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Abstract: Evaluating the risk associated with operations is an essential element of safe planning and
an essential prerequisite in mobile robotics. This issue is very broad, with numerous definitions
emerging in the recent literature adapting different application scenarios and leading to different
algorithmic approaches. In this review, we will investigate how the state-of-the-art approaches
define the traversability risk, particularly for mobile robots, whereby we classify existing risk-aware
navigation algorithms according to their characterization of risk. Subsequently, we will overview the
formulations of risk assessment along a path using traversability grid maps since it is essential for a
mobile robot to evaluate its path to predict potential hazards. Finally, we will discuss the consistency
of commonly used risk metrics in robotics. The aim of the review is to offer a comprehensive overview
to newcomers in the field, to provide a structured reference for practitioners, and to also inspire
future developments.

Keywords: risk assessment; risk metric; traversability analysis; unmanned ground vehicles;
occupancy grids

1. Introduction

Currently, mobile robots are deployed to accomplish different missions in unknown
and partially known structured or unstructured environments (see Figure 1). These mis-
sions include search and rescue operations prompted by natural disasters [1], the inspection
of planetary terrains [2], agricultural robotics [3], military surveillance missions in off-road
environments [4], and autonomous driving in urban environments [5]. These different
missions in such different and complex environments cannot be achieved unless a few
critical issues are addressed, namely (i) perceiving the environment, (ii) characterizing and
identifying potential risks and building an environment model, (iii) assessing these risks,
and (iv) planning optimal safe paths while controlling the robot based on the assessed
risks. Considering the complexity and diversity of the challenges associated with these
sub-problems, significant research efforts have been devoted to addressing them. Focusing
on the first three ones, the ability to recognize its environment and translate the data it
receives from its sensors into a useful amount of knowledge is crucial for any autonomous
mobile robot. This capability enables the robot to decide whether it can navigate in a safe
and efficient manner or not. In reality, this problem may incorporate machine learning, fea-
ture extraction, image and signal processing, and three-dimensional (3D) geometry, thereby
leading to a wide range of approaches. Given the multitude of techniques employed in
terrain comprehension and the diversity of terrains in which robots operate, this review
aims to summarize traversability analysis methods and their associated risk assessments.

Our paper will be organized as follows: We first set out the definitions and taxonomy
of traversability analysis. Then, we provide an overview of the different approaches that
roboticists use to characterize risk in their risk-aware algorithms. Subsequently, we delve
into the assessment of this risk along a path in grid-based environment models (mainly
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occupancy grid maps). Moving forward, we discuss the various risk metrics encountered
in the literature and consider that probabilistic occupancy grids treat risk as a stochastic
variable. Finally, we close our study with a brief general conclusion.

(a) (b)

(c) (d)

Figure 1. Autonomous ground vehicles applications. (a) self-driving cars; (b) military autonomous
robot; (c) agricultural autonomous robot; and (d) the Mars rover.

2. Related Works and Survey Boundaries

Reviewing the field of terrain traversability analysis has been performed in numerous
earlier works. In [6], the author reviewed the field of 3D terrain traversability analy-
sis by categorizing methodologies into three main constituents, namely proprioceptive,
appearance-based, and geometry-based approaches. Furthermore, ref. [7] provided a sur-
vey of the field from the perspective of planetary exploration, in which they combined
pertinent applications, current methods, and underlying techniques within a unified frame-
work. Additionally, an extensive survey of methods for planetary terrains was given in [8],
where applications regarding the dry and rocky surfaces on which the planetary rovers op-
erated were found. Advancements adopting learning-based methods to solve the problem
of environment perception and interpretation with the final aim of the autonomous context-
aware navigation of ground vehicles in unstructured environments were also reviewed
in [9]. Ref. [10] provided a survey on sensor data fusion techniques for obstacle detection,
which are applicable in off-road navigation scenarios. A more recent survey that links many
of the recent advancements in traversability analysis, particularly in machine learning and
semantics with classical statistical methods, was also published [11]. An overview of the
aforementioned surveys is provided in Table 1.

As a complement to the aforementioned studies, the main purpose of this article is to
provide a comprehensive and general overview of the traversability risk characterizations
and assessments that encompass the entire range of mobile robotic applications (urban,
planetary, agricultural, etc.). Our focus is to link together both classical and learning-based
methods, thereby emphasizing the risk perspective rather than the methodology itself. We
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have also included certain points that we deemed necessary for traversability risk analysis,
such as assessing the risk along a path and examining existent risk metrics.

Table 1. Overview of the related surveys.

Paper Year Description Contribution

Sancho-Pradel and Gao [7] 2010 Planetary exploration

A survey of the field from a planetary explo-
ration perspective, bringing together the underly-
ing techniques, existing approaches, and relevant
applications under a common framework

Chhaniyara et al. [8] 2012 Planetary exploration
Brought together vital information pertaining to
various terrain characterization techniques into a
single article

Papadakis [6] 2013 Universal

Reviewed the field of 3D terrain traversability
analysis by aggregating the diverse contributions
from individual domains and elaborating on a
number of key similarities, as well as differences

Guastella and Muscato [9] 2020 Unstructured Environments

Reviewed the contributions that adopted
learning-based methods to solve the problem of
environment perception and interpretation with
the final aim of the autonomous context-aware
navigation of ground vehicles in unstructured
environments

Hu et al. [10] 2020 Obstacle detection
Summarized the considerations of the onboard
multi-sensor configuration of intelligent ground
vehicles in off-road environments

Borges et al. [11] 2022 Universal

Reviewed the literature of terrain traversability
analysis and defined unambiguous key terms, as
well as discussed the links between the funda-
mental building blocks that range from terrain
classification to traversability regression

3. Taxonomy

Before we tackle the question of characterizing and quantifying risk, it is imperative
to outline the broad notion of risk in mobile robotics. The wide range of applications for
mobile robots leads to a large variety of risks and motivates the need for a field taxonomy.

