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Abstract

This article studies one-generator and two-generator quasi-cyclic codes over finite fields.
We present two versions of necessary and sufficient conditions for the symplectic self-
orthogonality of one-generator quasi-cyclic codes, using both matrix and polynomial ap-
proaches. We provide two versions of necessary and sufficient conditions for two-generator
quasi-cyclic codes for symplectic self-orthogonality and the symplectic dual-containing con-
dition. Additionally, using these necessary and sufficient conditions, we construct new quan-
tum codes with record-breaking parameters that improve upon current records.

Keywords: Quasi-cyclic codes (QCs), quantum error-correcting codes (QECCs).
Mathematics Subject Classifications(2010): 94B05, 94B15, 94B60.

1 Introduction

Quasi-cyclic (QC) codes are a prominent class of linear error-correcting codes. They possess a well-
developed algebraic structure that generalizes the concept of cyclic codes. This generalization allows for
greater flexibility in code design, enabling the construction of asymptotically good codes that approach
the modified Gilbert-Varshamov bound [14, 18]. The study of QC codes has yielded numerous record-
breaking linear codes, particularly over small finite fields. Several key contributions have been made to
the understanding of QC codes. Research by Conan et al. [9] studied into the structural attributes of
quasi-cyclic codes, providing both an enumeration of these codes and a characterization of their duals.
Another study by Seguin [24] examined the properties of a specific class of one-generator QC codes. Ling
and Solé research deeply into the algebraic structure of QC codes across a series of articles [17, 19, 20, 21].
Lally et al. [16] explored the structure and duals of arbitrary QC codes, with a particular focus on self-
dual QC codes with an index of 2. Aydin et al. [4] investigated the structure of 1-generator quasi-twisted
codes and constructed new linear codes.

Quantum error-correcting codes (QECCs) are essential for protecting quantum information from
decoherence and quantum noise, playing a significant role in both quantum computing and communica-
tion. Quantum computers are theorized to solve problems significantly faster than classical computers.
However, mitigating errors caused by decoherence and noise remains a critical challenge. Here, QECCs
emerge as a powerful tool, safeguarding quantum information in both communication and computation.
The concept of QECCs was first proposed in [7, 25, 26]. The Calderbank-Shor-Steane (CSS) structure
[8] has served as the foundation for a substantial portion of recent research on QECCs. Construction of
non-binary quantum codes techniques is explored in [2, 3, 15].

Symplectic self-orthogonal quasi-cyclic (QC) codes have not only proven themselves to be an excellent
family for constructing new linear codes, but they have also become pivotal in constructing numerous
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new binary quantum codes. The study of quantum code construction from QC codes began recently
after the work of Galindo et al. [10], where the authors studied a specific class of 2-generator QC codes
using Euclidean, Hermitian, and symplectic structures of QC codes. Following this, Lv et al. [22, 23] and
Guan et al. [12, 13] constructed many record-breaking binary quantum codes utilizing the symplectic
structure of QC codes. Additionally, explicit dual generators of QC codes have been studied in [1, 6].

The motivation for this study is to examine the necessary and sufficient conditions for symplectic self-
orthogonality and the symplectic dual-containing condition in a simplified form that applies to the general
version of quasi-cyclic codes. While some specific forms have been previously studied in the literature,
we aim to encompass all these forms, provide a simpler, more general version, and demonstrate that our
approach can construct new codes with record-breaking parameters.

This paper is organized as follows. In Section 2, we present the basics of linear codes and quasi-
cyclic codes. In Section 3, we study one-generator quasi-cyclic codes and present the symplectic self-
orthogonality condition over finite fields. Section 4 focuses on two-generator quasi-cyclic codes, showing
both the symplectic self-orthogonality condition and the symplectic dual-containing condition for the
general form of two-generator quasi-cyclic codes over finite fields. In Section 5, we construct new quantum
codes with record-breaking parameters based on our study. Finally in Section 6, we conclude our work
giving further research problems.

2 Preliminaries

Let Fq be the finite field with q = pr elements, where p is a prime number and r is a positive integer. A
code C is a linear code of length 2n over Fq if C forms a subspace of the vector space F2n

q . The elements
of C are called codewords. Suppose a = (a0, a1, . . . , a2n−1) and b = (b0, b1, . . . , b2n−1) are codewords
of C. We define the (minimum) Hamming weight of C as wH(C) = min{wH(a) | a ∈ C,a ̸= 0},
where wH(a) is the number of non-zero components of a. The (minimum) Hamming distance of C is
dH(C) = min{dH(a,b) | a,b ∈ C,a ̸= b}, where dH(a,b) = |{i | ai ̸= bi}|.

The symplectic inner product of u = (u1,u2) ∈ F2n
q and v = (v1,v2) ∈ F2n

q is defined as

⟨u,v⟩s = ⟨u1,v2⟩e − ⟨v1,u2⟩e,

where u1,u2,v1,v2 ∈ Fn
q and ⟨·, ·⟩e is the standard Euclidean inner product in Fn

q . We observed that
this inner product can also be written as

⟨u,v⟩s = uΩvt,

where

Ω =

(
On In
−In On

)
,

where In denotes the n× n identity matrix, and On denotes the n× n zero matrix.

The symplectic dual code C⊥s of C is defined as C⊥s = {u ∈ F2n
p | ⟨u,v⟩s = 0, for all v ∈ C}.

