary solver
Trefftz approach rests on the use of exact solutions of the Maxwell equations:

Is using quasi-solutions enough?
How to adapt the FR order to the Trefftz one?

® Uniform Cartesian mesh T (€2) of the domain ©Q: N macro-cells per direction.
® Uniform Cartesian mesh T, (9T) of OT: M micro-faces per direction.

® Piecewise polynomial BCs of degree kgt = 1.

1
r N 0
Figure: Mesh T (Q) for N = 3. Figure: Mesh T}, (8T') for M = 2 and
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Calibration of the FR auxiliary solver
Trefftz approach rests on the use of exact solutions of the Maxwell equations:

Is using quasi-solutions enough?
How to adapt the FR order to the Trefftz one?

® Uniform Cartesian mesh T (€2) of the domain ©Q: N macro-cells per direction.
® Uniform Cartesian mesh T, (9T) of OT: M micro-faces per direction.

® Piecewise polynomial BCs of degree kgt = 1.

1
r N 0
Figure: Mesh T (Q) for N = 3. Figure: Mesh T}, (8T') for M = 2 and
k}QT =1.

= No theoretical a priori error estimates in L2(£2)-norm: numerical convergence in
mesh and number of basis functions [Fure et al. 2020].
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Calibration of the FR auxiliary solver

Is using quasi-solutions enough?
How to adapt the FR order to the Trefftz one?

= Mesh-convergence: refinement of the macro-mesh Ty (Q).

101 T 1 T T 1 171 T
] 1 E——
——  k =1
10° |- . i
—— kpr=2

— krr =3
— krr =4

Number of macro-cells N per direction

® Need of krr > kgt + 2 for quasi-optimal orders, but no interest in
over-resolving!
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Numerical experiments: convergence in the number of basis functions

FR for wave propagation problems

00000

Is using quasi-solutions enough?

Quasi-Trefftz numerical analysis

00000080

How to adapt the FR order to the Trefftz one?

= Local basis enrichment through refinement of the micro-mesh 73, (97).

100 —
—— kpp=1
1 —— kpr=2
10-1 1 + —— krr=3
1
5 ] ~2
2h 1072l .
o
10737 |
2.5 I~
1
—4 I 11
10 2 10

Number of micro-faces M per direction

® Need of krr > kgt to be sufficiently 'quasi-solution’.

® Improvement for krr > kg + 1, but limited interest in over-resolving!
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limitations and Trefftz method FR for

Conclusion and perspectives

® Classic numerical schemes are not well adapted to wide domain simulations,
contrary to the Trefftz method.

The classic choice of Plane Waves leads to limitations: we introduce a
Quasi-Trefftz approach, in which a FR solver computes approximate Maxwell
solutions associated to polynomial BCs in each cell.

® Good numerical independence properties of the basis functions.

® Robust approximation properties of the basis, even for complex local solutions.

Numerically, krr > kg + 2 for quasi-optimality, but no need to over-resolve!

Perspectives:
® Theoretical well-posedness conditions and a priori error estimates in progress.
® Adaptable for (piecewise constant) heterogeneous configurations.
® Possible hybrid approach by mixing with PW basis.

® Development of optimised transmission conditions to reduce the number of
iterations for convergence.
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