Indeed, the risks differ from one application of a mobile robot to another. For instance,
the risks encountered by a rover carrying out exploration missions on Mars are not the
same as those encountered by an industrial mobile robot tasked with moving pallets in a
factory shed. In the first case, the robot needs to keep an eye on its power consumption
and also on massive impact craters, cliffs, cracks and jagged boulders. However, the risk
for an industrial mobile robot is quite different. A simple classification of these risks can
be achieved by categorizing according to their source. For unmanned ground vehicles
(UGVs), we can distinguish two main classes: efficiency-based and traversability-based
risks. The efficiency-based category includes such elements as battery consumption [12],
loss of communication [13], etc. While the traversability-based category, which is the
core of our study, encompasses all the risks associated with the nature of the ground
(landform, speed bumps, pot holes, slopes, etc.) and the various static or dynamic obstacles
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encountered by the robot in its workspace, we specifically investigated traversability-based
risk in this study (Figure 2).

Up to now, traversability analysis has been widely used as a means for the optimal
navigation of UGVs in environments of varying complexity to ensure safety in terms of col-
lisions or reaching unrecoverable states. Interestingly, this generic notion of traversability
has been referred to using various terms such as drivability [14], navigability [15], traffica-
bility [16], and maneuverability [17], thereby adding complexity to its formal definition
within the robotics community. For instance, in [18], robotic traversability was formalized
using the psychological concept of affordances that was introduced by [19]. The authors
also provided the implementation results of one part of the affordance formalism for the
learning and perception of traversability affordances on a mobile robot equipped with
range sensing ability, and they showed that the robot, by interacting with its environment,
can learn to perceive the traversability affordances. Although this formalization seems ade-
quate, the authors in [6] argued that it was not formalized enough to quantify traversability
and to derive a continuous measure instead of a binary assessment (either traversable or
non-traversable), which made it overly generic and thus incomplete. And, in turn, they
defined the traversability as “the capability of a ground vehicle to reside over a terrain
region under an admissible state wherein it is capable of entering given its current state,
this capability being quantified by taking into account a terrain model, the robotic vehicle
model, the kinematic constraints of the vehicle and a set of criteria based on which the
optimality of an admissible state can be assessed” [6] (p. 2). Furthermore, the authors of [8]
defined the trafficability from the terrain perspective as the terrain’s aptitude to support
and provide useful traction for robot navigation. A more recent definition was proposed
in [11]. In their view, by contrasting the features of the terrain to the robot’s dynamics and
kinematics capabilities, traversability analyzes the terrain at a more sophisticated level than
obstacle detection and this leads to the creation of an environment cost map. Many factors,
including the shape of the terrain, roughness, expected friction/traction, and the vehicle’s
kinematics, might be included in the study. The authors of [20] proposed an approach
whereby they explicitly measured the traversal cost, as well as the associated uncertainties.
They called this cost ’traversability’ (i.e., a high traversability cost corresponds to an area of
the environment where the robot may suffer damage or impediments).

Figure 2. Risk types with examples of robotic applications.

For us, traversability in mobile robotics refers to the ability of a robot or autonomous
vehicle to navigate through a given environment effectively and safely. This notion must be
understood from both perspectives: the terrain and the robot. From a terrain perspective,
traversability encompasses various factors such as terrain ruggedness, obstacles, slopes,
stairs, and other environmental features that may hinder or facilitate the robot’s move-
ment. On the other hand, traversability is also dependent on the robot’s kinematics and
mechanical properties, such as speed, wheel size and type, chassis height, actuators, etc.

In this paper, for simplicity, the term ’risk’ refers to traversability-based risk (mainly
with respect to collision).
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4. Traversability Risk Characterization

It is becoming increasingly crucial to assess the risk involved in a robot’s course of
action as an increasing number of autonomous systems are required to carry out safety-
critical missions. So, the literature includes multiple methods that are used to characterize
traversability risk, and these methods have been classified in different ways in previous
reviews [6,8,21]. In our case, we opted to classify them into two main categories: sensor-
based and map-based. Quite simply, the difference between the two is that the first
family considers risk as a constraint in a global optimization problem (typically in path
planning); therefore, it exploits perceptual information (i.e., sensor data) directly without
converting it into a map. Whereas, for the second category, and as its name already indicates,
a traversability map of the environment (which is commonly tessellated) is created to store
an estimated traversability risk that is derived from the robot’s knowledge.

4.1. Sensor-Based Characterization

Following the boundary of an obstacle is a standard approach used by many earlier
risk-averse navigation algorithms. In most cases, the risk is simply characterized by the
minimum distance to the obstacle. In [22], for example, an approach for a collision-free
boundary following obstacles of arbitrary shape and globally convergent path planning
was proposed using the concept of instant goals. The risk analysis was performed simulta-
neously and, when needed, using a vector of the measured distance of each beam of the
range finder sensor. Similarly, many path planning and model predictive control algorithms
generate a probational path from the obstacle representation based on the sensor data at
each time step, thereby ensuring a boundary following, such as the in the Bug family
algorithms [23].