A linear code C is called symplectic self-orthogonal if C ⊆ C⊥s , and symplectic dual-containing if
C⊥s ⊆ C. Let c = (x,y) ∈ F2n

q , where x,y ∈ Fn
q . We define the (minimum) symplectic weight of C as

wS(C) = min{wS(c) | c ∈ C, c ̸= 0}, where wS(c) = wS(x,y) = |{i | (xi, yi) ̸= (0, 0)}|.
Suppose C is a linear code of length n over Fq. Then C is a cyclic code if for any codeword

(c0, c1, . . . , cn−1) ∈ C, we have (cn−1, c0, c1, . . . , cn−2) ∈ C. Let us denote by R = Fq[x]/⟨xn − 1⟩. We
can identify a codeword (c0, c1, . . . , cn−1) ∈ C by a polynomial c(x) = c0 + c1x+ · · ·+ cn−1x

n−1 ∈ R. It
is easy to show that C is a cyclic code of length n over Fq if it forms an ideal of R.

Definition 2.1. Suppose C is a linear code of length ln over Fq. Any codeword c = (c0,0, c0,1, . . . ,
c0,l−1, c1,0, . . . , c1,l−1, . . . , cn−1,0, . . . , cn−1,l−1) ∈ C can be written as

c =


c0,0 c0,1 · · · c0,l−1

c1,0 c1,1 · · · c1,l−1

...
...

...
...

cn−1,0 cn−1,1 · · · cn−1,l−1

 .

In this case, C is a quasi-cyclic (QC) code of index l if for any c ∈ C, we get

2




cn−1,0 cn−1,1 · · · cn−1,l−1

c0,0 c0,1 · · · c0,l−1

...
...

...
...

cn−2,0 cn−2,1 · · · cn−2,l−1

 ∈ C.

3 One-generator QC codes

A QC code of length 2n and index 2 can be represented as C = (C1, C2), where each Cj is a cyclic code
of length n. Suppose Cj is generated by a polynomial cj(x) such that cj(x) | xn − 1 for j = 1, 2. Then,
a one-generator QC code with index 2 can be interpreted as a 2-tuple of polynomials (c1(x), c2(x)).

Any one-generator QC code of length 2n and index 2 can be written as

C = {r(x)
(
c1(x), c2(x)

)
| r(x) ∈ R} = {

(
r(x)c1(x), r(x)c2(x)

)
| r(x) ∈ R}.

Theorem 3.1. Let C be a one-generator QC code of length 2n and index 2 over Fq. Then a generator
of C is of the form (r1(x)g1(x), r2(x)g2(x)), where gi(x)hi(x) = xn − 1 and gcd

(
ri(x), hi(x)

)
= 1 for

i = 1, 2.

Proof. Let C be a one-generator QC code of length 2n and index 2 over Fq, generated by (c1(x), c2(x)).
Any element of C can be written in the form

(
s(x)c1(x), s(x)c2(x)

)
for some polynomial s(x) ∈ R.

For i = 1, 2, we define a map Ψi : C −→ R by

Ψi

(
s(x)c1(x), s(x)c2(x)

)
= s(x)ci(x).

It is easy to show that, this map Ψi is a module homomorphism. Since Ψi(C) is the image of C
under a module homomorphism, it forms an ideal of R.

In the ring R = Fq[x]/⟨xn − 1⟩, every ideal is a cyclic code of length n over Fq. Because R is a
principal ideal domain, any ideal Ψi(C) is generated by a single polynomial gi(x) such that gi(x) | xn−1.
Therefore, we can write Ψi(C) = (gi(x)).

Thus, the code C can be expressed as

C =
(
r1(x)g1(x), r2(x)g2(x)

)
,

where gi(x)hi(x) = xn − 1 and gcd(ri(x), hi(x)) = 1 for i = 1, 2. This completes the proof.

Definition 3.2. Let C be a one-generator QC code of length 2n and index 2 over Fq. Then the monic
polynomial h(x) of minimum degree such that

h(x)
(
r1(x)g1(x), r2(x)g2(x)

)
= (0, 0)

is the parity-check polynomial of C.

Theorem 3.3. Let C =
(
r1(x)g1(x), r2(x)g2(x)

)
be a one-generator QC code of length 2n and index 2

over Fq, where gi(x)hi(x) = xn − 1 and gcd(ri(x), hi(x)) = 1 for i = 1, 2. Then dim(C) = deg(h(x)).

Proof. We define a module homomorphism Φ : R → C by

Φ(a(x)) = a(x)
(
r1(x)g1(x), r2(x)g2(x)

)
.

Let h(x) = lcm(h1(x), h2(x)) be the parity-check polynomial of C. We note that Ker(Φ) = (h(x)).
Since the map Φ is surjective, we get R/(h(x)) ∼= C, which implies that the dim(C) = deg(h(x)).

Remark 3.4. An important fact about Theorem 3.3, is that, without the conditions gcd(ri(x), hi(x)) = 1
for i = 1, 2, we cannot assert that dim(C) = deg(h(x)). We illustrate this with the following example.□

Example 3.5. We consider R = F3[x]/⟨x10 − 1⟩, and

x10 − 1 = (x+ 1)(x+ 2)(x4 + x3 + x2 + x+ 1)(x4 + 2x3 + x2 + 2x+ 1) ∈ F3[x].
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We take

g1(x) = (x+ 2)(x4 + 2x3 + x2 + 2x+ 1), g2(x) = (x4 + x3 + x2 + x+ 1)(x4 + 2x3 + x2 + 2x+ 1),

r1(x) = 2x4 + 2x3 + 2x2 + 2x+ 2, and r2(x) = 2x5 + 2x4 + x3 + x2 + 2x.

