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Context of the work

• Increasing need of 3D simulations of time-harmonic electromagnetic waves:
high-frequency, heterogeneous environments, wide domains (in terms of
wavelengths)...

Figure: FDTD simulation on a
Manhattan mesh of 700 × 600 × 300m,
Thibault Volpert (DEMR ONERA)

Example of computation challenge:
field radiated by two antennas in Manhattan

• Large simulation domain.

• Wide range of frequencies (1-18
GHz).

=⇒ Need of efficient methods to solve
such ambitious cases!
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Plan of the talk

1. 3D Maxwell: limitations and Trefftz method

2. FR for wave propagation problems

3. Quasi-Trefftz numerical analysis
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The 3D Maxwell problem: current limitations
and Trefftz method interests
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Current issues: memory and iterative resolution

Time-harmonic Maxwell equations for the electromagnetic field
Y := (E,H) ∈ [H(curl,Ω)]6:

iκMY +
3∑

j=1

∂FjY

∂xj
= 0 in Ω, (1)

with impedance Boundary Conditions (BCs)

(n∂Ω ×E)× n∂Ω + Z∂Ω n∂Ω ×H = g on ∂Ω. (2)

Many classic methods as Finite Differences [Yee 1966], Finite Elements [Nédélec 1980],
Discontinuous Galerkin [Fezoui et al. 2005], but limitations for current applications:

• Wide domains lead to very large linear systems.

• Traditional direct solvers induce a prohibitive memory consumption.

• Usual numerical methods are not well adapted to iterative resolution.
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Considered numerical method: the Trefftz approach

1. Belongs to the Discontinuous Galerkin methods, with the Galerkin space
X :=

∏
T∈Th

XT made up of local solutions (i.e. in each mesh cell T ∈ Th) of the

Maxwell equations.

2. Use of the reciprocity formula verified in each cell

∀ T ∈ Th,

∫
∂T

γT
×H

T · γtE′T + γtE
T · γT

×H
′T = 0, (3)

in addition to the introduction of numerical traces [Sirdey 2022]:

Find Y = (E,H) ∈ X such that ∀ Y′ = (E′,H′) ∈ X,∑
T∈Th

∫
∂T

γ̂T
×H

T · γtE′T + γ̂tET · γT
×H
′T = ℓ(E′),

where ·̂ stands for upwind (or Riemann) numerical traces and with

γtu
T = uT −

(
uT · nT

)
nT and γT

×u
T = nT × uT .
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The Trefftz approach: properties and classic limits

1. The formulation is posed on the mesh skeleton and adaptable to an iterative
resolution (contraction property) [Cessenat, Després 1998].

2. A relevant choice of the numerical traces naturally implies formulation coercivity.

3. Basis functions have a physical meaning: leads to a reduced numerical pollution
[Ihlenburg, Babuška 1995].

Limits of the classic Plane Waves (PWs) choice:

• Numerical dependence phenomena:
ill-conditioned basis [Congreve et al. 2019].

• No adaptability of the basis to the local
properties: expected singularities, complex
interference phenomena...

0 100 200
10−18

10−9

100

Figure: Eigenvalues of the mass matrix for
196 PWs.

=⇒ Possible algebraic adaptations [Barucq et al. 2021].

=⇒ Introduction of well-conditioned basis by parameterising the space of local
solutions by polynomial boundary conditions.
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A Quasi-Trefftz approach

Definition of the local problem

A local solution YT in T is parameterised by a tangential field gT ∈ V such that

γtE
T + Z∂T γT

×H
T = gT on ∂T. (4)

=⇒ Consider a finite-dimensional subspace Vh ⊂ V and the associated Maxwell
solutions [Fure et al. 2020].

Construction of Vh:

• Consider a cell T ∈ Th.

• Define a mesh of T(∂T ).

• Consider a piecewise polynomial gT of
degree kQT on T(∂T ).

0

1

Figure: 2D example of the mesh of
∂T for kQT = 1.

=⇒ Associated Maxwell solutions are unknown: need of an auxiliary solver to
compute approximations!

=⇒ Other Quasi-Trefftz approaches: generalised PWs [Imbert-Gérard, Després
2013], polynomial Quasi-Trefftz functions [Imbert-Gérard, Sylvand 2023], Embedded
Trefftz DG [Lehrenfeld, Stocker 2023], BEM local solver [Barucq et al. 2017]...
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The Flux Reconstruction method for wave
propagation problems
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FR principle

Consider the homogeneous 1D model system on Ω = [0, L]:
Find y = (u, v) : Ω → C2 such that

iκy +
dϕ

dx
= 0,

ϕ = Fy,

in Ω with F =

(
0 −1
−1 0

)
, (5)

and the BCs {
u(0)− Z1v(0) = g1,

u(L) + Z2v(L) = g2.
(6)

Presentation for a linear equation!

=⇒ Copy this equation at the discrete level on each cell of the mesh [Huynh 2007]:

∀ n ∈ J1, NK, iκyh +
dϕ̃h

dx
= 0 in [Xn−1, Xn] . (7)
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FR construction steps and properties

∀ n ∈ J1, NK, iκyh +
dϕ̃h

dx
= 0 in [Xn−1, Xn] . (8)

1. Approximation yh as piecewise polynomial of degree kFR.

2. Natural flux approximation ϕh = Fyh.

3. Numerical fluxes ϕ̂n as a mean of ϕ−n and ϕ+
n .

4. Correction polynomials P→n and P←n of degree kFR + 1.

5. Correction ϕ̃h,n = ϕh,n + δ→n−1P
→
n + δ←n P←n .

Xn−1 Xn Xn+1

yh,n

yh,n+1
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• Strong formulation: no dependence on a quadrature rule.