In [24], a sliding mode control law was proposed that leads the robot at a pre-specified
distance from the obstacle’s boundary and maintains this distance afterward. In this
approach, the risk is characterized by the sliding surface, which is a function of the length
of the detection ray and the tangential angle of the obstacle at the intersection point.

In another fashion, ref. [25] defined risk in a way that accounts for the size of the
obstacle (agent) and the vehicle. The authors fit circles of radius r to an agent and limited
the likelihood that their centers are inside a suitably sized “collision ellipsoid” surrounding
the vehicle, which formed the basis of their risk definition. The main distinction between
their approach and standard deterministic path planning formulations lies in the chance
constraint. This constraint ensures that the probability of the vehicle colliding with an
agent does not exceed an upper bound at each time step. The authors in [26] approximated
the chance-constrained problem as a disjunctive convex program that considers polyhedral
stay-in regions and polyhedral obstacles instead of circles. Furthermore, an incremental
sampling-based motion planning framework was proposed in [27] through distributionally
robust chance constraints, wherein they considered both sensing and localization errors,
stochastic process disruptions, erratic obstacle motion, and ambiguous obstacle positions.

Since wheel–terrain interactions play a critical role in rough terrain mobility, the au-
thors of [28] proposed a technique for accurate traversability prediction based on an online
estimation of key terrain parameters using on-board sensors. In their work, the estimated
terrain parameters are the cohesion and internal friction angle, which can be used to
compute the terrain shear strength and thus give an estimate of robot traversability. Simi-
larly, the authors in [29] presented a learning-based method for terrain classification into
a few predefined, commonly known categories such as gravel, sand, or asphalt. Then,
the traversability is measured by determining a number of parameters such as the cohesion
of the soil, the internal friction angle, the radial stress, the shear displacement, etc., which is
achieved using multiple sensor modalities including inertial sensors, motor sensors, range
sensors, and encoders.

Exponential utility functions are also a solution to represent risk [30]. The main finding
of utility theory is that there exists a utility function that converts costs into real values,
or “utilities”, such that maximizing expected utility is meaningful for any attitude toward
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risk. In the aforementioned work, the authors chose to use the exponential utility function
u(c) = γc, which was used to verify the property of “constant local risk aversion” and
permitted them to express a whole spectrum of risk sensitivity. This spectrum ranges from
being strongly risk-averse to being strongly risk-seeking in the function of the parameter γ.
It is important to note here that c denotes the generalizable action cost (such as collision,
resources consumption, etc.), which can be referred as the risk function for the Markov
decision problem.

Since fuzzy logic has been widely applied in many fields, from control theory to artifi-
cial intelligence, it has also found its place among traversability risk analysis frameworks.
In [31], the traversability risk is characterized by fuzzy rules. The authors proposed a
rule-based Fuzzy Traversability Index that uses real-time measurements of the terrain
attributes collected from imagery data to quantify how easy a terrain is for a mobile robot
to traverse. These features include, but are not restricted to, discontinuity, slope, hardness,
and roughness.

In [32], the authors represented the vehicles as particles, propagated the particles
through their kinematics, and employed the resulting distribution as the risk distribu-
tion under the assumption that the geometry of the road layout is known from a high-
definition map.

Quantile regression [33] is another prevalent choice to characterize risk in reinforce-
ment learning-based frameworks. The authors in [34] introduced the Ensemble Quantile
Networks (EQN) method, which combines distributional reinforcement learning with an
ensemble approach to obtain a risk estimate. The distribution of risk is estimated by learn-
ing its quantile function implicitly. They demonstrated that their method can balance risk
and time efficiency in different occluded intersection scenarios by considering the estimated
risk. They estimated both the aleatoric uncertainty, which characterizes risk distribution
(e.g., collision), and epistemic uncertainty, which arises due to the lack of knowledge and
can be reduced by observing more data. In Table 2, an overview of the presented sensor-
based approaches is provided, where they are further regrouped according to the targeted
application and the features (criteria) used to define the traversability (Table 2).

Table 2. Overview of sensor-based approaches.

References Method Traversability Risk Application Criteria

[22] Instant goal Minimum distance to obstacle Obstacle avoidance Obstacle

[23] µNav Minimum distance to obstacle Obstacle avoidance Obstacle

[24] Sliding surface Breach a set distance to obstacle Obstacle avoidance Obstacle

[25–27] Chance constraint Probability of collision Obstacle avoidance Obstacle/Robot

[28,29] Proprioceptive sensing Terrain parameters Off-road navigation Terrain/Robot

[30] Exponential utility functions Unspecified cost function Universal Unspecified

[32] Particle filtering Particle distribution Navigation under occlusions Obstacle

[31] Fuzzy rules Membership to Fuzzy Traversability Index Off-road navigation Terrain

[34] Quantile regression Uncertainties Navigation under occlusions Obstacle/Robot

4.2. Map-Based Characterization

Map-based approaches constitute another category of risk-aware navigation frame-
works. As the name suggests, these techniques use an environment map as their input,
which can be created from vehicle and terrain data using a variety of sensors including
LiDAR, camera, IMU, GPS, and wheel odometry. Generally, the map depicts features
related to terrain traversability in a tessellated fashion.