We have that gi(x) | xn − 1, and ri(x) ∈ R, for i = 1, 2. Also, as gi(x)hi(x) = xn − 1 for i = 1, 2, we
get

h1(x) = x5 + 2x4 + 2x3 + 2x2 + 2x+ 1, and h2(x) = x2 + 2.

From the above we get,

gcd(r1(x), h1(x)) = x4 + x3 + x2 + x+ 1, and gcd(r2(x), h2(x)) = 1.

Then h(x) = lcm(h1(x), h2(x)) = x6 + x5 + 2x+ 2, implying deg(h(x)) = 6.

On the other hand, using MAGMA computations, we find that the dimension of the QC code
generated by (r1(x)g1(x), r2(x)g2(x)) is 2. □

Corollary 3.6. [4] Let C = (r1(x)g(x), r2(x)g(x)) be a one-generator QC code of length 2n and index
2 over Fq. Then dim(C) = n− deg(g(x)). Moreover, d′(C) ≥ 2dH , where d′ is the minimum Hamming
distance of C and dH is the minimum Hamming distance of Ci for i = 1, 2. □

Theorem 3.7. [27] Let C be a linear code of length 2n over Fq with generator matrix G. Suppose G is
an m× 2n matrix. Then C is a symplectic self-orthogonal code if and only if GΩGt = Om, where Om is
the m×m zero matrix and Gt denotes the transpose of G.

Proof. Suppose C is a symplectic self-orthogonal code and c = uG ∈ C an arbitrary codeword for some
vector u ∈ Fm

q . Then

⟨c, c⟩s = cΩct = (uG)Ω(uG)t = u(GΩGt)ut.

Therefore, ⟨c, c⟩s = 0 if and only if GΩGt = Om.

We recall a generator of a one-generator QC code of length 2n and index 2 over Fq as C =
(r1(x)g1(x), r2(x)g2(x)), and we denote a(x) = r1(x)g1(x) and b(x) = r2(x)g2(x). We note that
a(x), b(x) ∈ R. Then a generator matrix of C can be expressed as G = (A | B), where A and B
are n × n circulant matrices generated by a1(x) and b1(x), respectively. Here, | denotes the horizontal
concatenation of the two circulant matrices A and B. Then we have the following result.

Theorem 3.8. Let C be a one-generator QC code of length 2n and index 2 over Fq, whose generator
matrix is G = (A | B). Then C ⊆ C⊥s if and only if ABt = BAt, where At and Bt represent the
transposes of A and B, respectively.

Proof. By Theorem 3.7, C ⊆ C⊥s if and only if GΩGt is a zero matrix. For this one-generator QC code,
the generator matrix G is of the form G = (A | B). Thus, we have

GΩGt =
(
A B

)(On In
−In On

)(
A B

)t
=

(
−B A

)(At

Bt

)
= −BAt +ABt.

Therefore, ABt −BAt = On, implies ABt = BAt. Hence, C ⊆ C⊥s if and only if ABt = BAt.

We can also present Theorem 3.8 in terms of polynomials. To do so, we need to discuss the transpose
of a polynomial, and its relation with the generator matrix described as follows.

Let t(x) = t0 + t1x + t2x + · · · + tn−2x
n−2 + tn−1x

n−1 ∈ Fq[x]/⟨xn − 1⟩. We define the transpose
polynomial t(x) of t(x) as

t(x) = xnt(x−1) = t0 + tn−1x+ tn−2x
2 + · · ·+ t2x

n−2 + t1x
n−1.

We present the following result on the symplectic self-orthogonality of a one-generator quasi-cyclic
code in terms of the generator polynomials.

Theorem 3.9. Let C be a one-generator QC code of length 2n and index 2 generated by (a(x), b(x)).
Then C ⊆ C⊥s if and only if a(x)b(x)− b(x)a(x) ≡ 0 mod (xn − 1).
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Proof. By Theorem 3.8, the condition C ⊆ C⊥s holds if and only if ABt = BAt. We aim to express this
condition using polynomials.

If the circulant matrix A is generated by the polynomial a(x), then its transpose At is generated by
the transpose polynomial a(x). Similarly, the transpose Bt of the circulant matrix B, generated by the
polynomial b(x), is represented by the transpose polynomial b(x).

Additionally, considering that the circulant matrix A is generated by a(x) and Bt is generated by
b(x), the product matrix ABt corresponds to the circulant matrix generated by a(x)b(x) mod (xn − 1).
Similarly, BAt corresponds to the circulant matrix generated by b(x)a(x) mod (xn − 1).

Therefore, ABt = BAt if and only if a(x)b(x)− b(x)a(x) ≡ 0 mod (xn − 1).

Here, we present a detailed example explaining all the concepts discussed above.

Example 3.10. We consider R = F3[x]/⟨x11 − 1⟩, and

x11 − 1 = (x+ 2)(x5 + 2x3 + x2 + 2x+ 2)(x5 + x4 + 2x3 + x2 + 2) ∈ F3[x].

We take

g1(x) = (x+ 2)(x5 + x4 + 2x3 + x2 + 2), and g2(x) = x5 + x4 + 2x3 + x2 + 2.