• Choice of correction polynomials allows to retrieve usual methods: classic choice
of Radau polynomials (nodal DG).

• Natural generalisation to 3D and adaptable to unstructured meshes.
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Numerical results

kFR kFR = 1 kFR = 2 kFR = 3
1D
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Table: h-convergence of the FR method in 1D and 3D for different correction polynomials
(SD CLo ( ), SD IG ( ), FR Rad ( ) and FR G2 ( )).

=⇒ Dependence on the choice of the correction polynomials: what is the best
choice?
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Error estimate and optimised correction polynomials

Developed an explicit a priori error estimate with incoming BCs, i.e. Z1 = Z2 = 1
[Rivet et al. 2023]:

∥y − yh∥2L2(Ω)
≤ C (κ, h, L, P→)

(
|g1|2 + |g2|2

)
(9)

=⇒ Choose the correction polynomial P→ as [Rivet et al. 2024]

P→ = argmin
P̃∈Padm

C
(
κ, h, L, P̃

)
. (10)
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Error estimate and optimised correction polynomials

=⇒ Direction-wise optimisation in the 3D case: applicable even for general BCs!

kFR kFR = 2 kFR = 3 kFR = 4
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Table: General 3D simulation for Radau ( ) and optimised ( ) polynomials.

=⇒ Possible to find better polynomials than the classic ones!
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A quasi-Trefftz approach based on
a Flux Reconstruction auxiliary solver:

numerical analysis
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Summary of this Quasi-Trefftz approach

Variational formulation posed on X :=
∏

T∈Th

XT made up of local solutions.

Functions (ET ,HT ) of XT parameterised by gT ∈ V such that:

γtE
T + Z∂T γT

×H
T = gT on ∂T. (11)

Polynomial approximation of the trace space: Vh = span(gT
i ).

For all i, the associated solutions (ET
i ,HT

i ) are taken as basis functions of XT .

FR auxiliary solver to compute an approximation of (ET
h ,HT

h ).
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Numerical experiments: basis quality
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Figure: Eigenvalues of the mass matrix for 196 PWs (and reduction for ϵ = 10−6) and 192
Quasi-Trefftz basis functions.

Basis quality

=⇒ Possible reduction techniques to restore the condition number.

=⇒ Avoids spurious numerical modes and ill-conditioning of the mass matrix!
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Approximation properties of the basis for a smooth solution:
sum of random PWs

40 100 1000 2500
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Figure: Projection error on the different basis for a sum of random PWs.

=⇒ Saturation phenomenon due to condition number.

=⇒ Reduction techniques avoid conditioning issues, but locked convergence because
of rounding pollution error for an asked threshold.

=⇒ Robust approximation by FR basis.
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Approximation properties of the basis for a ’non-smooth’ solution:
sum of random dipoles
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Figure: Projection error on the different basis for a sum of random dipoles.

=⇒ Saturation phenomenon due to condition number: difficult representation of
complex local solutions with PWs.

=⇒ Reduction techniques avoid conditioning issues, but locked convergence because
of rounding pollution error for an asked threshold.

=⇒ Robust approximation by FR basis.
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Calibration of the FR auxiliary solver
Trefftz approach rests on the use of exact solutions of the Maxwell equations:

Is using quasi-solutions enough?
How to adapt the FR order to the Trefftz one?

• Uniform Cartesian mesh TH(Ω) of the domain Ω: N macro-cells per direction.

• Uniform Cartesian mesh Th(∂T ) of ∂T : M micro-faces per direction.

• Piecewise polynomial BCs of degree kQT = 1.

N

Figure: Mesh TH(Ω) for N = 3.

0

1

M

Figure: Mesh Th(∂T ) for M = 2 and
kQT = 1.

=⇒ No theoretical a priori error estimates in L2(Ω)-norm: numerical convergence in
mesh and number of basis functions [Fure et al. 2020].
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Calibration of the FR auxiliary solver

Is using quasi-solutions enough?
How to adapt the FR order to the Trefftz one?

=⇒ Mesh-convergence: refinement of the macro-mesh TH(Ω).
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• Need of kFR ≥ kQT + 2 for quasi-optimal orders, but no interest in
over-resolving!
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Numerical experiments: convergence in the number of basis functions

Is using quasi-solutions enough?
How to adapt the FR order to the Trefftz one?

=⇒ Local basis enrichment through refinement of the micro-mesh Th(∂T ).
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• Need of kFR ≥ kQT to be sufficiently ’quasi-solution’.

• Improvement for kFR ≥ kQT + 1, but limited interest in over-resolving!
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Conclusion and perspectives

• Classic numerical schemes are not well adapted to wide domain simulations,
contrary to the Trefftz method.

• The classic choice of Plane Waves leads to limitations: we introduce a
Quasi-Trefftz approach, in which a FR solver computes approximate Maxwell
solutions associated to polynomial BCs in each cell.

• Good numerical independence properties of the basis functions.

• Robust approximation properties of the basis, even for complex local solutions.

• Numerically, kFR ≥ kQT + 2 for quasi-optimality, but no need to over-resolve!

Perspectives:

• Theoretical well-posedness conditions and a priori error estimates in progress.

• Adaptable for (piecewise constant) heterogeneous configurations.

• Possible hybrid approach by mixing with PW basis.

• Development of optimised transmission conditions to reduce the number of
iterations for convergence.
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