Let us start with the well-known standard of Bayesian occupancy grids [35], which
model the environment by employing a probabilistic, tessellated representation of multi-
source spatial data. In this framework, the map is kept as a grid of cells, each representing
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a small portion of the environment and possessing a value that indicates the occupancy
probability of the specific element. These occupancy probabilities are updated using a
Bayesian filter that treats each grid cell as an independent entity. Risk is therefore associated
with the probability of occupancy. Initially developed as a 2D modeling tool, occupancy
grids can be readily extended to 3D. However, 3D occupancy grids are memory-intensive,
thus making them impractical for large-scale mapping applications.

In the same fashion (i.e., using the regular grid representation), many traversability
maps have appeared in the literature. For instance, a traversability map was proposed
by [36]. They projected the detection results of multiple sensors on a 2D probabilistic
grid format, where each cell value can be understood as a probability that the vehicle can
successfully drive over rather than probability occupancy (i.e., more traversability factors
are taken into account such as the terrain slope). The derivation of probabilities varies
depending on the sensor, with detailed steps provided for 3D LiDAR and RGB camera
sensors. In [37], the authors constructed their traversability map by incorporating three
fundamental terrain characteristics for each cell: the slope value, the curvature value, and
the roughness. Meanwhile, in [38], the authors developed a simple traversability map
where each cell of the grid contains the list of coordinates of the points falling within its
bounds. Terrain classification is then performed for every cell individually using some
criteria such as height variation, orientation of the vector normal to the path of terrain,
and the presence of discontinuity of elevation in the cell.

In [39], the authors proposed a technique to compute a vector measure of the physical
density of a given environment as perceived by each sensor modality using data from
multiple sensors. Each cell of their ’density map’ consists of a feature set composed of
two parts: a vector of floating point ’density’ measurements and a few auxiliary parameters.
The floating point values represent the strength of the signal return from a single sensor in
a single patch of the terrain. Measurements of the lowest and maximum height readings
from the terrain, along with color information, are examples of auxiliary parameters.

The traversability index, firstly proposed by [40], serves to efficiently address a ter-
rain’s ease of traversal for planetary rovers. This index represents the degree of ease with
which the regional terrain could be navigated, and it is characterized by a number of fuzzy
sets. In [41], the risk within each cell is expressed through its grade of membership to
predefined fuzzy sets that are based on major surface features such as hills and lakes within
a long range of the robot. The two main distinctions between their traversability grid and
the Bayesian occupancy grid are as follows: (1) the probability of obstacle presence versus a
more general concept of graded terrain quality, and (2) probability theory versus possibility
theory using fuzzy sets. The authors of [42] created traversability indexes using fuzzy logic
that depend on the terrain’s slope, roll variance, and roughness. They integrated fuzzy
inference to combine these terrain features in order to obtain a traversability assessment
and local quantitative evaluation. In [43], a method was suggested that transforms a local
terrain map around the robot’s current position into a grid-type traversability map. This
transformation involves extracting slope and roughness information from terrain patches
using least-squares plane fitting. Subsequently, the method calculates ’polar obstacle
densities’ for each cell in the traversability map and converts them into a traversability
field histogram.

The 2.5D Digital Elevation Map (DEM), alternatively known as Cartesian elevation
maps [44,45], is another option for traversability risk characterization as it extends the
concept of 2D occupancy grids. This mapping technique stores the cell’s elevation instead
of its occupancy probability. The DEM is the most widely used technique for environment
modeling and traversability analysis. Therefore, several modifications have been proposed
to improve its efficiency such as in [46], who considered the elevation to follow a Gaussian
distribution, and the stores for each cell are not only the mean elevation, but also the
variance. Although elevation maps offer compact representation, they may not adequately
depict multi-level structures or even vertical structures (bridges, for instance). Therefore,
the authors of [47] proposed a new representation denoted as multi-level surface maps (MLS



Sensors 2024, 24, 1909 8 of 20

maps), which allows one to store the elevation of multiple surfaces in each cell of the grid.
However, surface representations are frequently based on significant assumptions about the
corresponding environment, and they may demand a large amount of memory, especially
outdoors. Additionally, they may not effectively differentiate between free and unknown
space, which is crucial for safe navigation. Addressing this limitation, the authors of [48]
proposed a three-dimensional model using octrees [49], thereby providing a volumetric
representation of space and employing probabilistic occupancy estimation. In this model,
each voxel stores a probability of occupancy that is similar to the standard Bayesian
occupancy 2D grid. A visualization of the mapping results for the same environment (a
tree) using some of the 3D mapping approaches mentioned in this paragraph is shown
in Figure 3.

Figure 3. Three-dimensional representations of a tree scanned with a 3D LiDAR (from left to right):
point cloud, elevation map, multi-level surface map, and octomap. From [48].

Moreover, the authors in [50] asserted that all the previously mentioned frameworks
were not suitable for assessing meaningful risks, i.e., risks that keep their physical unit.
Thus, they proposed a novel framework called Lambda-field, which is based on the Poisson
Point Process theory. Their map stores for each cell the ‘rate’ λ of a harmful event (i.e.,
collision) instead of the probability of occupancy. A higher intensity λ indicates a greater
likelihood of collision at a given position (see Figure 4). The Lambda-field framework
permits the computation of risk along a given path while retaining its physical sense, with-
out resorting to probabilistic forms, by simply integrating the intensity of ‘λ’. In addition,
using their framework, one can choose any risk function, whether associated with the
nature of the robot or that of the terrain, without any change in the theory. In their case,
for instance, they take the maximum gain in kinetic energy that results from a collision as
the risk function.