Then
h1(x) = (x5 + 2x3 + x2 + 2x+ 2), and h2(x) = (x+ 2)(x5 + 2x3 + x2 + 2x+ 2).

We also consider

r1(x) = 2x8 + 2x7 + 2x6 + 2x5 + 2x4 + 2x3 + 2x2 + 2x+ 2, and

r2(x) = 2x7 + 2x6 + 2x5 + x4 + x3 + 2x2 + x ∈ R.

Then C = (r1(x)g1(x), r2(x)g2(x)) is a one-generator QC code of length 22 over F3. We can check that
gcd(ri(x), hi(x)) = 1 for i = 1, 2. Then dim(C) = deg(h(x)) = 6, where

h(x) = lcm(h1(x), h2(x)) = x6 + 2x5 + 2x4 + 2x3 + x2 + 1.

As per Theorem 3.8, we take a(x) = r1(x)g1(x) ∈ R, and b(x) = r2(x)g2(x) ∈ R. Then A is generated
by a(x), B is generated by b(x), At is generated by a(x) and Bt is generated by b(x), where

a(x) = x9 + x5 + x4 + x3 + x+ 1,

a(x) = x10 + x8 + x7 + x6 + x2 + 1,

b(x) = 2x10 + 2x8 + 2x7 + x6 + x5 + x2 + x+ 1,

b(x) = x10 + x9 + x6 + x5 + 2x4 + 2x3 + 2x+ 1.

It is easy to check that ABt = BAt, also a(x)b(x)− b(x)a(x) ≡ 0 mod (xn − 1). Thus, C ⊆ C⊥s . □

Remark 3.11. A key property of the transpose polynomial is that if C is an [n, dim(C)] code with
generator matrix G ∈ Fn×n

q , where G is the circulant matrix generated by g(x), then the code Ct is
also an [n, dim(C)] code with generator matrix Gt ∈ Fn×n

q , which is generated by g(x), the transpose
polynomial of g(x). This holds because dim(C) = rank(G) = rank(Gt) = dim(Ct). It’s important to
note that the circulant generator matrix is not required to have full rank. □

In the following result, we present a theorem that allows us to determine the dimension of a one-
generator QC code without the gcd conditions as in Theorem 3.3.

Theorem 3.12. Let C be a one-generator QC code of length 2n and index 2 generated by (a(x), b(x)),
where a(x), b(x) ∈ R. Then dim(C) = n− deg(f(x)), where f(x) = gcd

(
a(x), b(x), xn − 1

)
.
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Proof. Suppose gcd
(
a(x), b(x), xn − 1

)
= f(x). Then the polynomial f(x) divides both a(x) and b(x),

as well as xn−1. Thus, f(x) defines a cyclic code of length n over Fq, whose dimension is n−deg(f(x)).

The one-generator QC code C generated by (a(x), b(x)) can be expressed in terms of polynomials as

C = {a(x)p(x) + b(x)q(x) | p(x), q(x) ∈ R}.

We show that {a(x)p(x)+ b(x)q(x) | p(x), q(x) ∈ R} is exactly the principal ideal generated by f(x).

As both a(x) and b(x) are multiples of f(x), any linear combination of a(x) and b(x) will also be a
multiple of f(x). This implies that (f(x)), the ideal generated by f(x), is contained in the ideal generated
by a(x) and b(x), denoted as (a(x), b(x)). Thus, (f(x)) ⊆ (a(x), b(x)).

For the other side, we take d(x) ∈ (a(x), b(x)), then

d(x) = a(x)u(x) + b(x)v(x) = f(x)
(
u′(x) + v′(x)

)
implies d(x) ∈ (f(x)),

where a(x) = f(x)u′(x) and b(x) = f(x)v′(x), for some u(x), v(x), u′(x), v′(x) ∈ R. Therefore, (a(x), b(x))
⊆ (f(x)).

Thus, (a(x), b(x)) = (f(x)), and the dimension of C is given by the dimension of the cyclic code
generated by f(x), which is n− deg(f(x)). Hence, dim(C) = n− deg(f(x)).

Remark 3.13. There are no non-trivial dual-containing one-generator quasi-cyclic codes. This is because
the dimension of a one-generator QC code of length 2n and index 2 is given by dim(C) = n−deg(f(x)).
Consequently, the dimension of the dual code is n + deg(f(x)). For a code to be dual-containing, the
dimension of the dual code must be less than or equal to the dimension of the original code, hence
n− deg(f(x)) ≥ n+ deg(f(x)), which implies deg(f(x)) ≤ 0. □

4 Two-generators QC codes

In this section, we present two-generator QC codes, along with the necessary and sufficient conditions
for self-orthogonality and the dual-containing property.

In the earlier section, we discussed one-generator QC codes of the form (a1(x), b1(x)), where a1(x) =
r1(x)g1(x), b1(x) = r2(x)g2(x) such that gi(x) | xn − 1 and ri(x) ∈ R for i = 1, 2. Similarly, we now
introduce two-generator QC codes, where the generators are of the form (a1(x), b1(x)) and (a2(x), b2(x)).
These generators are defined as follows:

a1(x) = t1(x)g1(x), b1(x) = t2(x)g2(x), a2(x) = t3(x)g3(x), b2(x) = t4(x)g4(x), (1)

where ai(x), bi(x) ∈ R, gj(x) | xn − 1 and tj(x) ∈ R for j = 1, 2, 3, 4.

