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Abstract

The simulation of time-harmonic electromagnetic
waves in wide domains with classic methods in-
duces large linear systems which are poorly adapted
to iterative resolution. We introduce an itera-
tive quasi-Trefftz method for the Maxwell’s equa-
tions, where the basis functions are parameterised
by a polynomial approximation of an impedance
trace space, and computed thanks to a Flux Re-
construction method, allowing to overtake some
limitations of the classic choice of plane waves.
Keywords: Trefftz method, Flux Reconstruc-
tion, Time-harmonic Maxwell’s equations

1 The time-harmonic Maxwell’s equations

We consider a linear isotropic material which
occupies a domain Ω ⊂ R3. The time-harmonic
Maxwell’s equations in their hyperbolic form, in
absence of charges, stand in Ω as

iκ

(
εrI3 03
03 µrI3

)
E+

3∑

j=1

∂ϕj

∂xj
= 0, (1)

where κ > 0 stands for the wavenumber, εr
and µr denote the relative permittivity and per-
meability respectively, and I3 and 03 are the
identity and null matrices of R3×3. Moreover,
E = (E,H)t and ϕj := FjE denote the electro-
magnetic field and the fluxes respectively, with
the flux operators Fj ∈ R6×6, for 1 ≤ j ≤ 3.
We complete this equation with an impedance
Boundary Condition (BC)

γt[n∂Ω]E+ Z∂Ωγ×[n∂Ω]H = g on ∂Ω, (2)

defined on the boundary of Ω, denoted as ∂Ω,
for an impedance Z∂Ω : ∂Ω → C3 and a given
tangential field g ∈ L2

t (∂Ω). Finally, γt[n∂Ω] =
(n∂Ω × ·) × n∂Ω and γ×[n∂Ω] = n∂Ω × · stand
for the tangential component and trace respec-
tively, with n∂Ω the outgoing normal from Ω.

2 The Trefftz method

The Trefftz method relies on a reciprocity for-
mula which encompasses the energy conserva-
tion through the boundary fluxes. We introduce
a mesh Th of the domain Ω. For any cell T ∈
Th, we denote (ET ,HT ) := E|T in T , γtET =
γt[nT ]E

T and γT×H
T = γ×[nT ]H

T on ∂T , where
nT is the outgoing normal of T . The method
can be described as a DG approach for which
the Galerkin space X :=

∏
T∈Th

XT is made of lo-

cal solutions (i.e. in each mesh cell T ∈ Th) of
the Maxwell’s equations. It then writes [1]:
Find E = (E,H) ∈ X s.t. ∀ E′ = (E′,H′) ∈ X,
∑

T∈Th

∫

∂T
γ̂T×HT · γtE′T + γ̂tET · γT×H′T = ℓ(E′)

where ·̂ denotes a numerical trace computation
and ℓ stands for a linear form which takes the
BCs into account.
In particular, this approach limits the amount of
degrees of freedom and is intrinsically adaptable
to an iterative resolution through an inherent
contraction property [1].

3 Quasi-Trefftz approach

The classic choice of plane waves as basis func-
tions tends to cause numerical dependence phe-
nomena which impact the conditioning proper-
ties of the matrices. To face such limitations, we
consider a quasi-Trefftz approach [2]: the idea is
then to parameterise the space of local solutions
by a polynomial approximation of an impedance
trace space. More specifically, let F be a face of
a cell T ∈ Th. We introduce P polynomial face
functions (fF

j )j∈J1,P K : F → R and the tangen-
tial vector fields

gF
t,j : ∂T → C3 with gF

t,j =

{
fF
j eFt on F,

0 on ∂T\F,
where t ∈ {1, 2}, eF1 and eF2 denote two unitary
vectors tangential to F . Reporting these tan-
gential fields in an (adapted) impedance BC on
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∂T , the P local solutions EF
t,j of the associated

Maxwell problem in T are then chosen to form
a basis of XT . Yet, these are not analytically
known, which implies the need of a local solver
to compute approximate solutions EF,h

t,j .

4 Flux Reconstruction local solver

The local solver choice is then of special impor-
tance, and we chose to adapt the Flux Recon-
struction method (FR) [3], which has already
established itself for hyperbolic problems in the
Computational Fluid Dynamics community, to
this time-harmonic framework for an adapted
mesh T FR

h (T ) of a cell T ∈ Th. It relies on the
strong form of the hyperbolic problem (1) by
approximating the solution E and the fluxes ϕj

by piecewise polynomial functions Eh and ϕ̃j
h.

For any mesh cell TFR ∈ T FR
h (T ), this leads to

iκ

(
εrI3 03
03 µrI3

)
Eh +

3∑

j=1

∂ϕ̃j
h

∂xj
= 0 in TFR.

To take BCs and flux continuity properties into
account, the flux variables ϕ̃j

h result from a poly-
nomial correction of ϕh = FjEh which ensures
it fits with a given polynomial numerical trace
on any face F orthogonal to ej .
This method allows to retrieve classic methods
such as nodal Discontinuous Galerkin (DG) and
Spectral Difference (SD) in usually less expen-
sive ways, for specific flux correction polyno-
mial functions [3], and specifically lends itself
to Cartesian meshes.

5 Quasi-Trefftz numerical experiments

This quasi-Trefftz framework is likely to bring
pertinent adaptations to the Plane Wave-based
Trefftz method. Indeed, the potential orthogo-
nality characteristics of the tangential fields gF

t,j

tend to improve the spectral properties of the
matrices (see Figure 1). Moreover, this approach
naturally allows to adapt the basis functions to
the local mesh parameters and BC refinement,
as they are independently computed for each
mesh cell T ∈ Th: physical heterogeneity and
singularities may be locally taken into account.
Yet, the introduction of an auxiliary local solver
induces the use of basis functions which are no
longer exact solutions of the Maxwell equations:
its impact on the formulation properties has to
be specified, in addition to the influence of the
FR solver convergence (see Figure 2).
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Figure 1: Eigenvalues of the scalar product ma-
trix for local basis functions: Trefftz method
based on 196 plane waves and quasi-Trefftz ap-
proach with P = 16.
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Figure 2: Relative volumic L2-error for a quasi-
Trefftz method with P = 9 w.r.t. the number of
mesh cells of T FR

h in each direction, for different
orders kFR of the FR method (kFR = 0 ( ),
kFR = 1 ( ), kFR = 2 ( ), kFR = 3 ( )).

In this presentation, we will focus on the differ-
ent dependencies of the quasi-Trefftz approach
(through the FR solver discretisation and the
polynomial BC approximation): comparisons to
a classic Trefftz method in terms of accuracy, it-
erative resolution and matrix conditioning will
be held on challenging configurations.
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