(a) (b) (c)
Figure 4. Mapping of an unstructured grassed zone (a) using both a Bayesian occupancy grid (b) and
the Lambda-field framework. (c) The robot, with its path in light blue, went around the nearest tree
(circled in green) before going back to its initial position (the path in blue). From [51].

Furthermore, a 3D extension of the Lambda-field framework is proposed in [52],
wherein they consider the time of a harmful event to be the deformation of the wheel due to
a collision, and they consider the risk function as being the maximum potential energy that
is absorbed by the wheels. So, they store, for each cell, the intensity of being non-crossable
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by the robot. In [53], we assumed that the traversability risk stems not only from collision,
but also from the lack of knowledge at each position. To address this, a new map called the
’knowledge map’ was introduced, where a probability of knowledge for each cell is stored.
This map was then combined with a Bayesian occupancy grid to assess the traversability
risk along a path.

Learning-based cost maps have seen more recent developments for robotics and
autonomous driving. In [54], an architecture was proposed wherein raw or minimally
processed point cloud data are transformed and introduced into a convolutional neural
network (CNN), which then generate a CVaR (Conditional Value at Risk) cost map directly.
The obtained traversability cost map was more robust to outliers because of the use of
CVaR, and it was more computationally efficient. In [55], the authors argued that a neural
network may be trained in a self-supervised manner to examine the traversability of terrain
using the empirical distribution of traction parameters in unicycle dynamics. The proposed
approach takes, as the input, local semantic and elevation features to predict linear and
angular traction distributions in order to generate a traction distribution map. The map
indicates the reliability of the prediction, such that if the likelihood of input terrain features
is below a threshold, the terrain is deemed out-of-distribution (OOD) and later avoided
during planning via auxiliary penalties. In [56], the authors proposed a novel interpretation
of a terrain’s traversability by learning speed and gait policies based on terrain semantics
and human demonstrations. The resulting ’speed map’ provided a straightforward and
intuitive understanding of the model’s predictions, and it can be used in navigational
tasks such as path planning. Ref. [57] uses privileged information during training to learn
navigational affordances in a modular manner, where perfect odometry availability is
assumed. The authors proposed to construct a top-down belief map of the world (i.e.,
the mapping is driven by the needs of the planner), and they applied a differentiable neural
net planner to produce the next action at each time step. In [58], the authors provided
an MMP-based approach with non-linear cost functions [59], in which they integrated
multiple on-board sensor features such as obstacle heights and LiDAR point densities.
The learned cost map, derived from an expert’s demonstration and based on detected
perceptual features, is used by the two-level planner of a six-wheeled skid steer vehicle.
Table 3 summarizes the map-based traversability analysis methods discussed so far.

Table 3. Overview of map-based approaches.

References Risk Characterization Map Dimensions Paper Application

[35] Probability of occupancy 2D Universal

[36] Probability of traversability 2D Off-road navigation

[37] Slope, curvature, and roughness 2.5D Off-road navigation

[38] Binary classification 2D Off-road navigation

[39] Object density 2D Off-road navigation

[41] Degree of membership to fuzzy sets 2D Off-road navigation

[44,45] Elevation 2.5D Universal

[47] Elevation 2.5D Environments with vertical structures

[48,49] Probability of occupancy 3D Universal

[50,52] Rate of a harmful event 2D Off-road navigation

[54] CVaR of unspecified variable 2D Off-road navigation

[55] Traction distribution 2D Off-road navigation

[56] Speed 2D Off-road navigation

[58] Generalizable traversability cost 2D Complex unstructured terrain

[60] Gaussian distribution 2D/3D Urban environment

[61] Probability of occupancy 2D/3D Urban environment
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Despite the fact that, up to now, we have only been talking about methods that
discretize the environments into cells, since this is the subject of the rest of this study, it
is not the only solution available. Another solution was provided in [60], in which the
environment was represented as a Gaussian process (GP). The main idea is that, for each
position, the GP defines the occupancy as a Gaussian distribution, one that is characterized
by a mean µ and an associated predictive variance σ. This utilization of a Gaussian process
entails a non-parametric Bayesian learning technique, thereby enabling the exploitation
of correlations between points on the map. This aspect is not addressed by mapping
techniques like the occupancy grids mentioned earlier. To answer the drawbacks of the
GP approach, the authors of [61] proposed a simpler and faster approach for environment
representation through continuous occupancy mapping. The technique, named Hilbert
maps, represent the occupancy property of the world with a linear discriminative model
operating on a high-dimensional feature vector that projects observations into a reproducing
kernel Hilbert space. Just like the GP, this approach provides maps at any resolution since
it does not presuppose that the world is divided into grid cells and naturally captures the
spatial correlations between measurements.