In this two-generator case, handling four factors gi(x) of x
n−1 and four other polynomials ti(x) ∈ R

can be quite involved. Therefore, some special forms have been considered for study. For example, in
[10], [23], and [12] consecutively, the generators are considered as follows:(

f(x) h(x)f(x)
0 g(x)

)
,

(
g1(x) g1(x)
g2(x) u(x)g2(x)

)
, and

(
v(x)g1(x) g1(x)
g2(x) v(x)g2(x)

)
.

In this work, we aim to present a self-orthogonality and dual-containing condition that applies to any
two-generator QC codes and can be viewed as a continuation of the one-generator case study. To achieve
this, we consider the generator matrix corresponding to the generator (a1(x), b1(x)) as G1 = (A1 | B1)
and for (a2(x), b2(x)) as G2 = (A2 | B2), where Ai are circulant matrices generated by the polynomial
ai(x) for i = 1, 2, and Bi are circulant matrices generated by the polynomial bi(x) for i = 1, 2. A
generator matrix of the two-generator QC code is then constructed as follows:

G =

(
G1

G2

)
=

(
A1 B1

A2 B2

)
. (2)

Next we give the dimension formula for a two-generator QC code of length 2n and index 2 over Fq.
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Theorem 4.1. Let C be a two-generator QC code of length 2n and index 2 over Fq, with generator
matrix G of the form (2) given by

G =

(
G1

G2

)
.

Then, dim(C) = rank(G) = rank(G1) + rank(G2)− dim(row space(G1) ∩ row space(G2)).

Remark 4.2. The result of Theorem 4.1 can also be expressed as

dim(C) = dim(C1) + dim(C2)− dim(C1 ∩ C2),

where we can think Ci as one-generator QC codes generated by Gi, for i = 1, 2. We observed that

dim(Ci) = deg(fi(x)), where fi(x) = gcd
(
ai(x), bi(x), x

n − 1
)
, for i = 1, 2.

So far, we have been unable to establish the degree correspondence of dim(C1∩C2) using the polynomials
considered in this study. Addressing this issue likely demands further investigation and a more detailed
exploration of the polynomials, which we plan to undertake in a future project concentrating on the
explicit dual construction of two-generator QC codes. □

4.1 Self-orthogonal QC codes

Theorem 4.3. Let C be a two-generator QC code of length 2n and index 2 generated by (a1(x), b1(x))
and (a2(x), b2(x)), where ai(x), bi(x) ∈ R and are of the form (1) for i = 1, 2. A generator matrix of this
QC code C is of the form (2). Then C ⊆ C⊥s if and only if the following conditions hold:

A1B
t
1 = B1A

t
1, A2B

t
2 = B2A

t
2, and A1B

t
2 = B1A

t
2,

where At
i and Bt

i denote the transposes of Ai and Bi, respectively, for i = 1, 2.

Proof. By Theorem 3.7, C is a symplectic self-orthogonal code, if and only if GΩGt is a zero matrix.
Here C is a two-generator QC code of length 2n over Fq, whose generator matrix is G is of the form (1).
Then

GΩGt =

(
A1 B1

A2 B2

)(
On In
−In On

)(
At

1 At
2

Bt
1 Bt

2

)
=

(
−B1 A1

−B2 A2

)(
At

1 At
2

Bt
1 Bt

2

)
=

(
−B1A

t
1 +A1B

t
1 −B1A

t
2 +A1B

t
2

−B2A
t
1 +A2B

t
1 −B2A

t
2 +A2B

t
2

)
.

Therefore,

GΩGt =

(
−B1A

t
1 +A1B

t
1 −B1A

t
2 +A1B

t
2

−B2A
t
1 +A2B

t
1 −B2A

t
2 +A2B

t
2

)
=

(
On On

On On

)
.

By noting that −B1A
t
2 + A1B

t
2 = (−B2A

t
1 + A2B

t
1)

t, and comparing both sides, we obtain the
result.

Remark 4.4. Using ideas from Theorem 3.8, we can consider the conditions A1B
t
1 = B1A

t
1 and A2B

t
2 =

B2A
t
2 as the symplectic self-orthogonality conditions for the two constituent one-generator QC codes

(a1(x), b1(x)) and (a2(x), b2(x)), respectively. Additionally, the condition A1B
t
2 = B1A

t
2 imposes self-

orthogonality between the two constituent one-generator QC codes (a1(x), b1(x)) and (a2(x), b2(x)),
which together generate the two-generator QC code. □

Similar to the one-generator case, we also present an alternative criterion for the symplectic self-
orthogonality condition in terms of the generator polynomials for the two-generator QC codes.

Theorem 4.5. Let C be a two-generator QC code of length 2n and index 2 generated by (a1(x), b1(x))
and (a2(x), b2(x)), where ai(x), bi(x) ∈ R and are of the form (1) for i = 1, 2. Then C ⊆ C⊥s if and
only if a1(x)b1(x) − b1(x)a1(x) ≡ 0 mod (xn − 1), a2(x)b2(x) − b2(x)a2(x) ≡ 0 mod (xn − 1) and
a1(x)b2(x)− b1(x)a2(x) ≡ 0 mod (xn − 1).

Proof. This proof follows a similar line of arguments as the proof of Theorem 3.9.
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4.2 Dual-containing QC codes

We have examined the symplectic self-orthogonality condition C ⊆ C⊥s for two-generator QC codes.
Similarly, we can derive a necessary and sufficient condition for the symplectic dual-containing property
C⊥s ⊆ C. Before proceeding, we need the following result.