Until now, our discussion has revolved around risk mapping methods tailored for
static environments. However, traversability risk may also arise from dynamic obstacles,
as previously mentioned. In this context, the issue of creating continuous occupancy maps
of dynamic environments for robotics applications is addressed in [62] by learning a kernel
classifier on an efficient feature space. They incorporated the temporal variations into the
spatial domain by propagating motion uncertainty into the kernel using a hierarchical
model that enables a direct prediction of future occupancy maps from past observations.
Although fast optimization methods and heuristic tuning were required, ref. [63] proposed
a Bayesian approach to address this issue, thus eliminating the regularization term of
Hilbert maps. They extended this approach to deal with dynamic environments by lever-
aging neighborhood information to reduce susceptibility to occlusions. While the initial
formalization of Hilbert maps may not fully support their methods, their implementation
underscores the utility of Bayesian methods for dynamic environments. In a more recent
work [64], the authors proposed a framework that allows for a real-time computation of
the previous approach. It aims to capture the uncertainty of moving objects, and this
uncertainty information is then incorporated into the Hilbert maps. Nevertheless, their
models currently struggle to track complex patterns and only deal with simple motion
models. Additionally, ref. [65] addressed the dynamic occupancy grid issues by presenting
a stereo-vision-based framework. It consists of two components: a motion estimation for
both the moving ego-vehicle and the independent moving objects; and dynamic occupancy
grid mapping, which relies on the estimated motion information and dense disparity maps.
Despite its ability to map occupied areas and moving objects concurrently, further optimiza-
tion is needed, especially when multiple objects are present, to meet real-time constraints.

Another group of frameworks [66–68] offered an alternative approach for dealing with
dynamic and occluded objects. In [66], Markov chains were used to model the dynamics
of moving pedestrians and to predict their potential future locations. These occlusion
estimations are mapped into risk regions and then employed to plan a path through a
potentially obstructed area. Similarly, ref. [68] introduced the same idea. By analyzing the
scene and evaluating the best possible future behavior, the authors proposed to map the
expected risk according to the dynamic variations of the acting ’entities’. Their predictive
risk map indicates how risky a certain behavior will be in the future and enables the
evaluation of risk-minimizing behavior on path planning.

With the rise of neural networks, some of the literature [69,70] advocates for machine
learning approaches in dynamic traversability mapping. The authors of [69] tackled the
velocity estimation errors highlighted in [71] using a recurrent neural network architec-
ture. Meanwhile, ref. [70] tackled the issues related to dynamic occupancy grid maps
by combining a Bayesian filtering technique and a deep convolutional neural network.
These works provided efficient segmentation of the static and dynamic zones. However,
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the performance of such methods sorely depend on the dataset used for training. More
generally, the big drawback of learning methods is the training step.

5. Risk Assessments along a Path in Traversability Grid Maps

In the preceding section, we provide a comprehensive overview of traversability risk
characterizations in terrestrial mobile robot navigation frameworks. These are classified into
two main categories: sensor-based and map-based. In this section, our focus shifts to the
second category, which more specifically assesses the risk along a path using traversability
grids. These metric maps are particularly well suited for risk assessment since they tessellate
the environment into cells where each one stores the information about potential risky
event (such as collision, elevation, roughness, lack of knowledge, etc.). Given that the
environment, represented as a field e : Rn → R, possesses an infinite number of degrees of
freedom, which makes it non-storable on a machine, tessellating the environment into cells
of fixed size and assuming that the field is constant inside the cells is the most appropriate
solution for assigning an occupation to each position in the environment.

In [72], the authors used the occupancy grid to simply make a binary classification of
the cells (either occupied or free according to a predefined threshold). Subsequently, each
cell was assigned a reward according to its occupancy status, with positive values denoting
occupied cells and negative values indicating free cells. By summing up the rewards of
all the cells along a given path, they could obtain an occupancy cost for the path. This
allows for a comparison of the various trajectories from a list of tentacles, where the safest
trajectory is selected as the one yielding the highest reward.

If we continue to utilize the standard Bayesian occupancy grids, and if we reduce for
now the risk to the probability of collision, the risk of crossing a path P[0,i] given by a set
of i cells is as follows:

R(P[0,i]) = 1−
i

∏
j=0

(1− Pj), (1)

where Pj is the probability of occupation of the jth cell.

Another probabilistic definition of risk is ’the probability of the robot not being able to
finish the path’, which was proposed in [73]. Its expression is given by the following:

R(P[0,i]) = 1−
i

∏
j=0

r

∏
k=0

(1− rk), (2)

where rk is the probability of occupied cell k causing failures at state j given the history of
finishing the cells with indexes from 0 to j.

In [74], the authors assumed that Equation (1) is valid only if Pj is defined as the prob-
ability of a collision to occur within the corresponding time interval and that it can possibly
normalized as such; otherwise, the definition of R(P[0,i]) would depend on the time step.
Thus, they defined a temporal risk function called TTC (Time To Collision) τ(P[0,n]) as the
expectancy of the time of the first collision. Its expression is given by Equation (3).

τ(P[0,n]) = t0R(P0) +
n

∑
i=1

tiR(P[0,i])(1− R(P[0,i−1])) (3)

Although Equation (1) seems very reasonable, because the risk here is none other than
the probability of colliding at least one cell in the path (which is the complement of the
joint probability that all cells are free), the authors in [50] were able to show that the above
calculation is ill-formed. This was illustrated using the example depicted in Figure 5.
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Figure 5. Example of an occupancy grid where the robot needs to cross and reach the goal in red,
with two possible paths in blue and orange. From [50].

In this case, if we simply apply the above equation to evaluate the risk over the two
(orange and blue) paths leading to the objective, we will find that the probability of collision
of the orange one has a value of 0.97, while that of the blue is 0.99. As such, instead of
choosing the blue path, which seems intuitively more safe, the robot would take the orange
one, which passes through a large number of highly occupied cells. Additionally, they high-
lighted that the probability of collision was significantly influenced by the discretization.
An illustrative example is shown in Figure 6.

Figure 6. The robots, which are represented as boxes with a filled triangle on the front, aim to navigate
through an environment by following the dashed red line. The collision probability is uniform for the
whole environment.

Through this example, we can see that the two scenarios produced different collision
probabilities, whereas the robots crossed the same uniform probability field.

These limitations prompted the authors to find more appropriate solutions. For exam-
ple, the authors in [75] considered the risk over a path to be a measure of the expected loss.
The expectation, in this case, was taken over the probability that the vehicle will collide
with an obstacle at cell c. Hence, the risk is expressed by the following:

R(P) =
N−1

∑
i=0

Pi · L(xv, xc), (4)

where L(xv, xc) is the loss as a function of the vehicle state xv and the cell state xc. In their
work, they defined risk as the total loss of kinetic energy of the system. This was also the
same for [53], wherein they defined risk as the integral over the trajectory (expected value)
of the kinetic energy of contact, which is weighted by a probability of risk.

Indeed, in this case, risk R is not a probability of collision as it lies in [0, ∞), but rather
it represents a kinetic energy expressed in (Joule), i.e., this time it has a physical meaning
but is still dependent on the tessellation size—the smaller the size of the cells, the more
cells the robot lies on and therefore the larger R is.

Furthermore, we can consider the case represented by Figure 7, where the robot needs
to choose between the two paths (top and bottom) by assessing the risk using Equation (4).
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Figure 7. Example of risk assessments using Equation (4).

If we consider that the robot has a mass m and runs at constant speed v, it becomes
evident that both trajectories would have the same risk value. However, it is apparent that
the second trajectory was more risky due to an 80% occupied cell.

The risk was therefore multiplied by the cell area ∆a, as one suggested a solution to
the cell size dependency issue.

R(P) = ∆a
N−1

∑
i=0

Pi · L(xv, xc) (5)

But, by multiplying by the area, we lose the physical meaning of R(P) (i.e., this is
leading to the risk being expressed in J ·m2).

Another solution to infer the probability of collision in occupancy grids was proposed
in [76]. They proposed a new interpretation of risk that accounts for the fraction of time
that a robot has stayed in a cell while following a trajectory using the theory of product
integrals [77]. The probability of collision based on this theory is then given by the following:

R(P) =
L

∏
0
[1− p0(P))]ds, (6)

where p0 denotes the probability of collision over P . We should note here that one of
the drawbacks of their approach is that the robot is reduced to a point (i.e., the robot’s
wheelbase is zero).

Therefore, the probability of collision does not rely on the size of the tessellation when
we integrate over the tessellated field.

In addition, the authors in the already-cited paper [20] used the time consistency
dynamic risk measure [78], which is defined for a set of states x0:N and a policy π, as per
the following:

J(x0, π; m) = R0 + ρ0(R1 + ρ1(R2 + ... + ρN−1(RN))), (7)

where ρ denotes the conditional value at risk (CVaRα), which was discussed in the follow-
ing section; and Ri, which depicts the risk for time i. Moreover, for α→ 0, the risk function
J simplifies to

lim
α→0

J(x0, π; m) = R0 +E[R1 +E[R2 + ... +E[RN ]]],

= R0 +
N

∑
i=1

E[Ri].
(8)

One can easily notice that the smaller the discretization, the higher the risk (i.e., when
the number of sample times increases to infinity, the risk tends to infinity).

When discussing the dependence on cell size and the physical sense of risk, we cannot
avoid citing [50]. In that study, the authors proposed a new framework for not only
representing cell occupancy differently (as mentioned in the previous paragraph), but also
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for assessing physical risk over a path. They defined the probability of encountering at
least one collision on the path as follows:

R(P) =
∫
P

f (a)da ' 1− exp (−A ∑
ci

λi), (9)

where f (a) is the probability distribution associated to the Lambda-field framework as a
function of the traveled area a. Each cell ci has an area A and an associated lambda λi.

In addition, by choosing a physical risk function (force of collision, energy, etc.)
r(·), they defined its expectation over the path P going through the cells {ci}0:N by
the following:

E[r(X)] =
N

∑
i=0

r(Ai) exp (−A
i−1

∑
j=0

λj)(1− exp (−Aλi), (10)

where X is the position (i.e., area) at which the first event ‘collision’ occurs. Although the
Lambda-field framework is not yet popular among the robotics community, it remains a
very suitable choice for assessing the physical risk along a path.

6. Quantification Metrics for Stochastic Risk

In most cases, and especially in grid-based maps, the risk is a stochastic variable.
A map is fundamentally, most of the time, a field of binary random variables. A sensor is
a probabilistic channel that links robot motion in the physical world to information gain.
Quantifying risk, then, corresponds to evaluating a risk metric, i.e., a mapping from the
cost random variable to a real number.

As such, ref. [79] provided an exhaustive study of what constitutes a ’good’ risk metric
by advocating axioms that must be fulfilled by the latter:

• A1. Monotonicity;
• A2. Translation invariance;
• A3. Positive homogenity;
• A4. Subadditivity;
• A5. Comonotonic additivity;
• A6. Law invariance.