Theorem 4.6. Let C be a linear code of length 2n over Fq with a parity-check matrix H. Suppose H is
an m× 2n matrix. Then C is a symplectic dual-containing code if and only if HΩHt = Om, where Om

is the m×m zero matrix and Ht denotes the transpose of H.

Proof. Let us assume C is a symplectic dual-containing code, which means C⊥
s ⊆ C. This gives us:

C⊥
s ⊆ C ⇐⇒ ∀x ∈ C⊥

s , x ∈ C

⇐⇒ ∀x ∈ C⊥
s , HΩxt = 0

⇐⇒ for all rows r of H, HΩrt = 0

⇐⇒ HΩHt = 0.

To determine the dual-containing property of two-generator QC codes, we need to construct a parity-
check matrix. Our objective is to start with a generator matrix G of a two-generator QC code of length
2n and index 2 in the form (2). We consider circulant matrices Pi generated by the polynomial pi(x) for
i = 1, 2, and circulant matrices Qi generated by the polynomial qi(x) for i = 1, 2 to form a parity-check
matrix H of the form:

H =

(
P1 Q1

P2 Q2

)
, (3)

such that GΩHT = O2n, where O2n denotes the 2n× 2n zero matrix.

By solving GΩHT = O2n, we derive the following equations:

A1 ·QT
1 = B1 · PT

1

A1 ·QT
2 = B1 · PT

2

A2 ·QT
1 = B2 · PT

1

A2 ·QT
2 = B2 · PT

2 .

The generator matrix G in the form (2) and the parity-check matrix H in the form (3) may not
always have full rank. Consequently, H does not always generate the dual QC code of C. The condition
GΩHT = O2n indicates that if a two-generator QC code C is generated by the matrix G in the form (2),
and another two-generator QC code C ′ is generated by the matrix H in the form (3), then all codewords
of C are orthogonal to those of C ′. However, C ′ is not always equal to C⊥

s , the symplectic dual of C. If
the matrix H satisfies rank(G) + rank(H) = 2n, i.e., dim(C⊥

s ) + dim(C ′) = 2n, we can assert that H is
the parity-check matrix of C that generates C⊥

s .

Example 4.7. We consider R = F3[x]/⟨x15 − 1⟩, and

x15 − 1 = (x+ 2)3(x4 + x3 + x2 + x+ 1)3 ∈ F3[x].

We take

g1(x) = (x+ 2)(x4 + x3 + x2 + x+ 1), g2(x) = (x+ 2)3(x4 + x3 + x2 + x+ 1),

g3(x) = (x4 + x3 + x2 + x+ 1)2, and g4(x) = (x4 + x3 + x2 + x+ 1)

such that gi(x) | xn − 1 for i = 1, 2, 3, 4. We also take ti(x) ∈ R for i = 1, 2, 3, 4 such that

t1(x) = 2x12 + 2x11 + 2x10 + 2x9 + 2x8 + 2x7 + 2x6 + 2x5 + 2x4 + 2x3 + 2x2 + 2x+ 2,

t2(x) = 2x11 + 2x10 + 2x9 + 2x8 + 2x7 + 2x6 + 2x5 + 2x4 + 2x3 + 2x2 + 2x+ 2,

t3(x) = 2x9 + 2x8 + 2x7 + 2x6 + 2x5 + 2x4 + 2x3 + 2x2 + 2x+ 2,

t4(x) = 2x7 + 2x6 + 2x5 + 2x4 + 2x3 + 2x2 + 2x+ 2.
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Then C is a two-generator QC code of length 30 and index 2 generated by (a1(x), b1(x)) and (a2(x), b2(x)),
where ai(x) ≡ ti(x)gi(x) mod (xn − 1) for i = 1, 2 and bj(x) ≡ tj(x)gj(x) mod (xn − 1) for j = 3, 4.
Then the generator matrix G is of the form (2).

We consider pi(x) ≡ g⊥i (x)ti(x) mod (xn − 1) for i = 1, 2 and qj(x) ≡ g⊥j (x)tj(x) mod (xn − 1)

for j = 3, 4. Then the parity-check matrix H is of the form (3). We can check that GΩHT = O2n and
rank(G) + rank(H) = 2n. Thus H generates the symplectic dual of the QC code C. □

Assuming we have a parity-check matrix for two-generator QC codes of length 2n and index 2 that
generate C⊥

s , we derive the necessary and sufficient condition for dual-containing two-generator QC codes
of length 2n and index 2 over Fq, expressed in terms of matrices.

Theorem 4.8. Let C be a two-generator QC code of length 2n and index 2 over Fq. A parity-check
matrix of this QC code C is of the form (3). Then C⊥s ⊆ C if and only if the following conditions hold:

P1Q
t
1 = Q1P

t
1 , P2Q

t
2 = Q2P

t
2 , and P1Q

t
2 = Q1P

t
2 ,

where P t
i and Qt

i denote the transposes of Pi and Qi, respectively, for i = 1, 2.

Proof. The proof follows a similar approach to the proof of Theorem 4.3.

A necessary and sufficient condition for two-generator QC codes of length 2n and index 2 over Fq

that contain their dual can be expressed in terms of polynomials as follows.