The expected value used, for instance, in [50] describes the long-term average level of
risk based on its probability distribution. It constitutes a simple and coherent metric in the
sense that it satisfies all of the axioms of [79], as well as the worst case metric [80], which
refers simply to the largest value of risk. Another popular metric to quantify risk in robotics
applications is the mean variance E[X] + βVar[X], which is used—for instance—in [81].
The mean variance satisfies only the axiom ’A6’, thereby rendering it a non-coherent metric.

In addition to statistics, finance specialists also have their own risk metrics, which are
increasingly used in robotics. One should start with the most popular Value at Risk (VaR),
which is defined as the (1− α)-quantile of the cost distribution. Its expression is given
in Equation (11).

VaRα(X) = min{x | P(X > x) ≤ α}. (11)

In actuality, VaR is a non-coherent risk metric since it satisfy only five axioms. In line
with the aforementioned chance constraints [25–27], the VaR was found to be closely related
since the constraint Varα(Z) ≤ 0 corresponded to the chance constraint P(X > 0) ≤ α.

The expected shortfall, or the Conditional Value at Risk (CVaR) metric [82], was
introduced in several risk-aware path planning applications [20,83] as an alternative to
VaR. Intuitively, CVaR is the expected value of costs in the conditional distribution of the
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cost distribution’s upper (1− α)-tail; thus, it is a metric of ’how bad is bad’. Moreover, the
CVaR can be expressed as a function of VaR as follows:

CVaRα(Z) :=
1
α

∫ 1

(1−α)
VaR1−τ(Z) dτ. (12)

As we said before, VaR has some shortcomings and that is why CVaR, which is a
coherent risk metric, comes in handy.

Entropic Value at Risk (EVaR) [84] is another financial risk metric that has been adopted
for mobile robot risk assessment applications [85]. EVaR is an upper bound for both the
value at risk (VaR) and the conditional value at risk (CVaR), which is obtained from the
Chernoff inequality.

EVaR1−α(X) = inf
z>0

[
z−1 ln

E[eXz]

1− α

]
. (13)

Even though both the EVaR and the CVaR are coherent metrics, EVaR is a more
risk-sensitive measure.

A comparison of the most used risk metrics is illustrated in Figure 8.

Figure 8. Comparison of the mean, VaR, CVaR, and EVaR (obtained from [86]). The axes denote the
values of risk c and its probability density function p(c). The blue area denotes the (1− α)% of the
area under p(c).

In [87], the authors presented a new risk measure that is a generalization of EVaR
called Relativistic Value at Risk (RLVaR). It is a special case of φ−divergence risk measures
based on Kaniadakis entropy. The RLVaR is a coherent risk metric that has not yet been
adopted in robotics.

An overview of the discussed risk metrics is provided in Table 4, which was achieved
by determining their coherence according to [79].

Table 4. Coherence of the mentioned risk metrics.

Metric Axioms [79] Coherence

Expected Value A1–A6 Coherent

Worst Case A1–A6 Coherent

Mean Variance A6 Non-coherent

Value at Risk (VaR) A1–A3, A5, A6 Non-coherent

Conditional Value at Risk (CVaR) A1–A6 Coherent

Entropic Value at Risk (EVaR) A1–A6 Coherent

Relativistic Value at Risk (RLVaR) A1–A6 Coherent

7. Conclusions and Future Works

In this review, we provided a glance at the main methods that are to define and
assess risk in mobile robotics applications. The risk characterization approaches have been
divided into two main categories: sensor-based and map-based methods. In contrast to the
second category, which does require transforming sensor data into an environment map
(mainly in grid format), the first family includes all of the methods that utilize sensor data
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without such transformations. Map-based methods produce accurate metric maps that
encode the traversability information and allow for efficient risk-aware planning. However,
this efficiency decreases in large-scale indoor environments. Sensor-based methods also
enable efficient reactive navigation but lack a suitable model of the environment. We then
focused our study on the second category by dealing with the assessment of traversability
risk along a path in such traversability grids. Several formulations were discussed, wherein
we highlighted their drawbacks and used some examples. We opted to end this mini-review
by discussing the various existing risk metrics, which represent an important field in robotic
risk assessment applications. Thus, investigating these risk metrics led to the conclusion
that not all of them exhibit coherence, and certain metrics stand out as objectively superior
to others.

The present paper has outlined several major advances and breakthroughs in the field
of traversability analysis. This represents a solid foundation for our future work, where
the aim is to develop a risk-aware navigation framework that enables an autonomous
vehicle to operate efficiently in urban environments with numerous sources of information
available, as well as in off-road or rural zones. To achieve this objective, a traversability
analysis must be carried out that takes into account all of the aspects ranging from the
nature of the terrain, through the robot’s mechanical limitations, to an analysis of the robot’s
knowledge (i.e., perception capabilities and information availability), as initiated in our
earlier work [53].
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The following abbreviations are used in this manuscript:

UGV Unmanned Ground Vehicles

EQN Ensemble Quantile Networks

IMU Inertial Measurement Unit

GPS Global Positioning System

DEM Digital Elevation Map

MLS Multi-Level Surface

CNN Convolutional Neural Network

CVaR Conditional Value at Risk

OOD Out Of Distribution
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MMP Maximum Margin Planning

GP Gaussian Process

TTC Time To Collision

VaR Value at Risk

EVaR Entropic Value at Risk

RLVaR Relativistic Value at Risk
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