Theorem 4.9. Let C be a two-generator QC code of length 2n and index 2 over Fq. A parity-check
matrix of this QC code C is of the form (3). Then C⊥s ⊆ C if and only if p1(x)q1(x)− q1(x)p1(x) ≡ 0
mod (xn−1), p2(x)q2(x)−q2(x)p2(x) ≡ 0 mod (xn−1), and p1(x)q2(x)−p2(x)q1(x) ≡ 0 mod (xn−1),
where p(x) denotes the transpose polynomial of p(x).

Proof. This proof follows a similar line of arguments as the proof of Theorem 3.9.

Example 4.10. Continuing from Example 4.7, we can demonstrate that the two-generator QC code
C described in Example 4.7 meets both the necessary and sufficient conditions for the dual-containing
property as stated in Theorem 4.8 and Theorem 4.9. Consequently, this code is a dual-containing QC
code of length 2n and index 2 over F3. □

Remark 4.11. The duals of single-generator QC codes have been addressed in [1, 6]. However, duals of
two-generator quasi-cyclic codes pose significantly greater complexity, primarily due to the management
of the eight polynomials in the generator matrix G. This study aims to identify symplectic self-orthogonal
and symplectic dual-containing codes without explicitly deriving the generators of the dual code. While
minimum distance bounds for specific types of two-generator quasi-cyclic codes have been discussed in
[10, 23], establishing these bounds for general two-generator QC codes remains an open challenge. □

5 QECCs from QC codes

Most of the quantum codes that have been studied in the literature are primarily based on the well-known
CSS structure [8]. The study of quantum codes has also developed through the use of Hermitian and
symplectic structures over Fq, where q is a prime power, as explored in [3, 15]. We recall the symplectic
self-orthogonal result from [15] and present a similar result corresponding to the dual-containing property.

Consider a linear code C. To construct a quantum code from C, it is necessary to satisfy the
condition C ⊆ C⊥s or C⊥s ⊆ C. The primary motivation of this paper is to establish necessary and
sufficient conditions for efficiently constructing such linear codes, ensuring they possess the symplectic
self-orthogonal or symplectic dual-containing property. Based on these two properties, we derive the
corresponding results that we use to construct quantum codes from our study.

Theorem 5.1. ([2]) Let C be a linear code of length 2n over Fq with parameters [2n, k]. If C ⊆ C⊥s ,
then there exists a quantum error-correcting code Q with parameters [[n, n− k, ds]] over Fq, where ds =
min{ws(c) | c ∈ (C⊥s \ C)}.

We can also state the above result in terms of the dual-containing property.
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Theorem 5.2. Let C be a linear code of length 2n over Fq with parameters [2n, k]. If C⊥s ⊆ C,
then there exists a quantum error-correcting code Q with parameters [[n, k − n, ds]] over Fq, where ds =
min{ws(c) | c ∈ (C \ C⊥s)}.

Proof. Let C be a linear code of length 2n over Fq with parameters [2n, k], such that C ⊆ C⊥s . Consider
D = C⊥s , which is a linear code of length 2n over Fq with parameters [2n, 2n − k]. Since D = C⊥s , it
follows that D⊥s = C. Therefore, C⊥s ⊆ C implies D ⊆ D⊥s .

By Theorem 5.2, there exists a quantum error-correcting code Q with parameters [[n, n−(2n−k), ds]],
which simplifies to [[n, k − n, ds]], where ds = min{ws(c) | c ∈ (C \ C⊥s)}.

For ease of computation, we primarily consider one-generator quasi-cyclic codes C of the form
(r1(x)g(x), r2(x)g(x)), where g(x) | xn − 1 and r1(x), r2(x) ∈ R. We observe that a quantum code
generated from a symplectic self-orthogonal quasi-cyclic code C of this form has a degree given by
n − k = n − (n − deg(g(x))) = deg(g(x)). The advantage of this form is that it allows us to fix the
degree of the quantum code to match the dimension of the parameter code we want to improve. All
computations are done using MAGMA [5].

Example 5.3. We consider q = 5 and n = 11. Then R = F5[x]/⟨x11 − 1⟩. We take two polynomials
r1(x), r2(x) ∈ R, where

r1(x) = 4x8 + 4x7 + 4x6 + 4x5 + 4x4 + 4x3 + 4x2 + 4x+ 4,

r2(x) = 4x6 + 2x5 + 4x4 + 2x3 + 4x2, g(x) = 1.

Next, we consider two circulant matrices of size 11, A and B, generated by r1(x) and r2(x) over F5.
This C is a QC code of length 22 of index 2 whose generator matrix is G = (A | B), where | represents
the horizontal concatenation of the two circulant matrices A and B. We note that ABt = BAt, which
implies C is a symplectic self-orthogonal code with parameters [22, 11, 8] over F5. Therefore, by Theorem
5.1, we obtain a QECC with parameters [[11, 0, 6]], which are record-breaking parameters. The previous
record was [[11, 0, 5]]. This newly constructed code has been already updated to the quantum code table
[11]. □

Example 5.4. We consider q = 3 and n = 13. Then R = F3[x]/⟨x13 − 1⟩. We take g(x) | x13 − 1 and
r1(x), r2(x) ∈ R, where

g(x) = 2x6 + x5 + 2x4 + x3 + x2 + x+ 2,

r1(x) = 2x6 + 2x5 + 2x4 + 2x3 + 2x2 + 2x+ 1,

r2(x) = 2x6 + 2x5 + 2x4 + x3 + 2x2 + 2x+ 2.

Next, we consider two circulant matrices of size 13, A and B, generated by g(x)r1(x) and g(x)r2(x)
over F3. Then C is a QC code of length 26 with index 2 whose generator matrix is G = (A | B),
where | represents the horizontal concatenation of the two circulant matrices A and B. We note that
ABt = BAt, which implies C is a symplectic self-orthogonal code with parameters [26, 7, 12] over F3.
By Theorem 5.1, we obtain a QECC with parameters [[13, 6, 4]], which are record-breaking parameters.
The previous record was [[13, 6, 3]]. This newly constructed code is also already updated to the online
quantum code table [11]. □

Example 5.5. We consider q = 3 and n = 23. Then R = F3[x]/⟨x23 − 1⟩. We take g(x) | x23 − 1 and
r1(x), r2(x) ∈ R, where

g(x) = x12 + 2x11 + 2x9 + x8 + 2x7 + x6 + x5 + x3 + 1,

r1(x) = 2x11 + 2x10 + 2x9 + 2x8 + 2x7 + 2x6 + 2x5 + 2x4 + 2x3 + 2x2 + 2x+ 2,

r2(x) = 2x10 + 2x9 + 2x8 + 2x7 + 2x6 + 2x5 + 2x4 + x3 + 2x2 + 1.

Next, we consider two circulant matrices of size 23, A and B, generated by g(x)r1(x) and g(x)r2(x)
over F3. Then C is a QC code of length 46 with index 2 whose generator matrix is G = (A | B),
where | represents the horizontal concatenation of the two circulant matrices A and B. We note that
ABt = BAt, which implies C is a symplectic self-orthogonal code with parameters [46, 11, 21] over F3.
By Theorem 5.1, we obtain a QECC with parameters [[23, 12, 5]], which are record-breaking parameters.
The previous record was [[23, 12, 4]]. This newly constructed code already appears updated in the online
quantum code table [11]. □
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Example 5.6. We consider q = 3 and n = 16. Then R = F3[x]/⟨x16 − 1⟩. We take g(x) | x16 − 1 and
r1(x), r2(x) ∈ R, where

g(x) = 2x6 + x4 + 1,

r1(x) = 2x9 + 2x8 + 2x7 + 2x6 + 2x5 + 2x4 + 2x3 + 2x2 + 2x+ 1,

r2(x) = 2x9 + 2x8 + x7 + 2x6 + x5 + x4 + 2x3 + x.

Next, we consider two circulant matrices of size 16, A and B, generated by g(x)r1(x) and g(x)r2(x) over
F3. Then C is a QC code of length 32 with index 2 whose generator matrix is G = [A | B], where |
represents the horizontal concatenation of the two circulant matrices A and B. We note that ABt = BAt,
which implies C is a symplectic self-orthogonal code with parameters [32, 10, 12] over F3. By Theorem
5.1, we obtain a QECC with parameters [[16, 6, 5]], which are record-breaking parameters. The previous
record was [[16, 6, 4]]. This newly constructed code is in online the quantum code table [11]. □

Example 5.7. By [7, Theorem 6], if a quantum code with parameters [[n, k, d]] exists then a quantum
code with parameters [[n + 1, k, d]] also exists, when k > 0. Therefore, from the above-constructed
quantum code parameters [[16, 6, 5]], we get a quantum code with parameters [[17, 6, 5]] which is also
new and breaks the previous record which is [[17, 6, 4]]. This newly constructed code is in the online
quantum code table [11]. □

6 Conclusion and Future work

In this work, we study one-generator and two-generator quasi-cyclic (QC) codes over Fq, where q is
a prime power. We present a necessary and sufficient condition for symplectic self-orthogonal one-
generator quasi-cyclic codes. Based on this condition, we have constructed new quantum codes that set
new records. Extending our study to two-generator QC codes over finite fields, we present necessary and
sufficient conditions for both symplectic self-orthogonality and symplectic dual-containing properties.
For each factor g(x) of xn − 1, we choose two polynomials r1(x) and r2(x) to construct a quantum code
from the one-generator QC codes. We know that skew polynomial rings are not unique factorization
domains; hence, any skew polynomial can have multiple factorizations over our standard commutative
polynomial ring Fq[x]. This multiplicity increases the potential to find more factors and, consequently,
more possibilities to construct codes. It will be interesting to study one-generator skew quasi-cyclic codes
and apply our necessary and sufficient conditions to explore new record-breaking quantum codes.
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[21] S. Ling and P. Solé, On the algebraic structure of quasi-cyclic codes IV: repeated roots, Des. Codes
Cryptogr. 38, 337–361, (2006).

[22] J. Lv, R Li and J. Wang, New binary quantum codes derived from one-generator quasi-cyclic codes,
IEEE Access 7, 85782–85785, (2019).

[23] J. Lv, R. Li and J. Wang, An explicit construction of quantum stabilizer codes from quasi-cyclic
codes, IEEE Commun. Lett. 24(5), 1067–1071, (2020).

[24] G. E. Seguin, A class of 1-generator quasi-cyclic codes, IEEE Trans. Inf. Theory 50, 1745–1753,
(2004).

[25] A. M. Steane, Simple quantum error-correcting codes, Phys. Rev. A 54, 4741–4751, (1996).

[26] P. W. Shor, Scheme for reducing decoherence in quantum memory, Phys. Rev. A 52, 2493–2496,
(1995).

[27] H. Xu and W. Du, On some binary symplectic self-orthogonal codes, AAECC 33, 321–337, (2022).

12


